JP5482837B2 - Ferro-coke manufacturing method - Google Patents

Ferro-coke manufacturing method Download PDF

Info

Publication number
JP5482837B2
JP5482837B2 JP2012161391A JP2012161391A JP5482837B2 JP 5482837 B2 JP5482837 B2 JP 5482837B2 JP 2012161391 A JP2012161391 A JP 2012161391A JP 2012161391 A JP2012161391 A JP 2012161391A JP 5482837 B2 JP5482837 B2 JP 5482837B2
Authority
JP
Japan
Prior art keywords
molded product
coal
coke
ferro
thermal stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012161391A
Other languages
Japanese (ja)
Other versions
JP2012193389A (en
Inventor
喜代志 深田
泉 下山
孝思 庵屋敷
英和 藤本
哲也 山本
広行 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012161391A priority Critical patent/JP5482837B2/en
Publication of JP2012193389A publication Critical patent/JP2012193389A/en
Application granted granted Critical
Publication of JP5482837B2 publication Critical patent/JP5482837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、高炉原料として用いるのに好適な、石炭および鉄鉱石を原料として乾留して製造するフェロコークスの製造方法に関する。   The present invention relates to a method for producing ferro-coke, which is suitable for use as a blast furnace raw material and produced by dry distillation using coal and iron ore as raw materials.

原料石炭に粉鉄鉱石を配合し、この混合物を通常の室炉式コークス炉で乾留してフェロコークスを製造する技術としては、1)石炭と粉鉄鉱石との粉体混合物を室炉式コークス炉に装入する方法、2)石炭と鉄鉱石を冷間、すなわち室温で成型し、その成型物を室炉式コークス炉に装入する方法などが検討されてきた(例えば、非特許文献1参照。)。しかし通常の室炉式コークス炉は、珪石煉瓦で構成されているので、鉄鉱石を装入した場合に鉄鉱石が珪石煉瓦の主成分であるシリカと反応し、低融点のファイヤライト(2FeO・SiO)が生成して珪石煉瓦の損傷を招く。このため室炉式コークス炉でフェロコークスを製造する技術は、工業的には実施されていない。 The technology for blending powdered iron ore with raw coal and producing ferro-coke by dry distillation of this mixture in a normal chamber furnace coke oven is as follows: 1) A powder mixture of coal and powdered iron ore is used as a chamber furnace coke. A method of charging into a furnace, 2) a method of forming coal and iron ore cold, that is, at room temperature, and charging the molded product into a chamber furnace type coke oven have been studied (for example, Non-Patent Document 1). reference.). However, a normal chamber-type coke oven is composed of silica brick, so when iron ore is charged, iron ore reacts with silica, which is the main component of silica brick, and low-melting firelite (2FeO · SiO 2 ) is generated and the silica brick is damaged. For this reason, the technique which manufactures ferro-coke with a chamber-type coke oven is not implemented industrially.

近年、室炉式コークス製造法に替わるコークス製造方法として、連続式成型コークス製造法が開発されている。連続式成型コークス法では、乾留炉として、珪石煉瓦ではなくシャモット煉瓦にて構成される竪型シャフト炉を用い、石炭を冷間で所定の大きさに成型後、シャフト炉に装入し、循環熱媒ガスを用いて加熱することにより成型炭を乾留し、成型コークスを製造する。資源埋蔵量が豊富で安価な非微粘結炭を多量に使用しても、通常の室炉式コークス炉と同等の強度を有するコークスが製造可能なことが確認されているが、使用する石炭の粘結性が高い場合にはシャフト炉内で成型炭が軟化融着し、シャフト炉操業が困難になると共に変形や割れ等のコークス品質低下を招く。   In recent years, a continuous molding coke manufacturing method has been developed as a coke manufacturing method replacing the chamber furnace type coke manufacturing method. In the continuous molding coke method, a vertical shaft furnace composed of chamotte bricks instead of silica bricks is used as the carbonization furnace, and coal is molded into a predetermined size in the cold, and then charged into the shaft furnace for circulation. The coal is carbonized by heating with a heat medium gas to produce a molded coke. It has been confirmed that even if a large amount of non-slightly caking coal that is abundant in resource reserves and inexpensive is used, it is possible to produce coke that has the same strength as a normal chamber-type coke oven. When the caking property is high, the coal is softened and fused in the shaft furnace, which makes it difficult to operate the shaft furnace and causes deterioration of coke quality such as deformation and cracking.

連続式コークス製造法でのシャフト炉内での融着抑制のために、石炭に鉄鉱石を全体量の15〜40%となるように添加し、冷間で成型物を製造し、シャフト炉に装入する方法が提案されている(例えば、特許文献1参照)。この方法では、鉄鉱石には粘結性がないので、冷間の状態で成型物を製造するために高価なバインダを添加する必要がある。そこで、原料としての石炭と鉄鉱石あるいは鉄原料を、加熱した熱間の状態で塊成型物に成型する方法も提案されている(例えば、特許文献2、特許文献3参照。)。しかしながら、前記特許文献1〜3において、石炭と鉄鉱石あるいは鉄原料とでは、乾留時における熱的挙動が異なることから、乾留時における成型物の変形や割れ等、コークス品質低下の問題が残る。   In order to suppress fusion in the shaft furnace in the continuous coke production method, iron ore is added to the coal so as to be 15 to 40% of the total amount, and a molded product is produced coldly. A method of charging has been proposed (see, for example, Patent Document 1). In this method, since iron ore has no caking property, it is necessary to add an expensive binder to produce a molded product in a cold state. Then, the method of shape | molding the coal as a raw material and iron ore, or an iron raw material to the lump molding in the state between the heated heat | fever is proposed (for example, refer patent document 2, patent document 3). However, in Patent Documents 1 to 3, since the thermal behavior at the time of dry distillation is different between coal and iron ore or iron raw material, problems such as deformation and cracking of a molded product at the time of dry distillation remain.

一方で、石炭のみを主原料として使用する成型コークス製造については、成型コークスとする成型物の乾留時、変形や割れ等のコークス品質低下を押さえるために、成型物を乾留する際のヒートパターンの検討が行なわれ、成型物の温度に応じた最適な加熱速度設計方法が提案されている(例えば、特許文献4、特許文献5参照。)。   On the other hand, with regard to molded coke production using only coal as the main raw material, the heat pattern when carbonizing the molded product is reduced in order to suppress the deterioration of coke quality such as deformation and cracking during the dry distillation of the molded product. Studies have been conducted, and an optimum heating rate design method according to the temperature of the molded product has been proposed (see, for example, Patent Document 4 and Patent Document 5).

特開平6−65579号公報JP-A-6-65579 特開2004−217914号公報JP 2004-217914 A 特開2005−53982号公報JP 2005-53982 A 特開昭52−23103号公報JP-A-52-23103 特開平7−102260号公報JP-A-7-102260

燃料協会「コークス技術年報」 1958, p.38Fuel Association "Coke Technology Annual Report" 1958, p.38

上記のように、原料として石炭と、鉄鉱石あるいは鉄原料が使用されるフェロコークスの製造においては、乾留時における成型物の変形や割れ等の問題は解決されていない。フェロコークスは石炭(以下、炭素含有物質と記載する。)と、鉄鉱石あるいは鉄原料(以下、酸化鉄含有物質と記載する。)の混合物であるため、加熱時における熱的および機械的物性値が成型コークス製造時とは大きく異なっており、乾留過程における成型物の変形や割れ挙動が異なることが予想される。   As described above, in the production of ferro-coke in which coal and iron ore or an iron raw material are used as raw materials, problems such as deformation and cracking of molded products during dry distillation have not been solved. Ferro-coke is a mixture of coal (hereinafter referred to as carbon-containing material) and iron ore or iron raw material (hereinafter referred to as iron-oxide-containing material). However, it is expected that the deformation and cracking behavior of the molded product during the dry distillation process will be different.

本発明は、上記の問題点を解消し、酸化鉄含有物質と炭素質含有物質からなる成型物を乾留してフェロコークスを製造する際に、成型物の乾留時に発生する亀裂、熱割れを防止し、乾留炉出側での原形歩留りを高めるとともに、フェロコークスを高炉に装入する際にも割れにくく、歩留り低下を防止できる、フェロコークスの製造方法を提供することを目的とする。   The present invention solves the above-mentioned problems and prevents cracks and thermal cracks that occur during dry distillation of molded products when dry-molding molded products composed of iron oxide-containing materials and carbonaceous materials. It is another object of the present invention to provide a method for producing ferro-coke that can increase the original yield on the outlet side of the dry distillation furnace and is difficult to break even when the ferro-coke is charged into the blast furnace and can prevent the yield from being lowered.

このような課題を解決するための本発明の特徴は以下の通りである。
酸化鉄含有物質と炭素質含有物質とを混合して成型した成型物を、加熱により乾留してフェロコークスを製造する際に、前記成型物の表面温度が550〜650℃である温度域における加熱速度を20℃/分以下として乾留することを特徴とするフェロコークスの製造方法。
The features of the present invention for solving such problems are as follows.
When a ferro-coke is produced by dry distillation of a molded product obtained by mixing an iron oxide-containing material and a carbonaceous material, heating in a temperature range where the surface temperature of the molded product is 550 to 650 ° C. A method for producing ferro-coke, characterized by performing carbonization at a rate of 20 ° C./min or less.

本発明によれば、酸化鉄含有物質と炭素質含有物質とを混合した成型物を乾留した際に、成型物内部における熱応力の発生を抑制し、フェロコークスを製造する際の歩留り低下を防ぐとともに、高炉装入前および高炉内での割れを防ぐことができる。   According to the present invention, when a molded product obtained by mixing an iron oxide-containing material and a carbonaceous material is dry-distilled, the generation of thermal stress inside the molded product is suppressed, and a decrease in yield when producing ferrocoke is prevented. At the same time, it is possible to prevent cracking before charging the blast furnace and in the blast furnace.

石炭成型物の表面温度と最大熱応力の関係を示すグラフ。The graph which shows the relationship between the surface temperature of a coal molding, and the maximum thermal stress. 石炭90%と鉄鉱石10%成型物の表面温度と最大熱応力の関係を示すグラフ。The graph which shows the relationship between the surface temperature and the maximum thermal stress of 90% coal and 10% iron ore. 石炭成型物の表面温度と最大熱応力の加熱速度依存性を示すグラフ。The graph which shows the heating rate dependence of the surface temperature and maximum thermal stress of a coal molding. 石炭90%と鉄鉱石10%成型物の表面温度と最大熱応力の加熱速度依存性を示すグラフ。The graph which shows the heating rate dependence of the surface temperature and maximum thermal stress of 90% coal and 10% iron ore. 石炭100%、および石炭と鉄鉱石の混合物の、温度と線収縮率の関係を示すグラフ。The graph which shows the relationship between temperature and linear shrinkage | contraction rate of 100% coal and the mixture of coal and iron ore.

本発明者らは、フェロコークスの製造方法について検討し、フェロコークスの原料である酸化鉄含有物質と炭素質含有物質を混合した成型物の熱的および機械的物性値の測定を行い、この値に基づいた熱応力解析を実施するとともに、様々な条件で熱処理した場合の成型物の変形や割れ状況を解析した結果に基づき、酸化鉄含有物質と炭素質含有物質を混合した成型物の亀裂制御に最適な加熱方法を見出すことにより本発明を完成させた。なお、本発明において酸化鉄含有物質とは、Fe23や、Fe34を主成分として含む鉄鉱石に加えて、酸化鉄を含有した還元鉄や鉄分含有スラッジ等である。また、炭素質含有物質とは、石炭、瀝青物、オイルコークス等である。石炭としては、粘結性を示す原料炭、粘結性を示さない瀝青炭、半無煙炭、無煙炭等の一般炭に加え、膨潤炭やSRCなどの溶剤処理炭が挙げられる。瀝青物としては、ピッチ、軟ピッチ、中ピッチ、硬ピッチなどの石炭系、ASP、PDAなどの石油系瀝青物、オイルコークスとしては、フルードコークス、ディレードコークスが挙げられる。 The inventors of the present invention have studied a method for producing ferrocoke, measured the thermal and mechanical properties of a molded product obtained by mixing an iron oxide-containing material and a carbonaceous material, which are raw materials for ferrocoke, and obtained this value. Control of cracks in molded products that contain iron oxide-containing materials and carbonaceous materials based on the results of analysis of deformation and cracking conditions of molded products when heat-treated under various conditions The present invention has been completed by finding an optimal heating method. In the present invention, the iron oxide-containing substance is Fe 2 O 3 or iron ore containing Fe 3 O 4 as a main component, reduced iron containing iron oxide, iron-containing sludge, or the like. Moreover, the carbonaceous material includes coal, bitumen, oil coke and the like. Examples of coal include solvent-treated coal such as swollen coal and SRC, in addition to raw coal that exhibits caking properties, bituminous coal that does not exhibit caking properties, semi-anthracite coal, and anthracite coal. Examples of the bituminous materials include coal-based bitumens such as pitch, soft pitch, medium pitch, and hard pitch, and petroleum-based bitumens such as ASP and PDA, and examples of oil coke include fluid coke and delayed coke.

各種行なった解析結果の一例として、成型物を加熱した際に、成型物内部に発生する最大熱応力の推移を図1、2に示す。炭素質含有物質として石炭100mass%を原料とした場合と、酸化鉄含有物質として鉄鉱石10mass%、炭素質含有物質として石炭90mass%を混合した原料をそれぞれ、18cc、50cc、92ccで成型した成形物を、等加熱速度5K/minで加熱した際の、成型物内部に発生する最大熱応力の推移を、石炭100mass%の成型物の場合を図1に、鉄鉱石10mass%と石炭90mass%とを混合した成型物の場合を図2に示す。   As an example of various analysis results, the transition of the maximum thermal stress generated inside the molded product when the molded product is heated is shown in FIGS. Molded products molded from 18 cc, 50 cc, and 92 cc of raw materials in which 100% by mass of coal is used as a carbonaceous material, and 10% by mass of iron ore as a material containing iron oxide and 90% by mass of coal as a carbonaceous material are mixed. Of the maximum thermal stress generated inside the molded product when heated at a constant heating rate of 5 K / min. FIG. 1 shows the case of a molded product of 100 mass% coal, 10 mass% iron ore and 90 mass% coal. The case of a mixed molded product is shown in FIG.

図1に示すように、炭素含有物質のみで構成された成型物を乾留した場合、成型物表面温度が700℃から750℃近傍で大きな熱応力のピークを示す。この理由を図5を用いて説明する。図5は、石炭100mass%、石炭90mass%と鉄鉱石10mass%、石炭70mass%と鉱石30mass%からなる成型物の線収縮率の温度依存性を示すグラフであり、図5に示すように石炭100mass%成型物の熱処理過程において、750℃近傍でピーク(いわゆる線収縮率の二次ピーク)が観測されている。このように、表面温度が750℃近傍のとき、表面の収縮速度が最大となっているのに対し、成型物の内部は表面よりも温度が低いことから、表面と比較すると相対的に収縮速度が小さくなるため、成型物の表面と内部とで収縮量差が生じるために亀裂の生成確率が高くなる。また、石炭と鉄鉱石の混合成型物も同様に二次ピークを示している。尚、500℃近傍でもピーク(いわゆる線収縮率の一次ピーク)が観測されているが、この一次ピーク温度域では石炭100mass%の成型物であるコークスのヤング率が小さいために、図1に示すように、発生する熱応力は相対的に小さくあまり問題にはならない。また、図1に示すように、成型物容量が大きくなるにつれて、成型物の表面と内部の温度差が拡大するため最大熱応力のピークの値は大きくなる。   As shown in FIG. 1, when a molded product composed only of a carbon-containing substance is dry-distilled, a large thermal stress peak is exhibited when the molded product surface temperature is around 700 ° C. to 750 ° C. The reason for this will be described with reference to FIG. FIG. 5 is a graph showing the temperature dependence of the linear shrinkage rate of a molded product composed of 100 mass% coal, 90 mass% coal, 10 mass% iron ore, 70 mass% coal, and 30 mass% ore. As shown in FIG. In the heat treatment process of the% molded product, a peak (so-called secondary peak of linear shrinkage) is observed at around 750 ° C. Thus, when the surface temperature is around 750 ° C., the shrinkage rate of the surface is maximum, whereas the temperature inside the molded product is lower than that of the surface. Therefore, since the shrinkage amount difference occurs between the surface and the inside of the molded product, the probability of crack generation increases. Moreover, the mixed molded product of coal and iron ore similarly shows a secondary peak. In addition, although a peak (a so-called primary peak of linear shrinkage rate) is observed even near 500 ° C., the Young's modulus of coke, which is a molded product of 100 mass% of coal, is small in this primary peak temperature range, so that it is shown in FIG. Thus, the generated thermal stress is relatively small and is not a problem. Further, as shown in FIG. 1, as the molded product capacity increases, the temperature difference between the surface and the inside of the molded product increases, so that the peak value of the maximum thermal stress increases.

一方、酸化鉄含有物質と炭素含有物質を混合した成型物を乾留した場合、図5に示すような線収縮率を示し、炭素含有物質に比較して酸化鉄含有物質の熱伝導率は例えば100倍程度と大きいため、炭素含有物質のみと比較して成型物表面と内部の温度差は小さくなる。酸化鉄含有物質の含有量を増加させても同じ傾向を示す。したがって、図2に示すように、酸化鉄含有物質と炭素含有物質の混合成型物では、700℃から750℃近傍での熱応力のピークは無視できるほど小さくなる。一方で、成型物表面温度が線収縮率の一次ピーク値から極小値を示す550℃から650℃近傍で大きな熱応力のピークを示す。炭素含有物質単体(石炭100mass%:コークス)の場合、この温度域ではヤング率が小さいため熱応力は問題とならなかったが、酸化鉄含有物質と炭素含有物質を混合した成型物(フェロコークス)の場合には、酸化鉄含有物質の影響を受けヤング率が大きくなるため、この温度域においては、わずかな歪変化でも大きな熱応力が発生する。成型物の大きさを小さくして内部の温度分布を押さえても、それ以上にヤング率依存性が大きいため、成型物容量の依存性は小さくなる。また、この温度域では、炭素含有物質で構成されている粒子間の結合強度が低いため、発生熱応力のわずかな増加が亀裂発生に大きく影響する。   On the other hand, when a molded product in which an iron oxide-containing material and a carbon-containing material are mixed is dry-distilled, a linear shrinkage rate as shown in FIG. 5 is shown, and the thermal conductivity of the iron oxide-containing material is, for example, 100 Since it is as large as about twice, the temperature difference between the surface of the molded product and the inside becomes smaller than that of the carbon-containing material alone. The same tendency is shown even if the content of the iron oxide-containing substance is increased. Therefore, as shown in FIG. 2, in the mixed molded product of the iron oxide-containing material and the carbon-containing material, the peak of thermal stress in the vicinity of 700 ° C. to 750 ° C. becomes so small that it can be ignored. On the other hand, the molded product surface temperature shows a large thermal stress peak in the vicinity of 550 ° C. to 650 ° C. where the linear shrinkage rate is a minimum value from the primary peak value. In the case of a carbon-containing substance alone (coal 100 mass%: coke), the Young's modulus is small in this temperature range, so thermal stress was not a problem. In this case, since the Young's modulus increases due to the influence of the iron oxide-containing substance, a large thermal stress is generated even in a slight strain change in this temperature range. Even if the size of the molded product is reduced and the internal temperature distribution is suppressed, the Young's modulus dependency is larger than that, so that the dependency of the molded product capacity is reduced. Further, in this temperature range, the bond strength between the particles composed of the carbon-containing material is low, so that a slight increase in the generated thermal stress greatly affects the generation of cracks.

このように、炭素含有物質と酸化鉄含有物質との混合物では、炭素含有物質単独の場合と比較して熱応力の発生温度が異なるため、乾留時の亀裂発生、すなわち熱応力の発生を抑制するためには、成型物の容量によらず550℃から650℃の加熱方法を制御すればよいことを新たに見出し、以下の本発明を完成した。なお、本発明で用いる以下の550℃から650℃の加熱方法は、炭素含有物質と酸化鉄含有物質との混合物の成型にあたり、熱間成型から得られる成型物の乾留時にも、酸化鉄含有物質含有量を多くしてバインダを利用する冷間成型で得られる成型物の乾留時にも、有効な加熱方法である。   As described above, in the mixture of the carbon-containing material and the iron oxide-containing material, the generation temperature of the thermal stress is different from that in the case of the carbon-containing material alone, so that crack generation during dry distillation, that is, generation of thermal stress is suppressed. In order to achieve this, the inventors have newly found that the heating method from 550 ° C. to 650 ° C. may be controlled regardless of the capacity of the molded product, and the following invention has been completed. In addition, the following heating method of 550 ° C. to 650 ° C. used in the present invention is an iron oxide-containing substance even at the time of dry distillation of a molded product obtained from hot molding in molding a mixture of a carbon-containing substance and an iron oxide-containing substance. It is an effective heating method even during dry distillation of a molded product obtained by cold molding using a binder with an increased content.

500℃から650℃の加熱方法を制御する方法として、加熱速度を制御する方法が挙げられる。加熱速度を遅くすればするほど成型物表面と内部の温度差が小さくなるため、熱応力の発生を抑制することが可能となる。しかし、加熱速度を遅くすると乾留時間が長くなるため、製品の生産性を低下させるため好ましくは無い。そこで、加熱速度の上限値の設定が重要である。   As a method for controlling the heating method from 500 ° C. to 650 ° C., a method for controlling the heating rate can be mentioned. The slower the heating rate, the smaller the temperature difference between the surface of the molded product and the inside thereof, so that it is possible to suppress the generation of thermal stress. However, if the heating rate is slowed, the carbonization time becomes long, which is not preferable because it reduces the productivity of the product. Therefore, the setting of the upper limit value of the heating rate is important.

例えば、成型物内部に発生する最大熱応力の推移を、炭素質含有物質として石炭100mass%を原料とした場合を図3に、酸化鉄含有物質として鉄鉱石10mass%、炭素質含有物質として石炭90mass%の混合物を原料とした場合を図4に示す。図3、4は、それぞれにおいて、18ccに成型した成型物を、加熱速度5、10、20K/minで加熱した際の、成型物内部に発生する最大熱応力の推移を示すグラフである。いずれの原料の場合も、加熱速度を小さくするにつれて発生する最大熱応力が小さくなることが分かる。   For example, the transition of the maximum thermal stress generated in the molded product is shown in FIG. 3 in the case where 100 mass% of coal is used as the carbonaceous material, and 10 mass% of iron ore as the iron oxide-containing material and 90 mass of carbon as the carbonaceous material. FIG. 4 shows a case where a mixture of 2% is used as a raw material. 3 and 4 are graphs showing the transition of the maximum thermal stress generated inside the molded product when the molded product molded to 18 cc is heated at a heating rate of 5, 10 and 20 K / min, respectively. It can be seen that, in any raw material, the maximum thermal stress generated as the heating rate is decreased.

様々な条件で熱処理した成型物の変形や割れ状況を解析した結果、フェロコークスを乾留する際の550から650℃の加熱速度の上限は20℃/minであり、20℃/min以下で加熱することにより、成型物に亀裂が殆ど発生しないことが見出された。   As a result of analyzing the deformation and cracking conditions of the molded product heat-treated under various conditions, the upper limit of the heating rate of 550 to 650 ° C. when ferrocoke is dry distilled is 20 ° C./min, and heating is performed at 20 ° C./min or less. As a result, it was found that cracks hardly occur in the molded product.

フェロコークス熱処理条件とフェロコークスの割れの関係を明確にするため、加熱速度を制御可能な電気炉を用いて、フェロコークス原料成型物の加熱試験を実施し、亀裂の発生状況を調査した。   In order to clarify the relationship between ferro-coke heat treatment conditions and ferro-coke cracking, a heating test of the ferro-coke raw material molding was conducted using an electric furnace capable of controlling the heating rate, and the occurrence of cracks was investigated.

まず、フェロコークス用原料の調整を行なった。炭素質含有物質として揮発分35mass%の石炭(原料炭)を、酸化鉄含有物質としてFe含有量68mass%の鉄鉱石を選び、石炭と鉄鉱石を9:1および7:3の質量比で混ぜ合わせた2種類の原料を準備した。次に、ダブルロール型の成型機を用いて成型物容量が6cc、18cc、50ccの3種類の成型物を製造した。これら成型物を電気炉により様々なヒートパターンで加熱した。   First, the raw material for ferro-coke was adjusted. Select coal (coking coal) with a volatile content of 35 mass% as the carbonaceous material, and iron ore with an Fe content of 68 mass% as the iron oxide-containing material, and mix the coal and iron ore in a mass ratio of 9: 1 and 7: 3. Two types of raw materials were prepared. Next, three types of molded articles having a molded article capacity of 6 cc, 18 cc, and 50 cc were manufactured using a double roll type molding machine. These molded products were heated in various heat patterns by an electric furnace.

上記により成型した成型物を数個ずつ電気炉の均熱帯に並べ、窒素雰囲気下で各種加熱パターンで900℃まで加熱し、窒素雰囲気下でゆっくりと冷却し、室温まで冷却した後に電気炉から取り出して外観を観察して、原形をとどめているフェロコークスの割合(原形率)を測定した。得られたフェロコークスの表面に亀裂が入っていないものを、原形をとどめているフェロコークスとした。   Several molded products molded as described above are arranged in the tropical zone of the electric furnace, heated to 900 ° C in various heating patterns under a nitrogen atmosphere, slowly cooled under a nitrogen atmosphere, cooled to room temperature, and then removed from the electric furnace. The ratio of the ferro-coke that remained in the original form (original form ratio) was measured. The obtained ferro-coke with no cracks on its surface was defined as ferro-coke that retains its original shape.

表1に550〜650℃の温度域における加熱速度で原形率を整理した結果を示す。尚、550〜650℃以外の温度域での加熱速度は適宜変更し、各加熱速度で一定ではない。   Table 1 shows the result of arranging the original shape ratios at the heating rate in the temperature range of 550 to 650 ° C. In addition, the heating rate in temperature ranges other than 550-650 degreeC changes suitably, and is not constant at each heating rate.

Figure 0005482837
Figure 0005482837

いずれの容量の成型物についても550〜650℃の加熱速度が10℃/min以下では全く割れが確認されなかった。また、20℃/min以下では割れた成型物は10%未満であり、わずかに確認されただけで、生産性に影響を及ぼすほどではなかった。一方で、加熱速度が20℃/minを超える25℃/min以上で加熱した際には、明らかに多くの割れたフェロコークスが確認された。   No cracks were observed at any heating capacity of 550 to 650 ° C. at a rate of 10 ° C./min or less for the molded article of any capacity. Further, at 20 ° C./min or less, the cracked molded product was less than 10%, and it was confirmed only slightly and did not affect the productivity. On the other hand, when heating was performed at a heating rate of 25 ° C./min or more exceeding 20 ° C./min, obviously many cracked ferro cokes were confirmed.

Claims (2)

酸化鉄含有物質と炭素質含有物質とを混合して成型した成型物を、加熱により乾留してフェロコークスを製造する際に、前記成型物の表面温度が550〜650℃である温度域における加熱速度を5〜20℃/分として乾留することを特徴とするフェロコークスの製造方法。   When a ferro-coke is produced by dry distillation of a molded product obtained by mixing an iron oxide-containing material and a carbonaceous material, heating in a temperature range where the surface temperature of the molded product is 550 to 650 ° C. A method for producing ferrocoke, characterized by dry distillation at a rate of 5 to 20 ° C / min. 前記加熱速度を5〜10℃/分として前記成型物を乾留することを特徴とする請求項1に記載のフェロコークスの製造方法。   The method for producing ferro-coke according to claim 1, wherein the molding is dry-distilled at a heating rate of 5 to 10 ° C / min.
JP2012161391A 2012-07-20 2012-07-20 Ferro-coke manufacturing method Active JP5482837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012161391A JP5482837B2 (en) 2012-07-20 2012-07-20 Ferro-coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012161391A JP5482837B2 (en) 2012-07-20 2012-07-20 Ferro-coke manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006185026A Division JP5087868B2 (en) 2006-07-05 2006-07-05 Ferro-coke manufacturing method

Publications (2)

Publication Number Publication Date
JP2012193389A JP2012193389A (en) 2012-10-11
JP5482837B2 true JP5482837B2 (en) 2014-05-07

Family

ID=47085560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012161391A Active JP5482837B2 (en) 2012-07-20 2012-07-20 Ferro-coke manufacturing method

Country Status (1)

Country Link
JP (1) JP5482837B2 (en)

Also Published As

Publication number Publication date
JP2012193389A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
KR101246523B1 (en) Method of producing ferro-coke
JP4487564B2 (en) Ferro-coke manufacturing method
JP4556525B2 (en) Blast furnace operation method
JP2012102325A (en) Method for producing formed coke, and formed coke produced by the method
KR101405480B1 (en) Method for manufacturinfg coal briquettes
JPH0665579A (en) Method for compounding raw material of coal briquet for producing metallurgical formed coke
JP5017966B2 (en) Ferro-coke manufacturing method
JP5087868B2 (en) Ferro-coke manufacturing method
JP5017967B2 (en) Ferro-coke manufacturing method
JP5011956B2 (en) Ferro-coke and method for producing sintered ore
JP5386838B2 (en) Ferro-coke for metallurgy
JP4892930B2 (en) Ferro-coke manufacturing method
JP4556524B2 (en) Blast furnace operation method
JP5017969B2 (en) Ferro-coke raw material molding and method for producing ferro-coke
JP5482837B2 (en) Ferro-coke manufacturing method
JP4892928B2 (en) Ferro-coke manufacturing method
JP6065510B2 (en) Method of blending coke raw material for blast furnace
JP5386839B2 (en) Manufacturing method of ferro-coke for metallurgy
JP5028946B2 (en) Ferro-coke raw material molding and method for producing ferro-coke
CN105551560B (en) The preparation method of smelting electrode material
JP6323394B2 (en) Ferro-coke raw material molding method and ferro-coke manufacturing method
WO2018003648A1 (en) Method for producing sintering feedstock for producing sintered ore
JP2007119601A (en) Method for producing ferrocoke
JP5470855B2 (en) Manufacturing method of ferro-coke for metallurgy
JP2010144096A (en) Method for producing ferrocoke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5482837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250