JP2009227781A - Ferrocoke for metallurgy - Google Patents

Ferrocoke for metallurgy Download PDF

Info

Publication number
JP2009227781A
JP2009227781A JP2008073624A JP2008073624A JP2009227781A JP 2009227781 A JP2009227781 A JP 2009227781A JP 2008073624 A JP2008073624 A JP 2008073624A JP 2008073624 A JP2008073624 A JP 2008073624A JP 2009227781 A JP2009227781 A JP 2009227781A
Authority
JP
Japan
Prior art keywords
carbon material
coke
iron ore
ferro
hardly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008073624A
Other languages
Japanese (ja)
Other versions
JP5386838B2 (en
Inventor
Hidekazu Fujimoto
英和 藤本
Izumi Shimoyama
泉 下山
Takashi Anyashiki
孝思 庵屋敷
Kiyoshi Fukada
喜代志 深田
Hiroyuki Sumi
広行 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008073624A priority Critical patent/JP5386838B2/en
Publication of JP2009227781A publication Critical patent/JP2009227781A/en
Application granted granted Critical
Publication of JP5386838B2 publication Critical patent/JP5386838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide ferrocoke for metallurgy, which is produced by carbonizing molded articles comprising a carbon material and an iron ore, and whose strength deterioration is prevented, even when the reduction of the iron ore proceeds. <P>SOLUTION: Provided is the ferrocoke produced by carbonizing molded articles comprising the carbon material and the iron ore 13, characterized in that the carbon material comprises a hardly meltable carbon material 12 having a maximum flow rate of &lt;2 ddpm measured with a Gieseler Plastometer, and an easily meltable carbon material 11 having a maximum flow rate of &ge;2 ddpm, and the iron ore 13 is unevenly distributed in the neighborhood of the hardly meltable carbon material 12. The iron ore 13 is preferably impregnated into the hardly meltable carbon material 12, or preferably coats the surface of the hardly meltable carbon material 12. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、石炭と鉄鉱石との混合物を成型して乾留して製造する冶金用フェロコークスに関する。   The present invention relates to a ferro-coke for metallurgy that is produced by molding a mixture of coal and iron ore and subjecting it to dry distillation.

原料石炭に粉鉄鉱石を配合し、この混合物を通常の室炉式コークス炉で乾留してフェロコークスを製造する技術としては、(a)石炭と粉鉄鉱石との粉混合物を室炉式コークス炉に装入する方法、(b)石炭と鉄鉱石を冷間、すなわち室温で成型し、その成型物を室炉式コークス炉に装入する方法などが検討されてきた(例えば、非特許文献1参照。)。しかし通常の室炉式コークス炉は珪石煉瓦で構成されているので、鉄鉱石を装入した場合に鉄鉱石が珪石煉瓦の主成分であるシリカと反応し、低融点のファイヤライト(2FeO・SiO2)が生成して珪石煉瓦の損傷を招く。このため室炉式コークス炉でフェロコークスを製造する技術は、工業的には実施されていない。 The technology for producing ferro-coke by blending powdered iron ore with raw coal and producing this ferro-coke by dry distillation of this mixture in an ordinary chamber-type coke oven is as follows. A method of charging into a furnace, (b) a method of forming coal and iron ore cold, that is, at room temperature, and charging the molded product into a chamber-type coke oven have been studied (for example, non-patent literature). 1). However, since ordinary furnace-type coke ovens are composed of silica brick, when iron ore is charged, iron ore reacts with silica, which is the main component of silica brick, and low melting point firelite (2FeO · SiO 2 ) is generated and causes damage to the quartz brick. For this reason, the technique which manufactures ferro-coke with a chamber-type coke oven is not implemented industrially.

上記問題を回避するため、乾留後のコークスに鉄含有物質を含浸させて高反応性コークス(フェロコークス)を製造する方法が提案されている(例えば、特許文献1参照。)。この方法では、コークス中に鉄含有物質を含浸させるのが困難であり、内部まで鉄の濃度を上昇させるには時間がかかり、生産性を大幅に低下させてしまう。またハンドリング時の衝撃で含浸させた鉄含有物がはがれ落ちてしまい、効果が低下する等の問題が残されている。   In order to avoid the above problem, a method has been proposed in which coke after dry distillation is impregnated with an iron-containing substance to produce highly reactive coke (ferro coke) (see, for example, Patent Document 1). In this method, it is difficult to impregnate the coke with the iron-containing substance, and it takes time to increase the iron concentration to the inside, and the productivity is greatly reduced. Moreover, the iron-containing material impregnated by the impact at the time of handling peels off, and the problem that an effect falls, etc. remains.

近年、室炉式コークス製造法に替わるコークス製造方法として、連続式成型コークス製造法が開発されている。連続式成型コークス法では、乾留炉として、珪石煉瓦ではなくシャモット煉瓦にて構成される竪型シャフト炉を用い、石炭を冷間で所定の大きさに成型後、シャフト炉に装入し、循環熱媒ガスを用いて加熱することにより成型炭を乾留し、成型コークスを製造する。資源埋蔵量が豊富で安価な非微粘結炭を多量に使用しても、通常の室炉式コークス炉と同等の強度を有するコークスが製造可能なことが確認されているが、使用する石炭の粘結性が高い場合にはシャフト炉内で成型炭が軟化融着し、シャフト炉操業が困難になると共に変形や割れ等のコークス品質低下を招く。   In recent years, a continuous molding coke manufacturing method has been developed as a coke manufacturing method replacing the chamber furnace type coke manufacturing method. In the continuous molding coke method, a vertical shaft furnace composed of chamotte bricks instead of silica bricks is used as the carbonization furnace, and coal is molded into a predetermined size in the cold, and then charged into the shaft furnace for circulation. The coal is carbonized by heating with a heat medium gas to produce a molded coke. It has been confirmed that even if a large amount of non-slightly caking coal that is abundant in resource reserves and inexpensive is used, it is possible to produce coke that has the same strength as a normal chamber-type coke oven. When the caking property is high, the coal is softened and fused in the shaft furnace, which makes it difficult to operate the shaft furnace and causes deterioration of coke quality such as deformation and cracking.

連続式コークス製造法でのシャフト炉内での融着抑制のために、石炭に鉄鉱石を全体量の15〜40%となるように添加し、冷間で成型物を製造し、シャフト炉に装入する方法が提案されている(例えば、特許文献2参照。)。この方法では、鉄鉱石には粘結性がないので、冷間の状態で成型物を製造するために高価なバインダーを添加する必要がある。そこで、原料としての石炭と鉄鉱石あるいは鉄原料を、加熱した熱間の状態で塊成型物に成型する方法も提案されている(例えば、特許文献3、特許文献4参照。)。
特開2004−315664号公報 特開平6−65579号公報 特開2004−217914号公報 特開2005−53982号公報 燃料協会 「コークス技術年報」1958年、p.38
In order to suppress fusion in the shaft furnace in the continuous coke production method, iron ore is added to the coal so as to be 15 to 40% of the total amount, and a molded product is produced coldly. A method of charging has been proposed (see, for example, Patent Document 2). In this method, since iron ore has no caking property, it is necessary to add an expensive binder to produce a molded product in a cold state. Then, the method of shape | molding the coal as a raw material and iron ore, or an iron raw material to a lump molding in the state between the heated heat | fever is proposed (for example, refer patent document 3 and patent document 4).
JP 2004-315664 A JP-A-6-65579 JP 2004-217914 A JP 2005-53982 A Fuel Association "Coke Technology Annual Report" 1958, p. 38

しかしながら、上記特許文献2〜4において、石炭と、鉄鉱石あるいは鉄原料とでは、乾留時における熱的挙動が異なることから、乾留後の強度低下が大きいという問題が残されている。   However, in the said patent documents 2-4, since the thermal behavior at the time of dry distillation differs between coal and an iron ore or an iron raw material, the problem that the strength fall after dry distillation is large remains.

鉄鉱石と炭材との成型物を乾留してフェロコークスを製造する際、還元率の上昇とともに炭材が鉱石の還元に使用されるため、フェロコークス中に欠陥構造が発生し強度低下が顕著となる。また、成型物の乾留中に成型物同士の融着を抑制する必要があるので、鉱石比率が50mass%以下のフェロコークスを製造する場合には炭材として難溶融性炭材を配合する必要が生じる。難溶融性炭材はフェロコークスの強度向上に寄与しないため、難溶融性炭材を用いる場合は特に、高い還元率を維持しながらフェロコークスの強度を確保するのは困難である。   When ferro-coke is produced by dry distillation of iron ore and carbonaceous material, the carbonaceous material is used to reduce the ore as the reduction rate increases, so a defect structure is generated in the ferro-coke and the strength is significantly reduced. It becomes. Moreover, since it is necessary to suppress fusion | bonding of molded products during dry distillation of a molded product, when manufacturing ferro-coke whose ore ratio is 50 mass% or less, it is necessary to mix | blend a hardly-melting carbon material as a carbon material. Arise. Since the hardly fusible carbon material does not contribute to improving the strength of the ferro coke, it is difficult to ensure the strength of the ferro coke while maintaining a high reduction rate, particularly when the hardly fusible carbon material is used.

したがって本発明の目的は、このような従来技術の課題を解決し、炭材と鉄鉱石とからなる成型物を乾留して製造されるフェロコークスであって、鉄鉱石の還元が進行してもフェロコークス強度の低下が抑制される、冶金用フェロコークスを提供することにある。   Therefore, the object of the present invention is a ferro-coke produced by dry distillation of a molded product composed of a carbonaceous material and iron ore, which solves such problems of the prior art, and even if the reduction of the iron ore proceeds An object of the present invention is to provide metallurgical ferro-coke in which a decrease in ferro-coke strength is suppressed.

本発明はかかる事情に鑑みてなされたものであって、フェロコークス強度向上に寄与しない難溶融性炭材の近傍に鉄鉱石を偏在して配置させることにより、主に難溶融性炭材に鉄鉱石還元に伴う欠陥構造が発生し、フェロコークス強度向上に寄与する軟化溶融を示す易溶融性炭材にはほとんど欠陥構造が発生していない冶金用フェロコークスを得るものである。   The present invention has been made in view of such circumstances, and iron ore is mainly distributed in the hardly fusible carbon material by arranging iron ore in the vicinity of the hardly fusible carbon material that does not contribute to the improvement of the ferrocoke strength. The defect structure accompanying the stone reduction is generated, and the ferro-coke for metallurgy is obtained in which the defect structure is hardly generated in the easily meltable carbon material exhibiting softening and melting that contributes to the improvement of the ferro-coke strength.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)炭材と鉄鉱石とからなる成型物を乾留して製造されるフェロコークスであって、前記炭材がギーセラープラストメータで測定される最高流動度が2ddpm未満である難溶融性炭材と最高流動度が2ddpm以上の易溶融性炭材とからなり、前記鉄鉱石が前記難溶融性炭材の近傍に偏在していることを特徴とする冶金用フェロコークス。
(2)鉄鉱石が難溶融性炭材の内部に含浸されていることを特徴とする(1)に記載の冶金用フェロコークス。
(3)難溶融性炭材表面が鉄鉱石で被覆されていることを特徴とする(1)に記載の冶金用フェロコークス。
The features of the present invention for solving such problems are as follows.
(1) Ferro-coke produced by dry distillation of a molded product composed of a carbon material and iron ore, wherein the carbon material has a maximum fluidity of less than 2 ddpm as measured by a Gieseler plastometer. Ferro-coke for metallurgy, characterized in that the iron ore is unevenly distributed in the vicinity of the hardly-fusible carbon material, and a high-fluidity carbon material having a maximum fluidity of 2 ddpm or more.
(2) Ferro-coke for metallurgy according to (1), characterized in that iron ore is impregnated inside the hardly-meltable carbonaceous material.
(3) The ferrocoke for metallurgy according to (1), wherein the surface of the hardly fusible carbon material is coated with iron ore.

本発明によれば、難溶融性炭材を用いてフェロコークスを製造する場合であっても、高強度のフェロコークスが得られる。   According to the present invention, even when ferrocoke is produced using a hardly fusible carbon material, high strength ferrocoke can be obtained.

これにより、フェロコークスを高炉で使用した場合に、CO2ガスとの反応より発生する粉の発生を抑制し、フェロコークス使用による圧力損失の上昇を抑制しつつ、フェロコークスとCO2ガスとの反応速度の増大により熱保存帯温度を低下させることができ、高炉の還元材比を低減することが可能となる。 As a result, when ferro-coke is used in a blast furnace, the generation of powder generated by reaction with CO 2 gas is suppressed, and the increase in pressure loss due to the use of ferro-coke is suppressed, while ferro-coke and CO 2 gas are By increasing the reaction rate, the temperature of the heat preservation zone can be lowered, and the reducing material ratio of the blast furnace can be reduced.

本発明は、炭材と鉄鉱石とからなる成型物を乾留して製造されるフェロコークスであって、炭材が難溶融性炭材と易溶融性炭材とからなり、鉄鉱石が難溶融性炭材の近傍に偏在している構造を有する冶金用フェロコークスである。鉄鉱石が難溶融性炭材の近傍に偏在した状態としては、鉄鉱石が難溶融性炭材の内部に含浸されている状態や、難溶融性炭材表面が鉄鉱石で被覆されている状態とすることが好ましい。鉄鉱石が難溶融性炭材の近傍に偏在していることにより、鉄鉱石の還元により生成する欠陥構造は難溶融性炭材の内部または周辺に発生し、フェロコークス強度を発現させる軟化溶融を示す易溶融性炭材内部には欠陥構造を発生させないフェロコークスとなる。これによりフェロコークス内の鉄鉱石の還元が進行してもフェロコークスの強度低下が抑制可能である。   The present invention is a ferro-coke produced by dry distillation of a molded product composed of a carbon material and iron ore, wherein the carbon material is composed of a hardly fusible carbon material and a readily fusible carbon material, and the iron ore is difficult to melt. It is a ferro-coke for metallurgy having a structure unevenly distributed in the vicinity of the carbonaceous material. State where iron ore is unevenly distributed in the vicinity of hard-to-melt carbonaceous material, iron ore is impregnated inside the hard-to-melt carbonaceous material, or the surface of hard-to-melt carbonaceous material is coated with iron ore It is preferable that Due to the uneven distribution of iron ore in the vicinity of the hardly fusible carbon material, the defect structure generated by the reduction of iron ore occurs inside or around the hardly fusible carbon material, and softening and melting that develops ferro-coke strength is achieved. It becomes ferro-coke which does not generate a defect structure inside the easily meltable carbon material shown. Thereby, even if the reduction | restoration of the iron ore in ferro coke advances, the intensity | strength fall of ferro coke can be suppressed.

なお、難溶融性炭材とは、ギーセラープラストメータで測定される最高流動度(MF)が2ddpm未満である石炭等の炭材であり、易溶融性炭材とは最高流動度(MF)が2ddpm以上の難溶融性炭材よりも溶融しやすい石炭等の炭材である。   In addition, a hardly meltable carbon material is a carbon material such as coal having a maximum fluidity (MF) measured by a Gisela plastometer of less than 2 ddpm, and a readily meltable carbon material is a maximum fluidity (MF). Is a coal material such as coal that is easier to melt than a hardly-fusible carbon material of 2 ddpm or more.

図1に石炭と鉄鉱石との成型物を乾留温度700〜1000℃で2時間乾留して製造されたフェロコークスの強度と還元率の測定結果を示す。石炭には平均最大反射率が0.7%の微粘炭(石炭1)と、平均最大反射率が1.7%の非粘炭(石炭2)を50mass%ずつ配合した配合炭を用いた。石炭1が易溶融性炭材であり、石炭2が難溶融性炭材に相当する。鉄鉱石は粒径100ミクロン以下に粉砕したカラジャス鉱石を用い、30mass%配合とした。鉄鉱石の性状を表1に、石炭の性状を表2に示す。   FIG. 1 shows the measurement results of the strength and reduction rate of ferro-coke produced by carbonizing a molded product of coal and iron ore at a carbonization temperature of 700 to 1000 ° C. for 2 hours. For coal, blended coal containing 50% by mass of slightly viscous coal (Coal 1) having an average maximum reflectance of 0.7% and non-coking coal (Coal 2) having an average maximum reflectance of 1.7% was used. . Coal 1 is a readily meltable carbon material, and coal 2 corresponds to a hardly meltable carbon material. The iron ore used was carajas ore that had been pulverized to a particle size of 100 microns or less, and contained 30 mass%. Table 1 shows the properties of iron ore and Table 2 shows the properties of coal.

石炭、鉄鉱石、石炭系軟ピッチ(バインダー)をミキサーで単純に混合し、ロール成型機で成型して成型物を製造した。成型物の大きさは6ccである。乾留温度が700、800℃の場合、還元率はそれぞれわずか20%、40%である。乾留温度を900℃以上にすると還元率は急激に上昇し85%以上となっている。フェロコークス強度は乾留温度が800℃で極大値を取り、乾留温度が1000℃ではフェロコークス強度が大幅に低下している。鉱石を含まない石炭のみの乾留では、1300℃程度までなら乾留温度の上昇とともに強度は上昇する。乾留温度が900℃以上で鉱石の還元が進行するため、コークス内部に欠陥構造が生成し、強度が低下するものと考えられる。   Coal, iron ore, and coal-based soft pitch (binder) were simply mixed with a mixer and molded with a roll molding machine to produce a molded product. The size of the molded product is 6 cc. When the carbonization temperature is 700 and 800 ° C., the reduction rates are only 20% and 40%, respectively. When the dry distillation temperature is set to 900 ° C. or higher, the reduction rate rapidly increases to 85% or higher. The ferro-coke strength takes a maximum value at a carbonization temperature of 800 ° C., and the ferro-coke strength is greatly reduced at a carbonization temperature of 1000 ° C. In the case of dry distillation using only coal not containing ore, the strength increases as the dry distillation temperature increases up to about 1300 ° C. Since the reduction of the ore proceeds at a carbonization temperature of 900 ° C. or higher, it is considered that a defect structure is generated inside the coke and the strength is lowered.

図2には図1において1000℃で乾留して製造したフェロコークス内部の偏向顕微鏡写真を示す。黒い部分が気孔あるいは亀裂を表し、白い部分は鉄鉱石が還元された金属鉄1を表す。金属鉄1は数ミクロン程度の石炭微粒子由来のコークス組織と混合された状態で存在している。金属鉄1は周辺のコークス組織とは融着が悪く、金属鉄1周辺に欠陥構造2が見られる。これは、鉄鉱石が炭材と直接還元して炭材が消失したこと、コークス組織の乾留中の収縮および金属鉄1とコークス組織との濡れが悪いことに由来すると推察される。鉄鉱石の還元が進行すると金属鉄1周辺に多くの欠陥が生成し、フェロコークス強度の低下を招くと考えられる。   FIG. 2 shows a deflection micrograph inside ferrocoke produced by dry distillation at 1000 ° C. in FIG. The black portion represents pores or cracks, and the white portion represents metallic iron 1 in which iron ore has been reduced. Metallic iron 1 exists in a state of being mixed with a coke structure derived from fine coal particles of about several microns. The metallic iron 1 is poorly fused with the surrounding coke structure, and the defect structure 2 is seen around the metallic iron 1. This is presumed to be derived from the fact that the iron ore was directly reduced with the carbon material and the carbon material disappeared, that the coke structure was contracted during the carbonization, and the wetness between the metallic iron 1 and the coke structure was poor. It is considered that when the reduction of iron ore proceeds, many defects are generated around the metallic iron 1 and the strength of the ferro-coke is reduced.

そこで、鉄鉱石還元の進行に伴うフェロコークス強度の低下を抑制するために、図3(b)、(c)に示すように難溶融性炭材の近傍に鉄鉱石が偏在したフェロコークスを考えた。鉄鉱石の配合率が50mass%以下の場合、成型物を乾留すると成型物同士の融着が起こる恐れが高いため、炭材には易溶融性炭材11として粘結炭や微粘炭の他に非粘炭を代表とする難溶融性炭材12を配合する必要があり、通常フェロコークス中の炭材と鉄鉱石(還元鉱石)の配置は図3(a)のようになる。フェロコークスの強度向上には、易溶融性炭材11が寄与し、成型物同士の融着防止には難溶融性炭材12が寄与する。そこで、鉄鉱石13を図3(b)に示すように難溶融性炭材12周辺に配置させるか、または図3(c)に示すように難溶融性炭材12の内部に配置させれば、鉄鉱石13の還元に伴う欠陥構造の生成を難溶融性炭材12周辺あるいは内部にとどめることが可能であり、易溶融性炭材11には還元に伴う欠陥の発生は起きにくいと考えられる。このように考えると、図3(b)、(c)のフェロコークスでは鉱石の還元に伴うフェロコークスの強度低下は減じられると推察される。   Therefore, in order to suppress the decrease in the strength of ferrocoke accompanying the progress of iron ore reduction, ferrocoke in which iron ore is unevenly distributed in the vicinity of the hardly fusible carbon material as shown in FIGS. 3 (b) and 3 (c) is considered. It was. When the blending ratio of iron ore is 50 mass% or less, there is a high risk of fusion between the molded products when the molded product is dry-distilled. It is necessary to mix the hardly fusible carbon material 12 typified by non-coking coal, and the arrangement of the carbon material and the iron ore (reduced ore) in the normal ferro-coke is as shown in FIG. The easily meltable carbon material 11 contributes to improving the strength of the ferro-coke, and the hardly meltable carbon material 12 contributes to preventing fusion between the molded products. Therefore, if the iron ore 13 is arranged around the hardly fusible carbon material 12 as shown in FIG. 3 (b), or is arranged inside the hardly fusible carbon material 12 as shown in FIG. 3 (c). In addition, it is possible to limit the generation of the defect structure associated with the reduction of the iron ore 13 around or inside the hardly-meltable carbon material 12, and it is considered that the easily-meltable carbon material 11 is unlikely to generate defects due to the reduction. . If considered in this way, it is presumed that the ferro-coke in FIGS. 3B and 3C reduces the strength reduction of the ferro-coke accompanying the reduction of the ore.

そこで、図1において900℃で乾留したフェロコークスを「単純混合」の場合のベース条件として、鉄鉱石を難溶融性炭材表面に被覆して、易溶融性炭材と混合した図3(b)の場合のフェロコークスを製造し、「難溶融性炭材に被覆」として、フェロコークス強度と還元率を比較した。図4に「単純混合」と「難溶融性炭材に被覆」のフェロコークス強度と還元率を比較した結果を示す。難溶融性炭材への鉄鉱石の被覆は、難溶融性炭材と鉄鉱石とを高速攪拌型ミキサーで混合し、石炭系軟ピッチを添加してさらに混合した。その後易溶融性炭材と石炭系軟ピッチを添加してさらに混合した。そしてこの混合物を成型して成形物とし、乾留してフェロコークスを製造した。図4によれば、鉱石還元率は2%低下したものの、フェロコークス強度は4ポイント上昇した。   Therefore, as a base condition in the case of “simple mixing”, ferro-coke carbonized at 900 ° C. in FIG. 1 is coated with iron ore on the surface of a hardly fusible carbon material and mixed with the easily fusible carbon material in FIG. ), And the ferro-coke strength and the reduction rate were compared as “coating on a hardly-fusible carbon material”. FIG. 4 shows the result of comparing the ferro-coke strength and the reduction rate of “simple mixing” and “coating with a hardly-fusible carbon material”. The coating of the iron ore on the hardly fusible carbon material was performed by mixing the hardly fusible carbon material and the iron ore with a high-speed agitating mixer, and further adding a coal-based soft pitch. Thereafter, an easily meltable carbon material and a coal-based soft pitch were added and further mixed. And this mixture was shape | molded and it was set as the molded object, and dry-distilled and manufactured the ferro coke. According to FIG. 4, although the ore reduction rate decreased by 2%, the ferrocoke strength increased by 4 points.

次に、図3(c)の場合のフェロコークスを製造した。鉄鉱石を強制的に難溶融性炭材へ含浸させるために、鉄鉱石と難溶融性炭材をボールミルで20分間混合した。難溶融性炭材は100ミクロン以下に粉砕されてしまったが、カラジャス鉱石が難溶融性炭材内部に突き刺さった状態となった。これを石炭系軟ピッチとともに易溶融性炭材と混合し、ミキサーで攪拌後、ロール成型して乾留し、「難溶融性炭材に含浸」の場合とした。対照となるベースとしては、鉄鉱石と難溶融性炭材を別々にボールミルで20分間攪拌したものを石炭系軟ピッチとともに易溶融性炭材と混合し、ロール成型して乾留し、「単純混合」の場合とした。図5に「単純混合」と「難溶融性炭材に含浸」のフェロコークス強度と還元率を比較した結果を示す。還元率はベースに比較して4%低下したものの、フェロコークス強度は8ポイントも上昇した。通常のフェロコークスでは、還元率が4%の違いではフェロコークス強度は2ポイント程度しか変わらないため、鉄鉱石を難溶融性炭材に含浸させる効果は非常に大きいことが分かる。   Next, the ferro coke in the case of FIG. In order to forcibly impregnate the hard-melting carbon material with iron ore, the iron ore and the hard-melting carbon material were mixed in a ball mill for 20 minutes. The hardly fusible carbon material has been pulverized to 100 microns or less, but the carajas ore is stuck into the hardly fusible carbon material. This was mixed with an easily meltable carbon material together with a coal-based soft pitch, stirred with a mixer, roll-molded and dry-distilled, and “impregnated into a hardly meltable carbon material” was used. As a reference base, iron ore and hardly fusible carbon material separately stirred for 20 minutes with a ball mill are mixed with coal-based soft pitch together with fusible coal material, roll-molded and dry-distilled. ". FIG. 5 shows a comparison result of the ferro-coke strength and the reduction rate of “simple mixing” and “impregnated with hardly meltable carbonaceous material”. Although the reduction rate decreased by 4% compared to the base, the ferrocoke strength increased by 8 points. In normal ferro-coke, when the reduction rate is 4%, the ferro-coke strength changes only by about 2 points. Therefore, it can be seen that the effect of impregnating iron ore into a hardly-fusible carbon material is very large.

以上のように、従来の「単純混合」のフェロコークスと比較して、本発明の難溶融性炭材の近傍に鉄鉱石が偏在したフェロコークスは、高強度を有するものである。   As described above, ferro-coke in which iron ore is unevenly distributed in the vicinity of the hardly fusible carbonaceous material of the present invention has higher strength than the conventional “simple mixing” ferro-coke.

従来のフェロコークスの強度と還元率の測定結果を示すグラフ。The graph which shows the measurement result of the intensity | strength and reduction rate of the conventional ferro-coke. 従来のフェロコークス内部の偏向顕微鏡写真。A deflection micrograph inside a conventional ferro-coke. フェロコークス中の炭材と鉄鉱石の配置を示す模式図。(a)従来のフェエロコークス(単純混合)、(b)鉄鉱石を難溶融性炭材周辺に配置(難溶融性炭材に被覆)、(c)鉄鉱石を難溶融性炭材の内部に配置(難溶融性炭材に含浸)The schematic diagram which shows arrangement | positioning of the carbonaceous material and iron ore in ferro coke. (A) Conventional ferro-coke (simple mixing), (b) Arrangement of iron ore around hard-to-melt carbonaceous material (coating with hard-melting carbon material), (c) Iron ore inside hard-to-melt carbonaceous material Placed (impregnated in hard-to-melt carbonaceous material) 「単純混合」と「難溶融性炭材に被覆」のフェロコークス強度と還元率を比較したグラフ。A graph comparing the ferro-coke strength and the reduction rate of “simple mixing” and “coating with a hardly fusible carbonaceous material”. 「単純混合」と「難溶融性炭材に含浸」のフェロコークス強度と還元率を比較したグラフ。A graph comparing the ferro-coke strength and reduction rate of “simple mixing” and “impregnating hardly fusible carbonaceous materials”.

符号の説明Explanation of symbols

1 金属鉄
2 欠陥構造
11 易溶融性炭材
12 難溶融性炭材
13 鉄鉱石
DESCRIPTION OF SYMBOLS 1 Metallic iron 2 Defect structure 11 Highly meltable carbon material 12 Hardly meltable carbon material 13 Iron ore

Claims (3)

炭材と鉄鉱石とからなる成型物を乾留して製造されるフェロコークスであって、前記炭材がギーセラープラストメータで測定される最高流動度が2ddpm未満である難溶融性炭材と最高流動度が2ddpm以上の易溶融性炭材とからなり、前記鉄鉱石が前記難溶融性炭材の近傍に偏在していることを特徴とする冶金用フェロコークス。   Ferro-coke produced by dry distillation of a molding made of carbon material and iron ore, wherein the carbon material has a maximum flow rate measured by a Gieseler plastometer of less than 2 ddpm and the highest melting material. Ferro-coke for metallurgy, characterized in that it consists of a readily meltable carbon material having a fluidity of 2 ddpm or more, and the iron ore is unevenly distributed in the vicinity of the hardly meltable carbon material. 鉄鉱石が難溶融性炭材の内部に含浸されていることを特徴とする請求項1に記載の冶金用フェロコークス。   The ferro-coke for metallurgy according to claim 1, wherein iron ore is impregnated in the hardly-meltable carbonaceous material. 難溶融性炭材表面が鉄鉱石で被覆されていることを特徴とする請求項1に記載の冶金用フェロコークス。   2. The ferro-coke for metallurgy according to claim 1, wherein the surface of the hardly fusible carbon material is coated with iron ore.
JP2008073624A 2008-03-21 2008-03-21 Ferro-coke for metallurgy Active JP5386838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008073624A JP5386838B2 (en) 2008-03-21 2008-03-21 Ferro-coke for metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008073624A JP5386838B2 (en) 2008-03-21 2008-03-21 Ferro-coke for metallurgy

Publications (2)

Publication Number Publication Date
JP2009227781A true JP2009227781A (en) 2009-10-08
JP5386838B2 JP5386838B2 (en) 2014-01-15

Family

ID=41243554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008073624A Active JP5386838B2 (en) 2008-03-21 2008-03-21 Ferro-coke for metallurgy

Country Status (1)

Country Link
JP (1) JP5386838B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159315A (en) * 2009-01-06 2010-07-22 Jfe Steel Corp Method for producing ferrocoke for metallurgy
JP2010159314A (en) * 2009-01-06 2010-07-22 Jfe Steel Corp Method for producing ferrocoke for metallurgy
WO2011108466A1 (en) * 2010-03-03 2011-09-09 Jfeスチール株式会社 Process for producing ferro coke for metallurgy
US20180023166A1 (en) * 2015-02-06 2018-01-25 Jfe Steel Corporation Ferrocoke manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665579A (en) * 1992-08-19 1994-03-08 Nippon Steel Corp Method for compounding raw material of coal briquet for producing metallurgical formed coke
JPH08231962A (en) * 1995-02-23 1996-09-10 Nippon Steel Corp Production of metallurgical coke
JPH08245965A (en) * 1995-03-13 1996-09-24 Nippon Steel Corp Production of coke for blast furnace
JPH0948977A (en) * 1995-08-04 1997-02-18 Nippon Steel Corp Production of blast furnace coke
JP2003336076A (en) * 2002-05-17 2003-11-28 Nippon Steel Corp Method for estimating variation of coke strength and method for manufacturing coke for blast furnace using the same
JP2007126506A (en) * 2005-11-01 2007-05-24 Jfe Steel Kk Method for producing ferrocoke
JP2007126505A (en) * 2005-11-01 2007-05-24 Jfe Steel Kk Method for producing ferrocoke
JP2007231066A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Manufacturing method of metallurgical coke
JP2007332233A (en) * 2006-06-14 2007-12-27 Jfe Steel Kk Coke production method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665579A (en) * 1992-08-19 1994-03-08 Nippon Steel Corp Method for compounding raw material of coal briquet for producing metallurgical formed coke
JPH08231962A (en) * 1995-02-23 1996-09-10 Nippon Steel Corp Production of metallurgical coke
JPH08245965A (en) * 1995-03-13 1996-09-24 Nippon Steel Corp Production of coke for blast furnace
JPH0948977A (en) * 1995-08-04 1997-02-18 Nippon Steel Corp Production of blast furnace coke
JP2003336076A (en) * 2002-05-17 2003-11-28 Nippon Steel Corp Method for estimating variation of coke strength and method for manufacturing coke for blast furnace using the same
JP2007126506A (en) * 2005-11-01 2007-05-24 Jfe Steel Kk Method for producing ferrocoke
JP2007126505A (en) * 2005-11-01 2007-05-24 Jfe Steel Kk Method for producing ferrocoke
JP2007231066A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Manufacturing method of metallurgical coke
JP2007332233A (en) * 2006-06-14 2007-12-27 Jfe Steel Kk Coke production method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159315A (en) * 2009-01-06 2010-07-22 Jfe Steel Corp Method for producing ferrocoke for metallurgy
JP2010159314A (en) * 2009-01-06 2010-07-22 Jfe Steel Corp Method for producing ferrocoke for metallurgy
WO2011108466A1 (en) * 2010-03-03 2011-09-09 Jfeスチール株式会社 Process for producing ferro coke for metallurgy
JP2011202159A (en) * 2010-03-03 2011-10-13 Jfe Steel Corp Method for producing ferro coke for metallurgy
CN102782095A (en) * 2010-03-03 2012-11-14 杰富意钢铁株式会社 Process for producing ferro coke for metallurgy
CN102782095B (en) * 2010-03-03 2015-07-01 杰富意钢铁株式会社 Process for producing ferro coke for metallurgy
US20180023166A1 (en) * 2015-02-06 2018-01-25 Jfe Steel Corporation Ferrocoke manufacturing method
US11486022B2 (en) * 2015-02-06 2022-11-01 Jfe Steel Corporation Ferrocoke manufacturing method

Also Published As

Publication number Publication date
JP5386838B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP4487564B2 (en) Ferro-coke manufacturing method
JP2011084734A (en) Method for producing ferro coke
JP4556525B2 (en) Blast furnace operation method
JP5386838B2 (en) Ferro-coke for metallurgy
JPH0665579A (en) Method for compounding raw material of coal briquet for producing metallurgical formed coke
JP5017966B2 (en) Ferro-coke manufacturing method
JP4935133B2 (en) Ferro-coke and method for producing sintered ore
JP5386839B2 (en) Manufacturing method of ferro-coke for metallurgy
JP5011956B2 (en) Ferro-coke and method for producing sintered ore
JP4910631B2 (en) Blast furnace operation method
JP5017969B2 (en) Ferro-coke raw material molding and method for producing ferro-coke
JP5386840B2 (en) Manufacturing method of ferro-coke for metallurgy
JP5365043B2 (en) Ferro-coke manufacturing method
JP4892928B2 (en) Ferro-coke manufacturing method
JP5386988B2 (en) Manufacturing method of ferro-coke for metallurgy
JP5052866B2 (en) Method for producing blast furnace coke
JP5470855B2 (en) Manufacturing method of ferro-coke for metallurgy
JP5011833B2 (en) Coke manufacturing method
JP5087868B2 (en) Ferro-coke manufacturing method
JP2006028593A (en) Method for operating blast furnace
JP5386835B2 (en) Ferro-coke manufacturing method
JP5386864B2 (en) Ferro-coke manufacturing method
KR101240393B1 (en) A process way of the cokes which a residue isn&#39;t happened and lump cokes
JP5028946B2 (en) Ferro-coke raw material molding and method for producing ferro-coke
JP2001040363A (en) Production of high-quality coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R150 Certificate of patent or registration of utility model

Ref document number: 5386838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250