JP4892930B2 - Ferro-coke manufacturing method - Google Patents
Ferro-coke manufacturing method Download PDFInfo
- Publication number
- JP4892930B2 JP4892930B2 JP2005318399A JP2005318399A JP4892930B2 JP 4892930 B2 JP4892930 B2 JP 4892930B2 JP 2005318399 A JP2005318399 A JP 2005318399A JP 2005318399 A JP2005318399 A JP 2005318399A JP 4892930 B2 JP4892930 B2 JP 4892930B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- coal
- coke
- sand
- caking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000571 coke Substances 0.000 title claims description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 123
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 68
- 229910052742 iron Inorganic materials 0.000 claims description 61
- 239000003245 coal Substances 0.000 claims description 45
- 239000004576 sand Substances 0.000 claims description 41
- 239000000126 substance Substances 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 10
- 238000000197 pyrolysis Methods 0.000 claims description 8
- 238000004939 coking Methods 0.000 claims description 6
- 239000003575 carbonaceous material Substances 0.000 description 28
- 238000002156 mixing Methods 0.000 description 22
- 239000002994 raw material Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 11
- 230000007547 defect Effects 0.000 description 8
- 238000000465 moulding Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000003763 carbonization Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000004484 Briquette Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910052595 hematite Inorganic materials 0.000 description 2
- 239000011019 hematite Substances 0.000 description 2
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000005519 non-carbonaceous material Substances 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Landscapes
- Coke Industry (AREA)
Description
本発明は、酸化鉄含有物質と炭素含有物質を混合して成型し、乾留して製造するフェロコークスの製造方法に関する。 The present invention relates to a ferro-coke manufacturing method in which an iron oxide-containing substance and a carbon-containing substance are mixed and molded, and then produced by dry distillation.
酸化鉄含有物質として例えば鉄鉱石と、炭素含有物質として例えば石炭を混合して乾留し、あるいは混合成型した後乾留して鉄含有コークス、いわゆるフェロコークスを製造する技術については古くから研究が行なわれている。フェロコークス製造方法の研究の目的として、粉鉄鉱石あるいは低品位鉱石の利用や、強粘結炭の使用量の低減化が知られているが(例えば、非特許文献1参照。)、近年、コークス中に鉄を含有させることによって、高炉操業の効率が向上し、銑鉄製造に必要なコークスや吹き込み微粉炭などの還元材の量を低減することが可能であることが指摘されており、製造技術の発展が期待されている。 For a long time, research has been conducted on techniques for producing iron-containing coke, so-called ferro-coke, by mixing, for example, iron ore as an iron oxide-containing substance and, for example, coal as a carbon-containing substance and dry distillation. ing. For the purpose of research on ferro-coke production methods, the use of fine iron ore or low-grade ore and the reduction of the amount of strong caking coal are known (for example, see Non-Patent Document 1). It has been pointed out that the inclusion of iron in coke can improve the efficiency of blast furnace operation and reduce the amount of reducing materials such as coke and blown pulverized coal required for pig iron production. Technological development is expected.
フェロコークスを製造するための乾留炉としては、通常の製鉄用コークス製造のためのコークス炉を用いる方法も知られているが、より優れた方法として、原料を混合した後成型してから乾留する、成型工程を経る方法も公知である(例えば、非特許文献1参照。)。 As a carbonization furnace for producing ferro-coke, a method using a coke oven for producing ordinary iron-making coke is also known, but as a more excellent method, the raw materials are mixed and then molded and then carbonized. A method of undergoing a molding process is also known (for example, see Non-Patent Document 1).
成型フェロコークス製造のための原料選択方法についても若干の研究があり、鉱石の種類によって製品フェロコークスの品質が異なるという報告がある。従って、原料選択方法の確立は製造プロセスの確立のために重要であるが、あまり多くの知見があるとは言えない状況である。鉱石の種類として磁鉄鉱が最もフェロコークス原料として適しており、赤鉄鉱、褐鉄鉱がこれに次ぐこと(例えば、非特許文献1参照。)、また、成型工程を経ずに粉状の混合物を乾留してフェロコークスを製造する方法において、砂鉄を用いた例があること(例えば、非特許文献2参照。)、さらに、鉄鉱石に混合する炭材の種類として、鉱石の粒度に応じて流動性を調節する技術が知られている(例えば、特許文献1参照。)。
しかしながら、成型フェロコークスの原料として、酸化鉄含有物質である鉱石の種類を変更する場合、それに対応して炭素含有物質である炭材の種類をどのように選択するのが最も効果的であるのかについては不明である。 However, when changing the type of ore that is an iron oxide-containing material as a raw material for molded ferro-coke, it is most effective to select the type of carbon material that is a carbon-containing material correspondingly. Is unknown.
特に、酸化鉄含有物質として、鉄鉱石と砂鉄とを混合して使用する場合に、炭材としてどのような性状のものを用いるべきかということについての知見は全くない。 In particular, when iron ore and iron sand are mixed and used as the iron oxide-containing substance, there is no knowledge about what kind of properties should be used as the carbonaceous material.
したがって本発明の目的は、このような従来技術の課題を解決し、フェロコークス原料である酸化鉄含有物質として鉄鉱石と砂鉄との混合物を用いる場合、砂鉄の混合率が変更された場合であっても、炭素含有物質を最適に選択することにより、十分な強度を有するフェロコークスの製造を可能とする、フェロコークスの製造方法を提供することにある。 Therefore, the object of the present invention is to solve such problems of the prior art, and to use a mixture of iron ore and iron sand as an iron oxide-containing substance that is a ferro-coke raw material, or to change the mixing ratio of iron sand. However, an object of the present invention is to provide a ferro-coke production method that enables production of ferro-coke having sufficient strength by optimally selecting a carbon-containing substance.
このような課題を解決するための本発明の特徴は以下の通りである。
(a)砂鉄と鉄鉱石とからなる酸化鉄含有物質と石炭とを混合して成型し、乾留を行なってフェロコークスを製造する際に、前記石炭が粘結炭と非粘結炭との混合物からなり、前記酸化鉄含有物質中の砂鉄の割合に基づき、前記石炭中の非粘結炭の割合Amass%と、前記酸化鉄含有物質中における砂鉄の質量割合であるB(B=砂鉄質量/酸化鉄含有物質総質量×100)mass%とが、下記式(1)の関係を満たすようにAを定めることを特徴とする請求項1に記載のフェロコークスの製造方法。
The features of the present invention for solving such problems are as follows.
(A) mixing iron sand and iron oxide containing substance and coal consisting of iron ore and molded, in producing a ferro coke by performing dry distillation, the coal mixture of caking coal and non-caking And based on the ratio of iron sand in the iron oxide-containing material, the ratio Amas% of non-coking coal in the coal and B (B = sand iron mass / The method for producing ferro-coke according to claim 1 , wherein A is determined so that the total mass of iron oxide-containing substance x 100) mass% satisfies the relationship of the following formula (1) .
A≦0.2×B+5・・・(1) A ≦ 0.2 × B + 5 (1)
本発明によれば、原料として砂鉄を用いてフェロコークスを製造する際に、砂鉄の混合比率を変えた場合であっても、炭素質含有物質のうちの粘結性を持たない物質の比率を最適化することで、フェロコークスの強度を維持できる。すなわち、特別な手段を用いることなく、炭素質含有物質のうち、粘結性を持たない物質の配合割合を変更するだけで、高強度を有するフェロコークスを製造することができる。 According to the present invention, when producing ferro-coke using iron sand as a raw material, even if the mixing ratio of iron sand is changed, the ratio of the non-caking substance of the carbonaceous material is determined. By optimizing, the strength of ferro-coke can be maintained. That is, ferro-coke having high strength can be produced by merely changing the blending ratio of the non-caking substance among the carbonaceous materials without using any special means.
本発明は、成型フェロコークスの原料として用いる酸化鉄含有物質の種類を変えた場合に、製品フェロコークス中にどのような欠陥が生成し、それによりどのような強度低下を引き起こすかを調査した結果に基づいて完成されたものである。 The present invention is a result of investigating what kind of defects are generated in product ferrocoke and what kind of strength reduction is caused by changing the type of iron oxide-containing substance used as a raw material for molded ferrocoke. It was completed based on.
すなわち、酸化鉄含有物質と炭素質含有物質からなる各種の原料を混合、成型し、乾留して生成したフェロコークスの内部を顕微鏡を用いて観察した結果、原料中の砂鉄の比率が高い場合においては、フェロコークス中のFe周辺における空隙量が少なく、砂鉄の比率が低い場合においては、フェロコークス中のFe周辺における空隙量が多くなることを見出した。フェロコークス中の空隙量が多くなれば、フェロコークスの強度が低下することは明らかである。 That is, in the case where the ratio of iron sand in the raw material is high as a result of observing the inside of the ferro-coke produced by mixing, molding and dry-distilling various raw materials composed of iron oxide-containing material and carbonaceous material. Found that when the amount of voids around Fe in ferrocoke is small and the ratio of sand iron is low, the amount of voids around Fe in ferrocoke increases. It is clear that the strength of the ferro-coke decreases as the amount of voids in the ferro-coke increases.
フェロコークスを高炉に装入する製鉄原料として用いる場合には、その強度を高く維持することが必要である。なぜなら、強度が不足の場合には、高炉内で粉化を起こし、高炉の通気が維持できず、高炉操業に支障をきたすからである。 When using ferro-coke as an iron-making raw material charged into a blast furnace, it is necessary to maintain its strength high. This is because if the strength is insufficient, pulverization occurs in the blast furnace, and the ventilation of the blast furnace cannot be maintained, which hinders blast furnace operation.
なお、非特許文献1では、400〜500℃における鉄鉱石からの酸素放出が石炭のコークス化作用を阻害するため、銘柄による酸素放出の差がフェロコークス強度の差をもたらすと述べているが、本発明者らの研究によれば、こうした効果よりもフェロコークス中に生成する空隙(欠陥)の方が強度に影響を与えている。このような欠陥は、乾留中に鉄鉱石が還元されて収縮することおよび、還元に伴い、鉄鉱石周囲の炭素質が消費されることが原因で生成すると考えられ、400〜500℃のみならず1000℃近傍にまで至るさらに広い温度範囲で起こる現象であって、本発明はこの新たな知見に基づき完成されたものである。 In Non-Patent Document 1, oxygen release from iron ore at 400 to 500 ° C. inhibits the coking action of coal, so that the difference in oxygen release due to brands leads to a difference in ferro-coke strength. According to the studies by the present inventors, voids (defects) generated in ferrocoke have an effect on strength rather than such effects. Such defects are considered to be generated due to the reduction of iron ore during carbonization and shrinkage, and the consumption of carbonaceous material around the iron ore accompanying the reduction. This phenomenon occurs in a wider temperature range up to about 1000 ° C., and the present invention has been completed based on this new finding.
特に砂鉄をフェロコークスの原料として用いる場合には、非特許文献2に記載されているような単なる乾留法よりも、成型してから乾留する方法の方が欠陥が少なくなり、成型の有無により乾留時の挙動が異なることが示唆された。 In particular, when iron sand is used as a raw material for ferro-coke, the method of forming and dry distillation has fewer defects than the simple dry distillation method as described in Non-Patent Document 2, and the dry distillation depends on the presence or absence of forming. It was suggested that the behavior of time was different.
一方、フェロコークスの原料として用いる炭素質含有物質は、ある程度の粘結性を持つことが望ましいことが知られている。これは炭素質含有物質が粘結性を有する場合、加熱により軟化溶融して鉄粒子と炭素質粒子を結合させ、強度の高いフェロコークスが得られるためである。しかし、炭素質含有物質の全量が粘結性を有する必要はなく、一部に粘結性を持たない物質を混合することも可能である。原料として石炭を用いる場合に、粘結性を持たない石炭(非粘結炭)は、粘結性を持つ石炭に比べて安価であり、資源的にも大量であるため、粘結性を持たない炭素質物質を多く利用することは有益であり望ましく、炭素質含有物質として粘結性を持たない石炭の利用率を高めることの重要性は高い。 On the other hand, it is known that a carbonaceous material used as a raw material for ferrocoke desirably has a certain degree of caking property. This is because when the carbonaceous material has caking properties, it is softened and melted by heating to bond the iron particles and the carbonaceous particles, and a high strength ferro-coke can be obtained. However, it is not necessary for the total amount of the carbonaceous material to have caking properties, and it is also possible to mix substances that do not have caking properties in part. When coal is used as a raw material, coal that does not have caking properties (non-caking coal) is less expensive than coal with caking properties and has a caustic property because it is abundant in terms of resources. It is beneficial and desirable to use a large amount of non-carbonaceous material, and it is highly important to increase the utilization rate of coal that does not have caking properties as a carbonaceous material.
本発明者らは、生成フェロコークス内の炭素質物質部分の欠陥を調査したところ、非粘結炭を用いた場合には、溶融しない部分およびその近傍に亀裂が生じていることを見出し、これが強度低下を引き起こしているものと推定した。 The present inventors investigated the defect of the carbonaceous material part in the generated ferrocoke, and found that when non-caking coal was used, cracks occurred in the part that did not melt and in the vicinity thereof. It was estimated that the strength was reduced.
すなわち、原料中の砂鉄量の増加によって生成フェロコークス中の欠陥(空隙)は減少し、非粘結炭量の増大によって、欠陥は増大することが明確となった。このことを利用すれば、砂鉄の量が多い場合には、非粘結炭の量を増大させてもフェロコークス中の欠陥を一定に保つことができると考えられる。 That is, it became clear that defects (voids) in the produced ferrocoke decreased with an increase in the amount of iron sand in the raw material, and defects increased with an increase in the amount of non-coking coal. If this is utilized, when the amount of sand iron is large, it is considered that defects in ferro-coke can be kept constant even if the amount of non-coking coal is increased.
上記の考え方にもとづき、種々の砂鉄配合量において、炭素質含有物質中の非粘結炭の割合を変更してフェロコークスの製造試験を行ない、生成したフェロコークスの強度を測定した。酸化鉄含有物質として鉄鉱石、鉄鉱石と砂鉄との混合物、砂鉄を、炭素含有物質として石炭を、炭素質含有物質中の非粘結性物質として非粘結炭を用いた場合の結果を図1に示す。 Based on the above concept, ferro-coke production tests were conducted by changing the proportion of non-coking coal in the carbonaceous material at various sand iron blending amounts, and the strength of the produced ferro-coke was measured. Figure shows the results when using iron ore as the iron oxide-containing material, iron ore and sand iron mixture, iron sand, coal as the carbon-containing material, and non-caking coal as the non-caking material in the carbonaceous material. It is shown in 1.
図1よれば、原料中の酸化鉄含有物質の割合(鉄鉱石と砂鉄の配合率)を増加させると強度が低下するが、この時、炭素質含有物質中の非粘結性物質(非粘結炭)の割合を変化させると、ある配合率以上になると強度が急激に低下する点があることが分かる。この時、強度が急激に低下する非粘結炭の配合率は、酸化鉄含有物質中の砂鉄の割合が一定の場合は、ほぼ一定の値となることが見出された。すなわち、砂鉄を配合しない場合(酸化鉄含有物質中の砂鉄の割合が0mass%)では非粘結炭配合率約5mass%、酸化鉄含有物質中の砂鉄の割合が50mass%の場合には約15mass%、酸化鉄含有物質の全量が砂鉄の場合(酸化鉄含有物質中の砂鉄の割合が100mass%)には約25mass%である。すなわち、それぞれの砂鉄配合率に対して、非粘結炭の配合率は上記の値以下であることが望ましいと考えられる。 According to FIG. 1, when the ratio of iron oxide-containing substances in the raw material (the ratio of iron ore and iron sand) is increased, the strength decreases. It can be seen that when the ratio of (carbonization) is changed, there is a point where the strength sharply decreases when the blending ratio exceeds a certain ratio. At this time, it has been found that the blending ratio of non-caking coal whose strength sharply decreases becomes a substantially constant value when the ratio of iron sand in the iron oxide-containing material is constant. That is, when sand iron is not blended (the ratio of sand iron in the iron oxide-containing material is 0 mass%), the blending ratio of non-caking coal is about 5 mass%, and when the ratio of sand iron in the iron oxide-containing material is 50 mass%, it is about 15 mass. %, When the total amount of the iron oxide-containing substance is iron sand (the ratio of iron sand in the iron oxide-containing substance is 100 mass%), it is about 25 mass%. That is, it is considered that the blending ratio of non-caking coal is preferably equal to or less than the above value for each sand iron blending ratio.
このようにして求めた非粘結性物質配合率(炭素質含有物質中の非粘結性物質の割合)上限と砂鉄配合率(酸化鉄含有物質中の砂鉄の割合)の関係を図2に示す。図2の直線の下側の領域、すなわち非粘結炭の配合率が図2の直線で示される値よりも少ない場合には、非粘結炭配合によるフェロコークスの強度低下が小さく抑えられることから、操業上望ましい配合率であることがわかる。この関係を定式化したものが下記式(1)である。 Fig. 2 shows the relationship between the upper limit of the non-caking substance content ratio (ratio of non-caking substance in the carbonaceous material) and the iron sand content ratio (ratio of sand iron in the iron oxide-containing material) thus obtained. Show. When the blending ratio of the non-caking coal is lower than the value indicated by the straight line in FIG. 2, the decrease in strength of ferro-coke due to the non-caking coal blending can be suppressed to a small level. From this, it can be seen that the blending ratio is desirable for operation. Formula (1) below formulates this relationship.
A<0.2×B+5・・・(1)
ここで、A(mass%)は炭素質含有物質中の粘結性を持たない物質の質量割合であり、Bは酸化鉄含有物質中における砂鉄の質量割合(mass%)である。
A <0.2 × B + 5 (1)
Here, A (mass%) is a mass ratio of the substance having no caking property in the carbonaceous material, and B is a mass ratio (mass%) of sand iron in the iron oxide-containing substance.
以上のことから本発明では、少なくとも一部が砂鉄からなる酸化鉄含有物質と炭素質含有物質とを混合して成型し、乾留を行なってフェロコークスを製造する際に、炭素質含有物質が粘結性を有する物質と粘結性を有さない物質との混合物からなり、酸化鉄含有物質中の砂鉄の割合に基づき、炭素質含有物質中の粘結性を持たない物質の混合割合を定めることを特徴とする。なお、粘結性を有する物質とは、JIS−M8801に記載のギーセラープラストメーター法により測定される最高流動度の値が0ddpmを超える(最高流動度>0ddpm)物質であり、例えば、強粘結炭と呼ばれる種類の石炭やピッチ類があげられる。粘結性を有さない物質としては、上記試験により求められる最高流動度の値が0ddpm(最高流動度=0ddpm)の物質であり、例えばいわゆる非粘結炭、褐炭、無煙炭、石油コークス類、石炭を原料とするコークスなどがあげられる。 From the above, according to the present invention, when the ferro-coke is produced by mixing and molding an iron oxide-containing material and a carbonaceous material, at least partly composed of iron sand, the carbonaceous material is viscous. This is a mixture of a substance having caking properties and a substance having no caking properties. Based on the ratio of iron sand in the iron oxide-containing material, the mixing ratio of the non-caking material in the carbonaceous material is determined. It is characterized by that. In addition, the substance having caking property is a substance having a maximum fluidity value measured by the Gieseler plastometer method described in JIS-M8801 exceeding 0 ddpm (maximum fluidity> 0 ddpm). There is a kind of coal and pitch called coal. The substance having no caking property is a substance having a maximum fluidity value of 0 ddpm (maximum fluidity = 0 ddpm) determined by the above test, for example, so-called non-caking coal, lignite, anthracite, petroleum coke, Examples include coke made from coal.
酸化鉄含有物質中の砂鉄の割合に基づき、炭素質含有物質中の粘結性を持たない物質の混合割合を定める際には、炭素質含有物質中の粘結性を持たない物質の割合Amass%と、酸化鉄含有物質中における砂鉄の質量割合であるB(B=砂鉄質量/酸化鉄含有物質総質量×100)mass%とが、上記式(1)の関係を満たすようにAを定めることが好ましい。 When determining the mixing ratio of non-caking substances in carbonaceous materials based on the ratio of iron sand in iron oxide-containing substances, the ratio of non-caking substances in carbonaceous substances % And B (B = sand iron mass / iron oxide-containing material total mass × 100) mass%, which is a mass ratio of iron sand in the iron oxide-containing material, define A so that the relationship of the above formula (1) is satisfied. It is preferable.
また、酸化鉄含有物質が砂鉄と鉄鉱石とからなることが好ましく、炭素質含有物質が石炭であり、粘結性を有する物質が粘結炭、粘結性を有さない物質が非粘結炭であることが好ましい。 The iron oxide-containing material is preferably composed of iron sand and iron ore, the carbonaceous material is coal, the caustic material is caking coal, and the non-caking material is non-caking. Preference is given to charcoal.
上記式(1)で示される関係を利用して実施される本発明の最良の一実施形態は以下のようである。 The best embodiment of the present invention implemented using the relationship represented by the above formula (1) is as follows.
すなわち、フェロコークスの原料として用いる酸化鉄含有物質中における砂鉄の配合割合Bを基に、上記式(1)の関係を利用してその原料を用いた場合の炭素質含有物質中の非粘結性物質の配合割合の上限Aを求める。炭素質含有物質中の非粘結性物質の含有割合をこの上限値A以下に設定して原料を混合して、成型、乾留してフェロコークスを製造するのである。 That is, based on the blending ratio B of iron sand in the iron oxide-containing material used as the raw material for ferrocoke, the non-caking in the carbonaceous material when the raw material is used using the relationship of the above formula (1) The upper limit A of the mixing ratio of the active substance is determined. Ferro-coke is produced by setting the content of the non-caking substance in the carbonaceous material to the upper limit A or less, mixing the raw materials, molding and dry distillation.
(本発明例)フェロコークス原料に用いる酸化鉄含有物質として、ヘマタイト鉱石(T.Fe=66.8mass%、FeO=0.1mass%)を粒径1.5mm以下に粉砕し、これと等質量の砂鉄(T.Fe=60.1mass%、FeO=25.5mass%)を混合した鉄鉱石混合物を準備した。上記(1)式より、この鉄鉱石混合物を用いる場合、炭素質含有物質中の非粘結性物の配合率上限は15mass%であった。炭素質含有物質として石炭を用い、鉄鉱石混合物3質量部(乾燥原料基準)に対し、石炭7質量部(乾燥基準)を添加するにあたり、上記(1)式の結果を用いて、石炭中の非粘結炭の割合を14mass%とした。非粘結炭以外の石炭は、粘結炭とした。以上の混合物を150℃に予熱し、ダブルロール成型機で成型し容積18ccのブリケットを製造した。このブリケットを乾留炉で950℃に加熱し、窒素雰囲気下で冷却し、フェロコークスを得た。このフェロコークスのJISドラム強度を測定したところ、DI(150/15)指数で82.6であった。この結果より、このフェロコークスは高炉に装入する製鉄原料として十分な強度を有することが分かった。 (Example of the present invention) Hematite ore (T.Fe = 66.8 mass%, FeO = 0.1 mass%) as an iron oxide-containing substance used as a ferrocoke raw material is pulverized to a particle size of 1.5 mm or less, and the same mass as this Of iron ore was prepared by mixing a mixture of sand iron (T.Fe = 60.1 mass%, FeO = 25.5 mass%). From the above formula (1), when this iron ore mixture is used, the upper limit of the content of the non-caking substance in the carbonaceous material was 15 mass%. When using coal as a carbonaceous material and adding 7 parts by mass of coal (dry basis) to 3 parts by mass of iron ore mixture (dry basis), using the result of the above formula (1), The ratio of non-caking coal was 14 mass%. Coal other than non-caking coal was caking coal. The above mixture was preheated to 150 ° C. and molded by a double roll molding machine to produce a briquette having a volume of 18 cc. The briquette was heated to 950 ° C. in a carbonization furnace and cooled in a nitrogen atmosphere to obtain ferrocoke. When the JIS drum strength of this ferro-coke was measured, the DI (150/15) index was 82.6. From this result, it was found that this ferro-coke has sufficient strength as an iron-making raw material charged into the blast furnace.
(比較例)石炭中の非粘結炭の割合を17mass%とした以外は上記の本発明例と同じ条件でフェロコークスの製造を行なった。その結果、生成したフェロコークスの強度は79.9であり、高炉に装入する製鉄原料としては強度が不足し、不適であると判断された。 (Comparative example) Ferro-coke was manufactured on the same conditions as said invention example except the ratio of the non-caking coal in coal having been 17 mass%. As a result, the strength of the produced ferro-coke was 79.9, and the strength was insufficient as an iron-making raw material to be charged in the blast furnace, and it was judged to be unsuitable.
Claims (1)
A≦0.2×B+5・・・(1) When the iron oxide-containing substance consisting of iron sand and iron ore and coal are mixed and molded, and when ferro-coke is produced by dry distillation, the coal consists of a mixture of caking coal and non- caking coal , Based on the ratio of iron sand in the iron oxide-containing material, the ratio Amas% of non-coking coal in the coal and B (B = sand iron mass / iron oxide content) which is the mass ratio of iron sand in the iron oxide-containing material 2. The method for producing ferrocoke according to claim 1 , wherein A is determined so that the total mass of the substance × 100) mass% satisfies the relationship of the following formula (1) .
A ≦ 0.2 × B + 5 (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005318399A JP4892930B2 (en) | 2005-11-01 | 2005-11-01 | Ferro-coke manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005318399A JP4892930B2 (en) | 2005-11-01 | 2005-11-01 | Ferro-coke manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007126506A JP2007126506A (en) | 2007-05-24 |
JP4892930B2 true JP4892930B2 (en) | 2012-03-07 |
Family
ID=38149425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005318399A Active JP4892930B2 (en) | 2005-11-01 | 2005-11-01 | Ferro-coke manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4892930B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11486022B2 (en) | 2015-02-06 | 2022-11-01 | Jfe Steel Corporation | Ferrocoke manufacturing method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5386839B2 (en) * | 2008-03-21 | 2014-01-15 | Jfeスチール株式会社 | Manufacturing method of ferro-coke for metallurgy |
JP5386838B2 (en) * | 2008-03-21 | 2014-01-15 | Jfeスチール株式会社 | Ferro-coke for metallurgy |
JP5386840B2 (en) * | 2008-03-21 | 2014-01-15 | Jfeスチール株式会社 | Manufacturing method of ferro-coke for metallurgy |
JP5386864B2 (en) * | 2008-06-26 | 2014-01-15 | Jfeスチール株式会社 | Ferro-coke manufacturing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63137989A (en) * | 1986-11-28 | 1988-06-09 | Sumitomo Metal Ind Ltd | Production of ferrocoke |
JPH0665579A (en) * | 1992-08-19 | 1994-03-08 | Nippon Steel Corp | Method for compounding raw material of coal briquet for producing metallurgical formed coke |
-
2005
- 2005-11-01 JP JP2005318399A patent/JP4892930B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11486022B2 (en) | 2015-02-06 | 2022-11-01 | Jfe Steel Corporation | Ferrocoke manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2007126506A (en) | 2007-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4892929B2 (en) | Ferro-coke manufacturing method | |
EP2937407B1 (en) | Method of production of a coal briquette | |
Babich et al. | Coke in the iron and steel industry | |
US8211204B2 (en) | Self-fluxing pellets for blast furnace and method for manufacturing the same | |
JP4892930B2 (en) | Ferro-coke manufacturing method | |
Lu et al. | Evaluation of coal for metallurgical applications | |
Flores et al. | On the reduction behavior, structural and mechanical features of iron ore-carbon briquettes | |
Kieush et al. | Influence of biocoke on iron ore sintering performance and strength properties of sinter | |
Ng et al. | Incorporation of charcoal in coking coal blend-A study of the effects on carbonization conditions and coke quality | |
JPH0665579A (en) | Method for compounding raw material of coal briquet for producing metallurgical formed coke | |
Demus et al. | Investigations on the use of biogenic residues as a substitute for fossil coal in the EAF steelmaking process | |
JP5386838B2 (en) | Ferro-coke for metallurgy | |
JP5017969B2 (en) | Ferro-coke raw material molding and method for producing ferro-coke | |
CN114656988B (en) | Iron-titanium composite coke for low-carbon iron making and manufacturing method thereof | |
KR101300170B1 (en) | Briquette and manufacturing method for the same | |
JP5087868B2 (en) | Ferro-coke manufacturing method | |
KR102288801B1 (en) | Method of manufacturing coke | |
Agrawal | Technological advancements in cokemaking | |
CN114479892B (en) | Coal blending method for preparing high-strength low-reactivity coke | |
JP5011833B2 (en) | Coke manufacturing method | |
JPH039989A (en) | Production of coke | |
JP6241337B2 (en) | Method for producing blast furnace coke | |
JP2007119602A (en) | Method for producing ferrocoke | |
JPH0259196B2 (en) | ||
Lu | Utilization parameters of coal for metallurgical applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080922 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111122 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111205 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4892930 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |