JP4892929B2 - Ferro-coke manufacturing method - Google Patents

Ferro-coke manufacturing method Download PDF

Info

Publication number
JP4892929B2
JP4892929B2 JP2005318398A JP2005318398A JP4892929B2 JP 4892929 B2 JP4892929 B2 JP 4892929B2 JP 2005318398 A JP2005318398 A JP 2005318398A JP 2005318398 A JP2005318398 A JP 2005318398A JP 4892929 B2 JP4892929 B2 JP 4892929B2
Authority
JP
Japan
Prior art keywords
coal
coke
ferro
caking
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005318398A
Other languages
Japanese (ja)
Other versions
JP2007126505A (en
Inventor
泉 下山
秀明 佐藤
孝思 庵屋敷
喜代志 深田
英和 藤本
哲也 山本
広行 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005318398A priority Critical patent/JP4892929B2/en
Publication of JP2007126505A publication Critical patent/JP2007126505A/en
Application granted granted Critical
Publication of JP4892929B2 publication Critical patent/JP4892929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、酸化鉄含有物質と炭素含有物質を混合して成型し、乾留して製造するフェロコークスの製造方法に関する。   The present invention relates to a ferro-coke manufacturing method in which an iron oxide-containing substance and a carbon-containing substance are mixed and molded, and then produced by dry distillation.

酸化鉄含有物質として例えば鉄鉱石と、炭素含有物質として例えば石炭を混合して乾留し、あるいは混合成型した後乾留して鉄含有コークス、いわゆるフェロコークスを製造する技術については古くから研究が行なわれている。フェロコークス製造方法の研究の目的として、粉鉄鉱石あるいは低品位鉱石の利用や、強粘結炭の使用量の低減化が知られているが(例えば、非特許文献1参照。)、近年、コークス中に鉄を含有させることによって、高炉操業の効率が向上し、銑鉄製造に必要なコークスや吹き込み微粉炭などの還元材の量を低減することが可能であることが指摘されており、製造技術の発展が期待されている。   For a long time, research has been conducted on techniques for producing iron-containing coke, so-called ferro-coke, by mixing, for example, iron ore as an iron oxide-containing substance and, for example, coal as a carbon-containing substance and dry distillation. ing. For the purpose of research on ferro-coke production methods, the use of fine iron ore or low-grade ore and the reduction of the amount of strong caking coal are known (for example, see Non-Patent Document 1). It has been pointed out that the inclusion of iron in coke can improve the efficiency of blast furnace operation and reduce the amount of reducing materials such as coke and blown pulverized coal required for pig iron production. Technological development is expected.

フェロコークスを製造するための乾留炉としては、通常の製鉄用コークス製造のためのコークス炉を用いる方法も知られているが、より優れた方法として、原料を混合した後成型してから乾留する、成型工程を経る方法も公知である(例えば、非特許文献1参照。)。   As a carbonization furnace for producing ferro-coke, a method using a coke oven for producing ordinary iron-making coke is also known, but as a more excellent method, the raw materials are mixed and then molded and then carbonized. A method of undergoing a molding process is also known (for example, see Non-Patent Document 1).

成型フェロコークス製造のための原料選択方法についても若干の研究があり、鉱石の種類によって製品フェロコークスの品質が異なるという報告がある。従って、原料選択方法の確立は製造プロセスの確立のために重要であるが、あまり多くの知見があるとは言えない状況である。鉱石の種類として磁鉄鉱が最もフェロコークス原料として適しており、赤鉄鉱、褐鉄鉱がこれに次ぐこと(例えば、非特許文献1参照。)、また、鉄鉱石に混合する炭材の種類として、鉱石の粒度に応じて流動性を調節する技術が知られている(例えば、特許文献1参照。)。
特許第3004265号公報 城、井田「コークス技術年報」燃料協会編集、資源新報社刊 1958年、33〜52頁
There are also some studies on the method of selecting raw materials for the production of molded ferrocoke, and there are reports that the quality of product ferrocoke varies depending on the type of ore. Therefore, although establishment of a raw material selection method is important for establishment of a manufacturing process, it cannot be said that there is much knowledge. Magnetite is the most suitable ferrocoke raw material as the type of ore, followed by hematite and limonite (see, for example, Non-Patent Document 1), and as the type of coal mixed with iron ore, A technique for adjusting fluidity according to the particle size is known (for example, see Patent Document 1).
Japanese Patent No. 3004265 Shiro, Ida “Coke Technology Annual Report” edited by Fuel Association, published by Resources Shinposha 1958, 33-52

しかしながら、成型フェロコークスの原料として、酸化鉄含有物質である鉱石の種類を変更する場合、それに対応して炭素含有物質である炭材の種類をどのように選択するのが最も効果的であるのかについては不明である。   However, when changing the type of ore that is an iron oxide-containing material as a raw material for molded ferro-coke, it is most effective to select the type of carbon material that is a carbon-containing material correspondingly. Is unknown.

特に、鉄鉱石として一般的であるFe23を主成分として含む鉱石と、Fe34を主成分として含む鉱石を混合して使用する場合に、炭材としてどのような性状のものを用いるべきかということについての知見はない。 In particular, when mixing ores containing Fe 2 O 3 as a main component, which is common as iron ore, and ores containing Fe 3 O 4 as a main component, what kind of property is used as a carbonaceous material? There is no knowledge about whether it should be used.

したがって本発明の目的は、このような従来技術の課題を解決し、フェロコークス原料である酸化鉄含有物質としてとして用いる鉱石の種類が変更された場合であっても、炭素含有物質を最適に選択することにより、十分な強度を有するフェロコークスの製造を可能とする、フェロコークスの製造方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and optimally select the carbon-containing material even when the type of ore used as the iron oxide-containing material that is a ferro-coke raw material is changed. Thus, an object of the present invention is to provide a ferro-coke production method that enables production of ferro-coke having sufficient strength.

このような課題を解決するための本発明の特徴は以下の通りである。
(a)鉄鉱石石炭とを混合して成型し、乾留を行なってフェロコークスを製造する際に、前記石炭粘結炭非粘結炭との混合物からなり、前記鉄鉱石に含まれる酸化鉄中のFeとOとの比率に基づき、前記石炭中の非粘結炭の割合A(mass%)と、前記鉄鉱石中のFeモル数とOモル数の比(Fe/O)であるBとが、下記式(1)の関係を満たすようにAを定めることを特徴とするフェロコークスの製造方法。
The features of the present invention for solving such problems are as follows.
(A) When iron ore and coal are mixed and molded, and ferro-coke is produced by dry distillation, the coal consists of a mixture of caking coal and non- caking coal, and is contained in the iron ore. Based on the ratio of Fe and O in iron oxide, the ratio A (mass%) of non-coking coal in the coal and the ratio of Fe mole number to O mole number in the iron ore (Fe / O) A method for producing ferro-coke, wherein A is defined so that a certain B satisfies the relationship of the following formula (1) .

120×B−75・・・(1 A 120 × B−75 (1 )

本発明によれば、原料として用いる酸化鉄含有物質の組成が変化した場合、特にFe23と、Fe34の混合比率が変化した場合であっても、炭素質含有物質のうちの粘結性を持たない物質の比率を最適化することで、フェロコークスの強度を維持できる。すなわち、特別な手段を用いることなく、炭素質含有物質のうち、粘結性を持たない物質の配合割合を変更するだけで、高強度を有するフェロコークスを製造することができる。 According to the present invention, even when the composition of the iron oxide-containing material used as a raw material changes, particularly when the mixing ratio of Fe 2 O 3 and Fe 3 O 4 changes, By optimizing the ratio of substances that do not have caking properties, the strength of ferrocoke can be maintained. That is, ferro-coke having high strength can be produced by merely changing the blending ratio of the non-caking substance among the carbonaceous materials without using any special means.

本発明は、成型フェロコークスの原料として用いる酸化鉄含有物質の種類を変えた場合に、製品フェロコークス中に生成する欠陥と、強度低下の関係を調査した結果に基づいて完成されたものである。   The present invention has been completed based on the results of investigating the relationship between defects generated in product ferrocoke and strength reduction when the type of iron oxide-containing substance used as a raw material for molded ferrocoke is changed. .

すなわち、酸化鉄含有物質と炭素質含有物質からなる各種の原料を混合、成型し、乾留して生成したフェロコークスの内部を顕微鏡を用いて観察した結果、酸化鉄含有物質中の酸化鉄中のFeモル数とOモル数の比である、「Feモル数/Oモル数」の比率が高い場合においては、フェロコークス中のFe周辺における空隙量が少なく、「Feモル数/Oモル数」の比率が低い場合においては、フェロコークス中のFe周辺における空隙量が多くなることを見出した。フェロコークス中の空隙量が多くなれば、フェロコークスの強度が低下することは明らかである。   That is, as a result of observing the inside of the ferro-coke produced by mixing, molding and dry-distilling various raw materials composed of an iron oxide-containing material and a carbonaceous material using a microscope, When the ratio of “Fe mole number / O mole number”, which is the ratio of Fe mole number to O mole number, is high, the amount of voids around Fe in ferrocoke is small, and “Fe mole number / O mole number”. It has been found that the amount of voids around Fe in the ferro-coke increases when the ratio is low. It is clear that the strength of the ferro-coke decreases as the amount of voids in the ferro-coke increases.

フェロコークスを高炉に装入する製鉄原料として用いる場合には、その強度を高く維持することが必要である。なぜなら、強度が不足の場合には、高炉内で粉化を起こし、高炉の通気が維持できず、高炉操業に支障をきたすからである。   When using ferro-coke as an iron-making raw material charged into a blast furnace, it is necessary to maintain its strength high. This is because if the strength is insufficient, pulverization occurs in the blast furnace, and the ventilation of the blast furnace cannot be maintained, which hinders blast furnace operation.

なお、非特許文献1では、400〜500℃における鉄鉱石からの酸素放出が石炭のコークス化作用を阻害するため、銘柄による酸素放出の差がフェロコークス強度の差をもたらすと述べているが、本発明者らの研究によれば、こうした効果よりもフェロコークス中に生成する空隙(欠陥)の方が強度に影響を与えている。このような欠陥は、乾留中に鉄鉱石が還元されて収縮することおよび、還元に伴い、鉄鉱石周囲の炭素質が消費されることが原因で生成すると考えられ、400〜500℃のみならず、1000℃近傍にまで至るさらに広い温度範囲で起こる現象であって、本発明はこの新たな知見に基づき完成されたものである。   In Non-Patent Document 1, oxygen release from iron ore at 400 to 500 ° C. inhibits the coking action of coal, so that the difference in oxygen release due to brands leads to a difference in ferro-coke strength. According to the studies by the present inventors, voids (defects) generated in ferrocoke have an effect on strength rather than such effects. Such defects are considered to be generated due to the reduction of iron ore during carbonization and shrinkage, and the consumption of carbonaceous material around the iron ore accompanying the reduction. This phenomenon occurs in a wider temperature range up to about 1000 ° C., and the present invention has been completed based on this new finding.

一方、フェロコークスの原料として用いる炭素質含有物質は、ある程度の粘結性を持つことが望ましいことが知られている。これは炭素質含有物質が粘結性を有する場合、加熱により軟化溶融して鉄粒子と炭素質粒子を結合させ、強度の高いフェロコークスが得られるためである。しかし、炭素質含有物質の全量が粘結性を有する必要はなく、一部に粘結性を持たない物質を混合することも可能である。原料として石炭を用いる場合に、粘結性を持たない石炭(非粘結炭)は、粘結性を持つ石炭に比べて安価であり、資源的にも大量であるため、粘結性を持たない炭素質物質を多く利用することは有益であり望ましく、炭素質含有物質として粘結性を持たない石炭の利用率を高めることの重要性は高い。   On the other hand, it is known that a carbonaceous material used as a raw material for ferrocoke desirably has a certain degree of caking property. This is because when the carbonaceous material has caking properties, it is softened and melted by heating to bond the iron particles and the carbonaceous particles, and a high strength ferro-coke can be obtained. However, it is not necessary for the total amount of the carbonaceous material to have caking properties, and it is also possible to mix substances that do not have caking properties in part. When coal is used as a raw material, coal that does not have caking properties (non-caking coal) is less expensive than coal with caking properties and has a caustic property because it is abundant in terms of resources. It is beneficial and desirable to use a large amount of non-carbonaceous material, and it is highly important to increase the utilization rate of coal that does not have caking properties as a carbonaceous material.

本発明者らは、生成フェロコークス内の炭素質物質部分の欠陥を調査したところ、非粘結炭を用いた場合には、溶融しない部分およびその近傍に亀裂が生じていることを見出し、これが強度低下を引き起こしているものと推定した。   The present inventors investigated the defect of the carbonaceous material part in the generated ferrocoke, and found that when non-caking coal was used, cracks occurred in the part that did not melt and in the vicinity thereof. It was estimated that the strength was reduced.

すなわち、原料中の「Feモル数/Oモル数」の増加によって生成フェロコークス中の欠陥(空隙)は減少し、非粘結炭量の増大によって、欠陥は増大することが明確となった。このことを利用すれば、「Feモル数/Oモル数」が高い場合には、非粘結炭の量を増大させてもフェロコークス中の欠陥を一定に保つことができると考えられる。   That is, it became clear that defects (voids) in the produced ferrocoke decreased with an increase in “Fe mole number / O mole number” in the raw material, and defects increased with an increase in the amount of non-caking coal. If this is utilized, when "Fe mole number / O mole number" is high, it is considered that defects in ferro-coke can be kept constant even if the amount of non-coking coal is increased.

上記の考え方にもとづき、種々の「Feモル数/Oモル数」(以下、Fe/Oと記載する。)において、炭素質含有物質中の非粘結性物質の割合を変更してフェロコークスの製造試験を行ない、生成したフェロコークスの強度を測定した。酸化鉄含有物質として鉄鉱石を、炭素含有物質として石炭を、炭素質含有物質中の非粘結性物質として非粘結炭を用いた場合の結果を図1に示す。   Based on the above concept, in various “Fe mole number / O mole number” (hereinafter referred to as Fe / O), the ratio of the non-caking substance in the carbonaceous material is changed to A production test was performed and the strength of the produced ferrocoke was measured. FIG. 1 shows the results when using iron ore as the iron oxide-containing material, coal as the carbon-containing material, and non-caking coal as the non-caking material in the carbonaceous material.

図1によれば、同じFe/Oにおいて鉄鉱石の配合率(フェロコークス原料における鉄鉱石の割合:10〜50mass%)を増加させるとフェロコークスの強度が低下するが、この時、炭素質物質中の非粘結炭の割合を変化させると、ある配合率以上になると強度が急激に低下する点があることが分かる。この時、強度が急激に低下する非粘結炭の配合率はあるFe/Oの値に対してほぼ一定の値となる。すなわち、Fe/Oが0.67の場合では非粘結炭の配合率約5mass%、Fe/Oが0.7の場合には約10mass%、Fe/Oが0.75の場合には約15mass%である。すなわち、それぞれのFe/Oの値に対して、非粘結炭の配合率は上記の値以下であることが望ましいと考えられる。   According to FIG. 1, when the iron ore compounding ratio (the ratio of iron ore in the ferrocoke raw material: 10 to 50 mass%) is increased in the same Fe / O, the strength of the ferrocoke is reduced. When the ratio of non-caking coal in the inside is changed, it can be seen that there is a point in which the strength rapidly decreases when the blending ratio exceeds a certain ratio. At this time, the blending ratio of non-caking coal whose strength sharply decreases becomes a substantially constant value with respect to a certain Fe / O value. That is, when Fe / O is 0.67, the blending ratio of non-caking coal is about 5 mass%, when Fe / O is 0.7, about 10 mass%, and when Fe / O is 0.75, about 15 mass%. That is, it is considered that the blending ratio of non-caking coal is preferably equal to or less than the above value for each value of Fe / O.

このようにして求めた非粘結炭配合率上限とFe/Oの関係を図2に示す。図2の直線の下側の領域、すなわち非粘結炭の配合率が図2の直線で示される値よりも少ない場合には、非粘結炭配合によるフェロコークスの強度低下が小さく抑えられることから、操業上望ましい配合率であることがわかる。この関係を定式化したものが下記式(1)である。   FIG. 2 shows the relationship between the upper limit of the non-caking coal blending ratio and Fe / O thus obtained. When the blending ratio of the non-caking coal is lower than the value indicated by the straight line in FIG. 2, the decrease in strength of ferro-coke due to the non-caking coal blending can be suppressed to a small level. From this, it can be seen that the blending ratio is desirable for operation. Formula (1) below formulates this relationship.

A<120×B−75 ・・・(1)
ここで、A(mass%)は炭素質含有物質中の粘結性を持たない物質の比率であり、Bは酸化鉄含有物質中におけるFeとOのモル比率(B=Fe/O)である。
A <120 × B-75 (1)
Here, A (mass%) is the ratio of the non-caking substance in the carbonaceous material, and B is the molar ratio of Fe to O in the iron oxide-containing material (B = Fe / O). .

以上のことから本発明では、酸化鉄含有物質と炭素質含有物質とを混合して成型し、乾留を行なってフェロコークスを製造する際に、炭素質含有物質が粘結性を有する物質と粘結性を有さない物質との混合物からなり、酸化鉄含有物質に含まれる酸化鉄中のFeとOとの比率に基づき、炭素質含有物質中の粘結性を持たない物質の混合割合を定めることを特徴とする。なお、粘結性を有する物質とは、JIS−M8801に記載のギーセラープラストメーター法により測定される最高流動度の値が0ddpmを超える(最高流動度>0ddpm)物質であり、例えば、強粘結炭と呼ばれる種類の石炭やピッチ類があげられる。粘結性を有さない物質としては、上記試験により求められる最高流動度の値が0ddpm(最高流動度=0ddpm)の物質であり、例えばいわゆる非粘結炭、褐炭、無煙炭、石油コークス類、石炭を原料とするコークスなどがあげられる。   From the above, in the present invention, when a ferro-coke is produced by mixing and forming an iron oxide-containing material and a carbonaceous material, and performing ferro-coke by dry distillation, the carbonaceous material contains a caking property and a viscous material. Based on the ratio of Fe and O in the iron oxide contained in the iron oxide-containing material, the mixing ratio of the non-caking material in the carbonaceous material is determined based on the ratio of Fe and O in the iron oxide-containing material. It is characterized by defining. In addition, the substance having caking property is a substance having a maximum fluidity value measured by the Gieseler plastometer method described in JIS-M8801 exceeding 0 ddpm (maximum fluidity> 0 ddpm). There is a kind of coal and pitch called coal. The substance having no caking property is a substance having a maximum fluidity value of 0 ddpm (maximum fluidity = 0 ddpm) determined by the above test, for example, so-called non-caking coal, lignite, anthracite, petroleum coke, Examples include coke made from coal.

酸化鉄含有物質に含まれる酸化鉄中のFeとOとの比率に基づき、炭素質含有物質中の粘結性を持たない物質の混合割合を定める際には、炭素質含有物質中の粘結性を有さない物質の割合A(mass%)と、酸化鉄中のFeモル数とOモル数の比(Fe/O)であるBとが、上記式(1)の関係を満たすようにAを定めることが好ましい。   Based on the ratio of Fe and O in the iron oxide contained in the iron oxide-containing material, when determining the mixing ratio of the non-caking substance in the carbonaceous material, the caking in the carbonaceous material So that the ratio A (mass%) of the substance having no property and B, which is the ratio of Fe mole number to O mole number (Fe / O) in iron oxide, satisfies the relationship of the above formula (1). It is preferable to define A.

また、酸化鉄含有物質が鉄鉱石であることが好ましく、炭素質含有物質が石炭であり、粘結性を有する物質が粘結炭、粘結性を有さない物質が非粘結炭であることが好ましい。   The iron oxide-containing material is preferably iron ore, the carbonaceous material is coal, the caustic material is caking coal, and the caustic material is non-caking coal. It is preferable.

上記式(1)で示される関係を利用して実施される本発明の最良の一実施形態は以下のようである。   The best embodiment of the present invention implemented using the relationship represented by the above formula (1) is as follows.

すなわち、まず、フェロコークスの原料として用いる酸化鉄含有物質中の酸化鉄中のFe/Oを分析によって求める。一般に酸化鉄含有物質の分析は、トータル鉄(T.Fe)、2価鉄(FeO)、および金属鉄(M.Fe)を検出して行なわれることが多い。酸化鉄含有物質は、3価、2価、0価の3種類の鉄化合物が含まれていると考えられることから、これらの分析値をもとにFe/Oを算出可能である。すなわち、0価の鉄は金属鉄の量に等しく、2価の鉄はFeOの77.7mass%(Oを除いた量)に等しく、3価の鉄は、トータル鉄から0価、2価の鉄の量を引いたものとなる。それぞれの鉄の量に対し、0価の場合には結合した酸素がなく、2価の場合にはモル数にして1倍、3価の場合にはモル数にして1.5倍のOが含まれていると考えれば、これら混合物中のFeに対するOの量は、(2価の鉄の量+3価の鉄の量×1.5)/トータル鉄として求まり、この数値の逆数がFe/Oとなる。酸化鉄含有物質が混合物である場合、分析は個々の酸化鉄含有物質(鉄鉱石を用いる場合は個々の銘柄)について行なって、計算によりFe/Oを求めてもよいし、混合物の分析を行なってFe/Oを求めてもよい。次に、このようにして得られたFe/Oの値から、式(1)の関係を利用してその酸化鉄含有物質を原料として用いる時の非粘結性物質の配合割合の上限Aを求める。炭素質含有物質中の非粘結性物質の含有割合をこの上限値以下に設定して原料を混合、成型、乾留してフェロコークスを製造するのである。   That is, first, Fe / O in iron oxide in an iron oxide-containing substance used as a raw material for ferrocoke is obtained by analysis. In general, analysis of iron oxide-containing substances is often performed by detecting total iron (T.Fe), divalent iron (FeO), and metallic iron (M.Fe). Since the iron oxide-containing material is considered to contain three types of trivalent, divalent and zero-valent iron compounds, Fe / O can be calculated based on these analytical values. That is, zero-valent iron is equal to the amount of metallic iron, divalent iron is equal to 77.7 mass% of FeO (amount excluding O), and trivalent iron is zero-valent and divalent from total iron. Subtracting the amount of iron. In the case of zero valence, there is no bonded oxygen in the case of zero valence, and in the case of divalent it is 1 time in terms of moles, and in the case of trivalence, 1.5 times in terms of moles of O. Assuming that it is contained, the amount of O relative to Fe in these mixtures is obtained as (amount of divalent iron + amount of trivalent iron × 1.5) / total iron, and the reciprocal of this value is Fe / O. When the iron oxide-containing material is a mixture, the analysis may be performed on each iron oxide-containing material (individual brand when iron ore is used), and Fe / O may be obtained by calculation, or the mixture may be analyzed. Thus, Fe / O may be obtained. Next, from the value of Fe / O thus obtained, the upper limit A of the blending ratio of the non-caking substance when the iron oxide-containing substance is used as a raw material using the relationship of formula (1) Ask. Ferro-coke is produced by setting the content ratio of the non-caking substance in the carbonaceous material to be equal to or lower than the upper limit value, mixing the raw materials, molding, and dry distillation.

なお、Fe/Oが大きい場合にフェロコークスの強度が高く、Fe/Oが小さい場合に強度が低くなる理由が明確になったことにより、本発明の方法は、フェロコークスの原料中にFe23、Fe34以外の酸化鉄を含む場合にも応用が可能である。その例としては、酸化鉄が還元されて生成したFeOや金属鉄を含む原料を用いる場合が挙げられる。 In addition, since the reason why the strength of ferro-coke is high when Fe / O is large and the strength is low when Fe / O is small is clarified, the method of the present invention is able to incorporate Fe 2 in the raw material of ferro-coke. Application is also possible when iron oxide other than O 3 and Fe 3 O 4 is included. As an example, there may be mentioned a case where a raw material containing FeO produced by reducing iron oxide or metallic iron is used.

(本発明例)フェロコークス原料に用いる酸化鉄含有物質として、ヘマタイト鉱石(T.Fe=66.8mass%、FeO=0.1mass%、Fe/O=0.67)とマグネタイト鉱石(T.Fe=63.0mass%、FeO=27.1mass%、Fe/O=0.75)をそれぞれ粒径1.5mm以下に粉砕したものを混合し、Fe/Oが0.7の鉄鉱石混合物を準備した。上記式(1)より、この鉄鉱石混合物を用いる場合、炭素質含有物質中の非粘結性物質の配合率上限は10mass%であった。炭素質含有物質として石炭を用い、鉄鉱石混合物3質量部(乾燥原料基準)に対し、石炭7質量部(乾燥基準)を添加するにあたり、上記(1)式の結果を用いて、石炭中の非粘結炭の割合を9mass%とした。非粘結炭以外の石炭は、粘結炭とした。以上の混合物を150℃に予熱し、ダブルロール成型機で成型し容積50ccのブリケットを製造した。このブリケットを乾留炉で950℃に加熱し、窒素雰囲気下で冷却し、フェロコークスを得た。このフェロコークスのJISドラム強度を測定したところ、DI(150/15)指数で82.7であった。この結果より、このフェロコークスは高炉に装入する製鉄原料として十分な強度を有することが分かった。   (Example of the present invention) Hematite ore (T.Fe = 66.8 mass%, FeO = 0.1 mass%, Fe / O = 0.67) and magnetite ore (T.Fe) as iron oxide-containing substances used for ferrocoke raw materials = 63.0 mass%, FeO = 27.1 mass%, Fe / O = 0.75) were mixed to a particle size of 1.5 mm or less, and an iron ore mixture having Fe / O of 0.7 was prepared. did. From the above formula (1), when this iron ore mixture is used, the upper limit of the content of the non-caking substance in the carbonaceous material was 10 mass%. When using coal as a carbonaceous material and adding 7 parts by mass of coal (dry basis) to 3 parts by mass of iron ore mixture (dry basis), using the result of the above formula (1), The ratio of non-caking coal was 9 mass%. Coal other than non-caking coal was caking coal. The above mixture was preheated to 150 ° C. and molded by a double roll molding machine to produce a 50 cc briquette. The briquette was heated to 950 ° C. in a carbonization furnace and cooled in a nitrogen atmosphere to obtain ferrocoke. When the JIS drum strength of this ferro-coke was measured, the DI (150/15) index was 82.7. From this result, it was found that this ferro-coke has sufficient strength as an iron-making raw material charged into the blast furnace.

(比較例)石炭中の非粘結炭の割合を12mass%とした以外は上記の本発明例と同じ条件でフェロコークスの製造を行なった。その結果、生成したフェロコークスの強度は79.9であり、高炉に装入する製鉄原料としては強度が不足し、不適であると判断された。   (Comparative example) Ferro-coke was manufactured on the same conditions as said invention example except the ratio of the non-caking coal in coal having been 12 mass%. As a result, the strength of the produced ferro-coke was 79.9, and the strength was insufficient as an iron-making raw material to be charged in the blast furnace, and it was judged to be unsuitable.

フェロコークス強度と炭素質物質中の非粘結性物質の割合の関係を示すグラフ。The graph which shows the relationship between the ferro coke intensity | strength and the ratio of the non-caking substance in a carbonaceous substance. 炭素質含有物質中の非粘結性物質配合割合の上限量とFe/Oの関係を示すグラフ。The graph which shows the upper limit amount of the non-caking substance compounding ratio in a carbonaceous containing material, and the relationship of Fe / O.

Claims (1)

鉄鉱石石炭とを混合して成型し、乾留を行なってフェロコークスを製造する際に、前記石炭粘結炭非粘結炭との混合物からなり、前記鉄鉱石に含まれる酸化鉄中のFeとOとの比率に基づき、前記石炭中の非粘結炭の割合A(mass%)と、前記鉄鉱石中のFeモル数とOモル数の比(Fe/O)であるBとが、下記式(1)の関係を満たすようにAを定めることを特徴とするフェロコークスの製造方法。
120×B−75・・・(1)
When iron ore and coal are mixed and molded, and ferro-coke is produced by dry distillation, the coal consists of a mixture of caking coal and non- caking coal, and the iron ore contained in the iron ore Based on the ratio of Fe and O, the ratio A (mass%) of non-coking coal in the coal and B which is the ratio of Fe mole number to O mole number (Fe / O) in the iron ore However, A is defined so that the relationship of following formula (1) may be satisfy | filled, The manufacturing method of the ferro-coke characterized by the above-mentioned.
A 120 × B−75 (1)
JP2005318398A 2005-11-01 2005-11-01 Ferro-coke manufacturing method Active JP4892929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318398A JP4892929B2 (en) 2005-11-01 2005-11-01 Ferro-coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318398A JP4892929B2 (en) 2005-11-01 2005-11-01 Ferro-coke manufacturing method

Publications (2)

Publication Number Publication Date
JP2007126505A JP2007126505A (en) 2007-05-24
JP4892929B2 true JP4892929B2 (en) 2012-03-07

Family

ID=38149424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318398A Active JP4892929B2 (en) 2005-11-01 2005-11-01 Ferro-coke manufacturing method

Country Status (1)

Country Link
JP (1) JP4892929B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11486022B2 (en) 2015-02-06 2022-11-01 Jfe Steel Corporation Ferrocoke manufacturing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386839B2 (en) * 2008-03-21 2014-01-15 Jfeスチール株式会社 Manufacturing method of ferro-coke for metallurgy
JP5386840B2 (en) * 2008-03-21 2014-01-15 Jfeスチール株式会社 Manufacturing method of ferro-coke for metallurgy
JP5386838B2 (en) * 2008-03-21 2014-01-15 Jfeスチール株式会社 Ferro-coke for metallurgy
JP5386864B2 (en) * 2008-06-26 2014-01-15 Jfeスチール株式会社 Ferro-coke manufacturing method
JP5336971B2 (en) * 2009-07-31 2013-11-06 株式会社神戸製鋼所 Method for producing iron ore-containing coke
JP5438423B2 (en) * 2009-07-31 2014-03-12 株式会社神戸製鋼所 Method for producing iron ore-containing coke
JP5390977B2 (en) * 2009-07-31 2014-01-15 株式会社神戸製鋼所 Iron ore-containing coke and method for producing the iron ore-containing coke
JP2011037963A (en) * 2009-08-10 2011-02-24 Jfe Steel Corp Manufacturing method for ferro-coke
JP2011084734A (en) * 2009-09-15 2011-04-28 Jfe Steel Corp Method for producing ferro coke

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137989A (en) * 1986-11-28 1988-06-09 Sumitomo Metal Ind Ltd Production of ferrocoke
JPH0665579A (en) * 1992-08-19 1994-03-08 Nippon Steel Corp Method for compounding raw material of coal briquet for producing metallurgical formed coke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11486022B2 (en) 2015-02-06 2022-11-01 Jfe Steel Corporation Ferrocoke manufacturing method

Also Published As

Publication number Publication date
JP2007126505A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
JP4892929B2 (en) Ferro-coke manufacturing method
Xu et al. Effect of iron ore type on the thermal behaviour and kinetics of coal-iron ore briquettes during coking
CN104593029B (en) Method for producing blast furnace coke
Babich et al. Coke in the iron and steel industry
UA80228C2 (en) Method for producing of briquettes from coal, method for producing of iron melt and device for producing of iron melt
Flores et al. On the reduction behavior, structural and mechanical features of iron ore-carbon briquettes
JP4892930B2 (en) Ferro-coke manufacturing method
Lu et al. Evaluation of coal for metallurgical applications
Kieush et al. Influence of biocoke on iron ore sintering performance and strength properties of sinter
JP5386838B2 (en) Ferro-coke for metallurgy
JP5017969B2 (en) Ferro-coke raw material molding and method for producing ferro-coke
KR101767800B1 (en) Method for producing metallurgical coke
CN114656988A (en) Iron-titanium composite coke for low-carbon iron making and manufacturing method thereof
JP5087868B2 (en) Ferro-coke manufacturing method
JP5386839B2 (en) Manufacturing method of ferro-coke for metallurgy
JP5309966B2 (en) Method for producing highly reactive coke
CN114479892B (en) Coal blending method for preparing high-strength low-reactivity coke
JP5052866B2 (en) Method for producing blast furnace coke
JP2007119602A (en) Method for producing ferrocoke
JP5011833B2 (en) Coke manufacturing method
JP6241337B2 (en) Method for producing blast furnace coke
KR101634053B1 (en) Method for preparing blast furnace blow-in coal
Cengizler et al. Formcoke production from char fines of hard brown coals by air curing
CN106929078B (en) Coke for melting gasifier and method for producing same
CN109279609B (en) Modification method of petroleum coke, modified petroleum coke obtained by modification method, carbonaceous reducing agent and smelting method of industrial silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4892929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250