JP7501475B2 - Ferro-coke manufacturing method - Google Patents

Ferro-coke manufacturing method Download PDF

Info

Publication number
JP7501475B2
JP7501475B2 JP2021147501A JP2021147501A JP7501475B2 JP 7501475 B2 JP7501475 B2 JP 7501475B2 JP 2021147501 A JP2021147501 A JP 2021147501A JP 2021147501 A JP2021147501 A JP 2021147501A JP 7501475 B2 JP7501475 B2 JP 7501475B2
Authority
JP
Japan
Prior art keywords
iron ore
mass
coke
log
ferro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021147501A
Other languages
Japanese (ja)
Other versions
JP2023040490A (en
Inventor
幹也 永山
英和 藤本
孝思 庵屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021147501A priority Critical patent/JP7501475B2/en
Publication of JP2023040490A publication Critical patent/JP2023040490A/en
Application granted granted Critical
Publication of JP7501475B2 publication Critical patent/JP7501475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、石炭と鉄鉱石との混合原料を乾留することにより得られるフェロコークスの製造方法に関する。 The present invention relates to a method for producing ferro-coke obtained by carbonizing a mixture of coal and iron ore.

高炉の操業では、石炭をコークス炉で乾留して製造されたコークスが高炉に装入される。高炉内に装入されるコークスには、高炉内の通気性を向上させるためのスペーサーの役割、還元材としての役割、熱源としての役割などがある。近年、コークスの反応性を向上させるという観点から、冶金用のフェロコークスを得る技術が知られている。 In blast furnace operation, coke produced by carbonizing coal in a coke oven is charged into the blast furnace. The coke charged into the blast furnace serves various purposes, including as a spacer to improve the gas permeability inside the furnace, as a reducing agent, and as a heat source. In recent years, technology has been developed to obtain ferro-coke for metallurgy purposes in order to improve the reactivity of coke.

フェロコークスは、主原料となる石炭、鉄鉱石について予め粉砕、乾燥などの調製を行い、その後、数質量%のバインダーとともに混練機内で撹拌、混練した後、ダブルロール式の成型機にて成型物とし、この成型物を乾留炉で乾留して製造される。このようにして製造されるフェロコークスには、高炉の原料として一定以上の品質(強度、反応性)が求められている。 Ferro coke is produced by first preparing the main raw materials, coal and iron ore, by crushing and drying them, then stirring and kneading them in a kneading machine with a few mass percent of binder, forming them into a molded product in a double-roll molding machine, and then carbonizing this molded product in a carbonization furnace. Ferro coke produced in this way is required to have a certain level of quality (strength, reactivity) as a raw material for blast furnaces.

ここで、特許文献1には、鉄原料として磁性鉄(磁鉄鉱)を成分とする砂鉄を用いることで、フェロコークス中のFe周辺における空隙量が少ない高強度のフェロコークスを製造する方法が開示されている。 Patent Document 1 discloses a method for producing high-strength ferro coke with less voids around the Fe in the ferro coke by using iron sand containing magnetic iron (magnetite) as the iron raw material.

特許第4892930号公報Patent No. 4892930 特許第6323610号公報Patent No. 6323610

しかしながら、特許文献1に開示された砂鉄をフェロコークスの原料として用いる場合には、高温まで乾留してフェロコークスを製造しても、磁性鉄を成分とすることから高炉内での還元率が低下し、鉄鉱石との反応性が低下するという問題がある。 However, when the iron sand disclosed in Patent Document 1 is used as a raw material for ferro coke, even if it is carbonized to a high temperature to produce ferro coke, there is a problem that the reduction rate in the blast furnace decreases because it contains magnetic iron, and the reactivity with iron ore decreases.

本発明は、かかる事情を鑑みてなされたもので、強度と反応性とを両立させたフェロコークスの製造方法を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a method for producing ferro-coke that combines strength and reactivity.

上記課題を解決する本発明の要旨構成は以下のとおりである。
[1]石炭と鉄鉱石とを混合して混合原料とし、前記混合原料を成型して乾留するフェロコークスの製造方法であって、前記鉄鉱石は、磁鉄鉱の含有率が12質量%以上80質量%以下である、フェロコークスの製造方法。
[2]石炭と鉄鉱石とを混合して混合原料とし、前記混合原料を成型して乾留するフェロコークスの製造方法であって、前記鉄鉱石は、FeOの含有率が3質量%以上25質量%以下である、フェロコークスの製造方法。
[3]前記FeOの含有率はJIS M 8213-1995に記載の方法で測定される、[2]に記載のフェロコークスの製造方法。
[4]前記鉄鉱石は、複数の銘柄の鉄鉱石を配合した配合鉄鉱石である、[1]から[3]のいずれか1つに記載のフェロコークスの製造方法。
[5]前記石炭は、芳香環を有する1級もしくは2級アミン系化合物であるN,N’-ジ-2-ナフチル-p-フェニレンジアミンを10質量%添加して測定されるギーセラー最高流動度MFの常用対数値lоgMFの値が1.0log/ddpm以上3.0log/ddpm以下である単味石炭または前記ギーセラー最高流動度MFの常用対数値lоgMFの加重平均値が1.0log/ddpm以上3.0log/ddpm以下である配合炭である、[1]から[4]のいずれか1つに記載のフェロコークスの製造方法。
The gist and configuration of the present invention to solve the above problems are as follows.
[1] A method for producing ferro coke, comprising mixing coal and iron ore to prepare a mixed raw material, molding the mixed raw material, and carbonizing the molded material, wherein the iron ore has a magnetite content of 12% by mass or more and 80% by mass or less.
[2] A method for producing ferro coke, comprising mixing coal and iron ore to prepare a mixed raw material, molding the mixed raw material, and carbonizing the molded product, wherein the iron ore has an FeO content of 3 mass% or more and 25 mass% or less.
[3] The method for producing ferro coke according to [2], wherein the content of FeO is measured by the method described in JIS M 8213-1995.
[4] The method for producing ferro coke according to any one of [1] to [3], wherein the iron ore is a blended iron ore obtained by blending a plurality of brands of iron ore.
[5] The method for producing ferro-coke according to any one of [1] to [4], wherein the coal is a pure coal having a common logarithm of the Gieseler maximum fluidity MF, logMF, measured with the addition of 10 mass% of N,N'-di-2-naphthyl-p-phenylenediamine, which is a primary or secondary amine compound having an aromatic ring, of 1.0 log/ddpm or more and 3.0 log/ddpm or less, or a blended coal having a weighted average value of the common logarithm of the Gieseler maximum fluidity MF, logMF, of 1.0 log/ddpm or more and 3.0 log/ddpm or less.

本発明に係るフェロコークスの製造方法により、強度と反応性とを両立させたフェロコークスの製造が可能となる。 The ferro-coke manufacturing method of the present invention makes it possible to produce ferro-coke that is both strong and highly reactive.

DI及びCRIと鉄鉱石中の磁鉄鉱の含有率との関係を示すグラフである。1 is a graph showing the relationship between DI and CRI and the content of magnetite in iron ore. DI及びCRIと鉄鉱石中のFeOの含有率との関係を示すグラフである。1 is a graph showing the relationship between DI and CRI and the content of FeO in iron ore. DI及びCRIと配合鉄鉱石中の磁鉄鉱の含有率との関係を示すグラフである。1 is a graph showing the relationship between DI and CRI and the content of magnetite in a blended iron ore. DI及びCRIと配合鉄鉱石中のFeOの含有率との関係を示すグラフである。1 is a graph showing the relationship between DI and CRI and the content of FeO in blended iron ore.

以下、本発明を実施するための方法について説明する。本発明は、石炭と鉄鉱石とを混合して混合原料とし、混合原料を成型して乾留するフェロコークスの製造方法であって、鉄鉱石は磁鉄鉱の含有率が12質量%以上80質量%以下である。 The method for carrying out the present invention will be described below. The present invention is a method for producing ferro-coke by mixing coal and iron ore to prepare a mixed raw material, molding the mixed raw material, and carbonizing the molded material. The iron ore has a magnetite content of 12% by mass or more and 80% by mass or less.

砂鉄の主成分である磁鉄鉱は、鉄鉱石にも含まれ、その含有率は鉄鉱石の銘柄により様々である。鉄鉱石における磁鉄鉱の含有率は、フェロコークス製造時の強度や反応性に大きく影響する。本発明の発明者らは、鉄鉱石における磁鉄鉱の含有率に注目し、鉄鉱石中の磁鉄鉱の含有率を調整することで、フェロコークスの強度と反応性を制御することを考えた。 Magnetite, the main component of iron sand, is also found in iron ore, with its content varying depending on the brand of iron ore. The magnetite content in iron ore has a significant effect on the strength and reactivity of ferro coke when it is produced. The inventors of the present invention focused on the magnetite content in iron ore, and conceived of controlling the strength and reactivity of ferro coke by adjusting the magnetite content in the iron ore.

まず、鉄鉱石中の磁鉄鉱の含有率が様々である鉄鉱石を用いてフェロコークスを製造し、その強度と反応性への影響を評価した。その結果、磁鉄鉱の含有率が12質量%以上80質量%以下の鉄鉱石を使用すると、強度と反応性とを両立させた高品質なフェロコークスを製造できることが確認できた。 First, ferro-coke was produced using iron ore with various magnetite content ratios, and the effect on strength and reactivity was evaluated. As a result, it was confirmed that high-quality ferro-coke that combines strength and reactivity can be produced by using iron ore with a magnetite content of 12% by mass or more and 80% by mass or less.

また、鉄鉱石における磁鉄鉱以外の残りの鉄の形態は、成分をFeとする赤鉄鉱や褐鉄鉱である。磁鉄鉱の含有率が12質量%未満であると、高炉内での軟化溶融温度域での還元が過剰となり、軟化溶融性の低い石炭を用いてフェロコークスを製造した場合は粘結性不足となり強度が十分に発現しない。一方、磁鉄鉱の含有率が80質量%より高くなると、フェロコークスの反応性が低下する。なお、鉄鉱石中の磁鉄鉱の含有率は粉末XRD(粉末X線解析)で測定できる。 The remaining iron in iron ore other than magnetite is in the form of hematite and limonite , which are composed of Fe2O3 . If the magnetite content is less than 12% by mass, excessive reduction occurs in the thermoplastic temperature range in the blast furnace, and when ferro-coke is produced using coal with low thermoplasticity, the caking property is insufficient and the strength is not sufficient. On the other hand, if the magnetite content is higher than 80% by mass, the reactivity of the ferro-coke decreases. The magnetite content in iron ore can be measured by powder XRD (powder X-ray diffraction).

さらに、鉄鉱石中の磁鉄鉱の含有率を12質量%以上80質量%以下とすることで、日本工業規格「JIS M 8801 石炭類の試験方法」に記載されたギーセラープラストメータ法での測定が困難である軟化溶融性の低位な石炭を用いたとしても、強度と反応性とが両立したフェロコークスが製造できる。 Furthermore, by setting the magnetite content in the iron ore to 12% by mass or more and 80% by mass or less, it is possible to produce ferro-coke that has both strength and reactivity, even when using coal with low thermoplasticity that is difficult to measure using the Gieseler plastometer method described in the Japanese Industrial Standard "JIS M 8801 Testing methods for coals."

具体的には、特許文献2に記載されている「芳香環を有する1級もしくは2級アミン系化合物であるN,N’-ジ-2-ナフチル-p-フェニレンジアミン」を10質量%添加して軟化溶融特性を向上させた石炭とすることで、ギーセラープラストメータにて測定したギーセラー最高流動度MFの常用対数値(以下、「薬剤添加lоgMF」という。)が1.0log/ddpm以上3.0log/ddpm以下の範囲内の単味石炭、もしくは、薬剤添加lоgMFの加重平均値が1.0log/ddpm以上3.0log/ddpm以下の範囲内の配合炭を用いることで、強度と反応性とを両立させた高品質なフェロコークスが製造できる。なお、薬剤添加lоgMFの上限を3.0log/ddpm以下とした理由は、高い流動性を有する原料を使用した場合、乾留時にフェロコークスの粒同士が融着するという現象が発生し、炉からの排出不良などのトラブルの原因となるからである。 Specifically, by adding 10% by mass of "N,N'-di-2-naphthyl-p-phenylenediamine, a primary or secondary amine compound having an aromatic ring" as described in Patent Document 2 to produce coal with improved thermoplasticity and melting properties, it is possible to produce a high-quality ferrocoke that combines strength and reactivity by using a single coal whose common logarithm of Gieseler maximum fluidity MF measured with a Gieseler plastometer (hereinafter referred to as "chemically-added logMF") is in the range of 1.0 log/ddpm to 3.0 log/ddpm, or a blended coal whose weighted average value of chemically-added logMF is in the range of 1.0 log/ddpm to 3.0 log/ddpm. The upper limit of the log MF of chemicals added is set at 3.0 log/ddpm or less because, when using raw materials with high fluidity, the ferro coke particles will fuse together during carbonization, causing problems such as poor discharge from the furnace.

また、「JIS M 8213-1995 鉄鉱石-けい素定量方法」に記載された「鉄鉱石の成分分析」では、磁鉄鉱の一部がFeOとして検出される。この成分分析の結果を磁鉄鉱の含有率の特定に用いる場合は、「JIS M 8213-1995」に記載の方法で測定されるFeOの含有率が3質量%以上25質量%以下である鉄鉱石を用いればよい。 In addition, in the "iron ore composition analysis" described in "JIS M 8213-1995 Iron ore - Silicon Quantitative Method," some of the magnetite is detected as FeO. If the results of this composition analysis are used to determine the magnetite content, iron ore with an FeO content of 3% by mass or more and 25% by mass or less, as measured by the method described in "JIS M 8213-1995," can be used.

なお、本実施形態に係るフェロコークスの製造方法では、鉄鉱石は単味のみならず複数種の銘柄の鉄鉱石を配合した配合鉄鉱石を用いてもよい。この場合には、複数種の鉄鉱石の配合量を調整して、磁鉄鉱の含有率またはFeOの含有率を先述の範囲内に調整すればよい。これにより、磁鉄鉱の含有率が12質量%以上80質量%以下を満足しない鉄鉱石であっても、磁鉄鉱を多量に含む他の鉄鉱石と配合し、磁鉄鉱の含有率が12質量%以上80質量%以下を満足する配合鉄鉱石とすることで、当該配合鉄鉱石を用いて強度と反応性とを両立させたフェロコークスを製造できる。 In the method for producing ferro coke according to this embodiment, the iron ore may not only be a single component, but may be a blended iron ore containing multiple brands of iron ore. In this case, the blending amounts of the multiple types of iron ore may be adjusted to adjust the magnetite content or FeO content within the aforementioned range. As a result, even if the iron ore does not satisfy the magnetite content of 12% by mass or more and 80% by mass or less, it can be blended with other iron ores containing a large amount of magnetite to produce a blended iron ore containing magnetite that satisfies the magnetite content of 12% by mass or more and 80% by mass or less, and a ferro coke that combines strength and reactivity can be produced using the blended iron ore.

また、磁鉄鉱は、鉄鉱石に含まれるものだけでなく砂鉄やダストに含まれるものであってもよい。磁鉄鉱として砂鉄を用いることで、フェロコークス中のFeの周辺の空隙量が少なくなり、フェロコークスの強度をさらに向上できる。一方、砂鉄は鉄鉱石より細かく比表面積が大きいことから、成型時に用いるバインダーの量が鉄鉱石よりも増える場合がある。さらに、一般的に砂鉄は鉄鉱石よりも高価なので、磁鉄鉱を含む鉄鉱石を用いることで、砂鉄を用いることによるコストの上昇を抑制できる。 Magnetite may be contained not only in iron ore but also in iron sand or dust. By using iron sand as magnetite, the amount of voids around the Fe in the ferro coke is reduced, further improving the strength of the ferro coke. On the other hand, since iron sand is finer and has a larger specific surface area than iron ore, the amount of binder used during molding may be greater than that for iron ore. Furthermore, since iron sand is generally more expensive than iron ore, using iron ore containing magnetite can suppress the increase in costs caused by using iron sand.

以下、本実施形態に係るフェロコークスの製造方法を用いて、鉄鉱石中の鉄の形態(磁鉄鉱及びFeOの含有率)と得られたフェロコークスの品質(強度、反応性)との関係を調査した実施例を説明する。実施例にて使用した鉄鉱石に含まれる磁鉄鉱の含有率および「JIS M 8213-1995」に記載された方法により測定されたFeOの含有率を表1に示す。 Below, an example is described in which the relationship between the form of iron in iron ore (magnetite and FeO content) and the quality (strength, reactivity) of the obtained ferro-coke was investigated using the ferro-coke manufacturing method according to this embodiment. The magnetite content in the iron ore used in the example and the FeO content measured by the method described in "JIS M 8213-1995" are shown in Table 1.

Figure 0007501475000001
Figure 0007501475000001

まず、表1に記載した鉄鉱石(A~G)のうちの1銘柄を粒径3mm以下の割合が100%になるように粒度調整し、この粒度調整された1銘柄の鉄鉱石と、粒径2mm以下の割合が100%になるように粒度調整した軟化溶融性の低い配合炭(薬剤添加lоgMFの加重平均値:1.0lоg/ddpm)とを3:7の割合で配合した。そして、高速撹拌機内でバインダーとしてアスファルトピッチ、コールタール、軟ピッチをそれぞれ全原料重量に対し2.4質量%、2.0質量%、3.6質量%添加して160℃に加熱しながら混練した。ここで、配合炭の特性は、ビトリニット最大反射率Ro:1.61、揮発分VM:14.4mass%、灰分:9.6mass%である。 First, one of the iron ores (A to G) listed in Table 1 was adjusted in particle size so that the proportion of particles with a particle size of 3 mm or less was 100%, and this adjusted iron ore was mixed in a ratio of 3:7 with a low thermoplasticity blended coal (weighted average of chemical-added log MF: 1.0 log/ddpm) whose particle size was adjusted so that the proportion of particles with a particle size of 2 mm or less was 100%. Then, asphalt pitch, coal tar, and soft pitch were added as binders in a high-speed mixer at 2.4 mass%, 2.0 mass%, and 3.6 mass%, respectively, relative to the total raw material weight, and the mixture was kneaded while heating to 160°C. The properties of the blended coal were vitrinite maximum reflectance Ro: 1.61, volatile matter VM: 14.4 mass%, and ash content: 9.6 mass%.

その後、ロールサイズ650mmφ×104mmの成型機にて、回転数2rpm、線圧は1~4ton/cmで成型し、30mm×25mm×18mm(6cm)の卵型の成型物とした。そして、得られた成型物をラボスケールの手法(固定層)で乾留した。具体的には、縦200mm、横60mm、高さ200mmの乾留缶に成型物を充填し、最大850℃のプログラムヒーティングにより4時間20分かけて乾留した後、窒素雰囲気で冷却した。 The mixture was then molded in a molding machine with a roll size of 650 mmφ×104 mm at a rotation speed of 2 rpm and a linear pressure of 1 to 4 ton/cm to obtain an egg-shaped molded product of 30 mm×25 mm×18 mm (6 cm 3 ). The molded product was then dry-distilled by a laboratory-scale method (fixed bed). Specifically, the molded product was filled into a dry-distillation vessel with a length of 200 mm, a width of 60 mm, and a height of 200 mm, and dry-distilled for 4 hours and 20 minutes by program heating at a maximum temperature of 850° C., and then cooled in a nitrogen atmosphere.

得られたフェロコークスの強度は、日本工業規格「JIS K 2151 コークス類」に規定されたドラム試験における150回転後の15mm篩上の比率である「DI(150/15)[-]」(以下、単に「DI」という。)にて評価した。なお、単位[-]は無次元であることを意味する。フェロコークスの反応性は国際規格「ASTM-D5341 コークス反応性指数(CRI)と反応後のコークス強度(DI)を測定するための標準試験方法」に規定されているCRI(%)にて評価し、強度と反応性に及ぼす鉄鉱石中の鉄の形態(磁鉄鉱及びFeOの含有率)の影響を調査した。 The strength of the obtained ferro-coke was evaluated by "DI (150/15) [-]" (hereinafter simply referred to as "DI"), which is the ratio of the 15 mm sieve size after 150 revolutions in the drum test specified in the Japanese Industrial Standard "JIS K 2151 Cokes". The unit [-] means that it is dimensionless. The reactivity of the ferro-coke was evaluated by CRI (%) specified in the international standard "ASTM-D5341 Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength after Reaction (DI)", and the effect of the form of iron in the iron ore (magnetite and FeO content) on the strength and reactivity was investigated.

表1の鉄鉱石中の磁鉄鉱の含有率とDI及びCRIとの関係を図1に示す。ここで、DIの下限値を80とし、CRIの下限値を45%とした。DIの下限値である80は、高炉の通気性に影響を与えないためのフェロコークスの強度の下限値として設定したものである。また、CRIの下限値である45%は、フェロコークスを用いることによる還元材低減効果を得るために必要な下限値として設定したものである。なお、DIの上限値を100とし、CRIの上限値を100%とした。 Figure 1 shows the relationship between the magnetite content in the iron ore in Table 1 and the DI and CRI. Here, the lower limit of DI is set to 80, and the lower limit of CRI is set to 45%. The lower limit of DI, 80, is set as the lower limit of the strength of ferro coke so as not to affect the permeability of the blast furnace. The lower limit of CRI, 45%, is set as the lower limit necessary to obtain the reducing agent reduction effect by using ferro coke. The upper limit of DI is set to 100, and the upper limit of CRI is set to 100%.

図1に示す通り、磁鉄鉱の含有率の増加に伴い、DIは上昇しており、磁鉄鉱の含有率が12質量%以上でDIは目標下限値(80)以上となった。なお、磁鉄鉱の含有率が12質量%を下回ると(比較例1参照)、DIは目標下限値(80)を下回った。CRIは、磁鉄鉱の含有率の増加とともに低下し、磁鉄鉱の含有率が80質量%を超える範囲(比較例2参照)で目標下限値(45%)を下回った。以上の結果、鉄鉱石中の磁鉄鉱の含有率が12質量%以上80質量%以下の範囲(本発明例1~5)で、高強度かつ高反応性のフェロコークスが製造できることが明らかとなった。 As shown in Figure 1, the DI increased with increasing magnetite content, and when the magnetite content was 12 mass% or more, the DI was equal to or greater than the target lower limit (80). When the magnetite content was below 12 mass% (see Comparative Example 1), the DI was below the target lower limit (80). The CRI decreased with increasing magnetite content, and was below the target lower limit (45%) when the magnetite content was in the range of more than 80 mass% (see Comparative Example 2). As a result of the above, it was revealed that high-strength, highly reactive ferro-coke could be produced when the magnetite content in iron ore was in the range of 12 mass% to 80 mass% (Examples 1 to 5 of the present invention).

次に、表1に記載した通り、日本工業規格「JIS M 8213-1995」の規定に基づいて分析したFeOの含有率とDI及びCRIとの関係を図2に示す。ここで、図1及び図2に示す通り、磁鉄鉱の含有率とFeOの含有率とは相関がある。そして、図1を用いて述べたように、DI及びCRIの下限値を考慮すると、フェロコークスの強度と反応性とを両立できるFeOの含有率の範囲は3.0質量%以上25.0質量%以下(本発明例1~5)であった。 Next, as shown in Table 1, the relationship between the FeO content, DI, and CRI analyzed based on the provisions of the Japanese Industrial Standard "JIS M 8213-1995" is shown in Figure 2. Here, as shown in Figures 1 and 2, there is a correlation between the magnetite content and the FeO content. And, as described using Figure 1, when the lower limit values of DI and CRI are taken into consideration, the range of FeO content that can balance the strength and reactivity of ferro-coke is 3.0 mass% or more and 25.0 mass% or less (Examples 1 to 5 of the present invention).

なお、薬剤添加lоgMFの加重平均値が3.0lоg/ddpmである配合炭を、表1に記載した鉄鉱石(A~G)に配合した場合についても同様に実施したが、図1及び図2を用いて説明した磁鉄鉱及びFeOの含有率と同様の範囲で、高強度かつ高反応性のフェロコークスが製造可能であることを確認した。この結果から、軟化溶融性の低い配合炭を用いた場合でも、鉄鉱石中の磁鉄鉱の含有率又はFeOの含有率を適正な範囲とすることで、高強度かつ高反応性のフェロコークスを製造可能であることを確認した。 The same experiment was also carried out when a coal blend with a weighted average of chemical-added logMF of 3.0 log/ddpm was blended with the iron ores (A to G) listed in Table 1, and it was confirmed that high-strength, highly reactive ferro-coke could be produced within the same range of magnetite and FeO contents as explained using Figures 1 and 2. From these results, it was confirmed that even when a coal blend with low thermoplasticity is used, high-strength, highly reactive ferro-coke can be produced by setting the magnetite content or FeO content in the iron ore within an appropriate range.

続いて、鉄鉱石A~Gを混合し、種々の磁鉄鉱の含有率に調整した配合鉄鉱石6種(配合1~6)を使用して、図1及び図2を用いて説明した方法と同様に、DI及びCRIとの関係を調査した。鉄鉱石A~Gの配合割合および磁鉄鉱、FeOの含有率を表2に示す。 Next, iron ores A to G were mixed and adjusted to various magnetite contents to create six iron ore blends (blends 1 to 6), and the relationship between DI and CRI was investigated in the same manner as described using Figures 1 and 2. The blending ratios of iron ores A to G and the magnetite and FeO contents are shown in Table 2.

Figure 0007501475000002
Figure 0007501475000002

配合鉄鉱石(配合1~6)における磁鉄鉱の含有率は5~90質量%であり、成分分析値のFeOの含有率は2~29質量%となった。この配合鉄鉱石(配合1~6)及び薬剤添加lоgMFの加重平均値が1.0lоg/ddpmである配合炭を用いて製造したフェロコークスの強度(DI)および反応性(CRI)を評価した結果を、図3および図4に示す。 The magnetite content in the iron ore blends (blends 1 to 6) was 5 to 90% by mass, and the FeO content in the component analysis was 2 to 29% by mass. The strength (DI) and reactivity (CRI) of ferro-coke produced using these iron ore blends (blends 1 to 6) and blended coal with a weighted average chemical-added logMF of 1.0 log/ddpm are shown in Figures 3 and 4.

図3は、表2に記載した磁鉄鉱の含有率とDI及びCRIとの関係を示す。図4は、表2に記載したFeOの含有率とDI及びCRIとの関係を示す。図3及び図4のいずれの結果も、図1及び図2と同様の範囲、つまり、鉄鉱石中の磁鉄鉱の含有率が12質量%以上80質量%以下である範囲(本発明例6~9)、又は、FeOの含有率が3.0質量%以上25.0質量%以下の範囲(本発明例6~9)で、高強度かつ高反応性のフェロコークスが製造可能であることが分かった。 Figure 3 shows the relationship between the magnetite content and the DI and CRI as shown in Table 2. Figure 4 shows the relationship between the FeO content and the DI and CRI as shown in Table 2. The results in both Figures 3 and 4 show that high-strength, highly reactive ferro-coke can be produced in the same range as in Figures 1 and 2, that is, in the range where the magnetite content in iron ore is 12 mass% or more and 80 mass% or less (Examples 6 to 9 of the present invention) or the FeO content is 3.0 mass% or more and 25.0 mass% or less (Examples 6 to 9 of the present invention).

以上の結果から、本発明に係るフェロコークスの製造方法を用いることで、単味の鉄鉱石のみならず配合鉄鉱石でも、高強度かつ高反応性のフェロコークスが製造可能であることが確認できた。また、表1に示した鉄鉱石A、鉄鉱石Gのように、単味では磁鉄鉱やFeOの含有率が先述した範囲を満たさない鉄鉱石であっても、配合鉄鉱石とすることで、高強度かつ高反応性のフェロコークスとして製造が可能であることが確認できた。 From the above results, it was confirmed that by using the ferro coke manufacturing method according to the present invention, it is possible to manufacture high-strength, highly reactive ferro coke not only from pure iron ore but also from blended iron ore. It was also confirmed that even if the iron ore, such as iron ore A and iron ore G shown in Table 1, does not satisfy the above-mentioned range of magnetite or FeO content when used purely, it is possible to manufacture high-strength, highly reactive ferro coke by using it as a blended iron ore.

Claims (4)

石炭と鉄鉱石とを混合して混合原料とし、前記混合原料を成型して乾留するフェロコークスの製造方法であって、
前記鉄鉱石は、磁鉄鉱の含有率が12質量%以上80質量%以下であり、
前記石炭は、芳香環を有する1級もしくは2級アミン系化合物であるN,N’-ジ-2-ナフチル-p-フェニレンジアミンを10質量%添加して測定されるギーセラー最高流動度MFの常用対数値lоgMFの値が1.0log/ddpm以上3.0log/ddpm以下である単味石炭または前記ギーセラー最高流動度MFの常用対数値lоgMFの加重平均値が1.0log/ddpm以上3.0log/ddpm以下である配合炭である、フェロコークスの製造方法。
A method for producing ferro-coke, comprising mixing coal and iron ore to prepare a mixed raw material, molding the mixed raw material, and carbonizing the molded product,
The iron ore has a magnetite content of 12% by mass or more and 80% by mass or less,
The coal is a pure coal having a common logarithm value logMF of the Gieseler maximum fluidity MF, measured by adding 10 mass% of N,N'-di-2-naphthyl-p-phenylenediamine, which is a primary or secondary amine compound having an aromatic ring, of 1.0 log/ddpm or more and 3.0 log/ddpm or less, or a blended coal having a weighted average value of the common logarithm value logMF of the Gieseler maximum fluidity MF of 1.0 log/ddpm or more and 3.0 log/ddpm or less .
石炭と鉄鉱石とを混合して混合原料とし、前記混合原料を成型して乾留するフェロコークスの製造方法であって、
前記鉄鉱石は、FeOの含有率が3質量%以上25質量%以下であり、
前記石炭は、芳香環を有する1級もしくは2級アミン系化合物であるN,N’-ジ-2-ナフチル-p-フェニレンジアミンを10質量%添加して測定されるギーセラー最高流動度MFの常用対数値lоgMFの値が1.0log/ddpm以上3.0log/ddpm以下である単味石炭または前記ギーセラー最高流動度MFの常用対数値lоgMFの加重平均値が1.0log/ddpm以上3.0log/ddpm以下である配合炭である、フェロコークスの製造方法。
A method for producing ferro-coke, comprising mixing coal and iron ore to prepare a mixed raw material, molding the mixed raw material, and carbonizing the molded product,
The iron ore has an FeO content of 3% by mass or more and 25% by mass or less,
The coal is a pure coal having a common logarithm value logMF of the Gieseler maximum fluidity MF, measured by adding 10 mass% of N,N'-di-2-naphthyl-p-phenylenediamine, which is a primary or secondary amine compound having an aromatic ring, of 1.0 log/ddpm or more and 3.0 log/ddpm or less, or a blended coal having a weighted average value of the common logarithm value logMF of the Gieseler maximum fluidity MF of 1.0 log/ddpm or more and 3.0 log/ddpm or less .
前記FeOの含有率はJIS M 8213-1995に記載の方法で測定される、請求項2に記載のフェロコークスの製造方法。 The method for producing ferro-coke according to claim 2, wherein the FeO content is measured by the method described in JIS M 8213-1995. 前記鉄鉱石は、複数の銘柄の鉄鉱石を配合した配合鉄鉱石である、請求項1から請求項3のいずれか1項に記載のフェロコークスの製造方法。 The method for producing ferrocoke according to any one of claims 1 to 3, wherein the iron ore is a blended iron ore made by blending multiple brands of iron ore.
JP2021147501A 2021-09-10 2021-09-10 Ferro-coke manufacturing method Active JP7501475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021147501A JP7501475B2 (en) 2021-09-10 2021-09-10 Ferro-coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021147501A JP7501475B2 (en) 2021-09-10 2021-09-10 Ferro-coke manufacturing method

Publications (2)

Publication Number Publication Date
JP2023040490A JP2023040490A (en) 2023-03-23
JP7501475B2 true JP7501475B2 (en) 2024-06-18

Family

ID=85632488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021147501A Active JP7501475B2 (en) 2021-09-10 2021-09-10 Ferro-coke manufacturing method

Country Status (1)

Country Link
JP (1) JP7501475B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126505A (en) 2005-11-01 2007-05-24 Jfe Steel Kk Method for producing ferrocoke
CN107384445B (en) 2017-07-27 2020-06-19 河钢股份有限公司邯郸分公司 Experimental device and method for preparing iron coke by adding tar residues

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126505A (en) 2005-11-01 2007-05-24 Jfe Steel Kk Method for producing ferrocoke
CN107384445B (en) 2017-07-27 2020-06-19 河钢股份有限公司邯郸分公司 Experimental device and method for preparing iron coke by adding tar residues

Also Published As

Publication number Publication date
JP2023040490A (en) 2023-03-23

Similar Documents

Publication Publication Date Title
JP4003509B2 (en) Reuse method of fine coke generated in coke production process
CN102242251B (en) Alkaline V-Ti pellet and preparation method thereof
US20120144734A1 (en) Method for manufacturing carbon iron composite
JP4892929B2 (en) Ferro-coke manufacturing method
CN101990581B (en) Titanium oxide-containing agglomerate for producing granular metallic iron
RU2264435C2 (en) Coal briquettes for reductive melting process and a method for manufacture thereof
JP6421666B2 (en) Method for producing sintered ore
JP4853090B2 (en) Ferro-coke manufacturing method and apparatus
BRPI0920547B1 (en) METHOD FOR OPERATING BLAST FURNACES USING UNCOOKED PELLETS CONTAINING COAL
JP7501475B2 (en) Ferro-coke manufacturing method
JP4910631B2 (en) Blast furnace operation method
JP5011956B2 (en) Ferro-coke and method for producing sintered ore
JPS60110785A (en) Production of raw material for coke and production of coke
JP2000178660A (en) PRODUCTION OF HIGH QUALITY LOW SiO2 SINTERED ORE
US2780536A (en) Flue-dust sinter and method of manufacture
JP7143714B2 (en) Method for producing carbon material for sintering, method for selecting raw material for carbon material for sintering, and method for producing sintered ore
JP4311022B2 (en) Coke production method
RU2462521C2 (en) Charge to obtain briquettes for blast-furnace and cupola production of cast iron
JP6294135B2 (en) Method for producing reduced iron
CN115261613B (en) Iron ore powder evaluation and comparison method, sinter raw material selection and sintering method
JPH07157769A (en) Production of coke for blast furnace
JPH0259196B2 (en)
CN114836616B (en) Iron ore powder pellet and preparation method thereof
JPS63137989A (en) Production of ferrocoke
JPS6113517B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240520