JPS6113517B2 - - Google Patents

Info

Publication number
JPS6113517B2
JPS6113517B2 JP53080862A JP8086278A JPS6113517B2 JP S6113517 B2 JPS6113517 B2 JP S6113517B2 JP 53080862 A JP53080862 A JP 53080862A JP 8086278 A JP8086278 A JP 8086278A JP S6113517 B2 JPS6113517 B2 JP S6113517B2
Authority
JP
Japan
Prior art keywords
coal
briquette
coke
pulverized
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53080862A
Other languages
Japanese (ja)
Other versions
JPS557863A (en
Inventor
Takeshi Adachi
Masaru Kozonoi
Toshihiro Aramaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8086278A priority Critical patent/JPS557863A/en
Publication of JPS557863A publication Critical patent/JPS557863A/en
Publication of JPS6113517B2 publication Critical patent/JPS6113517B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、原料粉炭から製鉄等に使用する冶
金用良質コークスを製造する方法に関する。 近年、冶金用コークスの製造方法としては、い
わゆる成型炭配合コークス製造方法が多く採用さ
れている。この成型炭配合コークス製造方法は、
成型炭用粉炭にバインダーを添加して加熱処理し
た後、又は、加熱処理することなく、加圧成型
し、得られた成型炭を原料粉炭に一部配合してコ
ークス炉装入炭とし、コークス炉で乾留して冶金
用コークスを製造するものである。 このように、原料粉炭中に一部成型炭を配合す
ると、成型効果及び装入炭の装入嵩密度が向上
し、それだけコークスの強度も向上するため、こ
のコークスの強度の向上に見合う分だけ装入炭中
に非微粘結性劣質炭を配合できることが一般に知
られている。 しかしながら、従来の成型炭配合コークス製造
方法においては、所定の成型炭配合割合まではそ
の配合率の増加に伴つてコークス炉に装入した装
入炭の装入嵩密度が増し、これを乾留して得られ
るコークスの強度が向上するが、成型炭配合割合
がある程度以上になると成型炭相互間に形成され
る空間内に原料粉炭が十分に充填されず、かえつ
て装入嵩密度が低下し、生成したコークスの強度
が悪くなるかあるいは向上しない。即ち、コーク
ス炉に一定の高さから成型炭配合の装入炭を装入
した場合、装入嵩密度を縦軸に、又、成型炭配合
割合を横軸にとつて両者の関係を調べてみると最
大値が存在する。 この装入嵩密度の最大値は、コークス炉の寸
法、成型炭の粒径、粒度分布、原料粉炭の粒径、
粒度分布、あるいは成型炭や原料粉炭に含まれる
水分の割合等によつて変化するが、これらの変動
値を一定に定めることによつて固有の値として測
定され決定されるもので、例えば、成型炭の粒径
を20〜100mm、原料粉炭の粒度を3mm以下のもの
70〜90wt%、水分を約3〜15wt%程度とし、通
常のコークス炉に装入した場合、成型炭配合割合
がほぼ50〜85wt%までの範囲内で装入嵩密度は
最大値を示し、これ以上成型炭配合割合を高くし
ても装入嵩密度は上昇せず、低下するものであ
り、かつ、これより生成したコークスの強度も低
下することが明らかに認められる。 従つて、原料粉炭中に含まれる非微粘結性劣質
炭の配合割合が一定であれば、成型炭配合割合を
高くしても生成するコークスの強度には限界があ
り、又、コークス炉から生成するコークスを押出
機で押出す際の負荷の関係もあつて、従来におい
ては成型炭配合割合は30wt%程度が限度である
とされていた。 ところで、成型炭の配合割合を35wt%以上と
した場合の装入嵩密度の低下を防止する方法とし
て、複数種類の粒径を有する成型炭を配合する方
法が提案されている(特開昭52−133301号)。し
かしながら、この方法においては、複数種類の粒
径を有する成型炭を使用するために、複数種類の
加圧成型機や異つた形状の金型が必要になる等製
造工程が複雑になり、更に、成型炭の粒径が不連
続であつて粒径比も小さく、最密充填等装入嵩密
度の向上はあまり期待できないという問題があ
る。従つて、かかる方法においては、成型炭配合
割合が高くなつた場合でも、装入嵩密度の向上は
望めず、僅かに低下しており、かつ、コークス強
度も成型炭配合割合が20〜85wt%の範囲でほぼ
一定しており、大巾な向上は得られないものと説
明されている。 そこで、本発明者等は、コークス炉に一定の高
さから成型炭配合の装入炭を装入する場合に、予
想される装入嵩密度の最大値よりも、高い装入嵩
密度で装入炭をコークス炉に装入することができ
る方法について種々検討した。その結果、成型炭
を原料粉炭に配合するに際し、原料粉炭の一部又
は全部を予め一定の粒径以下に粉砕した粉砕成型
炭で置換すれば、驚くべきことには、置換しない
場合のような成型炭高配合に伴う装入嵩密度の低
下がみられないだけでなく逆に装入嵩密度は大巾
に向上し、かつ、得られるコークスのドラム強
度、および小型反応後強度CSR(%)も大巾に
向上し、更に注目すべきことには、25〜75mmの中
間粒度分布の割合が高くなるという予期し得ない
整粒効果も得られることを知見し、本発明を完成
したものである。 即ち、本発明は、成型炭用粉炭にバインダーを
添加して、所定粒径に加圧成型した成型炭を製造
し、該成型炭を原料粉炭に配合してコークス炉装
入炭を調製し、この装入炭をコークス炉で乾留し
てコークスを製造する方法において、前記成型炭
の配合割合を40重量%以上85重量%以下の範囲と
し、前記原料粉炭の一部もしくは全部を予め成型
炭の粒径の1/4以下の粒径で、且つ連続粒度分布
をなすように粉砕した粉砕成型炭で置換すること
を特徴とするものである。 本発明の特に好ましい具体的な実施態様として
は、原料粉炭に成型炭のみを配合した場合の装入
炭の装入嵩密度が最大値を示すときの成型炭配合
割合までは成型炭を配合し、残りの原料粉炭の一
部又は全部を粉砕成型炭で置換することであつ
て、これによりコークス炉に一定の高さから成型
炭配合の装入炭を装入する場合に予想される装入
嵩密度の最大値よりも高い装入嵩密度で装入炭を
コークス炉内に装入することができると共に、コ
ークス強度の向上や整粒効果も顕著となるもので
ある。又、本発明の特に好ましい実施態様をより
具体的に数字で表示すれば、コークス炉用装入炭
の内40wt%以上好ましくは50〜85wt%までは成
型炭を配合し、残りの原料粉炭の一部又は全部を
予め成型炭の粒径の1/4以下に連続的な粒度分布
を有する如く粉砕した粉砕成型炭で置換すること
である。これによつて得られるコークス炉装入炭
の装入嵩密度は著しく向上し、かつ、コークス強
度の向上や整粒効果等も顕著である。 本発明でいう成型炭用粉炭及び原料粉炭、並び
に粉砕成型炭用粉炭としては、通常のコークス炉
用装入炭か、あるいは、通常のコークス炉用装入
炭に対して高炉用コークスの製造には不適当とさ
れている非微粘結性劣質炭を10wt%以上及び/
又は粉コークス,ピツチコークス,石油コーク
ス,タール滓等の夫々単独のもの又は混合したも
のを1wt%以上混合したもので、粒径3mm以下が
70〜90wt%程度に粉砕したものが使用される。
これらは、夫々単独で使用することができるが、
予め一定の割合に混合したものも使用することが
できる。尚、上記した通常のコークス炉用装入炭
とは、揮発分が25〜35%、CSN(JIS M8801,4
るつぼ膨脹試験法)3〜9の範囲にあり、かつ、
実用のコークス炉においてコークス化した時のド
ラム強度(JIS K2151,6.2ドラム試験法)
DI150 1580以上となるように任意の石炭を配合調製
して得られる高炉用コークス製造用装入炭として
従来公知の性状範囲を有するものでよい。又、非
微粘結性劣質炭とはCSN0〜2、流動性指数
〔JIS M8801,5流動性試験法(ギーゼラープラ
ストメーター法)〕0〜10、全膨脹指数(オーデ
イベルアルニユー法)0の特性を有する高炉用コ
ークスの製造には不適当とされる石炭である。 又、本発明において成型炭あるいは粉砕成型炭
を製造する際に使用するバインダーとしては、石
炭系又は石油系の瀝青物が使用される。石炭系瀝
青物としては、例えば、石炭系ピツチ,ロードタ
ール,石炭の溶剤抽出物あるいはその残渣物,石
炭系重質油等が適当であり、又、石油系瀝青物と
しては、例えば、石油系ピツチ,アスフアルト,
石油系重質油あるいはこれを熱処理もしくは溶媒
抽出処理して得られるもの等が適当である。 本発明における成型炭は、成型炭用粉炭にバイ
ンダーを添加し、混合した後に、適宜加熱処理
し、又は、加熱処理することなく、成型機によつ
て所定粒径に加圧成型されるものであり、又、特
に限定はしないが、成型炭の粒径は最大粒径を20
〜100mm程度とするのが有利である。尚、成型炭
はコークス炉へ移送中又は装炭時に部分的に破砕
される場合があるが、これらは成型炭として取扱
うものとする。 更に、本発明における粉砕成型炭は、粉砕成型
炭用粉炭に、バインダーを添加して成型炭を製造
し、この成型炭をクラツシヤーで粉砕して製造さ
れる。この時の粉砕方法としては、間隙部が調節
可能なダブルロールクラツシヤーを使用するのが
好都合であり、特に、所定粒径程度の間隙を残し
たダブルロールクラツシヤーに成型炭を装入し、
1回又は複数回通過させ、この間隙を最大粒径と
して連続粒度分布を有するように粉砕するのが有
利である。 尚、本発明において、原料粉炭,成型炭用粉炭
及び粉砕成型炭用粉炭は、夫々石炭配合が全く同
一組成物であつてもよいし、又、異なつていても
よく、又、成型炭用バインダーと粉砕成型炭用バ
インダーも同一組成物であつてもよく、又、異つ
ていてもよいものである。 本発明においては、成型炭をそのまま配合する
ことが装入嵩密度の向上、コークス強度の向上等
の点で好ましい点を最大限に利用する一方成型炭
の配合率がある一定値以上の範囲内で装入嵩密度
が最大値にし、これ以上の配合率では逆に装入嵩
密度の低下をもたらす点を考慮して、原料粉炭の
一部又は全部を粉砕成型炭で置換することが最も
好ましいものである。 又、装入嵩密度は、成型炭の粒径(dc)と粉
砕して添加される粉砕成型炭の粒径(df)の粒径
比によつても影響される。例えば、ASTMD291
−60法による後述する実施例の成型炭60wt%に
粒度の異なる粉砕成型炭40wt%を配合した場合
におけるdc/dfと装入嵩密度の関係を調べた結
果、第1図に示すように、dc/dfが4で装入嵩密
度の増加が鈍り、dc/dfが7.5以上でほぼ飽和す
ることが判明した。従つて、粉砕成型炭の粒径は
成型炭粒径の1/4以下好ましくは1/7以下にするの
が適当であり、更に、連続粒度分布を持つ粉砕成
型炭を添加することによつて、より最密充填が可
能となることがわかつた。 以下、本発明を実施例に基づいて更に詳細に説
明する。 (1) 試験炉と操業条件 ガス加熱式1/4tコークス炉に調製した装入
炭を装入口より落下させて装入し、フリユー温
度1300℃で乾留した。 (2) 原料粉炭の調製 非微粘結性劣質炭(銘柄ウイツトバンク)
12.0wt%を含む16種の原料炭を配合し、3mmの
ふるいでふるつた場合のふるい下が87.6wt%と
なるように粉砕し、水分を約10%に調製して原
料粉炭とした。この原料粉炭の強粘比は52%、
揮発分は29.4wt%で、試験炉に装入した時の装
入嵩密度は629Kg/m3である。 (3) 成型炭の調製 上記原料粉炭に軟化点35℃の石炭系軟ピッチ
をバインダーとして6wt%添加し、混合した後
加熱下で混練し、ダブルロールクプレスにより
成型圧4tで45mm×45mm×26mmの大きさのマセツ
ク形に加圧成型した。この成型炭の見掛密度は
1.15g/mlであつた。 (4) 従来法による予備実験 原料粉炭と成型炭とを種々の割合で配合して
装入炭を調製し、この装入炭を上記試験炉に装
入してコークスを製造した。この時の装入嵩密
度,生成コークスのドラム強度(DI150 15)、生成
コークスの25〜75mm粒度歩留、小型反応後強
度、コークス生産性比を調べた結果は第1表A
群に示す通りであつた。尚、小型反応後強度は
次の試験方法により求めた。 即ち試料コークスを20±1mmの粒度に調製し
たもの200gを反応管内で5/minのCO2
通下、1100℃±10℃の加熱状態で2時間反応さ
せ、反応後の重量をAgとし、また反応後の試
料全部をI型試験機のドラム(130φ×700mm)
に入れ20Ypm×30分回転させた後試料を篩分
け、+10mm部分の重量をBgとして、この場合
の小型反応強度CSR600 10を次の式CSR600 10
B/A× 100%によつて求めた。またコークス生産性比は
次の式によつて求めた。 コークス生産性比 =成型炭無配合時のコークス生成時間/成型炭配
合時のコークス生成時間 ×成型炭配合時のコークス製骸量/成型炭無配合
時のコークス製骸量 又、この時の成型炭配合割合と装入嵩密度と
の関係を第2図において点線で、更に、成型炭
配合割合と生成コークスのドラム強度
(DI150 15)との関係を第3図において点線で、成
型炭配合割合と生成コークスの25〜75mm粒度歩
留との関係を第4図において点線で夫々示し
た。
The present invention relates to a method for producing high-quality metallurgical coke used in iron manufacturing etc. from raw material pulverized coal. In recent years, as a method for producing metallurgical coke, a so-called method for producing coke blended with briquette coal has been widely adopted. This briquette blended coke manufacturing method is
After adding a binder to the pulverized coal for briquette coal and heat-treating it, or without heat treatment, it is pressure-molded, and a portion of the resulting briquette coal is blended with raw material pulverized coal to make coke oven charging coal. It is carbonized in a furnace to produce metallurgical coke. In this way, when some briquette coal is blended into raw coal powder, the briquetting effect and the bulk density of the charged coal are improved, and the strength of the coke is also improved accordingly. It is generally known that non-slightly caking inferior quality coal can be blended into charged coal. However, in the conventional coke production method with briquette coal, as the blending ratio increases, the bulk density of the coal charged into the coke oven increases until a predetermined briquette blending ratio is reached. However, if the blending ratio of briquette coal exceeds a certain level, the space formed between the briquette coals will not be sufficiently filled with raw coal powder, and the bulk density of the charged coal will decrease. The strength of the coke produced deteriorates or does not improve. In other words, when charging coal with a briquette mixture is charged into a coke oven from a certain height, the relationship between the two is investigated using the charging bulk density on the vertical axis and the briquette blending ratio on the horizontal axis. If you look, there is a maximum value. The maximum value of this charging bulk density is determined by the dimensions of the coke oven, the particle size and particle size distribution of briquette coal, the particle size of raw coal powder,
Although it changes depending on the particle size distribution or the proportion of moisture contained in molded coal or powdered raw coal, it is measured and determined as a unique value by setting these fluctuation values to a constant value. The particle size of charcoal is 20 to 100 mm, and the particle size of raw coal powder is 3 mm or less.
When charging 70 to 90 wt% and water content to about 3 to 15 wt% in a normal coke oven, the charging bulk density reaches its maximum value within the range of briquette coal blending ratio of approximately 50 to 85 wt%. It is clearly recognized that even if the blending ratio of briquette coal is increased further, the charged bulk density does not increase but decreases, and the strength of the coke produced from this also decreases. Therefore, if the blending ratio of non-slightly caking poor quality coal contained in raw coal powder is constant, there is a limit to the strength of the coke produced even if the blending ratio of briquette coal is increased, and there is a limit to the strength of the coke produced from the coke oven. Due to the load involved when extruding the produced coke using an extruder, it was previously believed that the blending ratio of briquette coal was limited to about 30 wt%. By the way, as a method to prevent a decrease in the charging bulk density when the blending ratio of briquette coal is 35 wt% or more, a method of blending briquette coal having multiple types of particle sizes has been proposed (Japanese Patent Application Laid-Open No. 1983-1983). −133301). However, since this method uses briquette coal having multiple types of particle sizes, the manufacturing process becomes complicated, such as requiring multiple types of pressure molding machines and molds of different shapes. There is a problem in that the particle size of the briquette coal is discontinuous and the particle size ratio is small, so that it is difficult to expect much improvement in the charging bulk density such as closest packing. Therefore, in this method, even if the blending ratio of briquette coal is increased, the charging bulk density cannot be expected to improve and is slightly decreased, and the coke strength is also lower than that of 20 to 85wt% when the blending ratio of briquette coal is 20 to 85wt%. It is explained that it remains almost constant within the range of , and that no significant improvement can be obtained. Therefore, when charging coal with a briquette blend into a coke oven from a certain height, the present inventors charged the coal at a charging bulk density higher than the expected maximum charging bulk density. Various methods for charging coal into a coke oven were investigated. As a result, when blending briquette coal into powdered coking coal, if part or all of the powdered coking coal is replaced with pulverized briquette coal that has been pulverized to a particle size below a certain level in advance, it is surprisingly possible to reduce the Not only is there no decrease in the charging bulk density due to a high blend of briquette coal, but on the contrary, the charging bulk density is significantly improved, and the drum strength of the resulting coke and the strength after compact reaction CSR (%) are significantly improved. The present invention was completed based on the discovery that the particle size distribution was greatly improved, and more importantly, the ratio of intermediate particle size distribution between 25 and 75 mm was increased, which was an unexpected effect of particle size distribution. be. That is, the present invention adds a binder to powdered coal for molded coal to produce molded coal under pressure to a predetermined particle size, blends the molded coal with raw coal powder to prepare coke oven charge coal, In the method of producing coke by carbonizing this charged coal in a coke oven, the blending ratio of the briquette coal is in the range of 40% to 85% by weight, and part or all of the coking coal powder is preliminarily added to the briquette coal. It is characterized in that it is replaced with pulverized briquette charcoal that has been pulverized so that it has a particle size of 1/4 or less of the particle size and has a continuous particle size distribution. In a particularly preferred specific embodiment of the present invention, briquette coal is blended up to the blending ratio of briquette coal at which the bulk density of the charged coal reaches its maximum value when only briquette coal is blended with the powdered raw coal. , to replace part or all of the remaining raw material pulverized coal with pulverized briquette coal, which would reduce the expected charging when charging coal with a briquette blend into a coke oven from a certain height. Charging coal can be charged into a coke oven with a bulk density higher than the maximum value of the bulk density, and the coke strength is improved and the granulation effect becomes remarkable. Moreover, to express a particularly preferred embodiment of the present invention in more concrete numbers, 40 wt% or more, preferably 50 to 85 wt% of the charging coal for a coke oven is blended with briquette coal, and the remaining powdered coking coal is blended with molten coal. Part or all of the coal is replaced with pulverized briquette coal that has been pulverized in advance to have a continuous particle size distribution of 1/4 or less of the particle size of the briquette charcoal. As a result, the bulk density of the coke oven charging coal obtained is significantly improved, and the coke strength is also significantly improved and the granulation effect is significantly improved. In the present invention, the pulverized coal for briquette coal, pulverized coking coal, and pulverized pulverized coal for pulverized briquette coal are ordinary charging coal for coke ovens, or ordinary charging coal for coke ovens for producing coke for blast furnaces. contains 10wt% or more of non-slightly caking inferior quality coal, which is considered unsuitable.
Or a mixture of 1wt% or more of coke powder, pitch coke, petroleum coke, tar slag, etc., each singly or in combination, with a particle size of 3 mm or less.
It is used after being crushed to about 70-90wt%.
Each of these can be used alone, but
It is also possible to use a premixed mixture at a certain ratio. The above-mentioned normal coke oven charging coal has a volatile content of 25 to 35% and CSN (JIS M8801, 4).
Crucible expansion test method) is in the range of 3 to 9, and
Drum strength when coked in a practical coke oven (JIS K2151, 6.2 drum test method)
Charging coal for blast furnace coke production obtained by blending and adjusting any coal so as to have a DI of 150 15 80 or more may have a property range conventionally known. In addition, non-slightly caking inferior quality coal has a CSN of 0 to 2, a fluidity index [JIS M8801, 5 fluidity test method (Gieseler plastometer method)] of 0 to 10, and a total expansion index of 0 (Audaiber Arneux method). This coal is considered unsuitable for producing coke for blast furnaces due to its characteristics. Further, in the present invention, a coal-based or petroleum-based bituminous material is used as a binder used when producing briquette coal or pulverized briquette coal. Suitable coal-based bituminous materials include, for example, coal-based pitch, road tar, coal solvent extracts or their residues, coal-based heavy oil, etc.; Pituchi, Asphalt,
Petroleum heavy oil or those obtained by heat treatment or solvent extraction treatment of petroleum heavy oil or the like are suitable. Molded coal in the present invention is obtained by adding a binder to powdered coal for molding, mixing it, and then applying appropriate heat treatment or pressure-molding it to a predetermined particle size using a molding machine without heat treatment. Yes, and although there is no particular limitation, the particle size of briquette coal should be 20
It is advantageous to set it to about 100 mm. Molded coal may be partially crushed during transfer to a coke oven or during coal charging, but these are treated as molten coal. Further, the pulverized briquette coal in the present invention is produced by adding a binder to pulverized charcoal for pulverization briquette coal to produce briquette coal, and pulverizing the briquette coal with a crusher. As for the crushing method at this time, it is convenient to use a double roll crusher with an adjustable gap.In particular, the molten coal is charged into a double roll crusher that leaves a gap of a predetermined particle size. death,
It is advantageous to use one or more passes to grind the particles so that they have a continuous particle size distribution with the largest particle size in the gaps. In the present invention, raw coal, powdered coal for briquette coal, and pulverized coal for pulverized briquette coal may have the same coal composition or may have different coal compositions, or may have different coal compositions. The binder and the binder for pulverized and shaped coal may have the same composition, or may be different. In the present invention, while blending the briquette coal as it is is preferable in terms of improving the charging bulk density and coke strength, it is preferable that the blending ratio of the briquette coal is within a certain range or above. It is most preferable to replace part or all of the raw material pulverized coal with pulverized briquette coal, taking into account that the bulk density of the charging material is at its maximum value, and that a blending ratio higher than this will result in a decrease in the bulk density of the charging material. It is something. In addition, the charging bulk density is also influenced by the particle size ratio between the particle size (dc) of the briquette coal and the particle size (df) of the crushed and added pulverized briquette coal. For example, ASTMD291
As a result of investigating the relationship between dc/df and charging bulk density when 40 wt% of pulverized briquette coal of different particle sizes was blended with 60 wt% of the briquette coal of the example described below using the -60 method, as shown in Figure 1, It was found that the increase in charging bulk density slows down when dc/df is 4, and is almost saturated when dc/df is 7.5 or higher. Therefore, it is appropriate that the particle size of the pulverized briquette coal be 1/4 or less, preferably 1/7 or less of the briquette particle size, and further, by adding pulverized briquette coal that has a continuous particle size distribution. It was found that closer packing becomes possible. Hereinafter, the present invention will be explained in more detail based on examples. (1) Test furnace and operating conditions The prepared charge coal was dropped from the charging port into a gas-heated 1/4 ton coke oven and carbonized at a fuel temperature of 1300°C. (2) Preparation of powdered raw coal Non-slightly caking inferior quality coal (brand name Witbank)
16 types of coking coal containing 12.0wt% were blended and pulverized so that when sifted through a 3 mm sieve, the sieve content was 87.6wt%, and the moisture content was adjusted to approximately 10% to produce powdered coking coal. The strong viscosity ratio of this powdered raw coal is 52%.
The volatile content is 29.4wt%, and the bulk density when charged into the test furnace is 629Kg/ m3 . (3) Preparation of briquette coal Add 6wt% of coal-based soft pitch with a softening point of 35℃ to the above powdered coal as a binder, mix, knead under heat, and use a double roll press at a molding pressure of 4t to 45mm x 45mm x It was pressure molded into a masset shape with a size of 26 mm. The apparent density of this briquette coal is
It was 1.15g/ml. (4) Preliminary experiment using conventional method Charging coal was prepared by blending raw coal powder and briquette coal in various proportions, and this charging coal was charged into the above test furnace to produce coke. Table 1A shows the results of investigating the charging bulk density, drum strength of the coke produced (DI 150 15 ), particle size yield of 25 to 75 mm of the coke produced, strength after small size reaction, and coke productivity ratio.
It was as shown in the group. The strength after small scale reaction was determined by the following test method. That is, 200 g of sample coke prepared to a particle size of 20 ± 1 mm was reacted in a reaction tube at 1100 °C ± 10 °C for 2 hours under CO 2 flow at 5/min, and the weight after the reaction was taken as Ag. After the reaction, all the samples were transferred to the drum (130φ x 700mm) of a type I tester.
After rotating the sample for 20 Ypm x 30 minutes, the sample is sieved, and the weight of the +10 mm portion is taken as Bg, and the small reaction strength CSR 600 10 in this case is calculated using the following formula :
It was determined by B/A x 100%. In addition, the coke productivity ratio was determined using the following formula. Coke productivity ratio = Coke generation time when briquette charcoal is not added / Coke generation time when briquette charcoal is blended × Amount of coke residue when briquette charcoal is blended / Amount of coke residue when briquette coal is not blended Also, the molding at this time The relationship between the charcoal blending ratio and the charging bulk density is shown by the dotted line in Figure 2, and the relationship between the briquette coal blending ratio and the drum strength (DI 150 15 ) of the coke produced is shown by the dotted line in Figure 3. The relationship between the ratio and the particle size yield of 25 to 75 mm of produced coke is shown by dotted lines in FIG. 4, respectively.

【表】 この予備実験の結果、装入嵩密度は、第1表
及び第2図で示す通り、成型炭配合割合が60〜
80wt%の時に最大値を示し、これ以上高配合
した場合は装入嵩密度が明らかに低下している
ことを示している。又、生成コークスのドラム
強度(DI150 15)は、第1表及び第3図に示す通
り、成型炭配合割合が60〜80wt%の時に最大
値を示し、これ以上では低下する。更に、生成
コークスの25〜75mm粒度歩留は成型炭配合割合
が60wt%の時に最大値60.0%を示し、これ以上
の高配合率では明らかに低下している。又、生
成コークスの生産性比および小型反応後強度
CRS(%)は成型炭配合割合が100wt%の時に
最大となつた。 (5) 実施例 1 上記予備実験を基準にして本発明を以下の通
り実施した。即ち、成型炭粒径を45mmとして
dc/df=7.5となるように、ロール間距離を6
mmとしたダブルロールクラツシヤーにより成型
炭を粉砕し、第2表B群に示すように、6mm以
下の連続粒度分布を持つ粉砕成型炭を調製し、
成型炭60wt%をベースとして原料粉炭の一部
もしくは全部を粉砕成型炭の10wt%,20wt
%,30wt%及び40wt%で置換して配合して装
入炭を調製し、この装入炭を上記予備実験の場
合と同じ条件で試験炉内に装入してコークスを
製造した時の装入嵩密度,生成コークスのドラ
ム強度(DI150 15),小型反応後強度CSR(%)、
25〜75mm粒度歩留,コークス生産性比を調べ
た。結果は第1表B群に示す通りであり、又、
この時の粉砕成型炭配合割合と装入嵩密度との
関係を第2図において実線で、更に、粉砕成型
炭配合割合と生成コークスのドラム強度
(DI150 15)との関係を第3図において実線で、粉
砕成型炭配合割合と生成コークスの25〜75mm粒
度歩留との関係を第4図において実線で夫々示
した。 この実施例1において、装入嵩密度は、第1
表及び第2図に示す通り、粉砕した成型炭配合
割合が増加するにつれ成型炭だけの場合の最大
値よりも更に著しく向上し、その度合は直線的
に向上しているのがわかり、又、生成コークス
のドラム強度も、第1表及び第3図に示す通
り、成型炭配合割合と粉砕成型炭配合割合との
和が70wt%以上で著しく向上しており、更
に、生成コークスの25〜75mm粒度歩留も、第1
表及び第4図に示すように、著しい向上を示
し、生成コークスの生産性比および小型反応後
強度CSR(%)についてもほぼ直線的に向上
している。 (6) 実施例 2 実施例1の場合と同様に、上記予備実験を基
準にして実施した。この実施例2においては、
dc/df=15となるように、ロール間距離を3mm
としたダブルロールクラツシヤーにより成型炭
を粉砕し、第2表C群に示すように、3mm以下
の連続粒度分布を有する粉砕成型炭を調製して
実施例1と全く同様に装入嵩密度,生成コーク
スのドラム強度(DI150 15),小型反応後強度CSR
(%),25〜75mm粒度歩留,コークス生産性比を
調べ、第1表C群に示した。又、この時の粉砕
成型炭配合割合と装入嵩密度との関係、粉砕成
型炭配合割合と生成コークスのドラム強度
(DI150 15)との関係、及び、粉砕成型炭配合割合
と生成コークスの25〜75mm粒度歩留との関係を
夫々第2図,第3図及び第4図に一点鎖線で示
した。 この実施例2においては、実施例1の場合と
比較して、第1表,第2図及び第4図に示すよ
うに、25〜75mm粒度歩留が僅かに低下している
以外は装入嵩密度と生産性比及び生成コークス
のドラム強度(DI150 15)および小型反応後強度
CSR(%)において幾分向上している。
[Table] As a result of this preliminary experiment, the charging bulk density is as shown in Table 1 and Figure 2, when the blending ratio of briquette coal is 60~
It shows the maximum value at 80wt%, and when the content is higher than this, the charging bulk density clearly decreases. Further, as shown in Table 1 and FIG. 3, the drum strength (DI 150 15 ) of the produced coke reaches its maximum value when the blending ratio of briquette coal is 60 to 80 wt%, and decreases above this. Furthermore, the particle size yield of the produced coke of 25 to 75 mm reaches a maximum value of 60.0% when the blending ratio of briquette coal is 60 wt%, and clearly decreases when the blending ratio is higher than this. In addition, the productivity ratio and the strength after small-sized reaction of coke produced
CRS (%) reached its maximum when the briquette coal blending ratio was 100wt%. (5) Example 1 The present invention was carried out as follows based on the above preliminary experiment. That is, assuming the briquette coal particle size is 45 mm,
The distance between rolls is set to 6 so that dc/df=7.5.
pulverized briquette coal with a double roll crusher to prepare pulverized briquette coal having a continuous particle size distribution of 6 mm or less as shown in Group B of Table 2,
Based on 60wt% of briquette coal, some or all of the powdered raw coal is crushed to 10wt% or 20wt of briquette coal.
%, 30wt%, and 40wt% to prepare charging coal, and charge this charging coal into a test furnace under the same conditions as in the preliminary experiment to produce coke. Bulk density, drum strength of produced coke (DI 150 15 ), strength CSR after small size reaction (%),
The 25-75mm particle size yield and coke productivity ratio were investigated. The results are shown in Group B in Table 1, and
The solid line in Figure 2 shows the relationship between the blending ratio of pulverized briquette coal and the charging bulk density, and the relationship between the blending ratio of pulverized briquette coal and the drum strength (DI 150 15 ) of the produced coke is shown in Figure 3. The solid line in FIG. 4 shows the relationship between the blending ratio of pulverized briquette coal and the particle size yield of 25 to 75 mm in coke produced. In this Example 1, the charging bulk density is
As shown in the table and Figure 2, as the blending ratio of pulverized briquette coal increases, the value increases even more significantly than the maximum value for briquette coal alone, and the degree of improvement increases linearly. As shown in Table 1 and Figure 3, the drum strength of the produced coke is also significantly improved when the sum of the blended ratio of briquette coal and the blended ratio of pulverized briquette coal is 70wt% or more. The particle size yield is also the first
As shown in the table and FIG. 4, there is a remarkable improvement, and the productivity ratio of coke produced and the strength CSR (%) after small-sized reaction also improve almost linearly. (6) Example 2 Similar to Example 1, the experiment was carried out based on the above preliminary experiment. In this Example 2,
The distance between the rolls is 3mm so that dc/df=15.
The briquettes were pulverized using a double-roll crusher, as shown in Group C of Table 2, to prepare pulverized briquettes having a continuous particle size distribution of 3 mm or less. , drum strength of produced coke (DI 150 15 ), strength after small scale reaction CSR
(%), particle size yield of 25 to 75 mm, and coke productivity ratio were investigated and shown in Table 1, Group C. In addition, the relationship between the blending ratio of pulverized briquette coal and the charging bulk density, the relationship between the blending ratio of pulverized briquette coal and the drum strength (DI 150 15 ) of the produced coke, and the relationship between the blending ratio of pulverized briquette coal and the drum strength of the produced coke, The relationship with the grain size yield of 25 to 75 mm is shown by dashed lines in FIGS. 2, 3, and 4, respectively. In this Example 2, compared to the case of Example 1, as shown in Table 1, Figure 2, and Figure 4, the grain size yield of 25 to 75 mm was slightly decreased. Bulk density and productivity ratio, drum strength of produced coke (DI 150 15 ) and strength after small size reaction
There has been some improvement in CSR (%).

【表】 尚、前記実施例では、成型炭配合率が60wt
%をベースとした例を示したが、これは1/4t
試験炉で、かつ、成型炭粒径45mmの場合の装入
嵩密度がほぼ最大値を示していたためである。
ただし、50〜85wt%の範囲内を成型炭のベー
スとしても装入嵩密度,コークス強度,25〜75
mm粒度歩留の向上効果に変わりがなく、当然本
発明を有利に実施できるものである。 以上の実施例から理解されるように、本発明の
方法によれば、成型炭を原料粉炭に配合するに際
し、原料粉炭の一部又は全部を予め粉砕した粉砕
成型炭で置換して添加するとにより、成型炭相互
間に形成される空隙が連続粒度分布をなしている
粉砕成型炭と原料粉炭とによつて緻密に充填さ
れ、装入炭の装入嵩密度の顕著な向上が見られ
る。これは、成型炭を粉砕した場合においても、
この粉砕成型炭に、成型炭の成型時における混練
とバインダーによる圧着作用による成型効果が未
だ維持されているものと考えられるからである。
従つて、この粉砕成型炭を原料粉炭の一部もしく
は全部と置換することによつて、従来のような成
型炭と原料粉炭のみの配合の場合に比べて装入炭
の装入嵩密度が著しく向上し、それに伴つて成型
効果も著しく向上したものと考えられる。 このように、装入炭の装入嵩密度が向上するこ
とによつて、生成したコークスのドラム強度
(DI150 15)もほぼ比例して向上し、良質の冶金用

ークスを製造することが可能になつた。このた
め、生成コークスのドラム強度(DI150 15)が従来
法によつて製造されたコークスのドラム強度より
向上した分に見合う分だけ安価な劣質炭をより多
量に及び又は粉コークス,ピツチコークス,石油
コークス,タール滓等を多量に使用しても、従来
と同等のドラム強度を持つた冶金用コークスを製
造できる。又、このように、非微粘結性劣質炭を
多量にあるいは、粉コークス,ピツチコークス,
石油コークス,タール滓等を配合すれば、コーク
ス炉内にて乾留される装入炭の膨脹が少なくなる
ため、コークス炉内で生成したコークスを抽出機
で押出す際の押出負荷が軽減され、成型炭及び粉
砕成型炭の配合率の和を飛躍的に高めることがで
きる。 更に、粉砕成型炭を添加することによつて、全
体としての成型炭配合割合を増加させることが可
能になり、この結果、装入炭粒子間隔を狭くする
こと、言い換えれば、装入嵩密度を高くすること
ができるため、生成コークスの熱間性状や装入炭
と生成コークスとの容積収支を良くすることがで
き、第1表に示すように、生成コークスの生産性
比をも著しく向上させることができる。 又、この発明の方法によつて製造した冶金用コ
ークスの粒度分布をみると、従来法による予備実
験における場合に比べて、生成コークスの25〜75
mm粒度歩留が顕著に向上しており、このことは高
炉操業上極めてメリツトの大きいものである。こ
の粒度歩留も装入嵩密度とほぼ同じ傾向を示して
おり、本発明において、装入嵩密度が改善された
結果であると考えられる。従つて、本発明は成型
炭高配合による良質コークスの製造が可能にな
り、非微粘結性劣質炭,粉コークス,タール滓等
の有効利用、入手困難な良質粘結炭の節約にも役
立つ等、工業的に極めて有用なものである。
[Table] In the above example, the blending ratio of briquette coal was 60wt.
I showed an example based on %, but this is 1/4t
This is because the charging bulk density in the test furnace and when the molten coal particle size was 45 mm was almost the maximum value.
However, even if the base of briquette coal is within the range of 50 to 85 wt%, the charging bulk density, coke strength, and
There is no change in the effect of improving mm particle size yield, and the present invention can naturally be carried out advantageously. As can be understood from the above examples, according to the method of the present invention, when blending briquette coal into pulverized raw coal, part or all of the pulverized raw coal is replaced with pulverized briquette coal that has been crushed in advance. In this case, the voids formed between the briquettes are densely filled with the pulverized briquette coal and the raw material pulverized coal, which have a continuous particle size distribution, and the bulk density of the charged coal is significantly improved. This also applies when briquette coal is crushed.
This is because it is considered that this pulverized briquette coal still maintains the molding effect due to the kneading and pressure bonding action of the binder during the molding of the briquette coal.
Therefore, by replacing part or all of the raw material pulverized coal with this pulverized briquette coal, the bulk density of the charged coal can be significantly increased compared to the conventional case where only briquette coal and raw material pulverized coal are used. It is thought that the molding effect has also been significantly improved. In this way, by improving the bulk density of the charged coal, the drum strength (DI 150 15 ) of the produced coke also increases almost proportionally, making it possible to produce high-quality metallurgical coke. It became. For this reason, the drum strength (DI 150 15 ) of the coke produced is improved over the drum strength of coke produced by the conventional method, and a larger amount of cheap inferior coal or coke powder, pitch coke, or petroleum coke is used. Even if large amounts of coke, tar slag, etc. are used, metallurgical coke can be produced that has the same drum strength as conventional products. In addition, in this way, a large amount of non-slightly caking inferior quality coal, coke powder, pitch coke,
By blending petroleum coke, tar slag, etc., the expansion of the charged coal that is carbonized in the coke oven will be reduced, which will reduce the extrusion load when extruding the coke produced in the coke oven using the extractor. The sum of the blending ratios of briquette charcoal and pulverized briquette coal can be dramatically increased. Furthermore, by adding pulverized briquette coal, it is possible to increase the overall briquette blending ratio, and as a result, the interval between charged coal particles can be narrowed, or in other words, the bulk density of the charged coal can be reduced. This can improve the hot properties of the produced coke and the volume balance between the charged coal and the produced coke, and as shown in Table 1, it also significantly improves the productivity ratio of the produced coke. be able to. Furthermore, when looking at the particle size distribution of the metallurgical coke produced by the method of the present invention, the particle size distribution of the produced coke is 25 to 75% compared to that in preliminary experiments using the conventional method.
The millimeter particle size yield has been significantly improved, which is extremely beneficial for blast furnace operation. This particle size yield also shows almost the same tendency as the charging bulk density, and is considered to be a result of the improved charging bulk density in the present invention. Therefore, the present invention makes it possible to produce high-quality coke with a high blend of molten coal, and is useful for effectively utilizing non-slightly caking inferior quality coal, fine coke, tar slag, etc., and for saving high-quality caking coal that is difficult to obtain. etc., are extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はdc/dfと嵩密度との関係を示すグラ
フ、第2図は成型炭配合割合と装入嵩密度との関
係を示すグラフ、第3図は成型炭配合割合と生成
コークスのドラム強度との関係を示すグラフ、第
4図は成型炭配合割合と生成コークスの25〜75mm
粒度歩留との関係を示すグラフである。
Figure 1 is a graph showing the relationship between dc/df and bulk density, Figure 2 is a graph showing the relationship between briquette coal blending ratio and charging bulk density, and Figure 3 is a graph showing the relationship between briquette coal blending ratio and drum of produced coke. A graph showing the relationship between strength and strength.
It is a graph showing the relationship with particle size yield.

Claims (1)

【特許請求の範囲】 1 成型炭用粉炭にバインダーを添加して所定粒
径に加圧成型した成型炭を製造し、該成型炭を原
料粉炭に配合してコークス炉装入炭を調製し、こ
の装入炭をコークス炉で乾留してコークスを製造
する方法において、前記成型炭の配合割合を40重
量%以上85重量%以下の範囲とし、前記原料粉炭
の一部もしくは全部を予め成型炭の粒径の1/4以
下の粒径で、且つ連続粒度分布をなすように粉砕
した粉砕成型炭で置換することを特徴とする良質
コークスの製造方法。 2 原料粉炭に成型炭のみを配合した場合の装入
炭の挿入嵩密度が最大値を示す時の成型炭配合割
合までは成型炭を配合することを特徴とする特許
請求の範囲第1項の良質コークスの製造方法。
[Claims] 1. A binder is added to pulverized coal for briquette coal to produce briquette coal that is pressure-molded to a predetermined particle size, and the briquette is blended with raw material pulverized coal to prepare coal for coke oven charging. In the method of producing coke by carbonizing this charged coal in a coke oven, the blending ratio of the briquette coal is in the range of 40% to 85% by weight, and part or all of the coking coal powder is preliminarily added to the briquette coal. A method for producing high-quality coke, characterized by replacing the coke with pulverized briquette coal that has been pulverized to have a particle size of 1/4 or less and a continuous particle size distribution. 2. The claim set forth in claim 1, characterized in that the briquette coal is blended up to the blending ratio of the briquette coal at which the inserted bulk density of the charged coal shows the maximum value when only the briquette coal is blended with the powdered raw coal. A method for producing high-quality coke.
JP8086278A 1978-07-05 1978-07-05 Production of good coke Granted JPS557863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8086278A JPS557863A (en) 1978-07-05 1978-07-05 Production of good coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8086278A JPS557863A (en) 1978-07-05 1978-07-05 Production of good coke

Publications (2)

Publication Number Publication Date
JPS557863A JPS557863A (en) 1980-01-21
JPS6113517B2 true JPS6113517B2 (en) 1986-04-14

Family

ID=13730141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8086278A Granted JPS557863A (en) 1978-07-05 1978-07-05 Production of good coke

Country Status (1)

Country Link
JP (1) JPS557863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927161A1 (en) 2012-11-27 2015-10-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for storing upgraded coal, and grain-size-controlled coal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883087A (en) * 1981-11-11 1983-05-18 Nippon Kokan Kk <Nkk> Preparation of metallurgical coke
JPS5993791A (en) * 1982-11-19 1984-05-30 Nippon Steel Corp Treatment of collected fine powder of coal
JP6174521B2 (en) * 2014-05-23 2017-08-02 株式会社神戸製鋼所 Storage method for modified coal
JP6257094B2 (en) * 2014-06-27 2018-01-10 Jfeスチール株式会社 Coke production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133301A (en) * 1976-04-30 1977-11-08 Sumikin Kako Kk Method of producing coke for blast furnace
JPS54156005A (en) * 1978-05-31 1979-12-08 Nippon Kokan Kk <Nkk> Production of blast furnace coke

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133301A (en) * 1976-04-30 1977-11-08 Sumikin Kako Kk Method of producing coke for blast furnace
JPS54156005A (en) * 1978-05-31 1979-12-08 Nippon Kokan Kk <Nkk> Production of blast furnace coke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927161A1 (en) 2012-11-27 2015-10-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for storing upgraded coal, and grain-size-controlled coal

Also Published As

Publication number Publication date
JPS557863A (en) 1980-01-21

Similar Documents

Publication Publication Date Title
JPH0160078B2 (en)
EP1000178B1 (en) Method for using coal fines in a melt-down gasifier
CN1153810A (en) Cast coke briquette produced with anthracite and its production process
US3960543A (en) Process of producing self-supporting briquettes for use in metallurgical processes
US4318779A (en) Method of manufacture of blast furnace cokes containing substantial amounts of low grade coals
JPS6113517B2 (en)
US4419186A (en) Process for making strong metallurgical coke
RU2713143C1 (en) Carbonaceous reducing agent for production of technical silicon and method of its production
JPS5917042B2 (en) Synthetic carbonaceous granules with high mechanical properties
US4135983A (en) Method for improving coking property of coal for use in production of cokes
JPS6339637B2 (en)
CN102295944A (en) Foundry coke brick and production method thereof
US4272324A (en) Process for producing shaft furnace cokes
US2732333A (en) Graphite containing metallurgical
KR20030052954A (en) Coal Briquettes For Iron and Steel Making Process, Method Of Manufacturing Thereof
JPH039989A (en) Production of coke
JPH04332790A (en) Production of briquetted coal
JP7493121B1 (en) Coke manufacturing method
WO2024202185A1 (en) Coke production method
JP7501475B2 (en) Ferro-coke manufacturing method
JPS6040192A (en) Production of metallurgical coke
JP4448261B2 (en) Method for producing blast furnace coke
EP4442846A1 (en) Method and system for manufacturing a solid agglomerate
JPS5938279A (en) Production of metallurgical coke
JPH09118883A (en) Production of coke for blast furnace