JPH04272992A - Method for predicting expansion pressure in process of coke production - Google Patents

Method for predicting expansion pressure in process of coke production

Info

Publication number
JPH04272992A
JPH04272992A JP3402191A JP3402191A JPH04272992A JP H04272992 A JPH04272992 A JP H04272992A JP 3402191 A JP3402191 A JP 3402191A JP 3402191 A JP3402191 A JP 3402191A JP H04272992 A JPH04272992 A JP H04272992A
Authority
JP
Japan
Prior art keywords
coal
furnace
expansion pressure
softened
gas pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3402191A
Other languages
Japanese (ja)
Inventor
Seiji Nomura
野村誠治
Takashi Arima
孝 有馬
Toru Nishi
徹 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3402191A priority Critical patent/JPH04272992A/en
Publication of JPH04272992A publication Critical patent/JPH04272992A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To predict an expansion pressure in a process of carbonization of coal with a very simple means. CONSTITUTION:A peak of gas pressure in a coal layer which is in a softened and molten state is detected by carbonizing a sample of coal in a small test furnace, providing a probe for measuring the gas pressure which is made of a stainless tube and has a inner diameter of 1mm and an outer diameter of 2mm in a given position (which is centered in the longitudinal direction and the widthwise direction and spaced 125mm from the bottom of the furnace) accompanied with a detection terminal of a temperature-measuring means and confirming by temperature that the coal positioned at a probe is in a softened and molten state. An expansion pressure of coal in a process of coke production can be predicted from the relationship between the peak value and the expansion pressure measured in a test furnace with a movable wall.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、石炭の乾留過程におけ
る膨張圧を予測する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting expansion pressure during the carbonization process of coal.

【0002】0002

【従来の技術】コークス炉の炭化室で石炭からコークス
を製造する過程で、石炭は膨張し、コークス炉の炉壁に
圧力(膨張圧)を及ぼす。この膨張圧が高いためにコー
クス炉の炉壁が損傷することもあり(たとえばU.S.
Steel  Fairfield  製鐡所の第2コ
ークス炉(J.F.McDermott  etal.
,Iron  &  Steel  Maker,13
(1986),51))膨張圧の管理は炉体管理上重要
な課題である。
2. Description of the Related Art During the process of producing coke from coal in the carbonization chamber of a coke oven, the coal expands and exerts pressure (expansion pressure) on the walls of the coke oven. This high expansion pressure can damage the walls of coke ovens (for example, in the U.S.
Steel Fairfield Steel Works No. 2 coke oven (J.F. McDermott et al.
, Iron & Steel Maker, 13
(1986), 51)) Management of expansion pressure is an important issue in furnace management.

【0003】日本では近年、膨張圧に対する注意が払わ
れていなかった。しかし今後、膨張圧が高いとされてい
る石炭化度が高い(揮発分が低い)石炭の配合割合が増
加する傾向にあり、膨張圧をコークス炉の炉体強度から
の限界値以下に管理する必要がある。
[0003] In recent years, no attention has been paid to inflation pressure in Japan. However, in the future, the proportion of coal with a high degree of coalification (low volatile content), which is said to have a high expansion pressure, will tend to increase, and the expansion pressure will need to be controlled below the limit value based on the strength of the coke oven body. There is a need.

【0004】炭化室内で石炭を乾留すると、乾留が進行
して石炭がコークス化するにつれて、軟化溶融した石炭
層は左右両方の炉壁側から炭化室中央部に移動していく
が、通常膨張圧は、軟化溶融した石炭層が炭化室中央部
で会合する時に最大値、すなわち最大膨張圧を示すこと
が知られている。実際の操業において炉体損傷などの点
から問題となるのはこの最大膨張圧なので、最大膨張圧
を限界値いかに管理する必要がある。
When coal is carbonized in a carbonization chamber, as the carbonization progresses and the coal turns into coke, the softened and molten coal layer moves from both the left and right furnace walls to the center of the carbonization chamber, but normally the expansion pressure is known to exhibit the maximum value, that is, the maximum expansion pressure, when the softened and molten coal seams meet in the center of the coking chamber. In actual operation, this maximum expansion pressure poses a problem in terms of damage to the furnace body, so it is necessary to manage the maximum expansion pressure to a limit value.

【0005】膨張圧は実コークス炉で測定できないので
、通常KoppersとJenkner(H.Kopp
ers  and  A.Jenkner,Fuel,
10(1931),232,H.Koppers  a
nd  A.Jenkner,Fuel,10(193
1),273)によって開発された可動壁炉(片側の壁
が可動式の特殊な試験乾留炉)で測定されており、可動
壁炉で測定された最大膨張圧で10〜15kPaがコー
クス炉の炉体強度からの許容限界値とされている。
Since the expansion pressure cannot be measured in an actual coke oven, it is usually determined by Koppers and Jenkner (H. Kopp).
ers and A. Jenkner,Fuel,
10 (1931), 232, H. Koppers a
ndA. Jenkner, Fuel, 10 (193
1), 273) was developed using a movable wall furnace (a special test carbonization furnace with a movable wall on one side), and the maximum expansion pressure measured in the movable wall furnace was 10 to 15 kPa, which was the temperature of the coke oven furnace body. This is considered to be the permissible limit value based on strength.

【0006】しかしこの試験炉はたいへん高価であり、
しかも石炭試料の量が多く(約400kg)、簡便な測
定方法ではない。さらに、測定結果の再現性が乏しく、
原料石炭の配合の変更やコークス炉の操業条件の変更を
行う時に、迅速な対応ができない点が問題である。
[0006] However, this test furnace is very expensive;
Moreover, the amount of coal sample is large (approximately 400 kg), and it is not a simple measuring method. Furthermore, the reproducibility of measurement results is poor;
The problem is that it is not possible to respond quickly when changing the blend of coking coal or the operating conditions of the coke oven.

【0007】また、膨張圧の発生原因は軟化溶融状態に
ある石炭層内のガス圧であることが知られており、Ko
ppersとJenknerは、可動壁炉で、炭化室中
央部で軟化溶融した石炭層が会合する時の最大膨張圧と
同時点での軟化溶融状態にある石炭層内のガス圧ピーク
値に相関関係があることを示している。しかし、軟化溶
融状態にある石炭層内のガス圧ピーク値を可動壁炉で測
定する限りにおいては、可動壁炉で膨張圧を測定する時
と同様に、多くの問題点がある。
[0007] It is also known that the cause of expansion pressure is the gas pressure within the coal seam, which is in a softened and molten state.
ppers and Jenkner found that in a movable wall furnace, there is a correlation between the maximum expansion pressure when softened and molten coal seams meet in the center of the coking chamber and the peak gas pressure in the coal seams that are in the softened and molten state at the same time. It is shown that. However, as far as measuring the gas pressure peak value in a coal seam in a softened and molten state using a movable wall furnace, there are many problems similar to when measuring expansion pressure using a movable wall furnace.

【0008】[0008]

【発明が解決しようとする課題】本発明は、極めて簡便
な手段で石炭の乾留過程における膨張圧を予測する方法
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of predicting the expansion pressure during the carbonization process of coal using extremely simple means.

【0009】[0009]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、石炭試料を小型試験炉で乾留し、熱伝導の影響を
無視し得るに足る小さな管径をもつプローブを、側温手
段の検出端を随伴させて炉長および炉幅方向中央部かつ
炉底近傍にプローブ端末が臨む如く位置させて、側温に
よってプローブ端末が位置する部位の石炭試料が軟化溶
融状態にあることを確認し、軟化溶融状態にある石炭試
料層内のガス圧ピークを検出し、このピーク値とかどう
壁型試験炉で測定された膨張圧の相関関係から、石炭の
膨張圧を予測するようにしたことを特徴とする、コーク
ス製造過程における石炭膨張圧の予測方法にある。
[Means for Solving the Problems] The present invention is characterized in that a coal sample is carbonized in a small test furnace, and a probe with a tube diameter small enough to ignore the influence of heat conduction is used as a side heating means. With the detection end attached, place the probe terminal so that it faces the center of the furnace length and furnace width direction and near the bottom of the furnace, and confirm that the coal sample in the area where the probe terminal is located is in a softened and molten state due to the side temperature. , the expansion pressure of coal was predicted by detecting the gas pressure peak in a coal sample layer in a softened and molten state, and from the correlation between this peak value and the expansion pressure measured in a wall-type test furnace. It is characterized by a method for predicting coal expansion pressure during the coke manufacturing process.

【0010】以下、本発明を詳細に説明する。膨張圧の
発生原因は軟化溶融状態にある石炭層内のガス圧であり
、炭化室中央部で軟化溶融した石炭層が会合する時の最
大膨張圧と、同時点での軟化溶融状態にある石炭層内の
ガス圧ピーク値に相関関係があることが知られている。 そこで発明者らは、炭化室中央部で軟化溶融した石炭層
が会合する時のガス圧ピークに注目し、石炭の乾留過程
における膨張圧を簡便に予測する手段について研究を重
ねた結果、小型乾留試験炉内での乾留進行過程を明らか
にすることにより、小型乾留試験炉で、軟化溶融状態に
ある石炭層内のガス圧ピークを検出しうることを見いだ
した。また、この小型乾留試験炉で測定された軟化溶融
状態にある石炭測内のガス圧ピークと、可動壁炉で測定
された最大膨張圧との間に良好な相関関係があることを
見いだした。本発明はこの知見に基づいて完成された。
The present invention will be explained in detail below. The cause of expansion pressure is the gas pressure in the coal seam that is in a softened and molten state, and the maximum expansion pressure when the softened and molten coal seams meet in the center of the coking chamber is the same as the coal that is in a softened and molten state at the same time. It is known that there is a correlation between the gas pressure peak values within the layer. Therefore, the inventors focused on the gas pressure peak when the softened and molten coal seams meet in the center of the carbonization chamber, and as a result of repeated research on a means to easily predict the expansion pressure during the carbonization process of coal, we found that By clarifying the process of carbonization in the test furnace, we discovered that it is possible to detect gas pressure peaks in a coal seam in a softened and molten state using a small carbonization test furnace. We also found that there is a good correlation between the gas pressure peak of the coal in the softened and molten state measured in this small carbonization test furnace and the maximum expansion pressure measured in the movable wall furnace. The present invention was completed based on this knowledge.

【0011】小型乾留試験炉(例えば実施例1に示すよ
うに炉長669mm  炉高410mm  炉幅425
mm)で石炭を乾留すると、炉頂部および炉底部からの
伝熱の影響が無視できない。そのため、炉壁方向からだ
けでなく、炉頂および炉底方向からも、炉蓋方向からも
かなりコークス化が進行する。発明者らは、この小型乾
留試験炉では、コークス化過程で袋状の軟化溶融層が形
成され、軟化溶融層内部の未乾留石炭層内部のガス圧が
上昇することを見いだした。したがって、軟化溶融状態
にある石炭層内のガス圧ピークを検出するには、プロー
ブ位置の石炭が軟化溶融状態にあることを温度によって
確認する必要がある。また、乾留終了後のコークス試料
を解体したところ、炭化室中央部で軟化溶融した石炭層
が会合している部分の面積は狭く、しかも会合位置がか
なり炉底に近いことを見いだした。したがって、プロー
ブの位置の選択には注意する必要がある。また、従来可
動壁炉でのガス圧測定に用いられていたような径が太い
プローブは、小型乾留試験炉では熱伝導への影響が無視
できず、乾留進行過程に影響を及ぼすことを見いだした
。 したがって、プローブには、熱伝導の影響を無視できる
ような十分細いプローブを用いる必要がある。  さら
に、この小型乾留試験炉で測定された軟化溶融状態にあ
る石炭層内のガス圧ピークと、可動壁炉(例えば実施例
2に示すように炉長600mm  炉高600mm  
炉幅400mm)で測定された最大膨張圧との間に良好
な相関関係があることを見いだした。
[0011] A small carbonization test furnace (for example, as shown in Example 1, the furnace length is 669 mm, the furnace height is 410 mm, and the furnace width is 425 mm).
When coal is carbonized at 1 mm), the influence of heat transfer from the top and bottom of the furnace cannot be ignored. Therefore, coking progresses considerably not only from the direction of the furnace wall, but also from the direction of the furnace top and bottom, and from the direction of the furnace lid. The inventors discovered that in this small carbonization test furnace, a bag-shaped softened molten layer is formed during the coking process, and the gas pressure inside the uncarbonized coal seam inside the softened molten layer increases. Therefore, in order to detect a gas pressure peak in a coal seam that is in a softened and molten state, it is necessary to confirm by temperature that the coal at the probe position is in a softened and molten state. Furthermore, when the coke sample was dismantled after carbonization, it was found that the area where the softened and molten coal seams met in the center of the coking chamber was small, and the location of the coalescence was quite close to the bottom of the furnace. Therefore, care must be taken in choosing the location of the probe. In addition, we found that the large diameter probes conventionally used to measure gas pressure in movable-wall furnaces have a non-negligible effect on heat conduction in small carbonization test furnaces, and have an impact on the carbonization process. Therefore, it is necessary to use a probe that is sufficiently thin so that the influence of thermal conduction can be ignored. Furthermore, the gas pressure peak in the coal seam in the softened and molten state measured in this small carbonization test furnace and the movable wall furnace (for example, as shown in Example 2, the furnace length is 600 mm and the furnace height is 600 mm)
It was found that there is a good correlation between the maximum expansion pressure measured at a furnace width of 400 mm).

【0012】この知見に基づき、発明者らは、以下に示
す具体的な手段を発明した。本発明では、小型乾留試験
炉(炉長669mm  炉高410mm  炉幅425
mm)を用い、少量の石炭試料(約100kg)を乾留
して、軟化溶融状態にある石炭層内のガス圧を測定する
。 ガス圧測定プローブには、内径1mm、外径2mmのス
テンレス管を用い、熱電対(K型シース熱電対;径1m
m;シース材質SUS304;非接地型)をしばりつけ
る。このプローブを、石炭装入時に所定位置(炉長・炉
幅方向中心、炉底から125mm)に設置する。またプ
ローブの位置がずれないように、ボール紙で固定し、装
入缶の炉蓋に相当する面に穴を開け、そこからプローブ
を炉外に導いてガス圧測定器に接続する。このようにし
てガス圧および温度の経時変化を測定する。
Based on this knowledge, the inventors invented the following specific means. In the present invention, a small carbonization test furnace (furnace length 669 mm, furnace height 410 mm, furnace width 425
A small amount of coal sample (approximately 100 kg) is carbonized using a coal seam (mm), and the gas pressure within the coal seam in a softened and molten state is measured. The gas pressure measurement probe uses a stainless steel tube with an inner diameter of 1 mm and an outer diameter of 2 mm, and a thermocouple (K-type sheath thermocouple; diameter of 1 m).
m; sheath material SUS304; non-grounding type) is tied. This probe is installed at a predetermined position (center in the furnace length/furnace width direction, 125 mm from the furnace bottom) when charging coal. In order to prevent the probe from shifting, it is fixed with cardboard, a hole is made in the surface of the charging can that corresponds to the furnace lid, and the probe is led out of the furnace through the hole and connected to a gas pressure measuring device. In this way, changes in gas pressure and temperature over time are measured.

【0013】炉の仕様および加熱条件が異なる場合につ
いても、熱電対随伴型プローブの仕様は同じでよい。た
だし、プローブ設置位置については、乾留終了後のコー
クス試料を解体して、炭化室中央部で軟化溶融あいた石
炭層が会合している位置を明らかにし、その位置に設置
する必要がある。
[0013]Even if the specifications of the furnace and the heating conditions are different, the specifications of the thermocouple-associated probe may be the same. However, regarding the location of the probe, it is necessary to disassemble the coke sample after carbonization and find the location where the softened and melted coal seams meet in the center of the coking chamber, and then install the probe at that location.

【0014】プローブ位置の石炭の温度が軟化溶融温度
に達する前からガス圧は上昇するが、これは軟化溶融し
た石炭層に囲まれた未乾留石炭層内のガス圧である。そ
こで、軟化溶融した石炭層が炭化室中央部で会合する時
のガス圧ピークを判断するには、このガス圧が0に戻る
直前のピークを読み取らねばならない。ガス圧が0に戻
るということは、プローブ位置の石炭が軟化溶融状態を
経て再固化したことを意味している。さらに、この時点
でプローブ位置の石炭が軟化溶融状態にあることを温度
によって確認する必要がある。このようにして、軟化溶
融状態にある石炭層内のガス圧ピーク値を測定する。
The gas pressure increases before the temperature of the coal at the probe position reaches the softening and melting temperature, and this is the gas pressure within the uncarbonized coal seam surrounded by the softening and melting coal seam. Therefore, in order to determine the gas pressure peak when the softened and molten coal seams meet in the center of the coking chamber, it is necessary to read the peak immediately before the gas pressure returns to zero. When the gas pressure returns to 0, it means that the coal at the probe position has gone through a softened and molten state and then solidified again. Furthermore, at this point, it is necessary to confirm by temperature that the coal at the probe position is in a softened and molten state. In this way, the gas pressure peak value within the coal seam in a softened and molten state is measured.

【0015】また、数種類の石炭について、小型乾留試
験炉で軟化溶融状態にある石炭層内のガス圧ピークを測
定するとともに、可動壁炉を用いて同じ乾留条件(粉砕
粒度、装入密度、水分、炉温)で膨張圧を測定し、ガス
圧ピーク値と膨張圧の相関関係を、図、表あるいは相関
式の形で明らかにする。
In addition, for several types of coal, we measured the gas pressure peak in the coal seam in a softened and molten state in a small carbonization test furnace, and also measured the same carbonization conditions (pulverized particle size, charging density, moisture, etc.) using a movable wall furnace. The expansion pressure is measured at the furnace temperature) and the correlation between the gas pressure peak value and the expansion pressure is clarified in the form of a diagram, table, or correlation equation.

【0016】この相関関係(図、表あるいは相関式)を
用いれば、可動壁炉で膨張圧を測定することなく、小型
乾留試験炉で測定された軟化溶融状態にある石炭層内の
ガス圧ピーク値から、石炭の膨張圧を予測することがで
きる。
By using this correlation (diagram, table or correlation formula), the gas pressure peak value in a coal seam in a softened and molten state measured in a small carbonization test furnace can be calculated without measuring the expansion pressure in a movable wall furnace. From this, the expansion pressure of coal can be predicted.

【0017】ただし、石炭の粉砕粒度、装入密度は膨張
圧に大きな影響を及ぼし、装入密度が高いほど、粉砕粒
度が大きいほど膨張圧は大きくなることが知られている
。また、炉温により膨張圧が異なることも知られている
。したがって、石炭の粉砕粒度、装入密度および炉温が
異なる場合は、これらの膨張圧への影響を調べて膨張圧
を補正するか、あるいはそれぞれの条件で、小型乾留試
験炉で軟化溶融状態にある石炭層内のガス圧ピークを測
定するとともに、可動壁炉で膨張圧を測定し、ガス圧ピ
ーク値と膨張圧の相関関係を明らかにすればよい。
However, it is known that the pulverized particle size and charging density of coal have a great influence on the expansion pressure, and the higher the charging density and the larger the pulverized particle size, the higher the expansion pressure. It is also known that the expansion pressure varies depending on the furnace temperature. Therefore, if the pulverized grain size, charging density, and furnace temperature of coal are different, the influence of these on the expansion pressure should be investigated and the expansion pressure should be corrected, or the coal should be brought to a softened and molten state in a small carbonization test furnace under each condition. What is necessary is to measure the gas pressure peak in a certain coal seam and also measure the expansion pressure in a movable wall furnace to clarify the correlation between the gas pressure peak value and the expansion pressure.

【0018】[0018]

【実施例】実施例1 ここでは、幣社の各製鐡所が所有している小型乾留試験
炉(装入缶の内寸:炉長669mm  炉高410mm
  炉幅425mm)を用いて乾留試験を行った。通常
この試験炉を用い、入荷した石炭を乾留してコークス性
状について検討を行っている。
[Example] Example 1 Here, we will introduce a small carbonization test furnace (inner dimensions of charging can: furnace length: 669 mm, furnace height: 410 mm) owned by each Heisha steelworks.
A carbonization test was conducted using a furnace with a width of 425 mm. Normally, this test furnace is used to carbonize incoming coal and examine the coke properties.

【0019】本発明(課題を解決するための手段の項記
載)の方法で、表1に示す石炭のガス圧を測定した。こ
の時の石炭の粉砕粒度は3mm以下85%、装入密度は
乾炭ベースで0.86t/m3、水分は3%である。
The gas pressure of coal shown in Table 1 was measured using the method of the present invention (described in the section on means for solving the problems). The pulverized particle size of the coal at this time is 85% of 3 mm or less, the charging density is 0.86 t/m3 on a dry coal basis, and the moisture content is 3%.

【0020】A炭(2回目)のガス圧および温度の経時
変化を図1に示す。この図によれば、プローブ位置の石
炭の温度が軟化溶融温度に達する前からガス圧は上昇し
、プローブ位置の石炭の温度が軟化溶融温度を越えると
ガス圧は0になることがわかる。この図から、ガス圧が
0に戻る直前のピークは106kPaであり、この時点
でプローブ位置の石炭の温度は435℃なので、軟化溶
融状態にある石炭層内のガス圧ピーク値は106kPa
であることがわかる。
FIG. 1 shows the changes in gas pressure and temperature of coal A (second time) over time. According to this figure, it can be seen that the gas pressure increases before the temperature of the coal at the probe position reaches the softening and melting temperature, and when the temperature of the coal at the probe position exceeds the softening and melting temperature, the gas pressure becomes zero. From this figure, the peak value just before the gas pressure returns to 0 is 106 kPa, and the temperature of the coal at the probe position is 435°C at this point, so the gas pressure peak value in the coal seam, which is in a softened and molten state, is 106 kPa.
It can be seen that it is.

【0021】また、それぞれの石炭について軟化溶融状
態にある石炭層内のガス圧を測定した結果を表2に示す
。この表より再現性よくガス圧が測定できていることが
わかる。
Table 2 shows the results of measuring the gas pressure within the coal seam in a softened and molten state for each coal. From this table, it can be seen that the gas pressure can be measured with good reproducibility.

【0022】[0022]

【表1】[Table 1]

【0023】[0023]

【表2】[Table 2]

【0024】実施例2 小型乾留試験炉(装入缶の内寸:炉長669mm炉高4
10mm炉幅425mm)と可動壁炉(炉長600mm
炉高600mm炉幅400mm)を用い、本発明(課題
を解決するための手段の項記載)の方法で、軟化溶融状
態にある石炭層内のガス圧ピークと膨張圧をそれぞれ測
定した。この時の石炭の粉砕粒度は3mm以下85%、
装入密度は乾炭ベースで0.86t/m3、水分は3%
である。
Example 2 Small carbonization test furnace (inner dimensions of charging can: furnace length 669 mm furnace height 4
10mm furnace width 425mm) and movable wall furnace (furnace length 600mm)
Using a furnace height of 600 mm and furnace width of 400 mm, the gas pressure peak and expansion pressure in the coal seam in a softened and molten state were measured by the method of the present invention (described in the section of means for solving the problems). The pulverized particle size of the coal at this time is 3 mm or less, 85%,
Charging density is 0.86t/m3 based on dry coal, moisture content is 3%
It is.

【0025】図2に軟化溶融状態にある石炭層内のガス
圧ピークと膨張圧の関係を示す。この図より、両者の間
には良好な相関関係があることがわかる。この図より、
小型乾留試験炉で測定された軟化溶融状態にある石炭層
内のガス圧ピーク値から、石炭の膨張圧を予測すること
ができる。
FIG. 2 shows the relationship between gas pressure peak and expansion pressure in a coal seam in a softened and molten state. This figure shows that there is a good correlation between the two. From this figure,
The expansion pressure of coal can be predicted from the peak gas pressure in the softened and molten coal seam measured in a small carbonization test furnace.

【0026】[0026]

【発明の効果】本発明により、少量の石炭試料で簡便に
再現性よくガス圧を測定し、膨張圧を予測することがで
きる。
[Effects of the Invention] According to the present invention, gas pressure can be easily and reproducibly measured using a small amount of coal sample, and expansion pressure can be predicted.

【0027】これにより、原料石炭の配合の変更やコー
クス炉の操業条件の変更を行う時に、配合炭の膨張圧予
測が可能となり、膨張圧による炉壁損傷を防止でき、ひ
いてはコークス炉の炉寿命延長にもつながり、その経済
的な効果は大きい。
[0027] This makes it possible to predict the expansion pressure of the coal blend when changing the blend of raw material coal or the operating conditions of the coke oven, preventing damage to the oven wall due to the expansion pressure, and ultimately reducing the lifespan of the coke oven. It also leads to extension, and the economic effect is large.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】A炭を小型乾留試験炉で乾留したときのガス圧
(2回目)および温度の経時変化を示した図。
FIG. 1 is a diagram showing changes over time in gas pressure (second time) and temperature when A coal was carbonized in a small carbonization test furnace.

【図2】小型乾留試験炉で測定された軟化溶融状態にあ
る石炭層内のガス圧ピーク値と可動壁炉で測定された膨
張圧の関係を示した図である。
FIG. 2 is a diagram showing the relationship between the gas pressure peak value in a coal seam in a softened and molten state measured in a small carbonization test furnace and the expansion pressure measured in a movable wall furnace.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  石炭試料を小型試験炉で乾留し、熱伝
導の影響を無視し得るに足る小さな管径をもつプローブ
を、側温手段の検出端を随伴させて炉長および炉幅方向
中央部かつ炉底近傍にプローブ端末が臨む如く位置させ
て、側温によってプローブ端末が位置する部位の石炭試
料が軟化溶融状態にあることを確認し、軟化溶融状態に
ある石炭試料層内のガス圧ピークを検出し、このピーク
値と可動壁型試験炉で測定された膨張圧の相関関係から
、石炭の膨張圧を予測するようにしたことを特徴とする
、コークス製造過程における石炭膨張圧の予測方法。
Claim 1: A coal sample is carbonized in a small test furnace, and a probe with a tube diameter small enough to ignore the effect of heat conduction is attached to the detection end of the side heating means and placed at the center of the furnace length and furnace width direction. Confirm that the coal sample at the part where the probe terminal is located is in a softened and molten state due to the side temperature, and the gas pressure in the coal sample layer that is in a softened and molten state is Prediction of coal expansion pressure in a coke manufacturing process, characterized by detecting a peak and predicting the expansion pressure of coal from the correlation between this peak value and the expansion pressure measured in a movable wall test furnace. Method.
JP3402191A 1991-02-28 1991-02-28 Method for predicting expansion pressure in process of coke production Withdrawn JPH04272992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3402191A JPH04272992A (en) 1991-02-28 1991-02-28 Method for predicting expansion pressure in process of coke production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3402191A JPH04272992A (en) 1991-02-28 1991-02-28 Method for predicting expansion pressure in process of coke production

Publications (1)

Publication Number Publication Date
JPH04272992A true JPH04272992A (en) 1992-09-29

Family

ID=12402728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3402191A Withdrawn JPH04272992A (en) 1991-02-28 1991-02-28 Method for predicting expansion pressure in process of coke production

Country Status (1)

Country Link
JP (1) JPH04272992A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156661A (en) * 2008-02-14 2008-07-10 Nippon Steel Corp Method for producing coke for blast furnace
WO2012168802A1 (en) * 2011-06-06 2012-12-13 Instytut Chemicznej Przeróbki Węgla The method of a coal or coal blend expansion pressure determination and the device for the method
CN103940843A (en) * 2014-04-24 2014-07-23 东方电气集团东方锅炉股份有限公司 Method for testing and distinguishing contamination property of boiler fire coal
CN105866373A (en) * 2016-03-25 2016-08-17 安徽理工大学 Novel discrimination method of coal and gas dynamic disasters
US11242488B1 (en) * 2020-09-19 2022-02-08 Taiyuan University Of Technology Device for determining expansion pressure and expansion displacement generated by coking coal based on self-regulation of spring

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156661A (en) * 2008-02-14 2008-07-10 Nippon Steel Corp Method for producing coke for blast furnace
JP4751408B2 (en) * 2008-02-14 2011-08-17 新日本製鐵株式会社 Method for producing blast furnace coke
WO2012168802A1 (en) * 2011-06-06 2012-12-13 Instytut Chemicznej Przeróbki Węgla The method of a coal or coal blend expansion pressure determination and the device for the method
RU2606992C2 (en) * 2011-06-06 2017-01-10 Институт Хемичней Пшерубки Венгля Method of coal or coal mix expansion pressure determining and device for its implementation
CN103940843A (en) * 2014-04-24 2014-07-23 东方电气集团东方锅炉股份有限公司 Method for testing and distinguishing contamination property of boiler fire coal
CN105866373A (en) * 2016-03-25 2016-08-17 安徽理工大学 Novel discrimination method of coal and gas dynamic disasters
US11242488B1 (en) * 2020-09-19 2022-02-08 Taiyuan University Of Technology Device for determining expansion pressure and expansion displacement generated by coking coal based on self-regulation of spring

Similar Documents

Publication Publication Date Title
BRPI0915703B1 (en) METHOD OF PRODUCTION OF IRON ORE PELLETS
JPH04272992A (en) Method for predicting expansion pressure in process of coke production
US4514096A (en) Furnace wall ash deposit fluent phase change monitoring system
KR101996030B1 (en) Device for evaluating quantity of coal carbonization heat
KR100711781B1 (en) Apparatus for measuring gas pressure of a coke furnace
EP0056166B1 (en) Method of controlling a coking cycle
KR100955528B1 (en) Apparatus for detecting level of molteniron
US4571094A (en) Furnace wall ash monitoring system
KR101197998B1 (en) Coke core temperature measuring method of coke oven
CN111595901A (en) Device and method for measuring heat conductivity coefficient of refractory material
KR100787590B1 (en) Measuring apparatus of vertical shrinkage during coal carboniztion in a coke oven
JP2615139B2 (en) Brick wall damage detection method in coke oven carbonization room
JP3646125B2 (en) High-temperature property testing equipment for electric furnace raw materials for alloy iron production
KR100299450B1 (en) Method for simultaneously measuring coal expansion pressure, gas pressure and furnace temperature in carbonizing coal in coke oven
JP2001214167A (en) Method for evaluating of blended coal of raw material for blast furnace coke preparation
KR20000041660A (en) Measuring method for horizontal shrinking rate of coke cake in coke oven
CA1174326A (en) Furnace wall ash monitoring system
JP3159418B2 (en) Soot removal method for high-temperature carbonized gas flow path in molded coke production equipment
CN110658230B (en) Method and device for testing longitudinal change performance of coal for production in pyrolysis process
CN113881447A (en) Tamping coal expansion pressure detection method
JPH01273990A (en) Method for discriminating degree of dryness of furnace body after completion of it
McCartney et al. Expansion of Coal During Coking
JPH0329313Y2 (en)
JP3555011B2 (en) Waste gasification and melting apparatus and its control method
JP2564496B2 (en) Judgment method of variation of fire time in coke oven

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514