JP5434335B2 - Method for producing blast furnace coke - Google Patents

Method for producing blast furnace coke Download PDF

Info

Publication number
JP5434335B2
JP5434335B2 JP2009174214A JP2009174214A JP5434335B2 JP 5434335 B2 JP5434335 B2 JP 5434335B2 JP 2009174214 A JP2009174214 A JP 2009174214A JP 2009174214 A JP2009174214 A JP 2009174214A JP 5434335 B2 JP5434335 B2 JP 5434335B2
Authority
JP
Japan
Prior art keywords
coal
caking
expansion pressure
high expansion
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009174214A
Other languages
Japanese (ja)
Other versions
JP2011026468A (en
Inventor
誠治 野村
孝 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009174214A priority Critical patent/JP5434335B2/en
Publication of JP2011026468A publication Critical patent/JP2011026468A/en
Application granted granted Critical
Publication of JP5434335B2 publication Critical patent/JP5434335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、高炉用コークスの製造方法に関し、特に高膨張圧炭を含む配合炭をコークス炉において乾留することによりコークスを製造する高炉用コークスの製造方法に関する。   The present invention relates to a method for producing coke for blast furnace, and more particularly, to a method for producing coke for blast furnace in which coke is produced by dry-distilling blended coal containing high expansion pressure coal in a coke oven.

コークス炉の炭化室で石炭を乾留して高炉用コークス(以下、単にコークスともいう)を製造する過程で、石炭は加熱により軟化溶融、膨張し、コークス炉の炉壁に圧力を及ぼす。この圧力のことを一般に膨張圧と呼んでいる。この膨張圧は石炭の軟化溶融する際に石炭粒子内に生成する熱分解ガスによりもたらされる。この膨張圧が高いと、コークスを炭化室から炉外へ排出するとき(押し出し時)の抵抗(押出負荷)が増大し、炉壁に過大な負荷が作用して、炉壁が損傷することがある。さらに、膨張圧が異常に高くなると、コークス炉の炉壁が直接損傷して操業不能となることもある。このため、コークス炉の操業において膨張圧をコークス炉損傷の許容限界値以下に管理することは、重要な課題である。特に、近年コークス炉の老朽化が進み、炉体強度が低下し、炉壁耐力が低下することにより上記許容限界値が低下するとともに、近年の調湿炭法などの石炭事前処理技術の導入によりコークス炉炭化室内の石炭装入嵩密度が上昇し、膨張圧は増加傾向にある。このため、コークス炉の延命のために膨張圧管理はますます重要な課題となっている。   In the process of producing blast furnace coke (hereinafter also simply referred to as coke) by carbonizing the coal in the coking chamber of the coke oven, the coal softens, melts and expands by heating and exerts pressure on the furnace wall of the coke oven. This pressure is generally called expansion pressure. This expansion pressure is caused by the pyrolysis gas generated in the coal particles when the coal softens and melts. If this expansion pressure is high, the resistance (extrusion load) when coke is discharged from the coking chamber to the outside of the furnace (at the time of extrusion) increases, and an excessive load acts on the furnace wall, which may damage the furnace wall. is there. Furthermore, if the expansion pressure becomes abnormally high, the furnace wall of the coke oven may be directly damaged and become inoperable. For this reason, it is an important issue to manage the expansion pressure below the allowable limit value for coke oven damage in the operation of the coke oven. In particular, coke ovens have been aging in recent years, furnace body strength has been reduced, and the furnace wall strength has been reduced, so that the allowable limit value has been reduced. The bulk density of coal in the coke oven carbonization chamber rises and the expansion pressure tends to increase. For this reason, expansion pressure management has become an increasingly important issue in order to extend the life of coke ovens.

一方、高炉用コークスの強度が低いと、高炉に装入された際にコークスから粉コークスが発生し、この粉コークスにより高炉内の通気が乱され、高炉の安定的な操業が阻害される。したがって、高炉用コークスには、所定値以上の強度が求められる。   On the other hand, when the strength of the blast furnace coke is low, powder coke is generated from the coke when charged in the blast furnace, and the air flow in the blast furnace is disturbed by the powder coke, thereby hindering stable operation of the blast furnace. Therefore, the blast furnace coke is required to have a strength equal to or higher than a predetermined value.

ここで、高炉用コークスのコークス強度を高める方法として、高炉用コークスの配合炭中に主として低揮発分の強粘結炭からなる高膨張圧炭を配合する方法が知られている。しかしながら、高膨張圧炭を配合炭に配合すると、乾留時の膨張圧が高くなり、その結果、炭化室の炉壁に加わる負荷が大きくなることが当業者に知られている。   Here, as a method for increasing the coke strength of blast furnace coke, a method is known in which high expansion pressure coal mainly composed of strongly volatile coal with low volatility is blended in the coal blend of blast furnace coke. However, it is known to those skilled in the art that when high expansion pressure coal is blended with blended coal, the expansion pressure during dry distillation increases, and as a result, the load applied to the furnace wall of the carbonization chamber increases.

特許文献1は、高膨張圧炭に対して粘結材を添加、混練し、当該粘結材が添加、混練された高膨張圧炭が配合された配合炭をコークス炉において乾留するコークスの製造方法を開示する。粘結材を配合炭に添加することにより、石炭の膨張率の低下を抑制しながら膨張圧の上昇を抑制することができる。   Patent Document 1 discloses the production of coke in which a caking coal is added to and kneaded with a high expansion pressure coal, and the coal mixture containing the caking additive is mixed with the kneaded high expansion pressure coal. A method is disclosed. By adding the binder to the blended coal, an increase in the expansion pressure can be suppressed while suppressing a decrease in the expansion coefficient of the coal.

特開2008−156661号公報JP 2008-156661 A

しかしながら、今後、コークス炉の老朽化がさらに進み、乾留時における一層の膨張圧低減が求められている。   However, in the future, the aging of coke ovens will further progress, and further expansion pressure reduction during dry distillation is required.

本発明はこのような事情に基づきなされたものであり、コークス炉において高膨張圧炭を含む配合炭を乾留する際に生じる膨張圧を、従来以上に低減可能な高炉用コークスの製造方法を提供することを目的とする。   The present invention has been made based on such circumstances, and provides a method for producing coke for blast furnace that can reduce the expansion pressure generated when carbonizing coal containing high expansion pressure coal in a coke oven more than the conventional one. The purpose is to do.

上述のとおり、コークスの製造において、一層の膨張圧低減が求められている。ここで、以上の課題を解決するために、配合炭における高膨張圧炭の配合割合を制限して膨張圧を低減することも、取り得る対策の1つとして考えられる。しかしながら、高膨張圧炭は粘結性が高く、コークス強度を維持するために必要な石炭であるため、高膨張圧炭の配合割合を制限し過ぎるとコークス強度が低下する問題がある。従って、コークス強度の低下を防止する観点からは、高膨張圧炭の配合割合を小さくすることなく膨張圧を低減できることが好ましい。   As described above, further expansion pressure reduction is required in the production of coke. Here, in order to solve the above-mentioned problem, limiting the blending ratio of the high expansion pressure coal in the blended coal to reduce the expansion pressure is also considered as one possible measure. However, since the high expansion pressure coal has high caking properties and is necessary for maintaining the coke strength, there is a problem that the coke strength is lowered if the blending ratio of the high expansion pressure coal is excessively limited. Therefore, from the viewpoint of preventing a reduction in coke strength, it is preferable that the expansion pressure can be reduced without reducing the blending ratio of the high expansion pressure coal.

また、高膨張圧炭に添加される粘結材の添加量を増やすことにより膨張圧を抑制することができる。これは、粘結材の添加により、軟化溶融時の石炭の粘性を低下させ、生成した熱分解ガスの粒外への排出を促進するためと考えられる。しかしながら、粘結材は非常に高価であるため、コークスの製造コストが増大する。   Moreover, an expansion pressure can be suppressed by increasing the addition amount of the caking additive added to high expansion pressure coal. This is presumably because the addition of a caking additive reduces the viscosity of the coal during softening and melting and promotes the discharge of the generated pyrolysis gas out of the grains. However, since the binder is very expensive, the production cost of coke increases.

本発明者等は、高膨張圧炭及び粘結材を含む従来の配合炭について詳細な検討を行った。その結果、膨張圧を低下させるために添加、混練されていた添加材が、搬送・貯留過程やコークス炉への装入過程において、配合炭に含まれる高膨張圧炭以外の他の原料炭と接触等することにより、高膨張圧炭の表面から脱落するという課題を発見した。   The inventors of the present invention have conducted detailed studies on conventional blended coal including high expansion pressure coal and caking additive. As a result, the additive added and kneaded to lower the expansion pressure is different from the other coking coal other than the high expansion pressure coal contained in the blended coal in the conveyance / storage process and charging process into the coke oven. We discovered the problem of falling off from the surface of high expansion pressure coal by contact.

すなわち、本発明は前記問題点に鑑みなされたものであり、その要旨とするところは
(1)高膨張圧炭に対して粘結材を添加、混練し、この混練物を成形機により成形処理することにより成形炭とし、前記成形炭と、粘結炭および非微粘結炭とを配合した配合炭をコークス炉に装入することにより高炉用コークスを製造する方法であって、
前記高膨張圧炭として、全体の約80質量%が3mm以下の石炭粒子からなり、炉幅400mm前後の可動壁型試験コークス炉を用いて装入密度0.85t/m 3 、炉温1250℃の条件で乾留したときに、最大膨張圧が15kPa以上となる石炭を用い、
前記非微粘結炭として、平均最大反射率(JIS M8816の石炭の微細組織成分及び反射率測定方法記載の方法で測定されるビトリニットの平均最大反射率が0.8以下の石炭、あるいは流動度(JIS M8801の流動性試験方法(ギーセラープラストメーター法)により測定される最高流動度)が10ddpm以下の石炭を用い、
前記粘結炭として、高膨張圧炭にも非微粘結炭にも該当しない石炭を用い、
前記粘結材として、コールタール、アスファルトおよびタールやアスファルトを蒸留または重質化したピッチを用い、
前記高膨張圧炭の配合割合を3〜30質量%とし、
前記高膨張圧炭に対する粘結材の添加率を8.5〜12質量%とし、
前記の成形機として、ダブルロール型、打ち抜き型、押し出し型、ペレタイザーのいずれかを用いることを特徴とする高炉用コークスの製造方法。
である。
)()の構成において、粘結炭および非微粘結炭に粘結材が含ませることができる。
That is, the present invention has been made in view of the above problems, and has as its gist added caking material with respect to (1) high expansion圧炭, kneading, molding processed by molding machines The kneaded product It is a method for producing coke for blast furnace by charging a coke oven with a blended coal blended with the above-mentioned coal, and caking coal and non-slightly caking coal ,
As the high expansion pressure coal, about 80% by mass of the whole is composed of coal particles of 3 mm or less, using a movable wall type test coke oven having a furnace width of around 400 mm, a charging density of 0.85 t / m 3 , and a furnace temperature of 1250 ° C. Using coal that has a maximum expansion pressure of 15 kPa or more when carbonized under the conditions of
As the non-slightly caking coal, an average maximum reflectance (coal having an average maximum reflectance of vitrinite measured by the method described in JIS M8816 of the fine structure component and reflectance measuring method of coal of 0.8 or less, or fluidity (The highest fluidity measured by the fluidity test method of JIS M8801 (Gieseller Plastometer method)) using coal of 10 ddpm or less,
As the caking coal, using coal that does not correspond to high expansion pressure coal or non-slight caking coal,
As the binder, coal tar, asphalt, and pitch or tar or asphalt distilled or heavy,
The blending ratio of the high expansion pressure coal is 3 to 30% by mass,
The addition rate of the caking additive to the high expansion pressure coal is 8.5 to 12% by mass,
A method for producing coke for a blast furnace , wherein any one of a double roll die, a punching die, an extrusion die, and a pelletizer is used as the molding machine .
It is.
( 2 ) In the configuration of ( 1 ), a caking agent can be included in caking coal and non-caking caking coal .

本発明によれば、コークス炉において高膨張圧炭を含む配合炭を乾留する際に生じる膨張圧を従来以上に低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the expansion pressure produced when carrying out dry distillation of the coal mix containing a high expansion pressure coal in a coke oven can be reduced more than before.

本実施形態のコークスの製造方法の概要を示したフローチャートである。It is the flowchart which showed the outline | summary of the manufacturing method of the coke of this embodiment. 成形処理に使用可能である成形機の一例であるダブルロール型成形機の部分断面図である。It is a fragmentary sectional view of the double roll type molding machine which is an example of the molding machine which can be used for a shaping | molding process. 膨張圧と押出負荷の相関を表すグラフである。It is a graph showing the correlation of an expansion pressure and extrusion load. 高膨張圧炭と粘結材の混練物をその他の原料炭に配合した場合(点線)、および、高膨張圧炭と粘結材の成形物をその他の原料炭に配合した場合(実線)の粘結材添加率と、膨張圧比の関係を示した関係図である。When the mixture of high expansion pressure coal and binder is mixed with other raw coal (dotted line), and when the combination of high expansion pressure coal and binder is mixed with other raw coal (solid line) It is the relationship figure which showed the relationship between caking additive addition rate and expansion pressure ratio.

本実施形態は、高膨張圧炭を含む配合炭をコークス炉に装入して乾留することにより高炉用コークスを製造する高炉用コークスの製造方法である。高膨張圧炭には、粘結材を添加し、混練する。そして、当該粘結材が添加、混練された高膨張圧炭を成形機により成形して成形炭とし、該成形炭を他の原料炭と配合して配合炭としている。   The present embodiment is a blast furnace coke manufacturing method for manufacturing coke for blast furnace by charging coal blend containing high expansion pressure coal into a coke oven and subjecting it to dry distillation. A caking additive is added to the high expansion pressure coal and kneaded. And the high expansion pressure coal which the said caking additive was added and knead | mixed is shape | molded with a shaping | molding machine, is formed coal, and this shaping | molding coal is mix | blended with other raw coal, and it is set as blended coal.

以下、図面を用いて本発明の実施形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態においては、高膨張圧炭と、当該高膨張圧炭とは異なる他の原料炭(例えば、粘結炭および非微粘結炭)とを配合して配合炭とし、コークス炉に装入している。本明細書において、高膨張圧炭とは、全体の約80%前後を−3mmの粒度に調整し、炉幅400mm前後の可動壁型試験コークス炉を用いて装入密度0.85t/m3、炉温1250℃の条件で乾留したときに、最大膨張圧が15kPa以上となる石炭をいう。また、非微粘結炭とは、平均最大反射率(JIS M8816の石炭の微細組織成分及び反射率測定方法記載の方法で測定されるビトリニットの平均最大反射率、以下Roと略称する)が0.8以下の石炭、あるいは流動度(JIS M8801の流動性試験方法(ギーセラープラストメーター法)により測定される最高流動度、以下MFと略称する)が10ddpm以下の石炭のことである。そして、粘結炭とは、高膨張圧炭にも非微粘結炭にも該当しないコークス製造用原料炭を指す。 In the present embodiment, high expansion pressure coal and other raw coal (for example, caking coal and non-slightly caking coal) different from the high expansion pressure coal are blended to form a blended coal and installed in a coke oven. It has entered. In this specification, high expansion pressure coal is adjusted to a particle size of about -3 mm about 80% of the whole, and a charging density of 0.85 t / m 3 using a movable wall type test coke oven with a furnace width of about 400 mm. The coal has a maximum expansion pressure of 15 kPa or more when dry-distilled at a furnace temperature of 1250 ° C. The non-slightly caking coal has an average maximum reflectivity (average maximum reflectivity of vitrinite measured by the method described in JIS M8816 coal fine structure component and reflectivity measurement method, hereinafter abbreviated as Ro). .8 or less coal, or coal having a fluidity (maximum fluidity measured by JIS M8801 fluidity test method (Gieseller Plastometer method), hereinafter abbreviated as MF) of 10 ddpm or less. And caking coal refers to the raw coal for coke manufacture which does not correspond to high expansion pressure coal or non-slightly caking coal.

次に、図1を参照して、コークスの製造方法について詳細に説明する。図1はコークスの製造工程を示した工程図である。S101において、高膨張圧炭を粉砕機に投入して粉砕処理を行う。   Next, a method for producing coke will be described in detail with reference to FIG. FIG. 1 is a process diagram showing a coke production process. In S101, the high expansion pressure coal is put into a pulverizer and pulverized.

S102において、粉砕された高膨張圧炭を混練機に投入して粘結材を添加し、S103において、これらを混練する。混練機には、例えば、従来公知のモルタルミキサー、パドルミキサー、ピンミキサー、アイリッヒミキサー、2軸ニーダー、レーデイゲミキサー等を用いることができる。また、粘結材には、例えば、コールタール、アスファルトおよびタールやアスファルトを蒸留または重質化したピッチなどの瀝青物を用いることができる。   In S102, the pulverized high expansion pressure coal is put into a kneader and a caking additive is added, and in S103, these are kneaded. As the kneading machine, for example, a conventionally known mortar mixer, paddle mixer, pin mixer, Eirich mixer, twin screw kneader, and Reedige mixer can be used. In addition, as the binder, for example, coal tar, asphalt, and bitumen such as pitch obtained by distilling or heavyening tar or asphalt can be used.

粘結材の添加率は、高すぎるとコスト増を招き、低すぎると高膨張圧炭の膨張圧抑制効果が不十分となる。本実施形態においては、後述の成形処理により高膨張圧炭からの粘結材の脱落が抑制されるため、高膨張圧炭に対する粘結材の添加率を従来より低くしても、従来と同等またはそれ以上の膨張圧低減効果を得ることができる。   If the addition rate of the binder is too high, the cost increases, and if it is too low, the expansion pressure suppressing effect of the high expansion pressure coal becomes insufficient. In this embodiment, dropping of the binder from the high expansion pressure coal is suppressed by the molding process described later, so even if the addition rate of the binder to the high expansion pressure coal is lower than the conventional, it is equivalent to the conventional case. Or the expansion pressure reduction effect beyond it can be acquired.

図4に高膨張圧炭と粘結材の混練物をその他の原料炭に配合した場合(点線)、および、高膨張圧炭と粘結材の成形物をその他の原料炭に配合した場合(実線)の粘結材添加率と、膨張圧比の関係を示す。なお、図4の粘結材添加率(横軸)は、高膨張圧炭の配合比率、その他の原料炭の配合比率、高膨張圧炭に対する粘結材添加率、その他の原料炭に対する粘結材添加率から下記式で求められる配合炭全体に対する粘結材添加率を意味する。   FIG. 4 shows a case where a kneaded mixture of high expansion pressure coal and caking material is blended with other raw coal (dotted line), and a case where a molding of high expansion pressure coal and caking additive is blended with other raw coal ( A solid line) shows the relationship between the binder addition rate and the expansion pressure ratio. Note that the caking additive addition rate (horizontal axis) in FIG. 4 indicates the blending ratio of high expansion pressure coal, the blending ratio of other raw coal, the caking additive addition rate for high expansion pressure coal, and caking for other raw coal. It means the caking additive addition rate with respect to the whole blended charcoal calculated | required by a following formula from a material addition rate.

配合炭全体に対する粘結材添加率=(高膨張圧炭配合比率×高膨張圧炭に対する粘結材の添加率+その他の原料炭配合比率×その他の原料炭に対する粘結材の添加率)/100また、図4の膨張圧比(縦軸)は、粘結材を添加しない場合の膨張圧を1としたときの相対的な膨張圧比の関係を示す。   Additive ratio of caking additive to the entire blended coal = (high expansion pressure coal blending ratio x addition ratio of caking additive to high expansion pressure coal + other raw coal blending ratio x addition ratio of caking additive to other raw coal) / In addition, the expansion pressure ratio (vertical axis) in FIG. 4 shows the relationship between the relative expansion pressure ratios when the expansion pressure in the case where no binder is added is 1.

図4に示すように、高膨張圧炭と粘結材の成形物をその他の原料炭に配合した場合(実線)は、高膨張圧炭と粘結材の混練物をその他の原料炭に配合した場合(点線)に比べて、配合炭全体に対して少ない粘結材の添加率で膨張圧比を低減することができる。   As shown in FIG. 4, when a high expansion pressure coal and a compacted product of a caking additive are blended with other raw coals (solid line), a mixture of the high expansion pressure coal and a caking additive is blended with other raw coals. In comparison with the case (dotted line), the expansion pressure ratio can be reduced with a small addition rate of the binder to the entire blended coal.

本発明では高膨張圧炭に対する粘結材の添加率は特に限定する必要はなく、予め実験的に高膨張圧炭に対する粘結材の添加率を変えた場合の図4の関係図を作成し、この図を用いて目標とする膨張圧比を得るための高膨張圧炭に対する粘結材の添加率を決定することができる。   In the present invention, it is not necessary to specifically limit the addition rate of the caking additive to the high expansion pressure coal, and the relationship diagram of FIG. 4 when the caking additive addition rate to the high expansion pressure coal is experimentally changed in advance is created. Using this figure, it is possible to determine the addition ratio of the caking additive to the high expansion pressure coal for obtaining the target expansion pressure ratio.

S104において、粘結材が添加、混練された高膨張圧炭を、例えば豆炭状または平板状に成形処理(塊成化)して成形炭とする。成形処理は、成形機により行うことができる。成形機には、ダブルロール型、打ち抜き型、押し出し型、ペレタイザー等を用いることができる。   In S104, the high expansion pressure coal to which the caking additive is added and kneaded is formed (coagulated) into, for example, a bean coal shape or a flat plate shape to obtain a formed coal. The molding process can be performed by a molding machine. As the molding machine, a double roll mold, a punching mold, an extrusion mold, a pelletizer, or the like can be used.

ここで、図2を参照して、S104における成形処理について具体的に説明する。図2は、ダブルロール型の成形機の概略図である。混練機から送出された高膨張圧炭及び粘結材の混練物は、搬送部6により成形機1に搬送される。成形機1には、搬送部6から落下供給される混練物を一時的に貯留するホッパー5が設けられている。ホッパー5に供給された混練物は、駆動モータ7により回転駆動される押込みスクリュー4によって、略水平方向に対向配置された一対のロール3間に押込まれる。一対のロール3は、スクリュー4の押し込み動作に応じてそれぞれ矢印方向に回転する。これら一対のロール3の間に押込まれた混練物は、一対のロール3に挟圧されることにより、平板状に成形化される。これにより、高膨張圧炭及び粘結材を含む成形炭を生成することができる。   Here, with reference to FIG. 2, the shaping | molding process in S104 is demonstrated concretely. FIG. 2 is a schematic view of a double roll type molding machine. The kneaded product of the high expansion pressure coal and the binder sent from the kneading machine is conveyed to the molding machine 1 by the conveying unit 6. The molding machine 1 is provided with a hopper 5 that temporarily stores the kneaded material that is dropped and supplied from the transport unit 6. The kneaded material supplied to the hopper 5 is pushed between a pair of rolls 3 arranged facing each other in a substantially horizontal direction by a push screw 4 that is rotationally driven by a drive motor 7. The pair of rolls 3 rotate in the direction of the arrow according to the pushing operation of the screw 4. The kneaded material pushed between the pair of rolls 3 is formed into a flat plate shape by being sandwiched between the pair of rolls 3. Thereby, the forming charcoal containing a high expansion pressure coal and a caking additive is generable.

一方、高膨張圧炭以外の他の原料炭(ここでは、粘結炭及び非微粘結炭とする)については、まず、S105において、粉砕処理が行われる。この粉砕処理については、公知の方法を用いることができる。S106において粉砕したこれら粘結炭および非微粘結炭を混練機に投入し、粘結材を添加して、S107においてこれらを混練する。   On the other hand, other coking coals other than the high expansion pressure coal (here, caking coal and non-caking coal) are first subjected to pulverization in S105. A known method can be used for the pulverization treatment. The caking coal and non-minor caking coal pulverized in S106 are put into a kneader, a caking agent is added, and they are kneaded in S107.

なお、本発明において高膨張圧炭を含む配合炭をコークス炉炭化室で乾留する際に発生する膨張圧を抑制する効果を得るためには、高膨張圧炭のみに粘結材を添加することで十分である。   In addition, in order to obtain the effect of suppressing the expansion pressure generated when carbonized coal containing high expansion pressure coal is carbonized in the coke oven carbonization chamber in the present invention, a caking additive is added only to high expansion pressure coal. Is enough.

ここで当該他の原料炭にも粘結材を添加する理由を説明する。高膨張圧炭のみに粘結材を添加して、他の原料炭に粘結材を添加していない場合には、相対的に他の原料炭の膨張率が低くなり、コークス構造が不均一になる。これに対して、本実施形態のように、粘結材を高膨張圧炭及び他の原料炭の双方に添加した場合には、高膨張圧炭及び他の原料炭の膨張率の差が縮小して、結果的にコークス強度が向上する。したがって、高膨張圧炭を含む配合炭の乾留時に発生する膨張圧を抑制するとともにコークス強度を向上するためには、高膨張圧炭とともにその他の原料炭にも粘結材を添加することが好ましい。   Here, the reason for adding the caking additive to the other raw coal will be described. When caking material is added only to high expansion pressure coal and no caking material is added to other coking coal, the expansion rate of other coking coal is relatively low and the coke structure is not uniform. become. On the other hand, as in this embodiment, when the caking additive is added to both the high expansion pressure coal and the other raw coal, the difference in expansion rate between the high expansion pressure coal and the other raw coal is reduced. As a result, the coke strength is improved. Therefore, in order to suppress the expansion pressure generated during dry distillation of the coal blend containing high expansion pressure coal and improve the coke strength, it is preferable to add a binder to the other raw coal as well as the high expansion pressure coal. .

S108では、S104で得られた成形炭と、S107で得られた粘結炭、非微粘結炭および粘結材の混練物とを配合し、配合炭を構成する。本実施形態において、所定のコークス強度を満足するように、乾留前に測定された各石炭の性状に基づき配合比率を設定するのが好ましい。   In S108, the coal mixture obtained in S104 is mixed with the kneaded product of the caking coal, non-slightly caking coal and caking material obtained in S107 to constitute a coal blend. In the present embodiment, it is preferable to set the blending ratio based on the properties of each coal measured before dry distillation so as to satisfy a predetermined coke strength.

S109では、S108で得られた配合炭をコークス炉に装入し、これを乾留することによりコークスを生成する。本実施形態において、乾留条件は特に制限されるものではなく、通常のコークス炉において用いられる乾留条件とすることができる。   In S109, the blended coal obtained in S108 is charged into a coke oven, and coke is generated by dry distillation. In the present embodiment, the dry distillation conditions are not particularly limited, and can be the dry distillation conditions used in a normal coke oven.

従来技術においては、高膨張圧炭について添加された粘結材が、S108における配合過程、S109の乾留前における貯留過程、およびS109の乾留のためのコークス炉への装入過程において高膨張圧炭の表面から脱落していた。このため、粘結材の添加量に応じた膨張圧低減効果を十分に得ることができなかった。これに対し、本実施形態によれば、配合過程、貯留過程、および装入過程において高膨張圧炭からの粘結材の脱落が抑制されることにより、相対的により多くの粘結材を高膨張圧炭に含有させることができる。これにより、粘結材の添加量を減少させながら、従来と同様の膨張圧低減効果を得ることができる。その結果、生成された赤熱コークスをコークス炉から押し出す際の押出負荷が軽減され、コークス炉の寿命を延ばすことができる。   In the prior art, the caking additive added for the high expansion pressure coal is the high expansion pressure coal in the blending process in S108, the storage process before dry distillation in S109, and the charging process to the coke oven for dry distillation in S109. Had fallen off the surface. For this reason, the expansion pressure reduction effect according to the addition amount of the caking additive could not be sufficiently obtained. On the other hand, according to the present embodiment, the amount of the caking additive from the high expansion pressure coal is suppressed in the blending process, the storage process, and the charging process, thereby relatively increasing the caking additive. It can be contained in expanded pressure coal. Thereby, the expansion pressure reduction effect similar to the conventional one can be obtained while reducing the addition amount of the binder. As a result, the extrusion load when extruding the generated red hot coke from the coke oven is reduced, and the life of the coke oven can be extended.

また、本実施形態のコークスの製造方法によれば、配合炭における高膨張圧炭の配合割合を軽減することなく膨張圧を低減することが可能である。すなわち、配合炭に使用できる石炭の種類を広げることができ、石炭資源選択の自由度が高まる。   Moreover, according to the manufacturing method of the coke of this embodiment, it is possible to reduce an expansion pressure, without reducing the mixture ratio of the high expansion pressure coal in a combination coal. That is, the types of coal that can be used for blended coal can be expanded, and the degree of freedom in selecting coal resources is increased.

さらに、本実施形態のコークスの製造方法によれば、粘結材が添加、混練された高膨張圧炭を成形処理して成形炭とすることにより、高膨張圧炭からの粘結材の脱落を抑制することができる。よって、非常に高価である粘結材の使用量を増加させなくとも膨張圧を低減させることができる。言い換えれば、粘結材の使用量を少なくしてコストを下げつつ、従来と同等の膨張圧低減効果を得ることが可能となる。   Furthermore, according to the coke production method of the present embodiment, the caking additive is added, and the kneaded high expansion pressure coal is formed into a formed charcoal, thereby removing the caking material from the high expansion pressure coal. Can be suppressed. Therefore, the expansion pressure can be reduced without increasing the amount of the binder that is very expensive. In other words, it is possible to obtain an expansion pressure reducing effect equivalent to the conventional one while reducing the cost by reducing the amount of binder used.

さらにまた、本実施形態のコークスの製造方法によれば、高膨張圧炭以外の粘結炭および非微粘結炭についても粘結材を添加、混練することにより、乾留の際における膨張圧を低減することができるとともに、製造されたコークスのコークス強度を向上させることができる。特に、本実施形態においては、粘結炭及び非微粘結炭に添加される粘結材を、高膨張圧炭に添加される粘結材の量が軽減された結果得られる余剰分から得ることもできる。これにより、粘結材をコークス強度の向上という観点から有効活用することができる。
(他の実施形態)
上述の実施形態では、高膨張圧炭以外の他の原料炭(粘結炭及び非微粘結炭)に粘結材を添加・混練したが、本発明はこれに限られるものではなく、粘結材を含む高膨張圧炭の成形炭に粘結材を添加しない他の原料炭をそのまま配合してもよい。この場合、高膨張圧炭の成形炭には粘結材が含まれているためその他の原料炭への粘結材の散逸は抑制され、従来に比べ高い膨張圧抑制効果を得ることができる。また、コークス強度を向上させる手段として粘結材を用いずに他の原料炭に含まれる粘結性の高い粘結炭の配合割合などを適宜調整することにより、一定のコークス強度を得ることもできる。
Furthermore, according to the method for producing coke of the present embodiment, the caking coal other than the high expansion pressure coal and the non-minor caking coal are also added and kneaded so that the expansion pressure during dry distillation is reduced. While being able to reduce, the coke intensity | strength of the manufactured coke can be improved. In particular, in this embodiment, the caking material added to caking coal and non-caking caking coal is obtained from the surplus obtained as a result of reducing the amount of caking material added to high expansion pressure coal. You can also. Thereby, a caking additive can be effectively utilized from a viewpoint of the improvement of coke strength.
(Other embodiments)
In the above-described embodiment, the caking agent is added and kneaded to other raw coals other than the high expansion pressure coal (caking coal and non-caking coal), but the present invention is not limited to this, You may mix | blend the other raw material coal which does not add a caking additive with the formed coal of the high expansion pressure coal containing a binder as it is. In this case, since the formed coal of the high expansion pressure coal contains the binder, the dissipation of the binder into the other raw coal is suppressed, and a higher expansion pressure suppression effect can be obtained compared to the conventional case. In addition, as a means for improving the coke strength, it is also possible to obtain a certain coke strength by appropriately adjusting the blending ratio of the caking coal having a high caking property contained in other raw coal without using the caking agent. it can.

以下、実施例を示して本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

表1〜4に示す配合炭を、水分3%に調整した後、装入密度0.85t/m3で可動壁型試験コークス炉(炉幅400mm、炉長1000mm、炉高1000mm)に装入し、炉温1250℃で18時間乾留した。このとき、乾留過程において可動壁に作用する膨張圧を測定した。また、乾留により製造されたコークスについて、コークス強度、具体的にはコークスのドラム強度(DI150 15)を測定した。本明細書において、コークスのドラム強度(DI150 15)とは、JIS K 2151に記載されているように、コークス10kgをドラム試験機(直径、長さとも1,500mm、羽根4枚)に装入し、150回転させた後、15mmの篩で篩分けし、篩上に留まった質量を百分率で表した値である。 After adjusting the blended coal shown in Tables 1 to 4 to a moisture content of 3%, it was charged into a movable wall type test coke oven (furnace width 400 mm, furnace length 1000 mm, furnace height 1000 mm) at a charging density of 0.85 t / m 3. And then carbonized at a furnace temperature of 1250 ° C. for 18 hours. At this time, the expansion pressure acting on the movable wall in the dry distillation process was measured. In addition, coke strength, specifically, drum strength (DI 150 15 ) of coke was measured for coke produced by dry distillation. In this specification, the coke drum strength (DI 150 15 ) means that 10 kg of coke is loaded into a drum tester (diameter and length: 1,500 mm, 4 blades) as described in JIS K 2151. This is a value expressed as a percentage of the mass remaining on the screen after sieving with a 15 mm screen after 150 rotations.

表1の比較例1、実施例1〜3は、配合炭全体に対する粘結材の添加率がほぼ一定である。比較例1では、高膨張圧炭に粘結材Aを添加した後に混練処理のみを行い、粘結炭及び非微粘結炭に対する粘結材の添加率を0%に設定した。実施例1では、高膨張圧炭に粘結材Aを添加した後に混練及び成形化処理を行い、粘結炭及び非微粘結炭に対する粘結材の添加率を0%に設定した。実施例2では、高膨張圧炭に粘結材Bを添加した後に混練及び成形化処理を行い、粘結炭及び非微粘結炭に対する粘結材の添加率を0%に設定した。実施例3では、高膨張圧炭に粘結材Aを添加した後に混練及び成形化処理を行い、粘結炭及び非微粘結炭に対する粘結材Aの添加率を0.3%に設定した。なお、比較例1、実施例1及び実施例2では、高膨張圧炭に対する粘結材の添加率を9%に設定し、実施例3では、高膨張圧炭に対する粘結材の添加率を8.5%に設定した。粘結材A及び粘結材Bの成分組成を表5に示すまた、高膨張圧炭には、Ro1.56%、MF200ddpm、最大膨張圧100kPaの強粘結炭を用いた。粘結炭には、Ro1.22%、MF900ddpmの粘結炭を用いた。非微粘結炭には、全膨張率35%の石炭を用いた。高膨張圧炭、粘結炭及び非微粘結炭は以下同様である。   In Comparative Example 1 and Examples 1 to 3 in Table 1, the addition rate of the binder to the entire blended coal is substantially constant. In Comparative Example 1, only the kneading treatment was performed after the caking additive A was added to the high expansion pressure coal, and the addition ratio of the caking additive to the caking coal and the non-slightly caking coal was set to 0%. In Example 1, the caking agent A was added to the high expansion pressure coal, and then kneading and forming were performed, and the addition rate of the caking material with respect to caking coal and non-fine caking coal was set to 0%. In Example 2, the caking material B was added to the high expansion pressure coal, followed by kneading and forming, and the addition ratio of the caking material to the caking coal and the non-minor caking coal was set to 0%. In Example 3, the caking material A is added to the high expansion pressure coal, followed by kneading and forming treatment, and the addition rate of the caking material A to caking coal and non-minor caking coal is set to 0.3%. did. In Comparative Example 1, Example 1 and Example 2, the addition rate of the binder to the high expansion pressure coal is set to 9%. In Example 3, the addition rate of the binder to the high expansion pressure coal is set to 9%. Set to 8.5%. The component composition of the binding material A and the binding material B is shown in Table 5. Further, as the high expansion pressure coal, Ro 1.56%, MF 200 ddpm, and the maximum expansion pressure 100 kPa were used. As caking coal, ca. 1.22%, MF900ddpm caking coal was used. Coal having a total expansion rate of 35% was used for non-caking coal. The same applies to high expansion pressure coal, caking coal and non-caking coal.

Figure 0005434335
Figure 0005434335

Figure 0005434335
Figure 0005434335

Figure 0005434335
Figure 0005434335

Figure 0005434335
Figure 0005434335

Figure 0005434335
実施例1〜3の膨張圧率(%)は、比較例1の膨張圧に対する膨張圧改善効果を定量的に示したものであり、実施例1では膨張圧が14%軽減され、実施例2では膨張圧が29%軽減され、実施例3では膨張圧が10%軽減された。つまり、高膨張圧炭に粘結材を添加した後、混練及び成形処理を行った実施例1〜3は、高膨張圧炭に粘結材を添加、混練しただけの比較例1に比べて、膨張圧を大きく軽減できることが証明された。さらに、実施例1〜3のコークス強度の比較から、高膨張圧炭に添加される粘結材の一部を他の配合炭(粘結炭及び非微粘結炭)に振りかえることにより、膨張圧の低減効果に加えてコークス強度が向上することが証明された。
Figure 0005434335
The expansion pressure ratio (%) of Examples 1 to 3 quantitatively shows the effect of improving the expansion pressure with respect to the expansion pressure of Comparative Example 1. In Example 1, the expansion pressure is reduced by 14%. In Example 3, the expansion pressure was reduced by 29%, and in Example 3, the expansion pressure was reduced by 10%. That is, after adding a caking additive to high expansion pressure coal, Examples 1-3 which performed kneading | mixing and a shaping | molding process are compared with the comparative example 1 which only added and kneaded the caking additive to high expansion pressure coal. It was proved that the expansion pressure can be greatly reduced. Furthermore, from the comparison of the coke strengths of Examples 1 to 3, by changing a part of the caking additive added to the high expansion pressure coal to other blended charcoal (caking coal and non-minor caking coal), It was proved that coke strength was improved in addition to the effect of reducing the expansion pressure.

表2の比較例2、実施例4〜6は、配合炭全体に対する粘結材の添加率を全て1.8%に設定した点で共通している。比較例2では、高膨張圧炭に粘結材Aを添加した後に混練処理のみを行い、粘結炭及び非微粘結炭に対する粘結材の添加率を0%に設定した。実施例4では、高膨張圧炭に粘結材Aを添加した後に混練及び成形化処理を行い、粘結炭及び非微粘結炭に対する粘結材の添加率を0%に設定した。実施例5では、高膨張圧炭に粘結材Bを添加した後に混練及び成形化処理を行い、粘結炭及び非微粘結炭に対する粘結材の添加率を0%に設定した。実施例6では、高膨張圧炭に粘結材Aを添加した後に混練及び成形化処理を行い、粘結炭及び非微粘結炭に対する粘結材Aの添加率を0.3%に設定した。   Comparative Example 2 and Examples 4 to 6 in Table 2 are common in that the addition ratio of the binder to the entire blended coal is set to 1.8%. In Comparative Example 2, only the kneading treatment was performed after the caking additive A was added to the high expansion pressure coal, and the addition ratio of the caking additive to the caking coal and the non-slightly caking coal was set to 0%. In Example 4, after adding the caking additive A to the high expansion pressure coal, kneading and forming were performed, and the addition rate of the caking additive to the caking coal and the non-caking caking coal was set to 0%. In Example 5, after adding caking material B to high expansion pressure coal, kneading and forming treatment were performed, and the addition rate of caking material relative to caking coal and non-minor caking coal was set to 0%. In Example 6, after adding the caking additive A to the high expansion pressure coal, kneading and forming treatment are performed, and the addition rate of the caking additive A to the caking coal and the non-minor caking coal is set to 0.3%. did.

実施例4〜6の膨張圧率(%)は、比較例2の膨張圧に対する膨張圧改善効果を定量的に示したものであり、実施例4では膨張圧が17%軽減され、実施例5では膨張圧が33%軽減され、実施例6では膨張圧が12%軽減された。つまり、高膨張圧炭に粘結材を添加した後、混練及び成形処理を行った実施例4〜6は、高膨張圧炭に粘結材を添加、混練しただけの比較例2に比べて、膨張圧を大きく軽減できることが証明された。さらに、実施例4〜6のコークス強度の比較から、高膨張圧炭に添加される粘結材を他の配合炭(粘結炭及び非微粘結炭)に振りかえることにより、膨張圧の低減効果に加えてコークス強度が向上することが証明された。   The expansion pressure ratio (%) of Examples 4 to 6 quantitatively shows the effect of improving the expansion pressure with respect to the expansion pressure of Comparative Example 2. In Example 4, the expansion pressure is reduced by 17%. In Example 6, the expansion pressure was reduced by 33%, and in Example 6, the expansion pressure was reduced by 12%. That is, Examples 4-6 which performed the kneading | mixing and the shaping | molding process after adding a caking additive to the high expansion pressure coal compared with the comparative example 2 which only added the caking additive to the high expansion pressure coal, and knead | mixed. It was proved that the expansion pressure can be greatly reduced. Furthermore, from the comparison of the coke strengths of Examples 4 to 6, the caking material added to the high expansion pressure coal is changed to other blended charcoal (caking coal and non-minor caking coal), thereby increasing the expansion pressure. In addition to the reduction effect, it was proved that the coke strength was improved.

表3の比較例3及び実施例7は、配合炭全体に対する粘結材の添加率を全て0.4%に設定した点で共通している。比較例3では、高膨張圧炭に粘結材Aを添加した後に混練処理のみを行い、粘結炭及び非微粘結炭に対する粘結材の添加率を0%に設定した。実施例7では、高膨張圧炭に粘結材Aを添加した後に混練及び成形化処理を行い、粘結炭及び非微粘結炭に対する粘結材の添加率を0%に設定した。   Comparative Example 3 and Example 7 in Table 3 are common in that the addition ratio of the binder to the entire blended coal is set to 0.4%. In Comparative Example 3, only the kneading treatment was performed after adding the caking additive A to the high expansion pressure coal, and the addition rate of the caking additive to the caking coal and the non-caking caking coal was set to 0%. In Example 7, after adding the caking additive A to the high expansion pressure coal, kneading and forming were performed, and the addition rate of the caking additive to the caking coal and the non-caking coal was set to 0%.

実施例7の膨張圧率(%)は、比較例3の膨張圧に対する膨張圧改善効果を定量的に示したものであり、実施例7では膨張圧が17%軽減された。つまり、高膨張圧炭に粘結材を添加した後に、混練及び成形処理を行った実施例7は、高膨張圧炭に粘結材を添加、混練しただけの比較例3に比べて、膨張圧を大きく軽減できることが証明された。   The expansion pressure ratio (%) of Example 7 quantitatively shows the effect of improving the expansion pressure with respect to the expansion pressure of Comparative Example 3. In Example 7, the expansion pressure was reduced by 17%. That is, Example 7 in which the kneading and forming treatments were performed after the caking agent was added to the high expansion pressure coal was expanded as compared with Comparative Example 3 in which the caking material was added and kneaded to the high expansion pressure coal. It was proved that pressure can be greatly reduced.

表4の比較例4及び実施例8は、配合炭全体に対する粘結材の添加率を全て3.6%に設定した点で共通している。比較例4では、高膨張圧炭に粘結材Aを添加した後に混練処理のみを行い、粘結炭及び非微粘結炭に対する粘結材の添加率を0%に設定した。実施例8では、高膨張圧炭に粘結材Aを添加した後に混練及び成形化処理を行い、粘結炭及び非微粘結炭に対する粘結材の添加率を0%に設定した。   Comparative Example 4 and Example 8 in Table 4 are common in that the addition ratio of the binder to the entire blended coal is set to 3.6%. In Comparative Example 4, only the kneading treatment was performed after adding the caking additive A to the high expansion pressure coal, and the addition rate of the caking additive to the caking coal and the non-caking caking coal was set to 0%. In Example 8, after adding the caking additive A to the high expansion pressure coal, kneading and forming were performed, and the addition rate of the caking additive to the caking coal and the non-caking coal was set to 0%.

実施例8の膨張圧率(%)は、比較例4の膨張圧に対する膨張圧改善効果を定量的に示したものであり、実施例8では膨張圧が14%軽減された。つまり、高膨張圧炭に粘結材を添加した後に、混練及び成形処理を行った実施例8は、高膨張圧炭に粘結材を添加、混練しただけの比較例4に比べて、膨張圧を大きく軽減できることが証明された。   The expansion pressure ratio (%) of Example 8 quantitatively shows the effect of improving the expansion pressure with respect to the expansion pressure of Comparative Example 4. In Example 8, the expansion pressure was reduced by 14%. That is, Example 8 in which the kneading and forming treatments were performed after the caking agent was added to the high expansion pressure coal was expanded as compared with Comparative Example 4 in which the caking agent was added and kneaded to the high expansion pressure coal. It was proved that pressure can be greatly reduced.

膨張圧と押出負荷の関係を図3に示す。本発明の適用により高膨張圧炭を含む配合炭をコークス炉の炭化室で乾留する際の膨張圧が低減できるため、図3に示すようにコークス押し出し時の負荷を軽減することが可能となる。   The relationship between the expansion pressure and the extrusion load is shown in FIG. By applying the present invention, the expansion pressure when dry-blending coal blend containing high expansion pressure coal in the coking chamber of the coke oven can be reduced, so it becomes possible to reduce the load at the time of coke extrusion as shown in FIG. .

1:成形炭
2:ダブルロール型成形機
3:ロール
4:押込みスクリュー
5:ホッパー
6:搬送部
7:押込みスクリューの駆動モータ
1: Coking charcoal 2: Double roll type molding machine 3: Roll 4: Pushing screw 5: Hopper 6: Conveying unit 7: Driving motor for pushing screw

Claims (2)

高膨張圧炭に対して粘結材を添加、混練し、
この混練物を成形機により成形処理することにより成形炭とし、
前記成形炭と、粘結炭および非微粘結炭とを配合した配合炭をコークス炉に装入することにより高炉用コークスを製造する方法であって、
前記高膨張圧炭として、全体の約80質量%が3mm以下の石炭粒子からなり、炉幅400mm前後の可動壁型試験コークス炉を用いて装入密度0.85t/m 3 、炉温1250℃の条件で乾留したときに、最大膨張圧が15kPa以上となる石炭を用い、
前記非微粘結炭として、平均最大反射率(JIS M8816の石炭の微細組織成分及び反射率測定方法記載の方法で測定されるビトリニットの平均最大反射率が0.8以下の石炭、あるいは流動度(JIS M8801の流動性試験方法(ギーセラープラストメーター法)により測定される最高流動度)が10ddpm以下の石炭を用い、
前記粘結炭として、高膨張圧炭にも非微粘結炭にも該当しない石炭を用い、
前記粘結材として、コールタール、アスファルトおよびタールやアスファルトを蒸留または重質化したピッチを用い、
前記高膨張圧炭の配合割合を3〜30質量%とし、
前記高膨張圧炭に対する粘結材の添加率を8.5〜12質量%とし、
前記の成形機として、ダブルロール型、打ち抜き型、押し出し型、ペレタイザーのいずれかを用いることを特徴とする高炉用コークスの製造方法。
Add and knead the binder to the high expansion pressure coal,
The kneaded product was a formed coal by molding process with a molding machine,
A method for producing coke for a blast furnace by charging a blended coal blended with the forming coal, caking coal and non-caking coal into a coke oven ,
As the high expansion pressure coal, about 80% by mass of the whole is composed of coal particles of 3 mm or less, using a movable wall type test coke oven having a furnace width of around 400 mm, a charging density of 0.85 t / m 3 , and a furnace temperature of 1250 ° C. Using coal that has a maximum expansion pressure of 15 kPa or more when carbonized under the conditions of
As the non-slightly caking coal, an average maximum reflectance (coal having an average maximum reflectance of vitrinite measured by the method described in JIS M8816 of the fine structure component and reflectance measuring method of coal of 0.8 or less, or fluidity (The highest fluidity measured by the fluidity test method of JIS M8801 (Gieseller Plastometer method)) using coal of 10 ddpm or less,
As the caking coal, using coal that does not correspond to high expansion pressure coal or non-slight caking coal,
As the binder, coal tar, asphalt, and pitch or tar or asphalt distilled or heavy,
The blending ratio of the high expansion pressure coal is 3 to 30% by mass,
The addition rate of the caking additive to the high expansion pressure coal is 8.5 to 12% by mass,
A method for producing coke for a blast furnace , wherein any one of a double roll die, a punching die, an extrusion die, and a pelletizer is used as the molding machine .
前記粘結炭および非微粘結炭には、粘結材が含まれることを特徴とする請求項に記載の高炉用コークスの製造方法。
2. The method for producing coke for blast furnace according to claim 1 , wherein the caking coal and the non-caking coal include a caking additive.
JP2009174214A 2009-07-27 2009-07-27 Method for producing blast furnace coke Active JP5434335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009174214A JP5434335B2 (en) 2009-07-27 2009-07-27 Method for producing blast furnace coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174214A JP5434335B2 (en) 2009-07-27 2009-07-27 Method for producing blast furnace coke

Publications (2)

Publication Number Publication Date
JP2011026468A JP2011026468A (en) 2011-02-10
JP5434335B2 true JP5434335B2 (en) 2014-03-05

Family

ID=43635588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174214A Active JP5434335B2 (en) 2009-07-27 2009-07-27 Method for producing blast furnace coke

Country Status (1)

Country Link
JP (1) JP5434335B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015703A (en) * 2003-06-27 2005-01-20 Nippon Steel Corp Method for manufacturing coke
JP4625253B2 (en) * 2003-12-24 2011-02-02 新日本製鐵株式会社 Method for producing blast furnace coke
JP2006225411A (en) * 2005-02-15 2006-08-31 Jfe Steel Kk Manufacturing method of blast furnace coke
JP4751408B2 (en) * 2008-02-14 2011-08-17 新日本製鐵株式会社 Method for producing blast furnace coke
JP4888452B2 (en) * 2008-08-01 2012-02-29 Jfeスチール株式会社 Method for producing blast furnace coke

Also Published As

Publication number Publication date
JP2011026468A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP4879706B2 (en) Method for producing blast furnace coke
JP6299332B2 (en) Coking coal for coke production
JP5742650B2 (en) Molded coke manufacturing method and molded coke manufactured by the method
JP5434335B2 (en) Method for producing blast furnace coke
JP4486552B2 (en) Manufacturing method of high strength coke
JP6716874B2 (en) Blast furnace coke manufacturing method
JP6241336B2 (en) Method for producing blast furnace coke
JP5365044B2 (en) Ferro-coke manufacturing method
JP6323050B2 (en) Coking coal for coke production and method for producing coke
JP6007958B2 (en) Coke production method
JP4751408B2 (en) Method for producing blast furnace coke
JP5365043B2 (en) Ferro-coke manufacturing method
JP6151169B2 (en) Ferro-coke manufacturing method and manufacturing apparatus
JP4625253B2 (en) Method for producing blast furnace coke
JP6257094B2 (en) Coke production method
JP5942971B2 (en) Coke production method
JP4819197B2 (en) Manufacturing method of high strength coke
JP6464912B2 (en) Coke production method
JP7216338B2 (en) coke production method
JP4279973B2 (en) Coke oven operation method
JP2023136520A (en) Metallurgical coke production method
JP2015063581A (en) Production method of formed coal, formed coke, and production method of the coke
JP2004307557A (en) Method for manufacturing high-strength coke
JP7493121B1 (en) Coke manufacturing method
JP2009227783A (en) Method for producing ferrocoke for metallurgy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R151 Written notification of patent or utility model registration

Ref document number: 5434335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350