JP6007958B2 - Coke production method - Google Patents

Coke production method Download PDF

Info

Publication number
JP6007958B2
JP6007958B2 JP2014192866A JP2014192866A JP6007958B2 JP 6007958 B2 JP6007958 B2 JP 6007958B2 JP 2014192866 A JP2014192866 A JP 2014192866A JP 2014192866 A JP2014192866 A JP 2014192866A JP 6007958 B2 JP6007958 B2 JP 6007958B2
Authority
JP
Japan
Prior art keywords
coal
coke
blended
strength
σtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014192866A
Other languages
Japanese (ja)
Other versions
JP2016065111A (en
Inventor
雅彦 渡邉
雅彦 渡邉
上坊 和弥
和弥 上坊
窪田 征弘
征弘 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014192866A priority Critical patent/JP6007958B2/en
Publication of JP2016065111A publication Critical patent/JP2016065111A/en
Application granted granted Critical
Publication of JP6007958B2 publication Critical patent/JP6007958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coke Industry (AREA)

Description

本発明は、コークスの製造方法に関し、特に、粘結補填材を添加し、劣質炭を配合してなる成型炭を、別の配合炭を粉砕して得られた粉炭とともにコークス炉に装入して乾留するコークスの製造方法に関する。   The present invention relates to a method for producing coke, and in particular, a coking coal obtained by adding a caking filler and blending inferior coal is charged into a coke oven together with pulverized coal obtained by pulverizing another blended coal. The present invention relates to a method for producing coke that is carbonized.

高炉操業において、炉内の通気性を確保するために、コークスには所要の強度が求められる。一方、コークス用原料としての良質の強粘結炭は、資源的に枯渇状態にあるので、劣質炭を用いて、必要な強度を有するコークスを製造する方法が、多く提案されている。その一つとして、劣質炭を配合して成型炭とし、その成型炭と、別の配合炭を粉砕して調製した粉炭とを混合してコークス炉に装入する方法がある。   In blast furnace operation, the coke is required to have a required strength in order to ensure air permeability in the furnace. On the other hand, high-quality strong caking coal as a raw material for coke is exhausted in terms of resources, and many methods for producing coke having the necessary strength using inferior quality coal have been proposed. As one of them, there is a method of blending inferior coal to form coal, mixing the coal and pulverized coal prepared by pulverizing another blended coal, and charging the mixture into a coke oven.

図1に、成型炭と粉炭とを混合してコークス炉で乾留してコークスを製造する際の処理フローを示す。この製造方法では、少なくとも劣質炭を含む配合炭Aを準備し、これを粉砕機で粉砕し、粉砕後の配合炭に粘結補填材を添加して混練機で混練した後、成型機で成型して成型炭とする。他方、別の配合炭Bを粉砕して粉炭とした後、例えば、粉炭70〜90質量%、成型炭10〜30質量%の割合で両者を混合し、コークス炉に装入し、乾留して、コークスを製造するものである。   FIG. 1 shows a processing flow when coke is produced by mixing coal and pulverized coal and dry-distilling in a coke oven. In this production method, blended coal A containing at least inferior coal is prepared, pulverized with a pulverizer, a caking filler is added to the pulverized blended coal, kneaded with a kneader, and then molded with a molding machine. And form charcoal. On the other hand, after pulverizing another blended coal B into pulverized coal, for example, both are mixed at a ratio of 70 to 90% by mass of pulverized coal and 10 to 30% by mass of molded coal, charged into a coke oven, and subjected to dry distillation. , To produce coke.

この製造方法では、劣質炭を配合した石炭を見掛密度の高い成型炭とするため、コークス強度が改善される。また、装入嵩密度の低い粉炭に、見掛密度の高い成型炭を混合することにより、全体の嵩密度が向上し、粉炭のみを使用した場合よりも、コークス品質が改善される。   In this production method, coke strength is improved because coal blended with inferior coal is formed into coal with high apparent density. Moreover, by mixing the coal coal having a high apparent density with the coal coal having a low charge bulk density, the overall bulk density is improved, and the coke quality is improved as compared with the case where only the coal powder is used.

このような成型炭を用いる方法において、成型炭中の劣質炭の使用量をさらに増加するためには、劣質炭の使用量が増加しても、冷間強度の高いコークスを製造できるようにすることが必要である。上記の成型炭を用いるコークスの製造において、強度の高いコークスを製造する方法が、特許文献1、2及び3に開示されている。   In such a method using coal, in order to further increase the amount of inferior coal in the coal, even if the amount of inferior coal increases, it will be possible to produce coke with high cold strength. It is necessary. In the production of coke using the above-described coal, methods for producing coke having high strength are disclosed in Patent Documents 1, 2, and 3.

特許文献1には、成型炭部と粉炭部のコークス強度をそれぞれ推定し、両者のコークス化時の重量割合からコークス強度を推定する際、成型炭に用いる原料の粒度、真比重、揮発分、膨張率と、成型炭の密度と、乾留条件から成型炭部のコークス強度を推定し、粉炭部も同様にして推定することにより、強度の高いコークスが得られる原料石炭の配合調整をより適正に行うことができる方法が開示されている。   In Patent Literature 1, when estimating the coke strength of the coking coal part and the pulverized coal part, respectively, when estimating the coke strength from the weight ratio at the time of coking of both, the particle size, true specific gravity, volatile matter of the raw material used for the coking coal, Estimating the coke strength of the coal-forming part from the expansion rate, the density of the coal-forming, and the dry distillation conditions, and estimating the coal-coal part in the same way, it is possible to more appropriately adjust the blending of the raw coal to obtain high-strength coke A method that can be performed is disclosed.

特許文献2には、原料炭に、低品質コークス原料を成型して製造した成型炭を、成型炭の粒径を調整して配合し、従来以上に強度の高いコークスを製造する高強度コークスの製造方法が開示されている。   Patent Document 2 discloses a high-strength coke that is produced by forming a coking coal produced by molding a low-quality coke raw material into a raw coal, adjusting the particle size of the forming coal, and producing coke having higher strength than before. A manufacturing method is disclosed.

また、石炭を粉砕して塊成化する方法として、特許文献3には、粘結力指数80未満の石炭を3mm以下70質量%以上100質量%以下に粉砕し、粘結力指数80以上の石炭を2mm以下90質量%以上に粉砕し、これらの石炭を配合して塊成化し、塊成化した石炭のみを乾留して、高強度の成型コークスを得る方法が記載されている。   In addition, as a method of pulverizing and agglomerating coal, Patent Document 3 discloses that coal having a cohesive strength index of less than 80 is pulverized to 3 mm or less to 70 mass% or more and 100 mass% or less, and having a cohesive strength index of 80 or more. A method is described in which coal is pulverized to 2 mm or less and 90% by mass or more, and these coals are blended to agglomerate, and only the agglomerated coal is dry-distilled to obtain high strength molded coke.

特開昭60−174951号公報Japanese Patent Application Laid-Open No. 60-174951 特開2008−120898号公報JP 2008-120898 A 特開2002−121568号公報JP 2002-121568 A

劣質炭を配合した成型炭を粉炭とともにコークス炉に装入してコークスを製造する際、特許文献1に開示の方法で、コークス強度を推定して使用する石炭原料を調整したり、特許文献2に開示の方法で、成型炭の粒径を調整したりしても、劣質炭の割合によっては、コークス強度が低下して、十分な強度が得られない場合があった。   When coke is produced by charging cast coal mixed with inferior coal into coke oven together with pulverized coal, coke strength is estimated by the method disclosed in Patent Document 1, and the coal raw material to be used is adjusted. Even if the particle size of the coal is adjusted by the method disclosed in the above, the coke strength may be lowered depending on the proportion of the inferior quality coal and sufficient strength may not be obtained.

また、特許文献3に開示の方法は、石炭の粒子を特別に細かくするものであり、所要とする電力量の増加や微粉の増加による粉塵の発生につながる。その上、この方法は、石炭を全量塊成化してコークス炉に装入し、塊成炭間の空隙を介した伝熱を利用して乾留時間を短縮するものであり、成型炭を粉炭に混合して乾留する場合における劣質炭の多量使用について、特に知見がない。   In addition, the method disclosed in Patent Document 3 makes coal particles specially fine, and leads to generation of dust due to an increase in required electric energy and an increase in fine powder. In addition, this method agglomerates all the coal and charges it in a coke oven, shortens the carbonization time using heat transfer through the gaps between the agglomerated coals. There is no particular knowledge about the use of a large amount of inferior coal when mixing and dry distillation.

本発明者らは、成型炭と粉炭を用いて製造されるコークスの強度は、同一の粉炭を用いた場合においては、成型炭に由来する部分(成型炭部)のコークスの強度に依存すると考え、成型炭における、劣質炭の配合量及び石炭の粉砕粒度と、成型炭部のコークス強度との関係を調べた。その結果、成型炭では、劣質炭の配合量にかかわらず、石炭の粉砕粒度が大きいとき、成型炭部コークス強度が低くなった。また、石炭の粉砕粒度が大きいとき、劣質炭の配合量の増加とともに、成型炭部コークス強度が低下した。   The present inventors consider that the strength of coke produced using coal and pulverized coal depends on the strength of coke in the portion derived from coal (coal coal part) when the same coal powder is used. The relationship between the blending amount of inferior coal and the pulverized particle size of coal in coking coal and the coke strength of the forming coal was investigated. As a result, in the case of coal, regardless of the blending amount of inferior coal, when the coal has a large pulverized particle size, the strength of the coking coal coke is low. Moreover, when the pulverization particle size of coal was large, the strength of the formed coal portion coke decreased with an increase in the blending amount of inferior coal.

これについて、劣質炭の配合量の指標であるΣTD(配合される石炭の全膨張率を加重平均した加重平均全膨張率)と、石炭の粉砕粒度の指標であるRD(配合炭を粉砕した後の粒径が3mm以下の石炭粒子の比率)を用いて示すと、ΣTD40%未満で、RD75%未満の配合炭を用いたとき、十分な成型炭部コークス強度を得ることができないことになる。しかし、RD75%未満の条件においても、ΣTD40%未満の成型炭を用いることが出来ると、低コストのまま所要とする電力量や微粉による粉塵の発生の抑制につながる。   About this, ΣTD (weighted average total expansion coefficient obtained by weighted average of the total expansion coefficient of coal to be blended) that is an index of blending amount of inferior coal, and RD (crushed coal blend) that is an index of coal pulverization particle size When the blended coal with a ΣTD of less than 40% and an RD of less than 75% is used, it is impossible to obtain a sufficient coking strength of the coke part. However, even if the RD less than 75% is used, if the coal char less than ΣTD 40% can be used, it will lead to suppression of the required electric energy and the generation of dust due to the fine powder at a low cost.

そこで、本発明は、成型炭を粉炭とともにコークス炉に装入して乾留するコークスの製造方法において、成型炭に配合する劣質炭の量を増加させても、石炭の粒子を特別に細かくすることなく、強度の高いコークスを安定して、安価に製造できる方法を提供することを課題とする。   Therefore, the present invention is a method for producing coke in which coal is charged into a coke oven together with pulverized coal and dry-distilled, and even if the amount of inferior coal blended with the coal is increased, the coal particles are made particularly fine. It is another object of the present invention to provide a method that can stably produce coke with high strength at a low cost.

ΣTDが40%未満で、RDが75%未満の配合炭を用いて作成した成型炭は、原料の石炭が粗いので、粗大なイナートを有する。さらに、本発明者らは、粗大な石炭粒子の周囲には局所的な空隙が存在することを見出した。一方で、劣質炭の配合量が多い場合においては、乾留後の石炭の膨れが十分でないため、本発明者らは、このような成型炭を乾留すると、粗大なイナートに起因した亀裂の生成に加え、石炭の膨張により、成型炭内の局所的な空隙が充填されず、成型炭部コークス強度が低下すると考えた。   The coal formed using a blended coal having a ΣTD of less than 40% and an RD of less than 75% has a coarse inert because the raw coal is coarse. Furthermore, the present inventors have found that there are local voids around coarse coal particles. On the other hand, when the blending amount of inferior coal is large, since the swelling of coal after dry distillation is not sufficient, the present inventors have generated carbon cracks due to coarse inerting when carbonizing such cast coal. In addition, it was considered that due to the expansion of coal, local voids in the coal coal were not filled, and the strength of the coal portion coke was lowered.

そこで、本発明者らは、劣質炭の配合量を増加しても、石炭の粒子を特別に細かくせずに、成型炭部のコークス強度を高くするために、乾留途中で成型炭中の石炭を膨張させ、成型炭中の局所的な空隙を充填することで、石炭同士の接着を強化することを見出した。   Therefore, the present inventors have tried to increase the coke strength of the coal forming part without increasing the coal particle size even if the blending amount of inferior coal is increased. It was found that the adhesion between the coals was strengthened by expanding and filling the local voids in the coal.

このような検討を通してなされた本発明の要旨は、以下の通りである。
(1)少なくとも劣質炭を含む成型炭用の配合炭を粉砕し、粉砕後の配合炭に粘結補填材を添加して混練した後、成型機で成型して成型炭とし、この成型炭を、粉炭用の別の配合炭を粉砕して調製した粉炭とともにコークス炉に装入して乾留するコークスの製造方法において、
配合される石炭の全膨張率を加重平均した加重平均全膨張率をΣTDとし、配合炭を粉砕した後の粒径が3mm以下の石炭粒子の比率をRDとしたとき、
成型炭用の配合炭として、ΣTDが3%以上40%未満で、RDが75質量%未満の配合炭を用い、
更に、成型炭用の配合炭に対して、前記粘結補填材が9〜17質量%となるように添加して成型した成型炭を用いる
ことを特徴とするコークスの製造方法。
The gist of the present invention made through such examination is as follows.
(1) After pulverizing blended coal for at least including inferior charcoal, adding a caking filler to the blended coal after pulverization and kneading, molding with a molding machine to form coal, In the method for producing coke, which is charged into a coke oven together with pulverized coal prepared by pulverizing another blended coal for pulverized coal and dry-distilled,
When the weighted average total expansion coefficient obtained by weighted averaging the total expansion coefficient of the blended coal is ΣTD, and the ratio of the coal particles having a particle size of 3 mm or less after pulverization of the blended coal is RD,
As a coal blend for coal, ΣTD is 3% or more and less than 40%, and RD is less than 75% by mass,
Furthermore, the method for producing coke is characterized in that it uses molded charcoal that is added and molded so that the caking filler is 9 to 17% by mass with respect to blended charcoal for molding charcoal.

本発明によれば、成型炭を粉炭とともにコークス炉に装入して乾留するコークスの製造方法において、成型炭に劣質な石炭をより多量に使用することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the manufacturing method of the coke which charges a coking coal with a pulverized coal in a coke oven, and dry-distills, coal inferior to a forming coal can be used in a larger quantity.

成型炭と粉炭とを混合してコークス炉で乾留してコークスを製造する際の処理フローを示す図である。It is a figure which shows the processing flow at the time of mixing coking coal and pulverized coal, and dry-distilling with a coke oven, and manufacturing coke. 成型炭用の配合炭を粉砕した後の粒径が3mm以下の石炭粒子の比率RDと成型炭用の配合炭に配合される石炭の全膨張率を加重平均した加重平均全膨張率ΣTDを変化させた場合におけるΣTDと成型炭部のコークス強度DIの関係をRDごとに示す図である。Changes the weighted average total expansion coefficient ΣTD, which is a weighted average of the ratio RD of coal particles with a particle size of 3 mm or less after pulverization of the coal for coal casting and the total expansion of the coal blended with the coal for coal casting It is a figure which shows the relationship between (SIGMA) TD and the coke intensity | strength DI of a forming coal part for every RD. 乾留前後の成型炭をX線CTで撮像し、得られた断層画像を示す図である。(1)は乾留前の成型炭の断層画像であり、(2)は乾留後の成型炭の断層画像である。It is a figure which shows the tomographic image obtained by imaging the coal char before and behind carbonization by X-ray CT. (1) is a tomographic image of coal after carbonization, and (2) is a tomographic image of coal after carbonization. 粘結補填材の配合率と成型炭用の配合炭に配合される石炭の全膨張率を加重平均した加重平均全膨張率ΣTDを変化させた場合におけるΣTDと成型炭部のコークス強度DIの関係を示す図である。Relationship between ΣTD and coke strength DI of coal-forming part when weighted-average total expansion coefficient ΣTD, which is a weighted average of coal expansion blending ratio and total expansion coefficient of coal blended in coal for coal casting, is changed FIG.

まず、本発明者らは、成型炭用の石炭の配合及び粉砕粒度を変えた成型炭を作製して、成型炭部のコークス強度の変化を調べた。以下、成型炭用の配合炭に配合される石炭の全膨張率を加重平均した加重平均全膨張率をΣTD、成型炭用の配合炭を粉砕した後の粒径が3mm以下の石炭粒子の比率をRDと記載する。   First, the present inventors made coals with different coal blends and pulverized particle sizes, and investigated changes in the coke strength of the coals. Hereinafter, the weighted average total expansion coefficient obtained by weighted average of the total expansion coefficient of coal blended with the coal mixture for coal casting is ΣTD, and the ratio of coal particles having a particle size of 3 mm or less after pulverizing the coal blend for coal molding Is described as RD.

成型炭用の配合炭として、強粘結炭に対して劣質炭の配合量を変えたものを準備し、RDが60%及び90%になるように、それぞれ粉砕し、その配合炭を用いて成型炭を作製した。成型炭は、乾留後に単独で取り出して評価できるように、紙で包んで所定の性状の粉炭(石炭の加重平均揮発分量定量ΣVM=28dry%、石炭の加重平均全膨張率ΣTD=80%、水分=10%)に一定の配合量で混合し、混合した原料を乾留してコークスを製造した。得られたコークスは、成型炭部からなるコークスの周囲に不活性な紙が存在することで、周囲の粉炭部分からなるコークスと分断されたような形になっており、成型炭部からなるコークスを取り出すことができる。このようにして得られた成型炭部のコークスについて、強度を測定した。   As a blended coal for forming coal, prepare a mixture of inferior quality coal with respect to strong caking coal, pulverize each so that RD becomes 60% and 90%, and use the blended coal A charcoal was produced. The coal is wrapped in paper so that it can be taken out and evaluated independently after dry distillation. = 10%) at a constant blending amount, and the mixed raw material was subjected to dry distillation to produce coke. The obtained coke is in the form of being separated from the coke consisting of the surrounding powdered coal part due to the presence of inert paper around the coke consisting of the coal forming part. Can be taken out. The strength was measured for the coke of the formed coal portion thus obtained.

成型炭部のコークス強度は、通常のコークスと同様、コークスをJIS K2151記載のドラム試験機により150回転した後、15mmふるい上のコークスの百分率DI150 15を実測して求めた。なお、コークス強度DI150 15を、以下ではコークス強度DIと簡略化して記載する。 The coke strength of the cast charcoal part was obtained by actually measuring the coke percentage DI 150 15 on a 15 mm sieve after rotating the coke 150 times with a drum tester described in JIS K2151 as in the case of ordinary coke. Hereinafter, the coke strength DI 150 15 will be described simply as the coke strength DI.

ΣTDを求め、成型炭部コークス強度DIを、RDごとに、ΣTDとの関係で整理した。結果を図2に示す。   ΣTD was determined, and the coking strength coke strength DI was organized for each RD in relation to ΣTD. The results are shown in FIG.

図2より、ΣTDの値にかかわらず、同一の配合炭を用いた成型炭においては、RDが大きいと、成型炭部コークス強度DIが向上した。また、RDが90%のときは、ΣTDによらず、同レベルの成型炭部コークス強度DIの成型炭部コークスが得られた。一方、RDが60%のときは、ΣTDの低下とともに、成型炭部コークス強度DIが低下した。   From FIG. 2, regardless of the value of ΣTD, in the coal using the same blended coal, when the RD is large, the coal-forming portion coke strength DI is improved. Further, when the RD was 90%, a coking coal coke having the same level of coking strength coke strength DI was obtained regardless of ΣTD. On the other hand, when the RD was 60%, the coking strength coke strength DI of the formed coal portion decreased with the decrease of ΣTD.

このように、RDを大きくするほど、すなわち、成型炭用の石炭の粉砕粒度を細かくするほど、成型炭部の強度が増加する。しかし、粒度を細かくすると、所要とする電力量の増加や微粉の増加による粉塵の発生につながるため、粒度が粗い領域でも所望のコークス強度を得られると望ましい。   Thus, as the RD is increased, that is, the pulverized particle size of the coal for forming coal is made finer, the strength of the forming coal portion increases. However, if the particle size is made fine, it leads to generation of dust due to an increase in required electric energy and an increase in fine powder. Therefore, it is desirable that a desired coke strength can be obtained even in a region where the particle size is coarse.

一方、RDが60%であっても、ΣTDが40%以上であれば、コークス強度DIが80%を超える。しかし、ΣTDを大きくするには、成型炭部の劣質炭の割合を減らす必要があり、多量の劣質炭を使用することができない。   On the other hand, even if RD is 60%, if ΣTD is 40% or more, the coke strength DI exceeds 80%. However, in order to increase ΣTD, it is necessary to reduce the proportion of inferior coal in the formed coal part, and a large amount of inferior coal cannot be used.

しかし、ΣTDが40%未満であるとRDが75%未満となるとき、成型炭部のコークス強度は大きく低下することが分かった。   However, it was found that when the ΣTD is less than 40%, the coke strength of the formed coal portion is greatly reduced when the RD is less than 75%.

そこで、RDが75%未満、ΣTDが40%未満の乾留前後の成型炭の変化を調べるために、X線CT観察を行った。図3に、成型炭をX線CTで撮像し、得られた断層画像を示す。(1)は乾留前の成型炭の断層画像であり、(2)は乾留後の成型炭の断層画像である。画像において、高密度な程、白く、低密度な程、黒く、観察される。乾留前の成型炭において、粗い石炭粒子の周辺に、空隙である黒い低密度部分が存在している。また、乾留後の成型炭において、粗大な気孔である黒い部分が存在している。   Therefore, X-ray CT observation was performed in order to examine the change in the coal before and after dry distillation with RD of less than 75% and ΣTD of less than 40%. FIG. 3 shows a tomographic image obtained by imaging the charcoal with X-ray CT. (1) is a tomographic image of coal after carbonization, and (2) is a tomographic image of coal after carbonization. In the image, the higher the density, the more white the color, and the lower the density, the darker the image. In the coal before dry distillation, there are black low density portions which are voids around coarse coal particles. Moreover, the black part which is a coarse pore exists in the coal after dry distillation.

この観察結果に基づき、図2の成型炭部コークス強度DI、RD及びΣTDの関係は、次のように考える。   Based on this observation result, the relationship between the coking strength coke strengths DI, RD, and ΣTD in FIG. 2 is considered as follows.

RDが75%未満の場合、粗粉砕であるため、成型炭中に粗大なイナートが残存し、乾留後に、周囲との収縮率差に起因して、粗大なイナートの剥離による亀裂や、イナート内の亀裂が発生する。さらに、成型炭中に粗い石炭粒子が存在することで、その粒子の周囲に局所的空隙が生じる。成型炭部のΣTDが低い場合、空隙周囲の石炭の膨張性が不足しているため、乾留後に粗大な気孔や連結気孔が生成する。起因して、粗大なイナートの剥離による亀裂や、イナート内の亀裂が発生する。その結果として、成型炭部コークス強度が低下する。   When RD is less than 75%, coarse pulverization causes coarse inerts to remain in the coal, and after dry distillation, due to the difference in shrinkage from the surroundings, Cracks occur. Further, the presence of coarse coal particles in the coal forms local voids around the particles. When the ΣTD of the coal forming part is low, since the expansibility of the coal around the void is insufficient, coarse pores and connected pores are generated after dry distillation. As a result, cracks due to coarse inert stripping and cracks in the inert occur. As a result, the strength of the coking coal coke is reduced.

これに対して、ΣTDが40%以上の場合、成型炭中の石炭の膨れが十分であり、成型炭中に空隙が存在しても、乾留の際に、空隙の自由膨張を抑制できるため、必要な成型炭部のコークス強度が得られる。   On the other hand, when ΣTD is 40% or more, the swollen coal in the coal is sufficient, and even if there are voids in the coal, the free expansion of the voids can be suppressed during dry distillation. The required coke strength of the coal-forming part can be obtained.

そうすると、ΣTDが40%未満の成型炭用の配合炭を用いた場合であっても、乾留の際に、ΣTDが40%の成型炭用の配合炭の石炭と同等以上に膨れるようにすれば、必要な成型炭部コークス強度が得られると考えられる。   Then, even if it is a case where the blending coal for coal molding with ΣTD of less than 40% is used, if ΣTD swells to the same level as or more than the coal of coal blending for coal molding with 40% coal, Therefore, it is considered that the required coking strength of coke is obtained.

すなわち、本発明者らは、成型炭部分の石炭粒度が粗い場合であっても、成型炭部の配合炭に粘結補填材の添加量を調整することで、成型炭中の石炭をより膨張させ、粗大な粒子周囲の空隙の影響を減らすことができると考えた。そこで、RDが60%で、異なる配合率の配合炭に対して、粘結補填材として、アスファルトピッチ(以下、ASPと称する)を3%とタールを7%添加(すなわち、粘結補填材の合計として10%添加)し、成型炭を作製して、成型炭部コークス強度DIを測定した。   That is, the present inventors expand the coal in the coal by further adjusting the amount of the caking filler added to the coal mixture of the coal forming portion even when the coal particle size of the coal portion is coarse. The effect of voids around coarse particles can be reduced. Therefore, 3% of asphalt pitch (hereinafter referred to as ASP) and 7% of tar are added as a caking filler for blended coals having different RDs of 60% (that is, caking filler) 10% was added as a total) to produce coal, and the coal strength coke strength DI was measured.

そして、ΣTDを求め、成型炭部コークス強度DIとΣTDとの関係を整理した。結果を図4に示す。また、図4には、図2に示すRDが60%で、粘結補填材として、タールのみを7%添加して、作成された成型炭の成型炭部コークス強度DIとΣTDとの関係も併せて示す。   And (SIGMA) TD was calculated | required and the relationship between coking strength Coke strength DI and (SIGMA) TD was arranged. The results are shown in FIG. FIG. 4 also shows the relationship between the coke strength DI and ΣTD of the formed coal obtained by adding 7% tar alone as the caking filler, with the RD shown in FIG. 2 being 60%. Also shown.

これより、同一の配合炭を用いた成型炭においては、粘結補填材の添加量を7%から10%に増加させたところ、成型炭部コークス強度DIが向上した。   As a result, in the coal using the same blended coal, when the addition amount of the caking filler was increased from 7% to 10%, the coal coke strength DI was improved.

以上、検討結果をまとめると、以下の通りである。
RDが75%未満で、ΣTDが40%未満の成型炭部の配合炭を用いるとき、成型炭部の配合炭に対して、粘結補填材の添加量を調整すれば、成型炭部コークス強度DIを調整することができる。
The examination results are summarized as follows.
When using a coal blend with a coal casting part with an RD of less than 75% and a ΣTD of less than 40%, if the amount of caking filler added to the coal mixture of the coal part is adjusted, the coke strength of the coal part DI can be adjusted.

本発明は、以上のような検討過程を経て上記(1)に記載の発明に至ったものであり、そのような本発明について、さらに、必要な要件や好ましい要件について順次説明する。   The present invention has reached the invention described in the above (1) through the examination process as described above, and the necessary and preferred requirements will be further described in order.

[粉炭]
本発明では、配合炭を粉砕した粉炭に成型炭を混合して、コークス炉に装入し、乾留してコークスを製造する。粉炭と成型炭の混合割合としては、粉炭70〜90質量%、成型炭10〜30質量%が例示される。粉炭は、限定されないが、強粘結炭を含む通常の配合炭(石炭の加重平均全膨張率ΣTD=50〜100%、石炭の加重平均揮発分量定量ΣVM=26〜29dry%)を、3mm以下の比率を60%〜95%の粒度に粉砕したものが例示される。
[Powdered coal]
In the present invention, coking coal is mixed with powdered coal obtained by pulverizing blended coal, charged into a coke oven, and dry-distilled to produce coke. Examples of the mixing ratio of pulverized coal and cast coal include pulverized coal of 70 to 90 mass% and molded coal of 10 to 30 mass%. The coal powder is not limited, but a normal blended coal containing strong caking coal (weighted average total expansion coefficient ΣTD = 50-100% of coal, weighted average volatile content quantification ΣVM = 26-29 dry% of coal) 3 mm or less Is obtained by pulverizing the ratio to a particle size of 60% to 95%.

[成型炭]
成型炭は、原料となる配合炭を粉砕し、これに粘結補填材を添加して混練し、この混練物をブリケットマシンなどで所定の形状に成型することにより製造される。成型条件としては、大きさ:4cc〜125cc、密度:1.1〜1.2g/cmの範囲が例示される。
[Forming charcoal]
Formed charcoal is manufactured by pulverizing blended charcoal as a raw material, adding a caking filler to this, kneading, and molding this kneaded product into a predetermined shape with a briquette machine or the like. Examples of molding conditions include a size range of 4 cc to 125 cc and a density range of 1.1 to 1.2 g / cm 3 .

近年では、劣質炭の配合量が増加しており、成型炭中に劣質炭を40〜70質量%配合することが好ましい。成型炭に劣質炭を集中的に配合することにより、劣質炭を多量に使用しても、高炉に使用するために必要な強度をもつコークスを製造できる。ここで、劣質炭とは、石炭化度が低く(ビトリニットの平均最大反射率が0.85%以下)、かつ、粘結性の乏しい又は粘結性のない(最高流動度2.5(log (ddpm))以下)石炭をいう。   In recent years, the compounding quantity of inferior quality coal is increasing, and it is preferable to mix 40-70 mass% of inferior quality charcoal in a molding charcoal. By intensively blending the inferior coal with the coal, even if a large amount of the inferior coal is used, coke having the strength required for use in the blast furnace can be produced. Here, inferior coal has a low degree of coalification (average maximum reflectivity of vitrinite is 0.85% or less) and has poor caking or no caking (maximum fluidity 2.5 (log) (Ddpm)) hereinafter) refers to coal.

[成型炭部配合炭の加重平均膨張率]
劣質炭の配合量を増加させるため、ΣTDは40%未満とする。ΣTDの下限値は特に限定されず、0%を含む。石炭の全膨張率TDは、JIS M8801に記載の膨張性試験方法(ディラトメーター法)により測定される。石炭の全膨張率TDはすでに多くのものが調べられており、成型炭を構成する石炭の配合が決まれば、配合量(質量割合)に応じた単味炭の全膨張量TDを加算して平均をとった加重平均膨張率ΣTDを知ることができる。
[Weighted average expansion coefficient of coal blended coal]
In order to increase the blending amount of inferior coal, ΣTD is set to less than 40%. The lower limit value of ΣTD is not particularly limited, and includes 0%. The total expansion coefficient TD of coal is measured by an expansibility test method (dilatometer method) described in JIS M8801. Many things have already been investigated for the total expansion rate TD of coal, and if the blending of coal constituting the coal is determined, the total expansion amount TD of simple coal corresponding to the blending amount (mass ratio) is added. The weighted average expansion coefficient ΣTD obtained by taking the average can be known.

また、上記JIS M8801に記載の膨張性試験方法は、成型炭を反応管に装入し、その上部にピストンを載置し、その容器を加熱して、成型物の上端の上昇量をピストンの変位量から読み取り、成型物の最初の長さに対する、ピストンの変位量の分率を求め、この分率を全膨張率とするものである。   In the expansibility test method described in JIS M8801, the charcoal is charged into a reaction tube, a piston is placed on the top of the reaction tube, the container is heated, and the rising amount of the upper end of the molded product is set to the amount of the piston. It is read from the displacement amount, the fraction of the displacement amount of the piston with respect to the initial length of the molded product is obtained, and this fraction is taken as the total expansion rate.

[成型炭部配合炭の粉砕粒度]
成型炭は、原料となる配合された石炭を粉砕して製造する。成型炭に配合される石炭を細かく粉砕する程、石炭中に存在するイナートもより粉砕される。イナートは揮発分が低いため、他の軟化溶融する組織とは乾留時における収縮率が異なり、その差によって両組織の界面に応力が発生し、イナートの内部又は周辺に亀裂が発生する。イナートを粉砕することによってそのような亀裂の発生が抑制され、成型炭部の強度が向上する。
[Crushing particle size of coal blended with coal]
Coal coal is produced by pulverizing blended coal as a raw material. The finer the coal blended with the coal, the more the inert present in the coal is crushed. Since inert has a low volatile content, the shrinkage rate during dry distillation is different from other softening and melting structures. Due to the difference, stress is generated at the interface between the two structures, and cracks are generated in or around the inert. By crushing the inert, the occurrence of such cracks is suppressed, and the strength of the formed charcoal portion is improved.

しかし、粒度を細かくすると、所要とする電力量の増加や微粉の増加による粉塵の発生につながるため、前述の通り、RDは75%未満とする。RDの下限値は特に限定されないが、装置への詰まりなど操業上の問題を考慮すると、RDは50%以上が例示される。   However, if the particle size is made finer, it leads to generation of dust due to an increase in required electric energy and an increase in fine powder. Therefore, as described above, RD is made less than 75%. The lower limit of RD is not particularly limited, but RD is exemplified by 50% or more in consideration of operational problems such as clogging of the apparatus.

[粘結補填材]
粘結補填材は、石油系の粘結材(タール、ピッチ等)及び石炭系の粘結材のいずれも使用することができる。粘結補填材は、必要な成型炭部コークス強度DIを得るために、成型炭部の配合炭に対して、9質量%以上添加する必要があることが判った。一方、粘結補填材の配合率が17質量%超では、揮発分の高い粘結補填材を多量に配合することで、得られるコークスの気孔率が高くなり、成型炭部コークス強度DIは逆に低下し、粘結補填材を多量に添加する効果を得られず、製造コストの増加を招くため、上限を17質量%とする。
[Caking filler]
As the caking filler, both petroleum caking materials (tar, pitch, etc.) and coal caking materials can be used. It has been found that the caking filler needs to be added in an amount of 9% by mass or more with respect to the blended coal of the forming coal portion in order to obtain the necessary forming coal portion coke strength DI. On the other hand, when the compounding ratio of the caking filler exceeds 17% by mass, the porosity of coke obtained is increased by blending a large amount of caking filler with a high volatile content, and the coking strength coke strength DI is reversed. Therefore, the effect of adding a large amount of the caking filler is not obtained, and the production cost is increased. Therefore, the upper limit is set to 17% by mass.

なお、成型炭部コークス強度に対する、ΣTD、RD及び粘結補填材の関係は、使用する石炭種、成型炭の見掛密度が異なる場でも有効であることを確認しているが、使用する石炭種や、成型炭の成型条件が変わる場合には、図4のような関係を予め調べて、目標とする成型炭部コークス強度DIを得ることができる粘結補填材の量を選択するのが好ましい。   In addition, although the relation of ΣTD, RD and caking filler to the coking strength of the coking coal is confirmed to be effective even when the type of coal used and the apparent density of the coal are different, the coal used When the seeds and the molding conditions of the charcoal change, it is necessary to examine the relationship as shown in FIG. 4 in advance and select the amount of the caking filler that can obtain the target coking strength coke strength DI. preferable.

以上、本発明の実施の態様について説明したが、更に、実施例により本発明の実施可能性及び効果について説明する。   Although the embodiments of the present invention have been described above, the feasibility and effects of the present invention will be further described with reference to examples.

表1に示す全膨張量TDの異なる5種類の単味炭(A炭〜E炭)を用い、表2に示すように、ΣTDが40%未満となるように配合した配合炭1及び2を準備した。   As shown in Table 2, blended coals 1 and 2 blended so that ΣTD is less than 40% using five types of simple coal (A coal to E coal) having different total expansion amounts TD shown in Table 1. Got ready.

配合炭1を、RD60%又は70%の粒度に粉砕した後、粘結補填材を7〜19質量%添加し、ブリケットマシンにより成型して、密度が1.12g/cmの実施例1〜3、6、比較例1及び2の成型炭を得た。この粘結補填材は、7質量%のタールと、0〜12質量%のASPから構成されている。また、配合炭2を、RD60%の粒度に粉砕した後、上記粘結補填材を9質量%又は12質量%添加し、実施例1〜3と同様の条件で成型炭を得て、実施例4及び5とした。 After the blended coal 1 was pulverized to a particle size of RD 60% or 70%, 7-19% by mass of a caking filler was added and molded by a briquette machine, and the density was 1.12 g / cm 3 . 3, 6 and the charcoal of Comparative Examples 1 and 2 were obtained. This caking filler is composed of 7% by mass tar and 0-12% by mass ASP. Further, after the blended charcoal 2 was pulverized to a particle size of RD 60%, 9% by mass or 12% by mass of the above-mentioned caking filler was added, and molding charcoal was obtained under the same conditions as in Examples 1-3. 4 and 5.

表3には、成型炭用の石炭のΣTD、RD、成型炭用の配合炭に対する粘結補填材の配合率を示す。次に、表4に示す条件の粉炭80質量%に対して、表3に示す成型炭20質量%の割合で混合し、コークス炉に装入して乾留し、成型炭部のコークスの強度DIを調べた。   Table 3 shows the blending ratio of the caking filler with respect to ΣTD, RD of the coal for forming coal, and the blended coal for forming coal. Next, with respect to 80% by mass of pulverized coal under the conditions shown in Table 4, 20% by mass of coking coal shown in Table 3 is mixed, charged into a coke oven and dry-distilled, and coke strength DI of the coking coal part DI. I investigated.

結果を表5に示す。実施例1〜6は、成型炭用の石炭のΣTDが40%未満で、RDが75%未満であるが、粘結補填材が9〜17質量%添加されているため、十分なコークス強度が得られている。実施例4及び5は、それぞれ、実施例1及び2と比較して、成型炭用の石炭のΣTDの値を大きくした事例であり、高いコークス強度が得られている。実施例6は、実施例1と比較して、RDの値を大きくした事例であり、高いコークス強度が得られている。一方、比較例1及び2は、成型炭用の配合炭に対して、粘結補填材を7質量%又は19質量%添加したもので、本発明の範囲外であるため、十分なコークス強度が得られなかった。   The results are shown in Table 5. In Examples 1-6, although ΣTD of coal for forming coal is less than 40% and RD is less than 75%, since caking filler is added in an amount of 9 to 17% by mass, sufficient coke strength is obtained. Has been obtained. Examples 4 and 5 are examples in which the value of ΣTD of coal for forming coal was increased as compared with Examples 1 and 2, respectively, and high coke strength was obtained. Example 6 is an example in which the value of RD was increased as compared with Example 1, and high coke strength was obtained. On the other hand, Comparative Examples 1 and 2 are those obtained by adding 7% by mass or 19% by mass of a caking filler to the blended coal for forming coal, and are outside the scope of the present invention, so that sufficient coke strength is obtained. It was not obtained.

以上のように、劣質炭を多く成型炭に含有させても、粘結補填材を添加した配合炭を用いて成型炭を作製すれば、十分なコークス強度を有するコークスが得られる。   As described above, even if a large amount of inferior coal is contained in the coal, the coke having a sufficient coke strength can be obtained by producing the coal using the blended coal to which the caking filler is added.

本発明によれば、成型炭を粉炭とともにコークス炉に装入して乾留するコークスの製造方法において、成型炭に劣質な石炭をより多量に使用することができる。よって、本発明は、産業上の利用可能性が高いものである。   ADVANTAGE OF THE INVENTION According to this invention, in the manufacturing method of the coke which charges a coking coal with a pulverized coal in a coke oven, and dry-distills, coal inferior to a forming coal can be used in a larger quantity. Therefore, the present invention has high industrial applicability.

Claims (1)

少なくとも劣質炭を含む成型炭用の配合炭を粉砕し、粉砕後の配合炭に粘結補填材を添加して混練した後、成型機で成型して成型炭とし、この成型炭を、粉炭用の別の配合炭を粉砕して調製した粉炭とともにコークス炉に装入して乾留するコークスの製造方法において、
配合される石炭の全膨張率を加重平均した加重平均全膨張率をΣTDとし、配合炭を粉砕した後の粒径が3mm以下の石炭粒子の比率をRDとしたとき、
成型炭用の配合炭として、ΣTDが3%以上40%未満で、RDが75質量%未満の配合炭を用い、
更に、成型炭用の配合炭に対して、前記粘結補填材が9〜17質量%となるように添加して成型した成型炭を用いる
ことを特徴とするコークスの製造方法。
After pulverizing blended coal for molding coal containing at least inferior coal, kneading and adding a caking filler to the blended coal after pulverization, molding with a molding machine to form coal, this coal for powder coal In a method for producing coke, which is charged into a coke oven together with pulverized coal prepared by pulverizing another blended coal of carbon dioxide and dry-distilled,
When the weighted average total expansion coefficient obtained by weighted averaging the total expansion coefficient of the blended coal is ΣTD, and the ratio of the coal particles having a particle size of 3 mm or less after pulverization of the blended coal is RD,
As a coal blend for coal, ΣTD is 3% or more and less than 40%, and RD is less than 75% by mass,
Furthermore, the method for producing coke is characterized in that it uses molded charcoal that is added and molded so that the caking filler is 9 to 17% by mass with respect to blended charcoal for molding charcoal.
JP2014192866A 2014-09-22 2014-09-22 Coke production method Active JP6007958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014192866A JP6007958B2 (en) 2014-09-22 2014-09-22 Coke production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014192866A JP6007958B2 (en) 2014-09-22 2014-09-22 Coke production method

Publications (2)

Publication Number Publication Date
JP2016065111A JP2016065111A (en) 2016-04-28
JP6007958B2 true JP6007958B2 (en) 2016-10-19

Family

ID=55804995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014192866A Active JP6007958B2 (en) 2014-09-22 2014-09-22 Coke production method

Country Status (1)

Country Link
JP (1) JP6007958B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105802649B (en) * 2016-05-04 2018-07-03 武汉钢铁有限公司 A kind of middle volatile matter low bulk high convergency coking coal application method
CN105925294B (en) * 2016-05-16 2019-04-02 武汉钢铁有限公司 The control method of coke size uniformity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722359B2 (en) * 1973-05-31 1982-05-12
JPS52127902A (en) * 1976-04-19 1977-10-27 Nippon Steel Corp Preparation of metallurgical coke
JPS5811914B2 (en) * 1976-04-30 1983-03-05 住金化工株式会社 Method for manufacturing coke for blast furnaces
JPS5598282A (en) * 1979-01-19 1980-07-26 Nippon Steel Corp Manufacture of coke for metallurgical purpose
JPS5767686A (en) * 1980-10-14 1982-04-24 Sumikin Coke Co Ltd Production on coke for blast furnace

Also Published As

Publication number Publication date
JP2016065111A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP4879706B2 (en) Method for producing blast furnace coke
JP6299332B2 (en) Coking coal for coke production
JP2013006958A (en) Method for producing blended coal to be charged to coke oven
JP6007958B2 (en) Coke production method
JP6265015B2 (en) Coke manufacturing method
WO2014007184A1 (en) Coke and method for producing same
JP6716874B2 (en) Blast furnace coke manufacturing method
JP6241336B2 (en) Method for producing blast furnace coke
JP2018048297A (en) Estimation method of coke strength
JP5942971B2 (en) Coke production method
JP6323050B2 (en) Coking coal for coke production and method for producing coke
JP6065510B2 (en) Method of blending coke raw material for blast furnace
JP6075354B2 (en) Coke production method
JP5686052B2 (en) Coke production method
JP6227482B2 (en) Method for producing blast furnace coke and blast furnace coke
JP5011833B2 (en) Coke manufacturing method
JP5163247B2 (en) Coke production method
JP6115509B2 (en) Coke production method
JP2016183330A (en) Method of producing briquette for coke production
JP4819197B2 (en) Manufacturing method of high strength coke
JP2008156661A (en) Method for producing coke for blast furnace
JP6086129B2 (en) Coke production method
JP6413614B2 (en) Coke oven operation method
KR101887320B1 (en) Method for deciding blending amount of ash-free coal, and process for producing coke for blast furnace
JP2004307557A (en) Method for manufacturing high-strength coke

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R151 Written notification of patent or utility model registration

Ref document number: 6007958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350