JP5561146B2 - Method for producing blast furnace coke - Google Patents

Method for producing blast furnace coke Download PDF

Info

Publication number
JP5561146B2
JP5561146B2 JP2010284424A JP2010284424A JP5561146B2 JP 5561146 B2 JP5561146 B2 JP 5561146B2 JP 2010284424 A JP2010284424 A JP 2010284424A JP 2010284424 A JP2010284424 A JP 2010284424A JP 5561146 B2 JP5561146 B2 JP 5561146B2
Authority
JP
Japan
Prior art keywords
coke
coal
diz
strength
furnace temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010284424A
Other languages
Japanese (ja)
Other versions
JP2012131887A (en
Inventor
朝之 中川
征弘 窪田
誠治 野村
裕二 石原口
康裕 深澤
充 柿木
敬介 入江
靖弘 勝見
洋士 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010284424A priority Critical patent/JP5561146B2/en
Publication of JP2012131887A publication Critical patent/JP2012131887A/en
Application granted granted Critical
Publication of JP5561146B2 publication Critical patent/JP5561146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、粉砕した石炭、特に、非微粘結炭等の低品位炭を多く含む配合炭をコークス炉に装入して高炉用コークスを製造する方法に関する。   The present invention relates to a method for producing coke for blast furnace by charging pulverized coal, in particular, blended coal containing a large amount of low-grade coal such as non-slightly caking coal into a coke oven.

高炉用コークスは、一般に、複数銘柄の石炭を配合し粉砕した後、又は、多数の銘柄の石炭をそれぞれ粉砕し配合した後、コークス炉の炭化室に装入し、所定時間乾留して製造される。一方、高炉操業においては、高炉内の通気性を確保し、安定操業を維持するために、高強度のコークスが必要である。   Blast furnace coke is generally manufactured by blending and pulverizing multiple brands of coal, or pulverizing and blending multiple brands of coal, and then charging them into a coking oven carbonization chamber and subjecting them to dry distillation for a predetermined time. The On the other hand, in blast furnace operation, high-strength coke is necessary to ensure air permeability in the blast furnace and maintain stable operation.

高炉用の高強度コークスを製造するために、配合後の石炭粒度は、例えば、配合炭全体で、3mm以下の質量割合(以下、単に「−3mm%」ということがある。)が70〜90%になるように調整される(特許文献2、参照)。   In order to produce high-strength coke for blast furnace, the coal particle size after blending is, for example, a mass ratio of 3 mm or less (hereinafter sometimes simply referred to as “−3 mm%”) of 70 to 90 for the entire blended coal. % (See Patent Document 2).

近年、高強度コークスの製造に好適な高粘結性の石炭の需要が、世界的に逼迫した状態にあり、コークスの製造コストを押し上げている。それ故、粘結性の低い(コークス化し難い)安価な非微粘結炭を多量に用いて高強度コークスを製造する方法が、これまで、数多く提案されている。   In recent years, the demand for highly caking coal suitable for the production of high-strength coke is in a state of tightness worldwide, raising the cost of producing coke. Therefore, many methods have been proposed so far for producing high-strength coke by using a large amount of inexpensive non-slightly caking coal having low caking properties (difficult to coke).

例えば、活性成分に富んだ石炭は粗く粉砕し、非微粘結炭のように活性成分に富まない石炭は細かく粉砕し、石炭中の不活性成分を細粒化して均一分散させる方法(特許文献4、参照)や、良質粘結炭については、−3mm%を50〜70%とする一方、非微粘結炭については、−3mm%を80〜95%とする方法(特許文献1、参照)が提案されている。   For example, coal rich in active ingredients is coarsely crushed, coal that is not rich in active ingredients such as non-slightly caking coal is finely pulverized, and inert ingredients in coal are finely divided and uniformly dispersed (patented) Reference 4), and for good quality caking coal, -3 mm% is set to 50 to 70%, while for non-fine caking coal, -3 mm% is set to 80 to 95% (Patent Document 1, Have been proposed).

また、粘結炭や非微粘結炭に限らず、石炭中に粗大なイナート成分があると、コークス強度を低下させる要因になるので、1.5mm以上の粗大イナート成分を強粉砕によって細粒化し、均一分散させる方法(特許文献2及び3、参照)が提案されている。   Also, not only caking coal and non-slightly caking coal, but if there is a coarse inert component in the coal, it will cause a reduction in coke strength, so the coarse inert component of 1.5 mm or more is finely ground by strong pulverization. Has been proposed (see Patent Documents 2 and 3).

このように、非微粘結炭を多量に使用して高強度のコークスを製造する場合、石炭を強粉砕する手法を採用することが多い。しかし、石炭を強粉砕すると、粒径0.3mm以下の微粉炭が多量に発生する(特許文献3、参照)。   As described above, when producing high-strength coke using a large amount of non-slightly caking coal, a technique of strongly pulverizing coal is often employed. However, when coal is strongly pulverized, a large amount of pulverized coal having a particle size of 0.3 mm or less is generated (see Patent Document 3).

粉砕後の石炭に微粉成分が多くなると、石炭搬送過程での発塵や、炭化室装入時のキャリーオーバーが増加する。特に、キャリーオーバーの増加は、タールスラッジを増加させてタール品質を悪化させる他、炭化室内の付着カーボンを増加させ、コークス炉の安定操業を阻害する(特許文献5、参照)。   When the fine powder component increases in the pulverized coal, dust generation in the coal conveyance process and carry-over at the time of charging the carbonization chamber increase. In particular, an increase in carry-over increases tar sludge to deteriorate tar quality, and also increases carbon adhering in the carbonization chamber, thereby hindering stable operation of the coke oven (see Patent Document 5).

特に、炭化室の上昇管基部における付着カーボンの過剰生成は、上昇管基部を閉塞させ、その結果、炭化室から乾留生成ガスが漏洩するといったトラブルを誘発する。また、炉壁や天井に付着カーボンが過剰に生成すると、コークスケーキの押出し抵抗を増大させ、最悪の場合、押詰めや、炉壁損傷といった大きなトラブルにつながる。   In particular, excessive production of attached carbon at the riser base of the carbonization chamber clogs the riser base and, as a result, causes troubles such as dry distillation product gas leaking from the carbonization chamber. In addition, if carbon adhering to the furnace wall or ceiling is excessively generated, the extrusion resistance of the coke cake is increased, and in the worst case, it leads to major troubles such as clogging and furnace wall damage.

また、コークス強度を高めたい場合、コークス炉の炉温(乾留温度)を上げることが一つの手段であるが、炉温を上げると、当然に、付着カーボン量は増加する。   Further, when it is desired to increase the coke strength, one means is to increase the furnace temperature (dry distillation temperature) of the coke oven, but naturally the amount of adhered carbon increases as the furnace temperature is increased.

このように、コークス強度の向上の点から、石炭を強粉砕すること、及び、炉温を高めることが望ましいが、一方で、石炭の強粉砕、及び、炉温の上昇は、操業トラブルの原因となる付着カーボン量の増大を招くことになる。   Thus, from the viewpoint of improving coke strength, it is desirable to pulverize coal and raise the furnace temperature. On the other hand, strong pulverization of coal and an increase in furnace temperature are the cause of operational troubles. This leads to an increase in the amount of attached carbon.

それ故、多種多様な性状又は銘柄の低品位炭を、大量に配合して、強度の高い高炉用コークスを安定的に製造することができる工業的な製造方法が、強く求められている。   Therefore, an industrial production method capable of stably producing high-strength blast furnace coke by blending a large amount of various grades or brands of low-grade coal is strongly demanded.

特開平10−183136号公報JP-A-10-183136 特開2004−339503号公報JP 2004-339503 A 特開2008−297385号公報JP 2008-297385 A 特開昭56−032587号公報Japanese Unexamined Patent Publication No. 56-032587 特許第4173952号公報Japanese Patent No. 4173952

本発明は、上記現状に鑑み、非微粘結炭のような粘結性の低い低品位炭を多量に配合した配合炭から、所要のコークス強度(DI)を有する高炉用コークスを安定的かつ効率的に製造することができる工業的な製造方法を提供することを目的とする。   In view of the above situation, the present invention is capable of stably producing coke for blast furnace having a required coke strength (DI) from a coal blended with a large amount of low-grade coal having low caking properties such as non-slightly caking coal. It aims at providing the industrial manufacturing method which can be manufactured efficiently.

前述したように、コークス強度を高める手段である石炭の強粉砕(以下、単に「強粉砕」ということがある。)、及び、コークス炉の炉温(以下、単に「炉温」ということがある。)の上昇は、一方で、操業トラブルの原因となる炭化室の上昇管基部や炭化室内(天井を含む)の付着カーボン量の増大を招く。   As described above, coal pulverization (hereinafter, simply referred to as “strong pulverization”), which is a means for increasing the coke strength, and furnace temperature of the coke oven (hereinafter simply referred to as “furnace temperature”). )), On the other hand, increases the amount of carbon adhering to the riser base of the carbonization chamber and the carbonization chamber (including the ceiling), which causes operational troubles.

本発明者らは、上記目的を達成するためには、まず、石炭の粉砕後の粒度(質量%)(以下、単に「粉砕粒度」ということがある。)、炉温(℃)、及び、製造されたコークスの冷間強度(DI)(以下、単に「コークス強度」又は「強度」ということがある。)の関係を定量的に解明することが必要であると考え、該関係の解明を鋭意試みた。   In order to achieve the above-mentioned object, the present inventors firstly set the particle size (mass%) after pulverization of coal (hereinafter sometimes simply referred to as “pulverized particle size”), furnace temperature (° C.), and We believe that it is necessary to quantitatively elucidate the relationship between the cold strength (DI) of manufactured coke (hereinafter sometimes simply referred to as “coke strength” or “strength”) and I tried hard.

その結果、粉砕粒度(質量%)、炉温(℃)、及び、コークス強度(DI)の間には、所定の相関関係が成立することを見出し、本発明に至った。   As a result, the inventors have found that a predetermined correlation is established among the pulverized particle size (mass%), the furnace temperature (° C.), and the coke strength (DI), and have reached the present invention.

本発明は、上記知見に基づいてなされたもので、その要旨は、以下の通りである。   This invention was made | formed based on the said knowledge, The summary is as follows.

(1)石炭を粉砕してコークス炉に装入し、高炉用コークスを製造する方法において、
石炭を種々の−3mmの割合で粉砕し、−3mmの割合の異なる石炭を種々の炉温で乾留して得られたコークスのコークス強度を測定して、目標とするコークス強度DIzを得るために必要な−3mmの割合の下限値Zを炉温Tz毎に求め、
得られた該下限値Zに対する前記DIzとTzの関係を下記式(1)として予め求めておき、
コークス炉の実操業において、目標とするコークス強度DIzと炉温Tzを設定して、目標とするコークス強度が得られる石炭の粉砕後の−3mmの割合の下限値Z(質量%)を下記式(1)で求め、粉砕後の−3mmの割合がZ以上となるように石炭を粉砕して、コークス炉に装入することを特徴とする高炉用コークスの製造方法。
(1) In a method of pulverizing coal and charging it into a coke oven to produce blast furnace coke,
In order to obtain the target coke strength DIz by measuring the coke strength of coke obtained by pulverizing coal at various ratios of -3 mm and carbonizing different coal at different ratios of -3 mm at various furnace temperatures. The required lower limit value Z of -3 mm is obtained for each furnace temperature Tz
The relationship between DIz and Tz with respect to the obtained lower limit value Z is obtained in advance as the following formula (1),
In the actual operation of the coke oven, the target coke strength DIz and the furnace temperature Tz are set, and the lower limit value Z (mass%) of the ratio of −3 mm after pulverization of coal to obtain the target coke strength is expressed by the following formula: obtained in (1), and percentage of -3mm after pulverization is pulverized coal so that the above Z, method of manufacturing blast furnace coke, which comprises charging the coke oven.

Z(質量%)=C1×DIz+C2×Tz+C3×Tz×DIz+C4 ・・・(1)
ここで、
C1〜C4:前記炉温Tz毎に求められた下限値Zを従属変数とし、前記目標とするコークス強度DIz、前記炉温Tz、[DIz×Tz]を独立変数として重回帰分析することにより得られる係数
Z (mass%) = C1 × DIz + C2 × Tz + C3 × Tz × DIz + C4 (1)
here,
C1 to C4: obtained by performing multiple regression analysis with the lower limit value Z determined for each furnace temperature Tz as a dependent variable, and the target coke strength DIz, the furnace temperature Tz, and [DIz × Tz] as independent variables. coefficients that are

(2)前記式(1)において、Tz:1000〜1300℃、及び、DIz:DI150 15で84.0〜87.0であることを特徴とする前記(1)に記載の高炉用コークスの製造方法。 (2) In the above formula (1), Tz: 1000 to 1300 ° C. and DIz: DI 150 15 are 84.0 to 87.0. Production method.

(3)前記石炭が低品位炭を40質量%未満で配合した配合炭であることを特徴とする前記(1)又は(2)に記載の高炉用コークスの製造方法。
(3) The method for producing coke for blast furnace as described in (1) or (2) above, wherein the coal is blended coal in which low-grade coal is blended at less than 40% by mass .

本発明によれば、石炭を、目標とするコークス強度とコークス炉の炉温との関係で定まる粉砕粒度に粉砕してコークス炉に装入するので、目標とするコークス強度を有する高炉用コークスを安定的かつ効率的に製造することができる。   According to the present invention, coal is pulverized to a pulverized particle size determined by the relationship between the target coke strength and the furnace temperature of the coke oven and charged into the coke oven. It can be manufactured stably and efficiently.

粉砕粒度(質量%)、炉温(℃)、及び、コークス強度(DI)の関係を示す図である。It is a figure which shows the relationship between a grinding | pulverization particle size (mass%), furnace temperature (degreeC), and coke strength (DI). コークス炉の炉温と−3mm%の下限値の関係を示す図である。It is a figure which shows the relationship between the furnace temperature of a coke oven, and the lower limit of -3 mm%. 目標とするコークス強度(DI管理値)と、図2に示す各直線の傾きの関係を示す図である。It is a figure which shows the relationship between target coke intensity | strength (DI management value) and the inclination of each straight line shown in FIG. 目標とするコークス強度(DI管理値)と、図2に示す各直線のY切片の関係を示す図である。It is a figure which shows the relationship between target coke intensity | strength (DI management value) and the Y intercept of each straight line shown in FIG. 式(1)で求まる−3mm%の下限値(推定値)と実測値の相関を示す図である。It is a figure which shows the correlation of the lower limit (estimated value) of -3mm% calculated | required by Formula (1), and an actual value.

以下、本発明について、図面を参照して説明する。   The present invention will be described below with reference to the drawings.

本発明は、石炭を粉砕してコークス炉に装入し、高炉用コークスを製造する方法において、石炭を、粉砕後の−3mm%が、下記式(1)で定義するZ(質量%)以上となるように粉砕して、コークス炉に装入することを特徴とする。   In the method of pulverizing coal and charging it into a coke oven to produce coke for blast furnace, the present invention is such that -3 mm% after pulverization of coal is equal to or greater than Z (mass%) defined by the following formula (1) It grind | pulverizes so that it may become, It is characterized by charging with a coke oven.

Z(%)=C1×DIz+C2×Tz+C3×DIz×Tz+C4 ・・・(1)
ここで、Tz:炉温(℃)
DIz:目標とするコークス強度(DI150 15
C1〜C4:重回帰分析で定まる係数
Z (%) = C1 × DIz + C2 × Tz + C3 × DIz × Tz + C4 (1)
Where Tz: furnace temperature (° C)
DIz: Target coke strength (DI 150 15 )
C1 to C4: Coefficients determined by multiple regression analysis

本発明者らは、粉砕粒度(質量%)、炉温(℃)、及び、コークス強度(DI)の関係について鋭意調査した。その結果を、図1に示す。   The present inventors have intensively investigated the relationship between the pulverized particle size (mass%), the furnace temperature (° C.), and the coke strength (DI). The result is shown in FIG.

ちなみに、本発明における炉温とは、石炭乾留中の燃焼室の平均温度を意味している。平均温度の求め方については、特に限定されないが、例えば、燃焼室の上部の煉瓦に、炉団方向(炭化室が並んでいる方向)に一定の間隔で埋設した複数個の温度計(熱電対)で測定された値の平均値を用いることが推奨される。   Incidentally, the furnace temperature in the present invention means the average temperature of the combustion chamber during coal carbonization. The method for obtaining the average temperature is not particularly limited. For example, a plurality of thermometers (thermocouples) embedded in bricks at the top of the combustion chamber at a certain interval in the furnace group direction (direction in which the carbonization chambers are arranged). It is recommended to use the average of the values measured in

高炉の安定操業を維持するために、コークス強度は、例えば、DI150 15を、85.3以上に管理する必要がある(図1中、点線、参照)。ここで、DI150 15は、JIS K 2151で規定されたドラム試験機による、150回転後の15mm篩上のコークスの質量割合(−)であり、コークス強度(ドラム強度ともいう。)を表す指標である。 In order to maintain the stable operation of the blast furnace, the coke strength needs to be controlled to, for example, DI 150 15 at 85.3 or more (see the dotted line in FIG. 1). Here, DI 150 15 is a mass ratio (−) of coke on a 15 mm sieve after 150 rotations by a drum tester defined in JIS K 2151, and is an index representing coke strength (also referred to as drum strength). It is.

図1において、管理値(目標とするコークス強度)85.3と、炉温毎のコークス強度−粉砕粒度曲線の交点から、石炭を粉砕する際の粉砕粒度(−3mm%)の下限値が求まる。   In FIG. 1, the lower limit value of the pulverized particle size (−3 mm%) when pulverizing coal is obtained from the intersection of the control value (target coke strength) 85.3 and the coke strength-ground particle size curve for each furnace temperature. .

図1に示す粉砕例では、−3mm%の下限値は、(a)炉温1250℃で75.2質量%、(b)炉温1200℃で76.4質量%、(c)炉温1150℃で78.8質量%、(d)炉温1100℃で82.2質量%、炉温1050℃で84.1質量%であり、炉温を低く設定するほど、石炭の粉砕を強化して、−3mm%を高める必要があることが解る。   In the pulverization example shown in FIG. 1, the lower limit value of −3 mm% is (a) 75.2 mass% at a furnace temperature of 1250 ° C., (b) 76.4 mass% at a furnace temperature of 1200 ° C., and (c) furnace temperature 1150. 78.8% by mass at ℃, (d) 82.2% by mass at 1100 ° C furnace temperature, 84.1% by mass at 1050 ° C furnace temperature. -3mm% needs to be increased.

管理値は、85.3に限られず、高炉操業条件に基づいて適宜設定する。管理値を適宜設定すれば、図1より、目標とするコークス強度(DI150 15、以下「目標DI」ということがある。)を達成するのに必要な粉砕粒度(−3mm%)の下限値を、コークス炉の炉温毎に求めることができる。表1に、その一例を示す。 The management value is not limited to 85.3, and is set as appropriate based on the blast furnace operating conditions. If the control value is set appropriately, the lower limit value of the pulverized particle size (-3 mm%) necessary to achieve the target coke strength (DI 150 15 , hereinafter referred to as “target DI”) can be seen from FIG. Can be obtained for each furnace temperature of the coke oven. Table 1 shows an example.

Figure 0005561146
Figure 0005561146

表1に示すコークスの目標DIを達成するための−3mm%の下限値と、コークス炉の炉温の関係を、目標DI(DI管理値)毎にプロットした結果を、図2に示す。−3mm%の下限値とコークス炉の炉温は、良好な対応関係にあることが解る。   FIG. 2 shows the result of plotting the relationship between the lower limit of −3 mm% for achieving the coke target DI shown in Table 1 and the furnace temperature of the coke oven for each target DI (DI management value). It can be seen that the lower limit of −3 mm% and the furnace temperature of the coke oven have a good correspondence.

図2に示す対応関係を、目標DI毎に、下記(3)式で示す一次式で近似し、直線の傾き“a”と、Y切片“b”を求めた。その結果を、表2に示す。
−3mm%の下限値(%)=a×[炉温(℃)]+b ・・・(3)
The correspondence relationship shown in FIG. 2 is approximated for each target DI by a linear expression represented by the following expression (3), and a straight line inclination “a” and a Y intercept “b” are obtained. The results are shown in Table 2.
-3 mm% lower limit (%) = a × [furnace temperature (° C.)] + B (3)

Figure 0005561146
Figure 0005561146

表2に示す直線の傾き“a”と、DI管理値の関係を図3に示し、また、直線のY切片“b”とDI管理値の関係を図4に示す。“a”とDI管理値の関係、及び、“b”とDI管理値の関係は、それぞれ、下記(4)式、及び、下記(5)式で示す一次関数を用いて、高い決定係数R2で表すことができる。 FIG. 3 shows the relationship between the slope “a” of the straight line shown in Table 2 and the DI management value, and FIG. 4 shows the relationship between the Y intercept “b” of the straight line and the DI management value. The relationship between “a” and the DI management value, and the relationship between “b” and the DI management value, respectively, are determined by using a linear function represented by the following equation (4) and the following equation (5). 2 can be expressed.

a(傾き)=0.0286×(DI管理値)−2.4925 ・・・(4)
b(Y切片)=(−27.626)×(DI管理値)+2493.6・・・(5)
なお、式(4)において、R2=0.9851であり、式(5)において、R2=0.9856である。
a (slope) = 0.0286 × (DI management value) −2.4925 (4)
b (Y intercept) = (− 27.626) × (DI management value) +2493.6 (5)
In the formula (4), R 2 = 0.9851 and in the formula (5), R 2 = 0.9856.

上記(4)式と(5)式を(3)式に適用して整理すると、以下のようになる。   When the above formulas (4) and (5) are applied to the formula (3) and rearranged, the following formula is obtained.

−3mm%の下限値(質量%)=[0.0286×(DI管理値)−2.4925]
×[炉温(℃)]+[(−27.626)×(DI管理値)+2493.6]
=C1×DIz+C2×Tz+C3×DIz×Tz+C4 ・・・(6)
C1〜C4:係数
DIz:DI管理値(目標とするコークス強度:DI150 15
Tz:炉温(℃)
-3 mm% lower limit (% by mass) = [0.0286 × (DI management value) −2.4925]
X [furnace temperature (° C)] + [(-27.626) x (DI management value) + 2493.6]
= C1 x DIz + C2 x Tz + C3 x DIz x Tz + C4 (6)
C1 to C4: Coefficient
DIz: DI management value (target coke strength: DI 150 15 )
Tz: Furnace temperature (° C)

(6)式の係数C1〜C4を求めるため、−3mm%の下限値を従属(目的)変数、DI管理値、炉温℃、[DI管理値×炉温(℃)]を独立(説明)変数とする重回帰分析を行った。その結果、下記(2)式が得られた。
Z(質量%)=(−22.0855)×DIz+(−2.0548)×Tz
+0.02354×Tz×DIz+2016.9 ・・・(2)
(6) In order to obtain the coefficients C1 to C4 of the equation, the lower limit value of -3 mm% is subordinate (objective) variable, DI control value, furnace temperature ° C, and [DI management value x furnace temperature (° C)] independent (explanation) Multiple regression analysis with variables was performed. As a result, the following formula (2) was obtained.
Z (mass%) = (− 22.0855) × DIz + (− 2.0548) × Tz
+ 0.02354 × Tz × DIz + 20166.9 (2)

ここで、上記式(2)で求まる−3mm%の下限値(推定値)と実測値の関係を図5に示す。図5から、推定値と実測値の間には、極めて良好な対応関係があることが解る。このことから、上記式(1)で求まる−3mm%の下限値(推定値)は、石炭を実際に粉砕する際、粉砕後の粒度(質量%)を規定する有意の数値であるといえる。   Here, the relationship between the lower limit value (estimated value) of −3 mm% obtained by the above formula (2) and the actually measured value is shown in FIG. From FIG. 5, it can be seen that there is a very good correspondence between the estimated value and the actually measured value. From this, it can be said that the lower limit (estimated value) of −3 mm% obtained by the above formula (1) is a significant numerical value that defines the particle size (mass%) after pulverization when the coal is actually pulverized.

コークス炉の炉温は、高炉におけるコークスの需要量によって定められる。即ち、高炉のコークス需要量が増加すれば、炉温を高く設定して稼働率を上げ、逆に、需要量が減少すれば、炉温を低く設定して稼働率を下げるので、コークスの炉温Tzは、コークスの需要量に応じ、適宜、設定する。   The temperature of the coke oven is determined by the amount of coke demand in the blast furnace. That is, if the demand for coke in the blast furnace increases, the furnace temperature is set higher to increase the operating rate. Conversely, if the demand volume decreases, the furnace temperature is set lower to lower the operating rate. The temperature Tz is set as appropriate according to the amount of coke demand.

通常、コークス炉の操業において、炉温は、1000〜1300℃の範囲で設定するので、上記式(1)及び(2)において、Tzは、1000〜1300℃の範囲内の温度が好ましい。また、目標DIは、通常、DI150 15で84.0〜87.0であるので、上記式(1)及び(2)において、DIzは、DI150 15で84.0〜87.0の範囲内の値が好ましい。 Usually, in the operation of a coke oven, the furnace temperature is set in the range of 1000 to 1300 ° C, and therefore, in the above formulas (1) and (2), Tz is preferably a temperature in the range of 1000 to 1300 ° C. The target DI is usually Since DI 0.99 15 is 84.0 to 87.0, the above formula (1) and (2), Diz is in the range of 84.0 to 87.0 in DI 0.99 15 Values within are preferred.

C1〜C4は、重回帰分析で定める係数であるところ、実際には、図1に示すコークス強度−粉砕粒度曲線は、石炭の性状又は銘柄、及び/又は、配合条件によって異なり、また、目標DIを達成するために必要な粉砕粒度(−3mm%)も、コークス炉の炉温毎に異なるので、操業実績を考慮して設定する。   C1 to C4 are coefficients determined by multiple regression analysis. Actually, the coke strength-grinding particle size curve shown in FIG. 1 differs depending on the properties or brands of coal and / or blending conditions, and the target DI Since the pulverization particle size (-3 mm%) necessary for achieving the above also varies depending on the furnace temperature of the coke oven, it is set in consideration of the operation results.

石炭が、非微粘結炭のような低品位炭である場合や、粗大イナート成分を多く含む場合、通常、前述したように、石炭中の不活性成分を選択的に細粒化して均一分散させて、コークス強度を高める手段が採用されるので、本発明は、非微粘結炭(低品位炭)や粗大イナートを多く含む石炭を多量に使用して高強度コークスを製造する場合に、特に有効である。   When the coal is a low-grade coal such as non-slightly caking coal or contains a large amount of coarse inert components, normally, as described above, the inert components in the coal are selectively finely divided and uniformly dispersed. Therefore, since a means for increasing the coke strength is adopted, the present invention is used when producing a high strength coke using a large amount of non-slightly caking coal (low grade coal) or a coal containing a large amount of coarse inert. It is particularly effective.

ただし、非微粘結炭(低品位炭)を過度に多く使用すると、コークス強度が低下する場合があるため、非微粘結炭(低品位炭)の配合量は、40質量%未満とすることが好ましい。   However, if too much non-slightly caking coal (low-grade coal) is used, coke strength may decrease, so the blending amount of non-slightly-caking coal (low-grade coal) should be less than 40% by mass. It is preferable.

ちなみに、本発明において、非微粘結炭(低品位炭)は、ビトリニット平均最大反射率(Ro)とギースラープラストメータで測定した最高流動度(MF)を用いて、以下のように定義する。
Roが0.85以下の場合は、MFの対数値(Log)が2.5以下の石炭。
Roが0.85を超える場合は、MFの対数値(Log)が0.5以下の石炭。
Incidentally, in the present invention, non-slightly caking coal (low-grade coal) is defined as follows using vitrinite average maximum reflectance (Ro) and maximum fluidity (MF) measured with a Geisler plastometer. .
When Ro is 0.85 or less, coal whose logarithmic value (Log) of MF is 2.5 or less.
When Ro exceeds 0.85, coal whose logarithm value (Log) of MF is 0.5 or less.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
非微粘結炭を約32%配合し、コークス炉の炉温Tz=1200℃で操業しているときに、高炉用のコークスとして、強度DI150 15=85.3のコークスを製造する必要が生じた。そこで、上記式(2)において、Tz=1200℃、DIz(DI150 15)=85.3として、−3mm%の下限値Z(質量%)を求めたところ、Z=76.8質量%が得られた。
(Example)
It is necessary to produce coke with strength DI 150 15 = 85.3 as coke for blast furnace when blended with about 32% non-coking coal and operating at a coke oven temperature Tz = 1200 ° C. occured. Therefore, in the above formula (2), when Tz = 1200 ° C. and DIz (DI 150 15 ) = 85.3, a lower limit value Z (mass%) of −3 mm% was obtained, and Z = 76.8 mass% was obtained. Obtained.

そこで、非微粘結炭を含む配合炭の−3mm%がZ=76.8質量%以上となるように石炭を粉砕し、コークス炉に装入してコークスを製造した。得られたコークスのコークス強度DI150 15を測定したところ、DI150 15≒85.3となり、目標とするコークス強度を有するコークスを、安定的に製造することができた。 Therefore, the coal was pulverized so that -3 mm% of the blended coal containing non-slightly caking coal became Z = 76.8% by mass or more and charged into a coke oven to produce coke. When the coke strength DI 150 15 of the obtained coke was measured, DI 150 15 ≈85.3, and the coke having the target coke strength could be stably produced.

前述したように、本発明によれば、石炭を、目標とするコークス強度とコークス炉の炉温との関係で定まる粉砕粒度に粉砕してコークス炉に装入するので、目標とするコークス強度を有する高炉用コークスを安定的かつ効率的に製造することができる。よって、本発明は、コークス製造産業において利用可能性が高いものである。   As described above, according to the present invention, coal is pulverized to a pulverized particle size determined by the relationship between the target coke strength and the furnace temperature of the coke oven and charged into the coke oven. The coke for blast furnace which has can be manufactured stably and efficiently. Therefore, the present invention has high applicability in the coke manufacturing industry.

Claims (3)

石炭を粉砕してコークス炉に装入し、高炉用コークスを製造する方法において、
石炭を種々の−3mmの割合で粉砕し、−3mmの割合の異なる石炭を種々の炉温で乾留して得られたコークスのコークス強度を測定して、目標とするコークス強度DIzを得るために必要な−3mmの割合の下限値Zを炉温Tz毎に求め、
得られた該下限値Zに対する前記DIzとTzの関係を下記式(1)として予め求めておき、
コークス炉の実操業において、目標とするコークス強度DIzと炉温Tzを設定して、目標とするコークス強度が得られる石炭の粉砕後の−3mmの割合の下限値Z(質量%)を下記式(1)で求め、粉砕後の−3mmの割合がZ以上となるように石炭を粉砕して、コークス炉に装入することを特徴とする高炉用コークスの製造方法。
Z(質量%)=C1×DIz+C2×Tz+C3×Tz×DIz+C4 ・・・(1)
ここで、
C1〜C4:前記炉温Tz毎に求められた下限値Zを従属変数とし、前記目標とするコークス強度DIz、前記炉温Tz、[DIz×Tz]を独立変数として重回帰分析することにより得られる係数
In the method of pulverizing coal and charging it into a coke oven to produce coke for blast furnace,
In order to obtain the target coke strength DIz by measuring the coke strength of coke obtained by pulverizing coal at various ratios of -3 mm and carbonizing different coal at different ratios of -3 mm at various furnace temperatures. The required lower limit value Z of -3 mm is obtained for each furnace temperature Tz
The relationship between DIz and Tz with respect to the obtained lower limit value Z is obtained in advance as the following formula (1),
In the actual operation of the coke oven, the target coke strength DIz and the furnace temperature Tz are set, and the lower limit value Z (mass%) of the ratio of −3 mm after pulverization of coal to obtain the target coke strength is expressed by the following formula: obtained in (1), and percentage of -3mm after pulverization is pulverized coal so that the above Z, method of manufacturing blast furnace coke, which comprises charging the coke oven.
Z (mass%) = C1 × DIz + C2 × Tz + C3 × Tz × DIz + C4 (1)
here,
C1 to C4: obtained by performing multiple regression analysis with the lower limit value Z determined for each furnace temperature Tz as a dependent variable, and the target coke strength DIz, the furnace temperature Tz, and [DIz × Tz] as independent variables. coefficients that are
前記式(1)において、Tz:1000〜1300℃、及び、DIz:DI150 15で84.0〜87.0であることを特徴とする請求項1に記載の高炉用コークスの製造方法。 In the formula (1), Tz: 1000~1300 ℃ , and, Diz: production method of blast furnace coke as set forth in claim 1, characterized in that in DI 0.99 15 is 84.0 to 87.0. 前記石炭が低品位炭を40質量%未満で配合した配合炭であることを特徴とする請求項1又は2に記載の高炉用コークスの製造方法。 The method for producing coke for blast furnace according to claim 1 or 2, wherein the coal is blended coal in which low-grade coal is blended at less than 40 mass% .
JP2010284424A 2010-12-21 2010-12-21 Method for producing blast furnace coke Active JP5561146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010284424A JP5561146B2 (en) 2010-12-21 2010-12-21 Method for producing blast furnace coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010284424A JP5561146B2 (en) 2010-12-21 2010-12-21 Method for producing blast furnace coke

Publications (2)

Publication Number Publication Date
JP2012131887A JP2012131887A (en) 2012-07-12
JP5561146B2 true JP5561146B2 (en) 2014-07-30

Family

ID=46647865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010284424A Active JP5561146B2 (en) 2010-12-21 2010-12-21 Method for producing blast furnace coke

Country Status (1)

Country Link
JP (1) JP5561146B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914641B2 (en) * 1998-08-19 2007-05-16 新日本製鐵株式会社 Coke strength estimation method

Also Published As

Publication number Publication date
JP2012131887A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP6856178B2 (en) Coal evaluation method, compound coal preparation method, and coke production method
JP4757956B2 (en) Method for producing blast furnace coke
JP6265015B2 (en) Coke manufacturing method
JP5561146B2 (en) Method for producing blast furnace coke
JP6241336B2 (en) Method for producing blast furnace coke
KR101267686B1 (en) Mixing method of coal for making cokes
JP2007169603A (en) Method for producing ferrocoke and sintered ore
JP6065510B2 (en) Method of blending coke raw material for blast furnace
JP5763308B2 (en) Ferro-coke manufacturing method
JP6107374B2 (en) Coke production method
JP7070228B2 (en) Estimating method of surface fracture strength of coke
KR20110120584A (en) Size regulating method of mixing coal for making cokes
JP4751408B2 (en) Method for producing blast furnace coke
JP5087868B2 (en) Ferro-coke manufacturing method
JP6075354B2 (en) Coke production method
JP4899390B2 (en) Coke production method
JP4625253B2 (en) Method for producing blast furnace coke
JP5011833B2 (en) Coke manufacturing method
JP2007246593A (en) Method for producing coke
JP6227482B2 (en) Method for producing blast furnace coke and blast furnace coke
JP3614919B2 (en) Blast furnace coke manufacturing method
KR101299385B1 (en) Prediction method of sintering productivity
JP6720827B2 (en) Carbon material for producing coke, method for producing the same, and method for producing coke
JP6740833B2 (en) Bulk density estimation method and compounding adjustment method for coke oven charging coal
JP4396295B2 (en) Method for producing metallurgical coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R151 Written notification of patent or utility model registration

Ref document number: 5561146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350