JP6197581B2 - Battery manufacturing method and manufacturing apparatus - Google Patents
Battery manufacturing method and manufacturing apparatus Download PDFInfo
- Publication number
- JP6197581B2 JP6197581B2 JP2013225633A JP2013225633A JP6197581B2 JP 6197581 B2 JP6197581 B2 JP 6197581B2 JP 2013225633 A JP2013225633 A JP 2013225633A JP 2013225633 A JP2013225633 A JP 2013225633A JP 6197581 B2 JP6197581 B2 JP 6197581B2
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- chamber
- exterior body
- degassing
- generation element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- 238000010248 power generation Methods 0.000 claims description 74
- 238000007789 sealing Methods 0.000 claims description 74
- 238000007872 degassing Methods 0.000 claims description 62
- 230000002093 peripheral effect Effects 0.000 claims description 32
- 238000013022 venting Methods 0.000 claims description 15
- 238000007599 discharging Methods 0.000 claims description 6
- 238000005553 drilling Methods 0.000 claims 2
- 239000007789 gas Substances 0.000 description 114
- 238000000034 method Methods 0.000 description 52
- 239000008151 electrolyte solution Substances 0.000 description 14
- 239000012298 atmosphere Substances 0.000 description 12
- -1 polyethylene Polymers 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 9
- 238000003466 welding Methods 0.000 description 8
- 239000011261 inert gas Substances 0.000 description 7
- 230000032683 aging Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000003750 conditioning effect Effects 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000005304 joining Methods 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000005001 laminate film Substances 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000009966 trimming Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Primary Cells (AREA)
Description
本発明は、ラミネートフィルム等の薄く軽量な外装用フィルムにより形成された外装体をもつ電池の製造方法および製造装置に関し、特に、コンディショニング工程等で発生するガスを、液漏れさせることなく排出するに好適な電池の製造方法および製造装置に関するものである。 The present invention relates to a method and an apparatus for manufacturing a battery having an exterior body formed of a thin and lightweight exterior film such as a laminate film, and in particular, to discharge gas generated in a conditioning process or the like without causing liquid leakage. The present invention relates to a preferable battery manufacturing method and manufacturing apparatus.
従来からラミネートフィルム等の薄く軽量な外装用フィルムにより形成される外装体をもつ電池のコンディショニング等に伴うガス抜きを確実に行え、ガス抜き後の密閉性を充分に担保できると記載された電池の製造方法が提案されている(特許文献1参照)。 A battery that has been described in the past as being able to reliably degas the condition of a battery having an exterior body made of a thin and lightweight exterior film such as a laminate film, and to ensure sufficient sealing after degassing. A manufacturing method has been proposed (see Patent Document 1).
これは、内部と連通し且つ外部から隔離されている未接合部を形成するように、外装用フィルムの開口部を接合して外装体の内部に発電要素を封入する封入工程と、未接合部の厚みを所定厚み以下に拘束しながら、ガス抜き穴を開けるガス抜き工程と、未接合部を接合して発電要素を封入する第2封止工程と、を有する。そして、未接合部の膨張を抑え且つ応力集中を緩和する方法として、外装体の内圧が高い場合に、未接合部の厚みを規制するようにしている。これにより、発生したガスによる内圧上昇で未接合部に大きな膨張や変形が生じ、未接合部を接合するときに元通りの形態に戻らないこと、そして、未接合部の膨張に伴い、未接合部の周辺で応力が集中することによって、接合部の一部が剥離することを防止するようにしている。 This includes an encapsulating step of joining the opening of the exterior film and enclosing the power generation element inside the exterior body so as to form an unjoined portion that communicates with the inside and is isolated from the outside, and the unjoined portion A degassing step of opening a degassing hole while constraining the thickness of the substrate to a predetermined thickness or less, and a second sealing step of encapsulating the power generation element by joining the unjoined portion. And as a method of suppressing the expansion of the unjoined part and relaxing the stress concentration, the thickness of the unjoined part is regulated when the internal pressure of the exterior body is high. As a result, a large expansion or deformation occurs in the unjoined part due to an increase in internal pressure due to the generated gas, and when the unjoined part is joined, it does not return to its original form. By concentrating stress around the part, part of the joint is prevented from peeling off.
上記従来例では、発生したガスを外部に放出するガス抜き工程において、内圧による膨らみを規制しつつ未接合部にガス抜き穴を開けるようにしている。しかしながら、未接合部に電解液が残留している場合には、開けたガス抜き穴を通して未接合部に残留している電解液がガスとともに外部に飛び出し、電解液の内蔵量が減少する不具合があった。また、飛び出した電解液が外装体の表面に付着した場合には、拭き取り工程が必要となり、生産コストを上昇させる不具合があった。 In the above-described conventional example, in the degassing step of releasing the generated gas to the outside, the degassing holes are formed in the unjoined portion while restricting the swelling due to the internal pressure. However, if the electrolyte remains in the unjoined part, the electrolyte remaining in the unjoined part jumps out together with the gas through the opened vent hole, and the built-in amount of electrolyte is reduced. there were. Moreover, when the electrolyte solution which protrude | jumped out adhered to the surface of an exterior body, the wiping process was needed and there existed a malfunction which raised production cost.
そこで本発明は、上記問題点に鑑みてなされたもので、液漏れが生ずることなく、製造過程で外装体内に発生したガスを外部に排出して、特性及び信頼性が良好な電池の製造方法および製造装置を提供することを目的とする。 Accordingly, the present invention has been made in view of the above-described problems, and a method for manufacturing a battery having good characteristics and reliability by discharging gas generated in the exterior body during the manufacturing process to the outside without causing liquid leakage. And it aims at providing a manufacturing apparatus.
本発明は、外装用フィルムが重ね合わされることで構成された外装体の内部に発電要素を格納し、外装体の周囲辺を封止する工程であって、発電要素が外装体の周囲辺の少なくとも一部との間に距離をおいて配置され、一部の周囲辺と発電要素との間にガス抜き部が設けられる第1封止工程と、発電要素の上方にガス抜き部が位置した状態で、一部の周囲辺と発電要素との間に、ガス抜き部と連通するガス抜き穴を開ける開孔工程と、ガス抜き穴を通して外装体内のガスを排出するガス抜き工程と、ガス抜き穴を封止する第2封止工程と、を有する電池の製造方法を前提としている。そして、外装体の一部の周囲辺と当該周囲辺に隣接して発電要素を覆う一部領域とを収容すると共に、外装体の一部領域を発電要素の積層方向外側に吸引することにより外部とは遮断した空間を形成するチャンバを備える。そして、当該チャンバ内において、開孔工程及びガス抜き工程を実施するようにしている。 The present invention is a process of storing a power generation element inside an exterior body configured by superposing exterior films , and sealing a peripheral side of the exterior body, where the power generation element is a peripheral side of the exterior body. arranged at a distance between at least a portion, a first sealing step degassing portion that is provided, the vent zone above the power generating element located between the power generating element and part of the surrounding edge In such a state, an opening process for opening a gas vent hole communicating with the gas vent portion between a part of the peripheral edge and the power generation element, a gas vent process for discharging the gas in the exterior body through the gas vent hole, and a gas It presupposes the manufacturing method of the battery which has a 2nd sealing process which seals a punch hole. And while accommodating the surrounding area of a part of an exterior body and the partial area | region which covers a power generation element adjacent to the said surrounding edge, it is outside by attracting the partial area | region of an exterior body to the lamination direction outer side of a power generation element And a chamber for forming a closed space. In the chamber, an opening process and a degassing process are performed.
したがって、本発明では、発電要素を収容する領域の外装体を発電要素の積層方向外側に吸引することにより外部とは遮断されたチャンバ空間を構成している。このため、外側へ吸引された外装用フィルムによりガス抜き部の容積を拡大でき、ガス抜き部での気液分離を促進して、開孔工程での電解液の漏れを最少とできる。しかも、外側へ吸引された外装用フィルムと発電要素との間に、外装体内の発電要素の収容部とガス抜き部とを連通させる通路を形成することができる。これにより、発電要素に滞留するガスを当該通路を経由して容易にガス抜き部に浮上・分離させることができ、ガス抜きを確実化できる。 Therefore, in the present invention, a chamber space that is cut off from the outside is configured by sucking the exterior body of the region that houses the power generation element to the outside in the stacking direction of the power generation elements. For this reason, the volume of the degassing part can be expanded by the exterior film sucked to the outside, the gas-liquid separation in the degassing part is promoted, and the leakage of the electrolytic solution in the opening process can be minimized. In addition, a passage through which the housing portion of the power generation element and the gas venting portion in the exterior body communicate with each other can be formed between the exterior film sucked outward and the power generation element. Thereby, the gas stagnating in the power generation element can be easily levitated / separated to the degassing portion via the passage, and degassing can be ensured.
以下、本発明の電池の製造方法および製造装置を実施形態に基づいて説明する。 Hereinafter, a battery manufacturing method and a manufacturing apparatus of the present invention will be described based on embodiments.
本発明の電池の製造方法を適用する電池は、薄く軽量な外装用フィルムからなる外装体を備える電池である。また、対象とする電池としては、二次電池に限られるものでなく、一次電池であってもよい。以下では、二次電池を製造対象として、説明する。 A battery to which the method for producing a battery of the present invention is applied is a battery including an exterior body made of a thin and lightweight exterior film. In addition, the target battery is not limited to a secondary battery, and may be a primary battery. Below, a secondary battery is demonstrated as a manufacturing object.
薄く軽量な外装用フィルムは、例えば三層構造を有する高分子−金属複合ラミネートフィルムであり、金属層および金属層の両面に配置される高分子樹脂層を有する。金属層は、例えば、アルミニウム、ステンレス、ニッケル、銅などの金属箔から構成される。高分子樹脂層は、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレン、変性ポリプロピレン、アイオノマー、エチレンビニルアセテート等の熱溶着性樹脂フィルムから構成される。外装用フィルムは、熱溶着や超音波溶着により容易に接着できるとともに、気密性、水分非透過性に優れたものであることが望ましい。 The thin and lightweight exterior film is, for example, a polymer-metal composite laminate film having a three-layer structure, and includes a metal layer and a polymer resin layer disposed on both surfaces of the metal layer. A metal layer is comprised from metal foil, such as aluminum, stainless steel, nickel, copper, for example. The polymer resin layer is composed of, for example, a heat-welding resin film such as polyethylene, polypropylene, modified polyethylene, modified polypropylene, ionomer, and ethylene vinyl acetate. It is desirable that the exterior film can be easily bonded by heat welding or ultrasonic welding, and has excellent airtightness and moisture impermeability.
外装用フィルムは、図1に示すように、二次電池の発電要素2を収容した状態で、その周縁3カ所の融着部Aを「コの字状」に熱溶着により接合して袋状に形成し、袋状の内部に電解液を注液した状態で、袋状の開口部Bを熱溶着によって接合して外装体1を構成している。開口部Bの熱溶着による接合は、後述するように、第1封止工程による第1封止部C、第2封止工程及び本封止工程による第2封止部D及び本封止部Eの3段階でそれぞれ実施される。 As shown in FIG. 1, the exterior film is in the form of a bag by joining the power generating element 2 of the secondary battery and joining the fusion portions A at the three peripheral edges thereof into a “U-shape” by heat welding. The bag-shaped opening B is joined by thermal welding in a state where the electrolytic solution is injected into the bag-shaped interior, and the exterior body 1 is configured. As will be described later, the bonding by the thermal welding of the opening B is the first sealing portion C by the first sealing step, the second sealing portion D by the second sealing step and the main sealing step, and the main sealing portion. Each of the three stages of E is performed.
二次電池の発電要素2として、リチウムイオン二次電池を例として、その概略を説明する。リチウムイオン二次電池の発電要素2は、正極及び負極を、セパレータを介して重畳したものである。即ち、発電要素2は、正極活物質層が塗布された集電体からなる正極板と、負極活物質層が塗布された集電体からなる負極板とを、セパレータを介して積層することで、形成されている。リチウムイオン二次電池は、非水電池であり製造時に混入した水分が反応することでガスが発生する。また、電解液中に含まれる有機溶媒の蒸発や、電池製造後のコンディショニングにおける電極反応でガスが発生する。 As an example of the power generation element 2 of the secondary battery, a lithium ion secondary battery will be described as an example. The power generation element 2 of the lithium ion secondary battery is obtained by superposing a positive electrode and a negative electrode via a separator. That is, the power generation element 2 is configured by laminating a positive electrode plate made of a current collector coated with a positive electrode active material layer and a negative electrode plate made of a current collector coated with a negative electrode active material layer via a separator. Is formed. The lithium ion secondary battery is a non-aqueous battery, and gas is generated by the reaction of moisture mixed during manufacture. Further, gas is generated due to evaporation of an organic solvent contained in the electrolytic solution and electrode reaction in conditioning after manufacturing the battery.
正極板は、例えば、アルミニウム箔よりなる集電体と、集電体のタブ領域を除いた両面領域に形成された正極活物質層と、を備える。図1では、タブ領域2Aのみが発電要素2の外側に引出された状態で図示されている。正極活物質層としては、例えば、LiMn2O4等のリチウム−遷移金属複合酸化物からなる正極活物質、導電助剤、バインダ等を含んでいる。 The positive electrode plate includes, for example, a current collector made of an aluminum foil, and a positive electrode active material layer formed in a double-sided region excluding the tab region of the current collector. In FIG. 1, only the tab region 2 </ b> A is illustrated in a state of being drawn out of the power generation element 2. As a positive electrode active material layer, the positive electrode active material which consists of lithium-transition metal complex oxides, such as LiMn2O4, a conductive support agent, a binder, etc. are included, for example.
負極板は、例えば、銅箔よりなる集電体と、集電体のタブ領域を除いた両面領域に形成された負極活物質層と、を備える。図1では、タブ領域2Bのみが発電要素2の外側に引出された状態で図示されている。負極活物質層は、負極活物質、導電助剤、バインダ等を含んでいる。負極活物質は、例えば、ハードカーボン(難黒鉛化炭素材料)、黒鉛系炭素材料や、リチウム−遷移金属複合酸化物である。 The negative electrode plate includes, for example, a current collector made of copper foil and a negative electrode active material layer formed in a double-sided region excluding the tab region of the current collector. In FIG. 1, only the tab region 2 </ b> B is illustrated in a state of being drawn out of the power generation element 2. The negative electrode active material layer includes a negative electrode active material, a conductive additive, a binder, and the like. The negative electrode active material is, for example, hard carbon (non-graphitizable carbon material), graphite-based carbon material, or lithium-transition metal composite oxide.
セパレータは、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリアミド、ポリイミドから形成される。 A separator is formed from polyolefin, such as polyethylene and polypropylene, polyamide, and polyimide, for example.
液体電解質(電解液)は、有機溶媒、支持塩等を含んでいる。有機溶媒は、例えば、プロピレンカーボネート(PC)やエチレンカーボネート(EC)等の環状カーボネート類、ジメチルカーボネート等の鎖状カーボネート類、テトラヒドロフラン等のエーテル類である。支持塩は、リチウム塩(LiPF6)等の無機酸陰イオン塩、LiCF3SO3等の有機酸陰イオン塩である。 The liquid electrolyte (electrolytic solution) contains an organic solvent, a supporting salt, and the like. Examples of the organic solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), chain carbonates such as dimethyl carbonate, and ethers such as tetrahydrofuran. The supporting salt is an inorganic acid anion salt such as lithium salt (LiPF6), or an organic acid anion salt such as LiCF 3 SO 3 .
複数の正極板及び負極板の集電板の同極となるタブ領域2A,2Bは、図1に示すように、発電要素2から電流を引き出すために、それぞれ同極同士が接続されて、正極端子3A及び負極端子3Bに接続される。そして、当該正極端子3A及び負極端子3Bは外装体1の融着部Aを介して外装体1の外部に引出している。 As shown in FIG. 1, the tab regions 2A and 2B, which are the same polarity of the current collector plates of the plurality of positive plates and the negative plates, are connected to each other in order to draw current from the power generation element 2. Connected to the terminal 3A and the negative terminal 3B. The positive electrode terminal 3 </ b> A and the negative electrode terminal 3 </ b> B are drawn out of the exterior body 1 through the fusion part A of the exterior body 1.
図2は、本実施形態に係る二次電池の製造方法を説明するための工程図である。本実施形態の二次電池の製造方法においては、封止工程と、コンディショニング工程と、ガス抜き・第2封止工程と、本封止・トリミング工程と、必要に応じてなされるその他の工程とを有する。以下、図2に基づいて、本実施形態の二次電池の製造方法を説明する。 FIG. 2 is a process diagram for explaining the manufacturing method of the secondary battery according to the present embodiment. In the manufacturing method of the secondary battery of the present embodiment, a sealing step, a conditioning step, a degassing / second sealing step, a main sealing / trimming step, and other steps performed as necessary Have Hereinafter, based on FIG. 2, the manufacturing method of the secondary battery of this embodiment is demonstrated.
封止工程では、まず、2枚の略矩形形状の外装用フィルム若しくは二つ折りの外装用フィルムの間に、矩形形状の発電要素2が配置される。正極端子3A及び負極端子3Bは、外装用フィルムから露出するように、位置決めされる。その後、外装用フィルムの周縁が、図1に示すように、1辺を残して「コの字状」に熱融着により接合され、当該1辺が開口部Bとなる袋体が形成される。 In the sealing step, first, the rectangular power generation element 2 is disposed between two substantially rectangular exterior films or bi-fold exterior films . The positive electrode terminal 3A and the negative electrode terminal 3B are positioned so as to be exposed from the exterior film. Thereafter, as shown in FIG. 1, the peripheral edge of the exterior film is joined to a “U-shape” by thermal fusion, leaving one side, and a bag body in which the one side becomes an opening B is formed. .
電解液注入工程においては、開口部Bを経由し、袋体の内側に、電解液が注入される。電解液の注入方法は、特に限定されず、チューブやノズルを開口部Bに差し込んで直接注入したり、電解質へ浸漬することで注入したり、することも可能である。 In the electrolytic solution injection step, the electrolytic solution is injected into the bag body via the opening B. The method for injecting the electrolytic solution is not particularly limited, and it is possible to inject directly by inserting a tube or a nozzle into the opening B, or inject by immersing in an electrolyte.
第1封止工程においては、電解液を注入するために使用した開口部Bを接合して、第1封止部Cを形成することで、外装体1が封止される。この第1封止部Cは、図1に示すように、外装体1の周縁側に寄せた位置で接合される。即ち、発電要素2との距離が遠ざかった位置で接合されて、当該接合部と発電要素2との間に、発電要素2に連通したガス抜き部4を形成している。 In a 1st sealing process, the exterior part 1 is sealed by joining the opening B used in order to inject | pour electrolyte solution, and forming the 1st sealing part C. FIG. As shown in FIG. 1, the first sealing portion C is joined at a position close to the peripheral side of the exterior body 1. That is, the gas generating part 2 is joined at a position away from the power generation element 2, and the gas vent part 4 communicating with the power generation element 2 is formed between the joint and the power generation element 2.
コンディショニング工程では、初充電工程、及び、電池特性を安定化させるためのエージング工程が実施される。初充電工程により、発電要素2から初期ガスが発生される。また、エージング工程でも、発電要素2から更にガスが発生される。なお、コンディショニング工程は、用途に応じて初充電工程、エージング工程の一方だけでよい場合がある。 In the conditioning process, an initial charging process and an aging process for stabilizing battery characteristics are performed. Initial gas is generated from the power generation element 2 by the initial charging step. In the aging process, more gas is generated from the power generation element 2. The conditioning process may be only one of the initial charging process and the aging process depending on the application.
初充電工程においては、発電要素2の有する電池容量の所定割合、例えば満充電まで充電した場合に得られる電池電圧を、発電要素2が発生させるまで、充電される。なお、初充電の温度は、45℃よりも低い場合には、ガスの発生が不十分となり、70℃よりも高い場合には、電池特性が劣化する虞があるため、45〜70℃が好ましい。また、電池容量の所定割合は、必要に応じて選択される。また、エージング工程においては、発電要素2に充電した状態で、保持される。 In the initial charging step, charging is performed until the power generation element 2 generates a predetermined ratio of the battery capacity of the power generation element 2, for example, the battery voltage obtained when the power generation element 2 is fully charged. The initial charge temperature is preferably 45 to 70 ° C., when the temperature is lower than 45 ° C., gas generation becomes insufficient, and when it is higher than 70 ° C., battery characteristics may be deteriorated. . Moreover, the predetermined ratio of the battery capacity is selected as necessary. In the aging process, the power generation element 2 is held in a charged state.
ガス抜き・第2封止工程では、大気圧のドライエア又は不活性ガス等のドライガスの雰囲気中において開孔工程が実施され、次いで、減圧した雰囲気中においてガス抜き工程と第2封止工程が実施される。 In the degassing / second sealing step, the opening step is performed in an atmosphere of dry gas such as atmospheric dry air or inert gas, and then the degassing step and the second sealing step are performed in a decompressed atmosphere. To be implemented.
開孔工程では、第1封止部Cのガス抜き部4に、図1に示すように、切り込みによるスリット状のガス抜き穴5を形成して、ガス抜き部4を外部に連通させる。 In the opening process, as shown in FIG. 1, slit-like gas vent holes 5 are formed in the gas vent portion 4 of the first sealing portion C so that the gas vent portion 4 communicates with the outside.
ガス抜き工程では、ガス抜き部4がガス抜き穴5により開かれた二次電池に対して、雰囲気を減圧状態とすることにより、電解液中に溶け込んでいるガスを電解液から分離させて、外部に排出させる。このガス抜き工程は、予め設定した所定の時間が経過するまで実行される。 In the degassing step, the gas dissolved in the electrolyte is separated from the electrolyte by setting the atmosphere to a reduced pressure state with respect to the secondary battery in which the gas vent 4 is opened by the gas vent 5. Discharge outside. This degassing process is executed until a predetermined time set in advance elapses.
次いで、真空雰囲気中において、第1封止部Cよりも発電要素2に近接した部分に、図1に示すように、熱融着による接合を行って第2封止部Dを形成する(第2封止工程)。 Next, in a vacuum atmosphere, as shown in FIG. 1, bonding by thermal fusion is performed at a portion closer to the power generation element 2 than the first sealing portion C to form the second sealing portion D (first 2 sealing process).
次いで、第2封止工程を経た二次電池は、真空雰囲気から取出されて、第2封止部Dより広めに熱溶着による接合による本封止が実施される(本封止工程、図1の封止部E参照)。次いで、外装体1の周縁部分の不要な領域を切断するトリミング工程が実施され、検査工程や充放電などの出荷調整工程が実施され、二次電池が完成する。 Next, the secondary battery that has undergone the second sealing step is taken out of the vacuum atmosphere, and is subjected to main sealing by bonding by thermal welding wider than the second sealing portion D (main sealing step, FIG. 1). (See sealing section E). Next, a trimming process for cutting an unnecessary region in the peripheral portion of the outer package 1 is performed, and a shipping adjustment process such as an inspection process and charge / discharge is performed, thereby completing the secondary battery.
ところで、開孔工程、ガス抜き工程及び第2封止工程において、一般的に実行されている比較例を、図8により説明する。比較例では、図8(A)に示すように、エージング工程からの二次電池を、その全部分が収容できる大型の密閉したチャンバ100内にセットして、これらの工程が実行される。即ち、二次電池をセットしたチャンバ100内の大気を排出しつつチャンバ100内にドライガスとしてのドライエア又は不活性ガスを充填する。次いで、図9に示すように、二次電池の外装体1のガス抜き部4にカッタ101を当ててガス抜き穴5を形成し、ガス抜き穴5を通して外装体1のガス抜き部4をチャンバ100内と連通させる。 By the way, the comparative example currently generally performed in an opening process, a degassing process, and a 2nd sealing process is demonstrated with reference to FIG. In the comparative example, as shown in FIG. 8A, the secondary battery from the aging process is set in a large sealed chamber 100 that can accommodate all the parts thereof, and these processes are executed. In other words, the chamber 100 is filled with dry air or an inert gas as a dry gas while discharging the atmosphere in the chamber 100 in which the secondary battery is set. Next, as shown in FIG. 9, a cutter 101 is applied to the degassing portion 4 of the outer package 1 of the secondary battery to form a degassing hole 5, and the degassing portion 4 of the outer package 1 is placed in the chamber through the degassing hole 5. Communicate with 100.
次いで、図8(B)に示すように、チャンバ100内のガスを真空引きにより排出して所定圧まで減圧し、所定圧に到達した時点で真空引きを停止し、所定時間保持する。これにより、二次電池の外装体1内のガスがガス抜き部4に分離排出され、ガス抜き部4からガス抜き穴5を経由してチャンバ100内に排出される。そして、所定時間後に第2封止工程が実行され、第1封止部Cよりも発電要素2に近接した部分を熱融着による接合を行って第2封止部Dを形成して、再び二次電池の外装体1の内部を外部と遮断する(第2封止工程)。そして、チャンバ100内が大気開放され、二次電池は次工程の本封止・トリミング工程へ搬送される。 Next, as shown in FIG. 8B, the gas in the chamber 100 is exhausted by vacuuming to reduce the pressure to a predetermined pressure, and when reaching the predetermined pressure, the vacuuming is stopped and held for a predetermined time. Thereby, the gas in the exterior body 1 of the secondary battery is separated and discharged to the gas vent 4, and is discharged from the gas vent 4 into the chamber 100 through the gas vent 5. Then, after a predetermined time, the second sealing step is executed, and the portion closer to the power generating element 2 than the first sealing portion C is joined by heat fusion to form the second sealing portion D, and again The inside of the exterior body 1 of the secondary battery is blocked from the outside (second sealing step). Then, the inside of the chamber 100 is opened to the atmosphere, and the secondary battery is transported to the next main sealing / trimming step.
以上のように、比較例では、エージング工程からの二次電池をそのままの状態でチャンバ100内に収容して開孔工程が実施される。このため、図9に示すように、二次電池のガス抜き部4はガスによる内圧上昇により若干膨らんだ状態となっており、また、ガス抜き部4内に電解液が残留している場合がある。従って、ガス抜き部4にカッタ101によりガス抜き穴5を形成すると、ガス抜き部4に残留している電解液も、ガス抜き穴5からガスと共に外部へ飛び出すことがある。このように、電解液が外装体1の外部へ飛び出すと、外装体1内に残留する電解液の液量が減少し、電池の寿命を低下させることとなる。 As described above, in the comparative example, the secondary battery from the aging process is accommodated in the chamber 100 as it is, and the hole opening process is performed. For this reason, as shown in FIG. 9, the degassing part 4 of the secondary battery is slightly swollen due to an increase in internal pressure due to the gas, and the electrolyte solution may remain in the degassing part 4. is there. Therefore, when the gas vent hole 5 is formed in the gas vent section 4 by the cutter 101, the electrolyte remaining in the gas vent section 4 may also jump out of the gas vent hole 5 together with the gas. Thus, when the electrolytic solution jumps out of the exterior body 1, the amount of the electrolytic solution remaining in the exterior body 1 is reduced, and the life of the battery is reduced.
また、比較例では、開孔工程、ガス抜き工程及び第2封止工程が、二次電池を収容するチャンバ100内で実施される。即ち、チャンバ100の容積が、二次電池を収容するために大きくなるため、チャンバ100内にドライガスとしてのドライエア又は不活性ガスを充填する時間、チャンバ100内を減圧する時間を長く必要としたり、大型のガス供給装置及び真空引き装置を必要となり、タクトタイムの短縮化、設備コストの低減に課題が残る。 In the comparative example, the opening process, the degassing process, and the second sealing process are performed in the chamber 100 that houses the secondary battery. That is, since the volume of the chamber 100 is increased to accommodate the secondary battery, it takes a long time to fill the chamber 100 with dry air or an inert gas as a dry gas and to decompress the chamber 100. Therefore, a large gas supply device and a vacuum evacuation device are required, and problems remain in shortening tact time and reducing equipment costs.
これに対して、本実施形態においては、開孔工程、ガス抜き工程及び第2封止工程が、図3に示す小型のチャンバ10を利用することにより実施される。このチャンバ10は、二次電池の外装体1のガス抜き部4が設けられた周縁部(図中の上部領域)を、発電要素2を収容する部分からを覆う2つ割の一対の箱体11により形成している。一対の箱体11は、上下壁11A,11Bと、側壁11Cと、これら両端部の図示しない端壁と、を夫々一体に備え、互いにその開口を対向させて配置している。 On the other hand, in this embodiment, an opening process, a degassing process, and a 2nd sealing process are implemented by utilizing the small chamber 10 shown in FIG. The chamber 10 includes a pair of two box bodies that cover a peripheral portion (upper region in the drawing) provided with the gas vent 4 of the exterior body 1 of the secondary battery from a portion that houses the power generation element 2. 11. The pair of box bodies 11 are integrally provided with upper and lower walls 11A and 11B, a side wall 11C, and end walls (not shown) at both ends, and the openings are arranged to face each other.
一対の箱体11は、夫々背部に設けたアクチュエータ11D(シリンダ)により前進後退可能に移動可能であり、互いに接近した前進位置では、上壁11A及び端壁の先端が図示しないシールを介して接触する。しかし、前進位置での下壁11Bの先端同士は、発電要素2を収容する部分の外装体1に臨む領域では、当該外装体1の厚さ寸法と外装体1を外側へ吸引拡大させる寸法分とを加算した間隔寸法を隔てて互いに対峙し、当該領域を外れる領域においては図示しないシールを介して互いに接触する。上記先端形状を備える下壁11Bの先端は、二次電池の外装体1に接触しても外装体1に損傷を与えない弾性を備える素材からなる先端部材11Eで形成している。 The pair of box bodies 11 can be moved forward and backward by actuators 11D (cylinders) provided on the back portions, respectively, and the upper wall 11A and the end of the end wall are in contact with each other via a seal (not shown) at the forward movement position close to each other. To do. However, in the region where the front ends of the lower wall 11B at the advanced position face the exterior body 1 of the part that accommodates the power generation element 2, the thickness dimension of the exterior body 1 and the dimension for sucking and expanding the exterior body 1 outward. Are opposed to each other with an interval dimension added to each other, and in a region outside the region, they contact each other via a seal (not shown). The tip of the lower wall 11B having the tip shape is formed by a tip member 11E made of a material having elasticity that does not damage the case 1 even if it contacts the case 1 of the secondary battery.
下壁11Bの先端部材11Eには、発電要素2を収容する外装体1に臨む領域において、横長の開口が設けられ、当該開口は外装体1を吸引して吸着するための吸着口12を形成している。この吸着口12は、背面に設けた配管12Aを介して負圧発生器12Bに接続されている。このため、負圧発生器12Bが作動されて負圧が供給されると、対面する外装体1表面を吸引して当該部分の外装体1を発電要素2の端面から引き離すことにより、発電要素2の積層方向外側へ膨らませて当該吸着口12に吸着する。これにより、下壁11Bと収容した二次電池との隙間が塞がれ、チャンバ10内空間は外部と遮断されて密閉空間を形成する。 The front end member 11E of the lower wall 11B is provided with a horizontally long opening in a region facing the exterior body 1 that houses the power generation element 2, and the opening forms a suction port 12 for sucking and attracting the exterior body 1. doing. The suction port 12 is connected to a negative pressure generator 12B via a pipe 12A provided on the back surface. For this reason, when the negative pressure generator 12B is actuated and negative pressure is supplied, the surface of the facing exterior body 1 is sucked to separate the part of the exterior body 1 from the end face of the power generation element 2, thereby generating the power generation element 2 And are attracted to the suction port 12. As a result, the gap between the lower wall 11B and the accommodated secondary battery is closed, and the inner space of the chamber 10 is blocked from the outside to form a sealed space.
チャンバ10空間には、ドライガスとしてのドライエア又は不活性ガスを供給するドライガス供給装置13が配管13A及び遮断弁13Bを介して接続されている。また、チャンバ10内を減圧する真空引き装置14も配管14A及び切換弁14Bを介して接続されている。切換弁14Bは、チャンバ10内に連通する通路14Aを、真空引き装置14へ接続する減圧位置と大気へ開放する大気位置との間で切換え可能である。 A dry gas supply device 13 for supplying dry air or an inert gas as a dry gas is connected to the chamber 10 space via a pipe 13A and a shutoff valve 13B. A vacuuming device 14 for reducing the pressure inside the chamber 10 is also connected via a pipe 14A and a switching valve 14B. The switching valve 14 </ b> B can switch the passage 14 </ b> A communicating with the inside of the chamber 10 between a decompression position where the passage 14 </ b> A is connected to the vacuuming device 14 and an atmospheric position where the passage is open to the atmosphere.
チャンバ10を形成する一対の箱体11の各側壁11Cには、アクチュエータ15Aにより進退自在に設けた一対の封止用ヒータ15と、同じくアクチュエータ16A,17Aにより進退自在に設けたガス抜き用カッタ16及びカッタ受け部17が設けられている。ガス抜き用カッタ16とカッタ受け部17とは、収容した外装体1のガス抜き部4を挟んで互いに対向するように、夫々の箱体11の側壁11Cに設けられている。ガス抜き用カッタ16及びカッタ受け部17と一対の封止用ヒータ15の設置位置は、図1に示す外装体1のガス抜き穴5及び第2封止部Dが配置された部分において、夫々の加工が実行できる位置に設定される。 On each side wall 11C of the pair of box bodies 11 forming the chamber 10, a pair of sealing heaters 15 provided so as to be freely advanced and retracted by an actuator 15A, and a gas venting cutter 16 provided so as to be freely advanced and retracted by actuators 16A and 17A. And a cutter receiving portion 17 is provided. The degassing cutter 16 and the cutter receiving portion 17 are provided on the side walls 11 </ b> C of the respective box bodies 11 so as to face each other with the degassing portion 4 of the accommodated exterior body 1 interposed therebetween. The installation positions of the gas venting cutter 16 and the cutter receiving portion 17 and the pair of sealing heaters 15 are respectively in the portions where the gas venting holes 5 and the second sealing portion D of the outer package 1 shown in FIG. Is set at a position where the machining can be performed.
カッタ受け部17は、外装体1のガス抜き部4に沿って形成された横部材で形成されている。そして、待機位置から前進させた前進位置においてガス抜き部4の一方の側面に横部材を当接させてガス抜き部4を一方から支持するよう構成している。 The cutter receiving portion 17 is formed of a horizontal member formed along the gas vent portion 4 of the exterior body 1. And it is comprised so that a horizontal member may be contact | abutted to one side surface of the degassing part 4 in the advance position advanced from the standby position, and the degassing part 4 may be supported from one side.
ガス抜き用カッタ16は、先端のカッタ刃で形成されている。そして、カッタ受け部17で支持されたガス抜き部4の他方の側面に対して、待機位置からカッタ刃を前進させ、前進位置でガス抜き部4の他方の側面からカッタ刃をガス抜き部4に貫通させる。次いで、カッタ刃をガス抜き部4に沿って所定距離だけ横移動させることにより、ガス抜き部4にガス抜き穴5を開口させ、その後に待機位置に後退されるよう構成している。 The degassing cutter 16 is formed by a cutter blade at the tip. Then, the cutter blade is advanced from the standby position with respect to the other side surface of the gas vent portion 4 supported by the cutter receiving portion 17, and the cutter blade is moved from the other side surface of the gas vent portion 4 at the advanced position. To penetrate. Next, the cutter blade is moved laterally along the gas vent 4 by a predetermined distance, thereby opening the gas vent 5 in the gas vent 4 and then retracting to the standby position.
一対の封止用ヒータ15は、収容した外装体1のガス抜き部4を挟んで互いに対向するように、夫々の箱体11の側壁11Cに設けられる。一対の封止用ヒータ15は、ガス抜き部4に沿って形成されたヒータで形成されている。そして、待機位置から前進させた前進位置において、ガス抜き部4の付け根部分の外装体1をその両側から挟み付け、ヒータを作動させることによりガス抜き部4の付け根部分の外装体1を融着させて第2封止部Dを形成し、その後に待機位置に後退されるよう構成している。 The pair of sealing heaters 15 are provided on the side walls 11 </ b> C of the respective box bodies 11 so as to face each other with the gas vent portion 4 of the accommodated exterior body 1 interposed therebetween. The pair of sealing heaters 15 is formed by a heater formed along the gas vent 4. And in the advance position advanced from the stand-by position, the exterior body 1 of the base part of the degassing part 4 is clamped from both sides, and the exterior body 1 of the base part of the degassing part 4 is fused by operating the heater. In this way, the second sealing portion D is formed and then retracted to the standby position.
そして、本実施形態においては、以下に示す様に、開孔工程、ガス抜き工程及び第2封止工程が実行される。即ち、開孔工程では、アクチュエータ11Dにより一対の箱体11が待機位置に後退させて開放されたチャンバ10内に、外装体1のガス抜き部4を含む周縁部(図中の上部領域の発電要素2を収容する部分を含んで)を進入させて、二次電池をセットする。次いで、アクチュエータ11Dにより一対の箱体11を前進させて、図3に示すように、一対の箱体11の先端を当接させて、チャンバ10をセットする。チャンバ10内には、二次電池の外装体1のガス抜き部4を含む周縁部(図中の上部領域の発電要素2を収容する部分を含んで)が収容された状態となる。しかしながら、チャンバ10内空間と外気とは、一対の箱体11の下壁11Bと外装体1の発電要素2の収容部分との間で連通した状態となっている。 And in this embodiment, as shown below, an opening process, a degassing process, and a 2nd sealing process are performed. That is, in the opening step, the peripheral portion including the gas venting portion 4 of the exterior body 1 (the power generation in the upper region in the figure) is opened in the chamber 10 opened by the actuator 11D being retracted to the standby position by the pair of boxes 11. The secondary battery is set by inserting the element 2 (including the part accommodating the element 2). Next, the pair of box bodies 11 are moved forward by the actuator 11D, and the ends of the pair of box bodies 11 are brought into contact with each other as shown in FIG. The chamber 10 is in a state in which a peripheral edge portion (including a portion for accommodating the power generation element 2 in the upper region in the drawing) including the gas vent portion 4 of the outer casing 1 of the secondary battery is accommodated. However, the internal space of the chamber 10 and the outside air are in communication with each other between the lower wall 11B of the pair of box bodies 11 and the accommodating portion of the power generation element 2 of the exterior body 1.
次いで、負圧発生器12Bが作動されて負圧が下壁11Bの先端部材11Eに導入され、先端部材11Eに設けた吸着口12に、対面している外装体1表面を吸引して当該部分の外装体1を発電要素2の端面から引き離し、発電要素2の積層方向外側へ膨らませて当該吸着口12に吸着する(図4参照)。これにより、下壁11Bと収容した二次電池との隙間が塞がれ、チャンバ10内空間は外部と遮断されて密閉空間を形成する。 Next, the negative pressure generator 12B is actuated so that negative pressure is introduced into the tip member 11E of the lower wall 11B, and the surface of the exterior body 1 facing the suction port 12 provided in the tip member 11E is sucked into the part. The outer casing 1 is pulled away from the end face of the power generation element 2 and bulges outward in the stacking direction of the power generation element 2 to be attracted to the suction port 12 (see FIG. 4). As a result, the gap between the lower wall 11B and the accommodated secondary battery is closed, and the inner space of the chamber 10 is blocked from the outside to form a sealed space.
外装体1の内部は、図5(A)に示すように、コンディショニング工程により発生されたガスにより、ガス抜き部4にも電解液が存在している。そして、吸着口12により吸引されて外装体1表面が発電要素2の端面から引き離されると、図5(B)に示すように、ガス抜き部4の下部の空間部を拡大すると共に外装体1と発電要素2との間に隙間が形成される。拡大された空間部では、ガス抜き部4に存在している電解液が重力により下降すると共にガスが液中で浮上して気液分離が促進される。また、当該隙間は、外装体1内において、発電要素2の収容部とガス抜き部4とを連通させる連通路6を形成する。 As shown in FIG. 5A, the exterior body 1 also has an electrolyte in the gas vent 4 due to the gas generated in the conditioning process. And if it attracts | sucks by the suction port 12 and the exterior body 1 surface is pulled away from the end surface of the electric power generation element 2, as shown in FIG.5 (B), while the space part of the lower part of the degassing part 4 is expanded, the exterior body 1 A gap is formed between the power generation element 2 and the power generation element 2. In the enlarged space part, the electrolyte solution present in the gas vent part 4 descends due to gravity and the gas rises in the liquid to promote gas-liquid separation. In addition, the gap forms a communication path 6 that allows the accommodating portion of the power generation element 2 and the gas vent portion 4 to communicate with each other in the exterior body 1.
次いで、ドライガス供給装置13への通路13Aに設けた遮断弁13Bが開かれると共にドライガス供給装置13が作動される。同時に、真空引き装置14へ通ずる配管14A及び大気位置の切換弁14Bを経由させてチャンバ10内の大気を排出させて、チャンバ10内にドライガス供給装置13からのドライエア又は不活性ガスを充填する。チャンバ10内のドライエア又は不活性ガスの濃度は、図示しないガス濃度計又は露点計により測定される。ガス濃度計又は露点計により測定されたドライエア又は不活性ガスの濃度が所定値に到達した時点で、ドライガス供給装置13が停止される。この時のチャンバ10内の圧力は、大気圧状態である。 Next, the shutoff valve 13B provided in the passage 13A to the dry gas supply device 13 is opened and the dry gas supply device 13 is operated. At the same time, the atmosphere in the chamber 10 is discharged via the piping 14A leading to the vacuuming device 14 and the atmospheric position switching valve 14B, and the chamber 10 is filled with dry air or inert gas from the dry gas supply device 13. . The concentration of dry air or inert gas in the chamber 10 is measured by a gas concentration meter or a dew point meter (not shown). When the dry air or inert gas concentration measured by the gas concentration meter or the dew point meter reaches a predetermined value, the dry gas supply device 13 is stopped. The pressure in the chamber 10 at this time is an atmospheric pressure state.
次いで、カッタ受け部17がアクチュエータ17Aにより待機位置から前進位置に移動され、ガス抜き部4の一方の側面に横部材を当接させてガス抜き部4を一方から支持する。次いで、カッタ16がアクチュエータ16Aにより待機位置から前進位置に移動され、カッタ刃をガス抜き部4の他方の側面からガス抜き部4に貫通させる。次いで、カッタ刃をガス抜き部4に沿って所定距離だけ横移動させ、その後に待機位置に後退させる。これにより、外装体1のガス抜き部4にガス抜き穴5が開口され、外装体1内部とチャンバ10内とがガス抜き穴5を介して連通する。 Next, the cutter receiving portion 17 is moved from the standby position to the forward movement position by the actuator 17A, and a horizontal member is brought into contact with one side surface of the gas venting portion 4 to support the gas venting portion 4 from one side. Next, the cutter 16 is moved from the standby position to the advanced position by the actuator 16 </ b> A, and the cutter blade passes through the gas vent 4 from the other side surface of the gas vent 4. Next, the cutter blade is moved laterally by a predetermined distance along the gas vent 4 and then retracted to the standby position. As a result, a gas vent hole 5 is opened in the gas vent 4 of the exterior body 1, and the interior of the exterior body 1 communicates with the interior of the chamber 10 via the gas vent hole 5.
次いで、ガス抜き工程が開始される。ガス抜き工程では、ドライガス供給装置13の通路13Aが遮断弁13Bにより遮断されると共に、真空引き装置14への通路14Aの切換弁14Bを大気位置側から減圧位置側に切換え、真空引き装置14が作動され、チャンバ10内を減圧する。チャンバ10内が所定の減圧状態に減圧された段階で真空引き装置14が停止される。これにより、図6(A)に示すように、ガス抜き部4のガスがガス抜き穴5を介してチャンバ10内へ排出される。また、発電要素2内において電解液から分離されたガスも、外装体1と発電要素2との間の連通路6を通ってガス抜き部4に浮上され、同様に、ガス抜き穴5を介してチャンバ10内へ排出される。 Next, the degassing process is started. In the degassing step, the passage 13A of the dry gas supply device 13 is shut off by the shutoff valve 13B, and the switching valve 14B of the passage 14A to the vacuuming device 14 is switched from the atmospheric position side to the decompression position side, and the vacuuming device 14 Is activated, and the pressure in the chamber 10 is reduced. When the inside of the chamber 10 is depressurized to a predetermined depressurized state, the vacuuming device 14 is stopped. Thereby, as shown in FIG. 6A, the gas in the gas vent 4 is discharged into the chamber 10 through the gas vent 5. In addition, the gas separated from the electrolyte in the power generation element 2 also floats to the gas vent 4 through the communication path 6 between the exterior body 1 and the power generation element 2, and similarly, through the gas vent hole 5. And discharged into the chamber 10.
所定時間の経過後に、第2封止工程が開始される。第2封止工程では、アクチュエータ15Aにより一対の封止用ヒータ15が待機位置から前進位置に作動され、ガス抜き部4の付け根部分の外装体1をその両側から挟み付ける。次いで、ヒータを作動させることによりガス抜き部4の付け根部分を融着させて第2封止部Dを形成し、その後に待機位置に後退される。これにより、二次電池の外装体1は、図6(B)に示すように、ガス抜き部4よりも発電要素2に近接した部分が熱融着により接合され、第2封止部Dが形成される。 After the elapse of the predetermined time, the second sealing process is started. In the second sealing step, the pair of sealing heaters 15 are actuated from the standby position to the advanced position by the actuator 15A, and the exterior body 1 at the base portion of the gas vent 4 is sandwiched from both sides. Next, by operating the heater, the base portion of the gas venting portion 4 is fused to form the second sealing portion D, and then retracted to the standby position. Thereby, as shown in FIG. 6 (B), the exterior body 1 of the secondary battery is joined by heat fusion at a portion closer to the power generation element 2 than the degassing portion 4, and the second sealing portion D is formed. It is formed.
第2封止部Dが形成されると、真空引き装置14への通路に設けた切換弁14Bが大気側に切換えられ、チャンバ10内に大気が導入される。次いで、負圧発生装置12Bが停止され、吸着口12への外装体1表面の吸引を停止させ、二次電池と一対の箱体11との下壁11Bによる連結を解除する。そして、アクチュエータ11Dにより一対の箱体11を待機位置に戻してチャンバ10を開き、これらの工程が終了する。二次電池は、次工程へ搬送される。 When the second sealing portion D is formed, the switching valve 14 </ b> B provided in the passage to the vacuuming device 14 is switched to the atmosphere side, and the atmosphere is introduced into the chamber 10. Next, the negative pressure generator 12B is stopped, the suction of the surface of the exterior body 1 to the suction port 12 is stopped, and the connection between the secondary battery and the pair of box bodies 11 by the lower walls 11B is released. Then, the actuator 11D returns the pair of boxes 11 to the standby position to open the chamber 10, and these steps are completed. The secondary battery is transported to the next process.
なお、上記実施形態において、ガス抜き・第2封止工程を実施するチャンバ10として、一個の電池を対象とするものについて説明した。しかし、図7に示すように、複数の電池の外装体1のガス抜き穴5を開ける周囲辺と発電要素2を収容し且つ当該周囲辺に隣接した一部領域とを収容するように構成するものであってもよい。このように構成することにより、同時に処理できる電池の数量を増加でき、ガス抜き・第2封止工程の処理速度を向上させることができる。 In addition, in the said embodiment, what targeted one battery was demonstrated as the chamber 10 which implements a degassing and a 2nd sealing process. However, as shown in FIG. 7, it is configured to accommodate the peripheral side where the gas vent holes 5 of the outer casing 1 of the plurality of batteries are opened and the power generation element 2 and a partial region adjacent to the peripheral side. It may be a thing. By comprising in this way, the quantity of the battery which can be processed simultaneously can be increased and the processing speed of a degassing and a 2nd sealing process can be improved.
本実施形態においては、以下に記載する効果を奏することができる。 In the present embodiment, the following effects can be achieved.
(ア)外装用フィルムが重ね合わされることで構成された外装体1の内部に発電要素2を格納し封止する工程であって、発電要素2が外装体の1の周囲辺の少なくとも一部との間に距離をおいて配置される第1封止工程と、外装体1の周囲辺と発電要素2との間にガス抜き穴5を開ける開孔工程と、ガス抜き穴5を通して外装体1内のガスを排出するガス抜き工程と、ガス抜き穴5を封止する第2封止工程と、を有する電池の製造方法を前提としている。そして、外装体1のガス抜き穴5を開ける周囲辺と当該周囲辺に隣接して発電要素2を覆う一部領域とを収容すると共に、外装体1の一部領域を発電要素2の積層方向外側に吸引することにより外部とは遮断した空間を形成するチャンバ10を備える。そして、当該チャンバ10内において、開孔工程及びガス抜き工程を実施することを特徴としている。 (A) A step of storing and sealing the power generation element 2 inside the exterior body 1 configured by superimposing the exterior films, wherein the power generation element 2 is at least a part of the peripheral side of the exterior body 1 A first sealing step that is disposed at a distance from each other, an opening step that opens a gas vent hole 5 between the peripheral side of the outer package 1 and the power generation element 2, and the outer package through the gas vent hole 5. 1 is premised on a method of manufacturing a battery having a degassing step of discharging the gas in 1 and a second sealing step of sealing the degassing hole 5. And while accommodating the surrounding edge which opens the gas vent hole 5 of the exterior body 1 and the partial area | region which covers the electric power generation element 2 adjacent to the said peripheral edge, the lamination direction of the electric power generation element 2 is made into the partial area | region of the exterior body 1 A chamber 10 is provided that forms a space that is blocked from the outside by suctioning the outside. In the chamber 10, an opening process and a degassing process are performed.
即ち、外装体1のガス抜き穴5を開ける周囲辺と当該周囲辺に隣接して発電要素2を覆う一部領域とを収容し、外装体1の一部領域を発電要素2の積層方向外側に吸引することにより外部とは遮断した空間を形成するチャンバ10を設けている。そして、このチャンバ10に設けられ、外装体1の周囲辺と発電要素2との間にガス抜き穴5を開ける開孔手段としてのガス抜き用カッタ16及びカッタ受け部17と、当該チャンバ10内を減圧してガス抜き穴5を通して外装体1内のガスを排出するガス抜き手段14と、を設けている。 That is, the peripheral side where the gas vent hole 5 of the exterior body 1 is opened and the partial region that covers the power generation element 2 adjacent to the peripheral side are accommodated, and the partial region of the exterior body 1 is outside the stacking direction of the power generation element 2. A chamber 10 is provided that forms a space that is blocked from the outside by suction. A gas venting cutter 16 and a cutter receiving portion 17 provided in the chamber 10 as an opening means for opening the gas venting hole 5 between the peripheral side of the exterior body 1 and the power generation element 2, And degassing means 14 for discharging the gas in the outer package 1 through the degassing holes 5 by reducing the pressure of the gas.
以上のように、チャンバ10では、発電要素2を収容する領域の外装体1を発電要素2の積層方向外側に吸引することにより外部とは遮断された空間が構成される。このため、外側へ吸引された外装用フィルムによりガス抜き部4の容積を拡大でき、ガス抜き部4での気液分離を促進して、開孔工程での電解液の漏れを最少とできる。しかも、外側へ吸引された外装用フィルムと発電要素2との間に、外装体1内の発電要素2の収容部とガス抜き部4とを連通させる連通路6を形成することができる。これにより、発電要素2に滞留するガスを当該連通路6を経由して容易にガス抜き部4に浮上・分離させることができ、ガス抜きを確実化できる。 As described above, in the chamber 10, a space that is cut off from the outside is configured by sucking the exterior body 1 in the region in which the power generation element 2 is accommodated to the outside in the stacking direction of the power generation elements 2. For this reason, the volume of the degassing part 4 can be expanded by the exterior film sucked to the outside, gas-liquid separation in the degassing part 4 is promoted, and leakage of the electrolytic solution in the opening process can be minimized. In addition, a communication path 6 that allows the housing portion of the power generation element 2 in the exterior body 1 and the gas vent portion 4 to communicate with each other can be formed between the exterior film sucked outward and the power generation element 2. Thereby, the gas stagnating in the power generation element 2 can be easily levitated / separated to the gas vent 4 via the communication path 6, and gas venting can be ensured.
また、外装体1のガス抜き穴5を形成する周囲辺の領域のみをチャンバ10内に収容して、開孔工程及びガス抜き工程を実施している。このため、チャンバ10の容積を小さくでき、大気圧からの減圧に要する時間を短縮できると共に、真空引き装置14を小型化でき、加工時間の短縮化と設備の小型化が可能となる。 Moreover, only the area | region of the peripheral side which forms the gas vent hole 5 of the exterior body 1 is accommodated in the chamber 10, and the opening process and the gas vent process are implemented. For this reason, the volume of the chamber 10 can be reduced, the time required for depressurization from the atmospheric pressure can be shortened, the vacuuming device 14 can be miniaturized, the processing time can be shortened, and the equipment can be miniaturized.
(イ)チャンバ10内において、ガス抜き部4を構成する外装体1における一対の外装用フィルムを、ガス抜き穴5よりも発電要素2寄りの領域において重ね合せて熱融着させる第2封止工程が実施される。即ち、チャンバ10は、ガス抜き部4を形成する領域の外装体1における一対の外装用フィルムを、発電要素2に隣接する部分において重ね合せて熱融着させる第2封止手段としての封止用ヒータ15を備える。これにより、チャンバ10内の減圧雰囲気中でのガス抜き工程に続いて、同一チャンバ10内において、第2封止工程を実施することができ、生産性を向上させることができる。 (A) Second sealing in which a pair of exterior films in the exterior body 1 constituting the gas vent 4 are overlapped and heat-sealed in a region closer to the power generation element 2 than the gas vent 5 in the chamber 10. A process is performed. That is, the chamber 10 is sealed as a second sealing unit that heats and heat-bonds the pair of exterior films in the exterior body 1 in the region where the gas venting portion 4 is formed in a portion adjacent to the power generation element 2. A heater 15 is provided. Thereby, following the degassing step in the reduced-pressure atmosphere in the chamber 10, the second sealing step can be performed in the same chamber 10, and the productivity can be improved.
(ウ)開孔工程は、チャンバ10内をドライ環境にして実行される。即ち、チャンバ10は、開孔手段を作動させる際に当該チャンバ10内をドライ環境にするドライガス導入手段としてのドライガス供給装置13を備える。チャンバ10の容積が小さいため、ドライガスの充填に要する時間を短縮できると共に、ドライガス供給装置13を小型化でき、加工時間の短縮化と設備の小型化が可能となる。 (C) The opening process is performed with the inside of the chamber 10 in a dry environment. That is, the chamber 10 includes a dry gas supply device 13 as a dry gas introduction unit that brings the inside of the chamber 10 into a dry environment when the opening unit is operated. Since the volume of the chamber 10 is small, the time required for filling with dry gas can be shortened, the dry gas supply device 13 can be miniaturized, and the processing time can be shortened and the equipment can be miniaturized.
(エ)チャンバ10は、複数の電池の外装体1のガス抜き穴5を開ける周囲辺と発電要素2を収容し且つ当該周囲辺に隣接した一部領域とを収容するように構成している。このため、同時に処理できる電池の数量を増加でき、ガス抜き・第2封止工程の処理速度を向上させることができる。 (D) The chamber 10 is configured to accommodate a peripheral side where the gas vent holes 5 of the outer casing 1 of the plurality of batteries are opened and a partial region adjacent to the peripheral side. . For this reason, the quantity of the battery which can be processed simultaneously can be increased and the processing speed of a degassing and a 2nd sealing process can be improved.
A 熱溶着
B 開口部
C 第1封止部
D 第2封止部
1 外装体
2 発電要素
3A,3B 電極端子
4 ガス抜き部
5 ガス抜き穴
6 連通路
10 チャンバ
11 箱体
12 吸着口
13 ドライガス発生装置(ドライガス導入手段)
14 真空引き装置(ガス抜き手段)
15 封止用ヒータ(第2封止手段)
16 ガス抜き用カッタ(開孔手段)
17 カッタ受け部(開孔手段)
A Thermal welding B Opening C 1st sealing part D 2nd sealing part 1 Exterior body 2 Electric power generation element 3A, 3B Electrode terminal 4 Gas vent part 5 Gas vent hole 6 Communication path 10 Chamber 11 Box body 12 Adsorption port 13 Dry Gas generator (dry gas introduction means)
14 Vacuuming device (gas venting means)
15 Sealing heater (second sealing means)
16 Degassing cutter (opening means)
17 Cutter receiving part (opening means)
Claims (8)
前記外装体の前記一部の周囲辺と当該周囲辺に隣接して前記発電要素を覆う一部領域とを収容すると共に、前記外装体の一部領域を前記発電要素の積層方向外側に吸引することにより外部とは遮断した空間を形成するチャンバ内において、前記開孔工程及び前記ガス抜き工程が実施されることを特徴とする電池の製造方法。 A step of storing a power generation element inside an exterior body configured by superimposing exterior films, and sealing a peripheral side of the exterior body , wherein the power generation element is at least one of the peripheral sides of the exterior body arranged at a distance between a portion, and the first sealing step degassing portion that is provided between the peripheral edge and the power generating element of said part, said venting above the power generating element In the state where the portion is positioned, an opening step of opening a gas vent hole communicating with the gas vent portion between the partial peripheral edge and the power generation element, and the gas inside the outer package through the gas vent hole In a method for producing a battery, comprising a degassing step of discharging and a second sealing step of sealing the degassing hole,
Accommodating the peripheral edge of the part of the exterior body and a partial area covering the power generation element adjacent to the peripheral edge, and sucking the partial area of the exterior body outward in the stacking direction of the power generation element A method of manufacturing a battery, wherein the opening step and the degassing step are performed in a chamber that forms a space that is blocked from the outside.
前記外装体の前記一部の周囲辺と当該周囲辺に隣接して前記発電要素を覆う一部領域とを、前記発電要素の上方に前記ガス抜き部が位置した状態で収容し、前記外装体の一部領域を発電要素の積層方向外側に吸引することにより外部とは遮断した空間を形成するチャンバと、
前記チャンバに設けられ、前記一部の周囲辺と前記発電要素との間に、前記ガス抜き部と連通するガス抜き穴を開けるガス抜き用カッタを備えた開孔手段と、
前記チャンバ内を減圧して前記ガス抜き穴を通して前記外装体内のガスを排出するガス抜き手段と、を設けたことを特徴とする電池の製造装置。 A space between the exterior body configured by overlapping the exterior films and at least a part of the peripheral side of the exterior body is accommodated in the exterior body, and between the part of the peripheral sides in the manufacturing apparatus of a battery comprising: a power generating element degassing portion that is provided, into,
Storing the peripheral edge of the part of the exterior body and a partial region covering the power generation element adjacent to the peripheral edge in a state where the gas vent is positioned above the power generation element ; A chamber that forms a space that is cut off from the outside by sucking a partial area of the power generation element outside in the stacking direction;
An opening means provided with a degassing cutter provided in the chamber for opening a degassing hole communicating with the degassing portion between the peripheral edge of the part and the power generation element;
An apparatus for producing a battery, comprising: a degassing unit that depressurizes the chamber and discharges the gas in the exterior body through the degassing hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013225633A JP6197581B2 (en) | 2013-10-30 | 2013-10-30 | Battery manufacturing method and manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013225633A JP6197581B2 (en) | 2013-10-30 | 2013-10-30 | Battery manufacturing method and manufacturing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015088324A JP2015088324A (en) | 2015-05-07 |
JP6197581B2 true JP6197581B2 (en) | 2017-09-20 |
Family
ID=53050906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013225633A Active JP6197581B2 (en) | 2013-10-30 | 2013-10-30 | Battery manufacturing method and manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6197581B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105048000B (en) * | 2015-08-20 | 2017-05-17 | 浙江杭可科技股份有限公司 | Formation and grading device for metal-shell lithium ion power battery |
CN106564664A (en) * | 2015-10-09 | 2017-04-19 | 林福兴 | Packaging machine for super capacitor |
KR102092269B1 (en) * | 2016-12-01 | 2020-03-23 | 주식회사 엘지화학 | Battery cell degassing apparatus |
KR102067715B1 (en) * | 2016-12-01 | 2020-01-17 | 주식회사 엘지화학 | Battery cell degassing apparatus |
KR102381443B1 (en) * | 2017-02-13 | 2022-03-31 | 주식회사 엘지에너지솔루션 | Method for manufacturing pouch type secondary battery |
KR20190074591A (en) * | 2017-12-20 | 2019-06-28 | 주식회사 엘지화학 | Manufacturin method and manufacturin device of rechargeable battery |
CN112072152A (en) * | 2019-06-10 | 2020-12-11 | 万向一二三股份公司 | Vertical air-extracting packaging machine for soft package battery and vertical air-extracting sealing method for soft package battery |
KR102489740B1 (en) * | 2020-11-03 | 2023-01-18 | (주) 에이프로 | Pressure activation apparatus with degassing unit |
WO2022149871A1 (en) * | 2021-01-06 | 2022-07-14 | (주)엔에스 | Apparatus for manufacturing pouch-type secondary battery |
DE102021114006A1 (en) * | 2021-05-31 | 2022-12-01 | Volkswagen Aktiengesellschaft | Process for manufacturing a battery cell |
KR20230050975A (en) * | 2021-10-08 | 2023-04-17 | 주식회사 엘지에너지솔루션 | Device for activating secondary battery and activating method for the same |
CN114243116A (en) * | 2021-12-16 | 2022-03-25 | 深圳市泽诚自动化设备有限公司 | Battery hot-pressing aging system and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002298833A (en) * | 2001-03-30 | 2002-10-11 | Shibaura Mechatronics Corp | Secondary battery producing method and liquid injection method |
JP4155100B2 (en) * | 2003-05-16 | 2008-09-24 | トヨタ自動車株式会社 | Manufacturing method of secondary battery |
JP5098180B2 (en) * | 2006-01-30 | 2012-12-12 | 日産自動車株式会社 | Secondary battery manufacturing method |
KR101304870B1 (en) * | 2010-12-02 | 2013-09-06 | 주식회사 엘지화학 | Method for Manufacturing Battery Cell and Battery Cell Manufactured Thereby |
-
2013
- 2013-10-30 JP JP2013225633A patent/JP6197581B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015088324A (en) | 2015-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6197581B2 (en) | Battery manufacturing method and manufacturing apparatus | |
JP5899316B2 (en) | Secondary battery manufacturing method and manufacturing apparatus | |
KR101748362B1 (en) | Method for manufacturing pouch secondary battery | |
JP5232486B2 (en) | Electrochemical device manufacturing method and electrochemical device | |
KR101306187B1 (en) | Device for Eliminating Gas from Battery Cell and Method for Manufacturing Battery Cell | |
JP2019016459A (en) | Power storage device and manufacturing method thereof | |
KR20140018014A (en) | The manufacturing method of pouch type secondary battery | |
KR20150010481A (en) | Pouch battery and manufacturing method thereof | |
JP2009238508A (en) | Electrochemical device, and manufacturing method of electrochemical device | |
WO2016021066A1 (en) | Battery manufacturing device | |
KR101791535B1 (en) | Method for Manufacturing Battery Cell by Device for Eliminating Gas from Battery Cell | |
JP2010049913A (en) | Manufacturing method of sealed battery | |
JP2007141774A (en) | Manufacturing method of storage element | |
JP4155100B2 (en) | Manufacturing method of secondary battery | |
JP2010225496A (en) | Safety mechanism for laminate exterior-package power storage device | |
JP2014060016A (en) | Method of manufacturing battery | |
JP6242199B2 (en) | Secondary battery manufacturing method and manufacturing apparatus | |
KR20140134916A (en) | Method for manufacturing pouch for secondary battery and pouch of secondary battery | |
JP6682203B2 (en) | Secondary battery manufacturing method | |
JP5178606B2 (en) | Laminate exterior power storage device | |
JP2020173981A (en) | Method of manufacturing power storage module | |
JP6649009B2 (en) | Rechargeable battery manufacturing equipment | |
JP2010073400A (en) | Electrolytic liquid injection method, and electrolytic liquid injection device | |
JP2010238861A (en) | Laminate-coating storage device | |
JP6823702B2 (en) | Secondary battery manufacturing equipment and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160826 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20161205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170516 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170807 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6197581 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |