JP2014060016A - Method of manufacturing battery - Google Patents

Method of manufacturing battery Download PDF

Info

Publication number
JP2014060016A
JP2014060016A JP2012203827A JP2012203827A JP2014060016A JP 2014060016 A JP2014060016 A JP 2014060016A JP 2012203827 A JP2012203827 A JP 2012203827A JP 2012203827 A JP2012203827 A JP 2012203827A JP 2014060016 A JP2014060016 A JP 2014060016A
Authority
JP
Japan
Prior art keywords
opening
battery
manufacturing
sheet
impregnation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012203827A
Other languages
Japanese (ja)
Inventor
Takao Daidoji
孝夫 大道寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2012203827A priority Critical patent/JP2014060016A/en
Publication of JP2014060016A publication Critical patent/JP2014060016A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a battery which allows for enhancement of production efficiency, because electrolyte does not overflow from the aperture of a film armor material.SOLUTION: A method of manufacturing a battery includes a housing step for housing an electrode laminate 60, laminating a plurality of sheet-like positive electrodes and a plurality of sheet-like negative electrodes via a separator therebetween, in a film armor material 90 having an aperture 93, an opening step for widening the opening space (S) of the aperture by applying a stress to the film armor material 90, a liquid injection step for injecting electrolyte from the aperture 93 in a state where the opening space (S) of the aperture 93 is widened by the opening step, and an impregnation step for performing vacuum impregnation in a state where the opening space (S) of the aperture 93 is widened by the opening step, following to the liquid injection step.

Description

本発明は、複数のシート状正極と複数のシート状負極とがセパレータを介して積層された電極積層体がフィルム外装材に収容された構造のリチウムイオン電池などの二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a secondary battery such as a lithium ion battery having a structure in which an electrode laminate in which a plurality of sheet-like positive electrodes and a plurality of sheet-like negative electrodes are laminated via a separator is accommodated in a film exterior material.

近年、環境問題から、戸建て住宅などの家庭用途や、輸送機器、建設機器等の産業用途に用いることが可能な、風力発電、太陽光発電等から得られるクリーンエネルギーが注目されている。しかし、クリーンエネルギーは状況に応じた出力の変動が大きいという問題を有している。例えば、太陽光発電によるエネルギーは、太陽が昇っている日中には得られるが、太陽が沈んだ後の夜間には得られない。   In recent years, due to environmental problems, clean energy obtained from wind power generation, solar power generation, and the like that can be used for home use such as a detached house and industrial use such as transportation equipment and construction equipment has attracted attention. However, the clean energy has a problem that the output varies greatly depending on the situation. For example, energy from solar power generation can be obtained during the day when the sun is rising, but not at night after the sun has set.

クリーンエネルギーの出力を安定化するために、クリーンエネルギーを一時的に電池に蓄える技術が用いられる。例えば、電池に蓄えられた太陽光エネルギーは、太陽が沈んだ後の夜間にも利用可能となる。このようなクリーンエネルギーを蓄えるための電池としては、一般的に鉛電池が使用されていたが、鉛蓄電池は一般的に大型であり、エネルギー密度が低い、という欠点がある。   In order to stabilize the output of clean energy, a technique for temporarily storing clean energy in a battery is used. For example, solar energy stored in a battery can be used at night after the sun goes down. As a battery for storing such clean energy, a lead battery is generally used. However, a lead storage battery is generally large in size and has a drawback of low energy density.

そこで、近年では、常温で作動可能であり、エネルギー密度も高いリチウムイオン二次電池が注目されている。チウムイオン二次電池は、エネルギー密度が高いという特性に加えて、インピーダンスが低いため応答性に優れている、という特徴も有する。   Therefore, in recent years, lithium ion secondary batteries that can operate at room temperature and have high energy density have attracted attention. In addition to the characteristic that the energy density is high, the lithium ion secondary battery also has a feature that it has excellent responsiveness because of its low impedance.

このようなリチウムイオン二次電池の内部構造の一例としては、複数のシート状正極と複数のシート状負極とがセパレータを介して積層された電極積層体、および電解液が、平面視で矩形のラミネートフィルム外装材内に収容された構造が知られている。   As an example of the internal structure of such a lithium ion secondary battery, an electrode laminate in which a plurality of sheet-like positive electrodes and a plurality of sheet-like negative electrodes are laminated via separators, and an electrolyte solution are rectangular in a plan view. A structure housed in a laminate film exterior material is known.

特許文献1(特開2001−15099号公報)には、上記のような構造の電池の製造方法が具体的に開示されており、それによれば、外装フィルム体内に電池要素を装着・内蔵させる工程と、前記電池要素を内蔵・装着させた外装フィルム体の他端開口側から電解液を注入した後に、前記開口部を封止する工程とを有する電池の製造方法であって、前記外装フィルム体の開口部側を所要形状・寸法よりも大きく設定しておき、前記内蔵・装着した電池要素に隣接する領域を一部残して溶着封止する工程と、前記外装フィルム体の先端側開口を電解液注入口として、電池要素側に定量ポンプを介して電解液を注入後に、減圧下で含浸させる工程と、前記電解液を注入・含浸した電池要素に隣接する領域に残された非溶着封止部を溶着封止する工程と、を有することを特徴とする薄型電池の製造方法が開示されている。
特開2001−15099号公報
Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-15099) specifically discloses a method for manufacturing a battery having the above-described structure. According to this method, a process for mounting and incorporating a battery element in an exterior film body is disclosed. And a step of sealing the opening after injecting an electrolyte from the other end opening side of the exterior film body in which the battery element is built-in and attached, and the exterior film body The opening side of the outer film body is set larger than the required shape and size, and a step of welding and sealing leaving a part of the area adjacent to the built-in / mounted battery element, and the opening on the front end side of the exterior film body are electrolyzed. As a liquid injection port, after injecting an electrolytic solution to the battery element side through a metering pump, impregnating under reduced pressure, and non-welded sealing left in a region adjacent to the battery element injected and impregnated with the electrolytic solution Weld and seal the part Method for manufacturing a thin battery and having a degree, is disclosed.
JP 2001-15099 A

特許文献1に開示されている、従来技術に係る電池の製造方法においては、外装フィルム体の開口部側は、所要形状・寸法よりも大きく設定しておき、電池要素を外装フィルム体内に封止する工程の後に、開口部近傍の外装フィルム体を切断するようにしている。   In the battery manufacturing method disclosed in Patent Document 1, the opening side of the exterior film body is set larger than the required shape and dimensions, and the battery element is sealed in the exterior film body. After the step of performing, the exterior film body in the vicinity of the opening is cut.

上記のような従来の製造方法によれば、外装フィルム体として完成品となる電池の分より大きいものが用いられるために、その分、コストが余計にかかってしまう、という問題がある。   According to the conventional manufacturing method as described above, since an outer film body larger than the battery as a finished product is used, there is a problem that the cost is increased accordingly.

そこで、上記のような余計なコストがかからないようにするために、フィルム外装材として完成品となる電池分のみ利用するようにすると、今度は、開口部から電解液を注液した後、電極内などに含まれている空気と電解液を置換するための真空含浸を行う含浸工程において、膨張した空気が想定通りに抜けず、電解液面を押し上げてしまい、フィルム外装材の開口部から電解液が溢れ出て、電池の製造効率が低下する、という問題が発生してしまう。   Therefore, in order to avoid the extra cost as described above, if only the battery that is a finished product is used as the film exterior material, this time, after injecting the electrolyte from the opening, In the impregnation step of performing vacuum impregnation to replace the air contained in the electrolyte and the electrolyte, the expanded air does not escape as expected, pushes up the electrolyte surface, and the electrolyte from the opening of the film exterior material Overflows and a problem arises that the production efficiency of the battery decreases.

なお、上記のような、フィルム外装材の開口部から電解液が溢れ出てしまう、という問題は、含浸工程においてのみならず、フィルム外装材の開口部を封止する封止工程においても発生することがある。   The problem that the electrolyte overflows from the opening of the film exterior material as described above occurs not only in the impregnation process but also in the sealing process of sealing the opening of the film exterior material. Sometimes.

本発明は、上記のような問題を解決するものであって、本発明に係る電池の製造方法は、開口部を有するフィルム外装材に、複数のシート状正極と複数のシート状負極とがセパレータを介して積層された電極積層体を収容する収容工程と、前記フィルム外装材に応力を加えることで、前記開口部の開口面積を広げる開口工程と、前記開口工程によって前記開口部の開口面積が広げられた状態で、前記開口部から電解液を注液する注液工程と、前記注液工程の後、前記開口工程によって前記開口部の開口面積が広げられた状態で、真空含浸を行う含浸工程と、を有する。   The present invention solves the above-described problems, and a battery manufacturing method according to the present invention includes a film exterior material having an opening, and a plurality of sheet-like positive electrodes and a plurality of sheet-like negative electrodes are separators. The opening process of expanding the opening area of the opening by applying a stress to the film exterior material, and the opening area of the opening by the opening process An infusion process for injecting an electrolytic solution from the opening in the expanded state, and an impregnation in which vacuum impregnation is performed after the injecting process and the opening area of the opening is expanded by the opening process. And a process.

また、本発明に係る電池の製造方法は、前記含浸工程の後に前記開口部を真空下で封止する封止工程をさらに有する。   In addition, the battery manufacturing method according to the present invention further includes a sealing step of sealing the opening under vacuum after the impregnation step.

また、本発明に係る電池の製造方法は、前記含浸工程における真空度が、前記封止工程における真空度より高い。   In the battery manufacturing method according to the present invention, the degree of vacuum in the impregnation step is higher than the degree of vacuum in the sealing step.

また、本発明に係る電池の製造方法は、前記開口工程においては、吸着を行う治具により前記フィルム外装材に応力を加える。   Moreover, the manufacturing method of the battery which concerns on this invention applies stress to the said film exterior material with the jig | tool which performs adsorption | suction in the said opening process.

また、本発明に係る電池の製造方法は、前記開口工程においては、開口部の形状を保持する治具により前記フィルム外装材に応力を加える。   In the battery manufacturing method according to the present invention, in the opening step, stress is applied to the film exterior member with a jig that holds the shape of the opening.

また、本発明に係る電池の製造方法は、前記セパレータが袋状のものである。   In the battery manufacturing method according to the present invention, the separator is in a bag shape.

本発明に係る電池の製造方法によれば、開口工程によって開口部の開口面積が広げられた状態で、真空含浸を行うので、フィルム外装材内に電解液が貯溜される体積を十分確保することが可能となり、含浸工程において、膨張した空気が想定通りに抜けず、電解液面を押し上げたとしても、フィルム外装材の開口部から電解液が溢れ出てしまうことがなく、製造効率が向上する。   According to the battery manufacturing method of the present invention, since the vacuum impregnation is performed in a state where the opening area of the opening portion is widened by the opening step, a sufficient volume for storing the electrolyte solution in the film exterior member is ensured. In the impregnation process, the expanded air does not escape as expected, and even if the electrolyte surface is pushed up, the electrolyte does not overflow from the opening of the film exterior material, and the manufacturing efficiency is improved. .

含浸工程における真空度が、封止工程における真空度より高くされることで、封止工程においても、フィルム外装材の開口部から電解液が溢れ出てしまうことがなくなる。   By making the degree of vacuum in the impregnation step higher than the degree of vacuum in the sealing step, the electrolyte does not overflow from the opening of the film exterior material even in the sealing step.

本発明の実施形態に係る電池の製造工程を説明する図である。It is a figure explaining the manufacturing process of the battery which concerns on embodiment of this invention. 本発明の実施形態に係る電池の製造工程を説明する図である。It is a figure explaining the manufacturing process of the battery which concerns on embodiment of this invention. 本発明の実施形態に係る電池の製造工程を説明する図である。It is a figure explaining the manufacturing process of the battery which concerns on embodiment of this invention. 本発明の実施形態に係る電池の製造方法により製造された電池100を示す図である。It is a figure which shows the battery 100 manufactured by the manufacturing method of the battery which concerns on embodiment of this invention.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1乃至図4は本発明の実施形態に係る電池の製造工程を説明する図である。本実施形態においては、電池100として、リチウムイオンが負極と正極とを移動することにより充放電が行われる、電気化学素子の1種であるリチウムイオン二次電池を例に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 4 are diagrams for explaining a battery manufacturing process according to an embodiment of the present invention. In the present embodiment, as the battery 100, a lithium ion secondary battery, which is one type of electrochemical element, in which charging / discharging is performed by moving lithium ions between a negative electrode and a positive electrode will be described.

本発明の実施形態に係る電池の製造方法により製造される電池100は、複数のシート状正極と複数のシート状負極とがセパレータを介して積層された電極積層体60、および電解液80が、平面視で矩形のラミネートフィルム外装材90内に収容された構造となっている。   The battery 100 manufactured by the battery manufacturing method according to the embodiment of the present invention includes an electrode stack 60 in which a plurality of sheet-like positive electrodes and a plurality of sheet-like negative electrodes are stacked via a separator, and an electrolyte solution 80. It has a structure accommodated in a rectangular laminate film exterior material 90 in plan view.

それぞれのシート状正極は、集電体62を介して正極引き出しタブ120に導電接続される。同様に、それぞれのシート状負極も、集電体63を介して負極引き出しタブ130に導電接続されている。   Each sheet-like positive electrode is conductively connected to the positive electrode extraction tab 120 via the current collector 62. Similarly, each sheet-like negative electrode is also conductively connected to the negative electrode lead tab 130 via the current collector 63.

電池100として完成した状態では、電池100の一方の端部(辺)から正極引き出しタブ120及び負極引き出しタブ130が引き出された構成となる。   When the battery 100 is completed, the positive electrode pull-out tab 120 and the negative electrode pull-out tab 130 are pulled out from one end (side) of the battery 100.

ラミネートフィルム外装材90は、熱融着樹脂層を有する金属ラミネートフィルムにより構成されている。本実施形態においては、ラミネートフィルム外装材90は、2枚の矩形状金属ラミネートフィルムを熱融着樹脂層を対向させ、正極引き出しタブ120及び負極引き出しタブ130が引き出された辺と反対側の辺93が開口部となるように、正極引き出しタブ120及び負極引き出しタブ130が引き出された辺に対応する熱溶着部91と、当該熱溶着部91に隣接する2つの辺92を溶着する構造が採用されている。   The laminate film exterior material 90 is made of a metal laminate film having a heat-sealing resin layer. In the present embodiment, the laminate film exterior member 90 is a side opposite to the side from which the positive electrode pull-out tab 120 and the negative electrode pull-out tab 130 are drawn, with two rectangular metal laminate films facing the heat-sealing resin layer. A structure is adopted in which the heat welding portion 91 corresponding to the side from which the positive electrode pulling tab 120 and the negative electrode pulling tab 130 are drawn and the two sides 92 adjacent to the heat welding portion 91 are welded so that 93 becomes an opening. Has been.

図1は、電極積層体60をラミネートフィルム外装材90に収容したとき、開口部93と反対側から、正極引き出しタブ120及び負極引き出しタブ130が引き出されるように、電極積層体60を収容する工程を示すものである。   FIG. 1 shows a process of housing the electrode laminate 60 such that when the electrode laminate 60 is accommodated in the laminate film exterior material 90, the positive electrode extraction tab 120 and the negative electrode extraction tab 130 are extracted from the side opposite to the opening 93. Is shown.

なお、ラミネートフィルム外装材90よりなる電池100から引き出される正極引き出しタブ120や負極引き出しタブ130などの金属片は、「引き出しタブ」と称することとし、ラミネートフィルム外装材90の内側でセパレータや電解液80などを介して積層されているシート状正極やシート状負極を「電極」と称する。   Note that metal pieces such as the positive electrode pull-out tab 120 and the negative electrode pull-out tab 130 drawn from the battery 100 made of the laminate film exterior material 90 are referred to as “drawer tabs”, and a separator or electrolyte solution is provided inside the laminate film exterior material 90 A sheet-like positive electrode or a sheet-like negative electrode laminated via 80 or the like is referred to as an “electrode”.

また、電極積層体60には、上記のように複数のシート状正極と複数のシート状負極とがセパレータを介して積層したものの他に、シート状正極とシート状負極とがセパレータを介し積層したものを巻回し、これが圧縮されることにより積層体をなすものも含まれる。   Further, in the electrode laminate 60, in addition to the above-described one in which a plurality of sheet-like positive electrodes and a plurality of sheet-like negative electrodes are laminated via a separator, a sheet-like positive electrode and a sheet-like negative electrode are laminated via a separator. The thing which makes a laminated body by winding a thing and compressing this is also contained.

また、セパレータとしては矩形の枚葉状のものに限らず、電極を収容することで、シート状正極とシート状負極との間に介在する袋状のものを用いるようにしてもよい。特に、袋状のセパレータは、枚葉状のものにはない、熱融着によって形成された重ね合わせ部があることから、膨張した空気が枚葉状のものと比較して抜けにくくなることがあるため、本発明の効果をより享受することが可能となる。なお、セパレータを袋状にする場合には、電解液の通り易さを考慮すると、開口部に対応する側のセパレータの一部は熱融着されていないことが好ましく、特に間欠的に溶着されていることが好ましい。   Further, the separator is not limited to a rectangular sheet-like one, and a bag-like one interposed between a sheet-like positive electrode and a sheet-like negative electrode may be used by accommodating an electrode. In particular, the bag-shaped separator has an overlapped portion formed by heat fusion, which is not found in a sheet-shaped separator, so that expanded air may be difficult to escape compared to a sheet-shaped separator. The effect of the present invention can be enjoyed more. In the case where the separator is formed into a bag shape, it is preferable that a part of the separator on the side corresponding to the opening is not thermally fused, particularly intermittently, in consideration of easiness of passing the electrolyte solution. It is preferable.

また、ラミネートフィルムは、1枚の矩形状金属ラミネートフィルムを折り返し、折り
返した以外の部分から正極引き出しタブ120及び負極引き出しタブ130が取り出され、正極引き出しタブ120及び負極引き出しタブ130が取り出された辺以外を開口部とする構造としてもよい。
Further, the laminate film is a side where the sheet of the rectangular metal laminate film is folded, and the positive electrode pull-out tab 120 and the negative electrode pull-out tab 130 are taken out from the portion other than the folded portion, and the positive electrode pull-out tab 120 and the negative electrode pull-out tab 130 are taken out. It is good also as a structure which makes an opening other than.

図2は電極積層体60を収容した、上記のようなラミネートフィルム外装材90の開口部93に応力を加えることで、その開口面積を広げる開口工程を説明する図である。なお、図2以降、ラミネートフィルム外装材90を透過的に図示している。   FIG. 2 is a view for explaining an opening process for expanding the opening area by applying stress to the opening 93 of the laminate film exterior member 90 containing the electrode laminate 60. In FIG. 2 and subsequent figures, the laminate film exterior material 90 is shown transparently.

図2において、開口部93の開口面積を広げるためにラミネートフィルム外装材90に加える応力の向きは矢印の方向である。本発明においては、このような開口工程によって、開口部93の開口面積S(図中斜線部)を確保するようにしている。   In FIG. 2, the direction of stress applied to the laminate film exterior member 90 in order to increase the opening area of the opening 93 is the direction of the arrow. In the present invention, the opening area S (shaded portion in the figure) of the opening 93 is ensured by such an opening process.

ここで、ラミネートフィルムの開口部の幅をA(mm)、ラミネートフィルムに収容する電極積層体60の高さ(厚さ)をB(mm)とした場合、S≧(A×B)÷2(mm2
)とすることが好ましい。
Here, when the width of the opening of the laminate film is A (mm) and the height (thickness) of the electrode laminate 60 accommodated in the laminate film is B (mm), S ≧ (A × B) / 2 (Mm 2
) Is preferable.

上記のような開口工程で、ラミネートフィルム外装材90に加える応力を確保するためには、例えば、開口部93付近の吸着を行う治具により、これを行っても良いし、或いは、開口部93の形状を保持する治具により、これを行っても良い。   In order to ensure the stress applied to the laminate film exterior member 90 in the opening step as described above, this may be performed by a jig that performs suction near the opening 93, or the opening 93, for example. This may be done with a jig that holds the shape.

図3は、前記注液工程の後、前記開口工程によって開口部93の開口面積が広げられた状態で、真空含浸を行う含浸工程を経た状態を示す図である。この含浸工程は、所定の真空チャンバー(不図示)内に、電極積層体60、電解液80を収納したラミネートフィルム外装材90に載置して、これが行われる。   FIG. 3 is a view showing a state after the liquid pouring step, through an impregnation step in which vacuum impregnation is performed in a state where the opening area of the opening 93 is widened by the opening step. This impregnation step is performed by placing the electrode laminate 60 and the laminate film exterior member 90 containing the electrolyte solution 80 in a predetermined vacuum chamber (not shown).

本発明においては、開口工程によって開口部93の開口面積が広げられた状態で、真空含浸を行う含浸工程が実施されるので、電極積層体60、電解液80中の気泡が破裂しやすくなるとともに、開口部93の反対側に電解液が回り込みやすいことから膨張した空気が電解液面を押し上げたとしても、フィルム外装材90の開口部93から電解液が溢れ出ることや、後に封口する部分に多量の電解液が付着してしまうことがなく、製造効率が向上する。   In the present invention, since the impregnation step of performing the vacuum impregnation is performed in a state where the opening area of the opening 93 is widened by the opening step, the bubbles in the electrode laminate 60 and the electrolyte solution 80 are easily ruptured. Even if the expanded air pushes up the electrolytic solution surface because the electrolytic solution tends to flow around to the opposite side of the opening 93, the electrolytic solution overflows from the opening 93 of the film exterior member 90, or the portion to be sealed later A large amount of electrolyte does not adhere, and the production efficiency is improved.

ところで、電池を製造する際には、上記のような含浸工程に引き続き、フィルム外装材90の開口部93を真空下で封止する封止工程が実施する必要がある。封止工程においては、所定の真空チャンバー(不図示)内で、所定の真空度が保たれた状態で、図4中の斜線部に熱をかけることでフィルム外装材90の熱融着樹脂層を溶着して、開口部93を封口する。これにより、電極積層体60と電解液80とが封入されたラミネートフィルム外装材90から、正極引き出しタブ120及び負極引き出しタブ130が引き出された状態の電池100が完成する。ここで、このような電池においては、ラミネートフィルム外装材の中に封入される電解液は多いほど好ましいが、一方で、電解液を増やすために電極積層体の形状よりも余分なスペースを過剰に設けてしまうと電池の形状が大きくなってしまい好ましくない。   By the way, when manufacturing a battery, it is necessary to perform the sealing process which seals the opening part 93 of the film exterior | packing material 90 under a vacuum following the above impregnation processes. In the sealing step, a heat-sealing resin layer of the film exterior material 90 is applied by applying heat to the shaded portion in FIG. 4 in a state where a predetermined degree of vacuum is maintained in a predetermined vacuum chamber (not shown). To seal the opening 93. Thereby, the battery 100 in a state in which the positive electrode extraction tab 120 and the negative electrode extraction tab 130 are extracted from the laminate film packaging material 90 in which the electrode laminate 60 and the electrolyte solution 80 are enclosed is completed. Here, in such a battery, the more electrolyte solution enclosed in the laminate film outer packaging material is, the more preferable, but on the other hand, in order to increase the electrolyte solution, an excessive space is excessive rather than the shape of the electrode laminate. If it is provided, the shape of the battery becomes large, which is not preferable.

そこで、含浸工程における真空度は、封止工程における真空度より高く設定することが好ましい。このように設定することで、封止工程においても、ラミネートフィルム外装材90の開口部93から電解液80が溢れ出てしまうトラブルを防ぐことができ、電池100の製造効率を向上させることが可能となる。   Therefore, the degree of vacuum in the impregnation process is preferably set higher than the degree of vacuum in the sealing process. By setting in this way, it is possible to prevent the trouble that the electrolytic solution 80 overflows from the opening 93 of the laminate film exterior material 90 even in the sealing process, and the manufacturing efficiency of the battery 100 can be improved. It becomes.

以上、本発明に係る電池の製造方法によれば、開口工程によって開口部の開口面積が広げられた状態で、真空含浸を行うので、フィルム外装材内に電解液が貯溜される体積を十
分確保することが可能となり、含浸工程において、膨張した空気が想定通りに抜けず、電解液面を押し上げたとしても、フィルム外装材の開口部から電解液が溢れ出てしまうことがなく、製造効率が向上する。
As described above, according to the battery manufacturing method of the present invention, since the vacuum impregnation is performed in a state where the opening area of the opening is widened by the opening step, a sufficient volume for storing the electrolyte in the film exterior material is secured. In the impregnation process, the expanded air does not escape as expected, and even if the electrolyte surface is pushed up, the electrolyte does not overflow from the opening of the film exterior material, and the production efficiency is improved. improves.

含浸工程における真空度が、封止工程における真空度より高くされることで、封止工程においても、フィルム外装材の開口部から電解液が溢れ出てしまうことがなくなる。   By making the degree of vacuum in the impregnation step higher than the degree of vacuum in the sealing step, the electrolyte does not overflow from the opening of the film exterior material even in the sealing step.

60・・・電極積層体、62・・・集電体、63・・・集電体、80・・・電解液、90・・・ラミネートフィルム外装材、91・・・熱溶着部、92・・・熱溶着部、93・・・開口部、100・・・電池、110・・・電池本体部、120・・・正極引き出しタブ、130・・・負極引き出しタブ 60 ... Electrode laminated body, 62 ... Current collector, 63 ... Current collector, 80 ... Electrolyte, 90 ... Laminate film exterior material, 91 ... Thermal welding part, 92. ..Heat welding part, 93 ... Opening part, 100 ... Battery, 110 ... Battery body part, 120 ... Positive electrode extraction tab, 130 ... Negative electrode extraction tab

Claims (6)

開口部を有するフィルム外装材に、複数のシート状正極と複数のシート状負極とがセパレータを介して積層された電極積層体を収容する収容工程と、
前記フィルム外装材に応力を加えることで、前記開口部の開口面積を広げる開口工程と、前記開口工程によって前記開口部の開口面積が広げられた状態で、前記開口部から電解液を注液する注液工程と、
前記注液工程の後、前記開口工程によって前記開口部の開口面積が広げられた状態で、真空含浸を行う含浸工程と、
を有する電池の製造方法。
An accommodating step of accommodating an electrode laminate in which a plurality of sheet-like positive electrodes and a plurality of sheet-like negative electrodes are laminated via separators on a film exterior material having an opening,
An opening step of expanding the opening area of the opening by applying stress to the film exterior material, and injecting the electrolyte from the opening in a state where the opening area of the opening is expanded by the opening step A liquid injection process;
After the liquid injection step, an impregnation step of performing vacuum impregnation in a state where the opening area of the opening is expanded by the opening step;
A method of manufacturing a battery having
前記含浸工程の後に前記開口部を真空下で封止する封止工程をさらに有する請求項1に記載の電池の製造方法。 The battery manufacturing method according to claim 1, further comprising a sealing step of sealing the opening under vacuum after the impregnation step. 前記含浸工程における真空度が、前記封止工程における真空度より高い請求項2に記載の電池の製造方法。 The battery manufacturing method according to claim 2, wherein a degree of vacuum in the impregnation step is higher than a degree of vacuum in the sealing step. 前記開口工程においては、吸着を行う治具により前記フィルム外装材に応力を加える請求項1乃至請求項3のいずれか1項に記載の電池の製造方法。 The battery manufacturing method according to any one of claims 1 to 3, wherein in the opening step, stress is applied to the film exterior member by a jig for performing adsorption. 前記開口工程においては、開口部の形状を保持する治具により前記フィルム外装材に応力を加える請求項1乃至請求項3のいずれか1項に記載の電池の製造方法。 4. The battery manufacturing method according to claim 1, wherein, in the opening step, stress is applied to the film exterior member with a jig that holds the shape of the opening. 5. 前記セパレータが袋状のものである請求項1乃至請求項5のいずれか1項に記載の電池の製造方法。 The battery manufacturing method according to claim 1, wherein the separator is in a bag shape.
JP2012203827A 2012-09-18 2012-09-18 Method of manufacturing battery Pending JP2014060016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012203827A JP2014060016A (en) 2012-09-18 2012-09-18 Method of manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012203827A JP2014060016A (en) 2012-09-18 2012-09-18 Method of manufacturing battery

Publications (1)

Publication Number Publication Date
JP2014060016A true JP2014060016A (en) 2014-04-03

Family

ID=50616313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012203827A Pending JP2014060016A (en) 2012-09-18 2012-09-18 Method of manufacturing battery

Country Status (1)

Country Link
JP (1) JP2014060016A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531157A (en) * 2013-09-13 2015-10-29 エルジー・ケム・リミテッド Pouch type case, battery cell, and battery cell manufacturing method
JP2016162708A (en) * 2015-03-05 2016-09-05 株式会社フジクラ Method os manufacturing power storage element
JP2016189345A (en) * 2014-05-29 2016-11-04 株式会社半導体エネルギー研究所 Secondary battery
JP2018170210A (en) * 2017-03-30 2018-11-01 株式会社東芝 Manufacturing method of secondary battery and manufacturing apparatus of secondary battery
CN112768849A (en) * 2021-02-01 2021-05-07 深圳市力德科技有限公司 Liquid injection method of battery core and lithium battery liquid injection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181862A (en) * 2008-01-31 2009-08-13 Nec Tokin Corp Method and device of manufacturing film-wrapped electric device
JP2011060562A (en) * 2009-09-10 2011-03-24 Nec Energy Devices Ltd Lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181862A (en) * 2008-01-31 2009-08-13 Nec Tokin Corp Method and device of manufacturing film-wrapped electric device
JP2011060562A (en) * 2009-09-10 2011-03-24 Nec Energy Devices Ltd Lithium ion secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531157A (en) * 2013-09-13 2015-10-29 エルジー・ケム・リミテッド Pouch type case, battery cell, and battery cell manufacturing method
US9553298B2 (en) 2013-09-13 2017-01-24 Lg Chem, Ltd. Pouch type case, battery cell, and method of manufacturing battery cell
JP2016189345A (en) * 2014-05-29 2016-11-04 株式会社半導体エネルギー研究所 Secondary battery
US10714784B2 (en) 2014-05-29 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US11444311B2 (en) 2014-05-29 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US11949061B2 (en) 2014-05-29 2024-04-02 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
JP2016162708A (en) * 2015-03-05 2016-09-05 株式会社フジクラ Method os manufacturing power storage element
JP2018170210A (en) * 2017-03-30 2018-11-01 株式会社東芝 Manufacturing method of secondary battery and manufacturing apparatus of secondary battery
CN112768849A (en) * 2021-02-01 2021-05-07 深圳市力德科技有限公司 Liquid injection method of battery core and lithium battery liquid injection device

Similar Documents

Publication Publication Date Title
JP5334162B2 (en) Multilayer secondary battery
WO2012114951A1 (en) Molten salt battery and method for producing same
JP5451315B2 (en) Assembled battery
JP6743664B2 (en) Power storage device and method of manufacturing power storage device
JP7046158B2 (en) Battery cell
KR101596269B1 (en) Battery Cell of Novel Structure
JP2009187889A (en) Battery case and battery pack
JP2009123582A (en) Laminated secondary battery
CN107204408A (en) A kind of full lug quadrate lithium battery and preparation method thereof
JP2014060016A (en) Method of manufacturing battery
JP2010097891A (en) Stacked lithium-ion secondary battery
JP2011086760A (en) Energy storage element
US20130011725A1 (en) Package for large format lithium ion cells
JP6810140B2 (en) Deep format pouch for battery cells
KR101297858B1 (en) Second battery with porous structures and battery Module using the same
JP2012248381A (en) Battery
KR101317535B1 (en) Secondary battery and battery assembly using the same
JP6003647B2 (en) Secondary battery
JP6952036B2 (en) Batteries, battery modules
KR20170058047A (en) Pouch-typed Battery Case Having Disposable Gas Gathering Member Attached Thereto and Method for Manufacturing Battery Cell Using the same
KR101368236B1 (en) Secondary battery having a plastic-bag, and manufacturing the same
JP2012049538A (en) Supercapacitor
KR20200077304A (en) Pouch-type Battery Case Comprising Asymmetrical Concave Part
JP2013251123A (en) Square secondary battery
JP5641590B2 (en) Multilayer secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170301