JP6187540B2 - Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield - Google Patents

Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield Download PDF

Info

Publication number
JP6187540B2
JP6187540B2 JP2015101227A JP2015101227A JP6187540B2 JP 6187540 B2 JP6187540 B2 JP 6187540B2 JP 2015101227 A JP2015101227 A JP 2015101227A JP 2015101227 A JP2015101227 A JP 2015101227A JP 6187540 B2 JP6187540 B2 JP 6187540B2
Authority
JP
Japan
Prior art keywords
tungsten oxide
fine particles
solar radiation
oxide fine
cesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015101227A
Other languages
Japanese (ja)
Other versions
JP2015199668A (en
Inventor
太田 陽介
陽介 太田
東福 淳司
淳司 東福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015101227A priority Critical patent/JP6187540B2/en
Publication of JP2015199668A publication Critical patent/JP2015199668A/en
Application granted granted Critical
Publication of JP6187540B2 publication Critical patent/JP6187540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、可視光領域においては透明で、近赤外線領域においては吸収を持つ日射遮蔽
体形成用複合タングステン酸化物微粒子の製造方法、および日射遮蔽体形成用複合タング
ステン酸化物微粒子が分散されてなる日射遮蔽体形成用複合タングステン酸化物分散液、
並びに日射遮蔽体に関する。
The present invention is a method for producing a composite tungsten oxide fine particle for forming a solar radiation shield that is transparent in the visible light region and has an absorption in the near infrared region, and the composite tungsten oxide fine particle for solar radiation shield formation is dispersed. Composite tungsten oxide dispersion for solar radiation shield formation,
In addition, it relates to a solar radiation shield.

太陽光や電球の光に含まれ、熱として人体が感じたり、屋内の温度上昇を引き起こす赤
外線を除去減少させる方法として、従来は、当該赤外線を反射する材料からなる金属膜を
表面に形成したガラスである熱線反射ガラスを用いる手段が多く利用されてきた。当該赤
外線反射材料には、FeO、CoO、CrO、TiOなどの金属酸化物や、Ag
、Au、Cu、Ni、Al等の金属材料が選択されている。
As a method of removing and reducing infrared rays that are contained in sunlight or light from a light bulb and that cause the human body to feel as heat or cause an increase in indoor temperature, glass that has been formed with a metal film made of a material that reflects the infrared rays is conventionally used. Many means using heat ray reflective glass have been used. Examples of the infrared reflective material include metal oxides such as FeO x , CoO x , CrO x , and TiO x , Ag
Metal materials such as Au, Cu, Ni, and Al are selected.

ところが、これら金属酸化物や金属材料には、熱感や温度上昇に大きく寄与する赤外線
以外に、可視光も同時に反射もしくは吸収する性質がある。この為、当該熱線反射ガラス
の使用により、可視光透過率が低下してしまう問題があった。特に、建材、乗り物などに
用いられる窓用基材においては可視光領域での高い透過率が必要とされる。そこで、当該
熱線反射ガラスにおいて、上記金属酸化物等の材料を利用する場合には、その膜厚を非常
に薄くしなければならなかった。
However, these metal oxides and metal materials have the property of reflecting or absorbing visible light at the same time, in addition to infrared rays that greatly contribute to heat feeling and temperature rise. For this reason, there existed a problem that visible light transmittance fell by use of the said heat ray reflective glass. In particular, a window base material used for building materials, vehicles, and the like requires high transmittance in the visible light region. Therefore, in the heat ray reflective glass, when a material such as the metal oxide is used, the film thickness has to be very thin.

熱線反射ガラスにおいて、金属酸化物等の材料の膜厚を非常に薄くする為には、スプレ
ー焼付けやCVD法、あるいはスパッタリング法や真空蒸着法などの物理成膜法を用い、
膜厚10nmレベルの薄膜として成膜する方法が採られている。
しかし、これらの成膜方法は大掛かりな装置や真空装置を必要し、生産性や大面積化に
難点があり、膜の製造コストが高くなる問題点がある。また、これらの材料を用いて熱線
反射ガラスの日射遮蔽特性を向上させようとすると、可視光領域の反射率も同時に高くな
ってしまう傾向があり、鏡のようなギラギラした外観を与えて、美観を損ねてしまう欠点
もあった。
In heat ray reflective glass, in order to make the film thickness of a material such as a metal oxide very thin, a physical film forming method such as spray baking, CVD method, sputtering method or vacuum deposition method is used.
A method of forming a thin film having a thickness of 10 nm is employed.
However, these film forming methods require a large-scale apparatus and a vacuum apparatus, and there are problems in productivity and an increase in area, and there is a problem that the manufacturing cost of the film increases. In addition, if these materials are used to improve the solar radiation shielding characteristics of the heat ray reflective glass, the reflectance in the visible light region also tends to increase at the same time. There was also a drawback that would damage.

一方、これらの材料で成膜された膜は、電気抵抗値が比較的低くなり、電波に対する反
射が高くなる。この為、熱線反射ガラスが、携帯電話、全地球測位システム(GPS)、
テレビ、ラジオ等の電波を反射し、当該ガラスが設置された室内はもちろん周辺地域へも
電波障害を引き起こしたりする問題点があった。
On the other hand, a film formed with these materials has a relatively low electrical resistance value and high reflection with respect to radio waves. For this reason, heat ray reflective glass is used for mobile phones, global positioning systems (GPS),
There is a problem in that radio waves from TVs, radios, etc. are reflected, causing interference in the surrounding area as well as the room where the glass is installed.

このような熱線反射ガラスの問題点を改善するためには、ガラス表面に形成された膜の
物理特性として可視光領域の光の反射率が低く、赤外線領域の反射率が高く、かつ膜の表
面抵抗値が概ね10Ω/□以上に制御可能な膜が必要であると考えられる。
In order to improve the problems of such heat ray reflective glass, the physical properties of the film formed on the glass surface are such that the light reflectance in the visible region is low, the reflectance in the infrared region is high, and the film surface It is considered that a film whose resistance value can be controlled to about 10 6 Ω / □ or more is necessary.

ここで、可視光透過率が高く、優れた熱線吸収特性を有する材料であるアンチモン錫酸
化物(以下、ATOと略記する場合がある。)や、インジウム錫酸化物(以下、ITOと
略記する場合がある。)の微粒子分散体を用いて、赤外線を吸収させる方法がある。これ
らの材料は、可視光反射率が比較的低い為、熱線反射ガラスにギラギラした外観を与える
ことはない。しかし、これらの材料は吸収波長領域が、中赤外線領域からより高い波長領
域にあるために、太陽の放射強度が強い可視光領域により近い赤外線領域においては、熱
線遮蔽効果が十分ではない。更に、これらの材料は、単位重量当たりの日射遮蔽力が低い
ため、高い日射遮蔽能を得るためには使用量が多くなり、原料コストが割高となる問題を
有していた。
Here, antimony tin oxide (hereinafter sometimes abbreviated as ATO) or indium tin oxide (hereinafter abbreviated as ITO), which is a material having high visible light transmittance and excellent heat ray absorption characteristics. There is a method of absorbing infrared rays using a fine particle dispersion. Since these materials have a relatively low visible light reflectance, they do not give a glaring appearance to the heat ray reflective glass. However, since these materials have an absorption wavelength region in the higher wavelength region from the mid-infrared region, the heat ray shielding effect is not sufficient in the infrared region closer to the visible light region where the solar radiation intensity is strong. Furthermore, since these materials have a low solar shielding ability per unit weight, there is a problem that the amount used is increased in order to obtain a high solar shielding ability, and the raw material cost is increased.

さらに、日射遮蔽能を有する赤外線遮蔽材料として、酸化タングステン、酸化モリブデ
ン、酸化バナジウムをわずかに還元した成膜が挙げられる。これらの膜は所謂エレクトロ
クロミック材料として用いられる材料である。そして、充分に酸化された状態では透明で
あり、電気化学的な方法で還元すると長波長の可視光領域から近赤外線領域にかけて吸収
を発現させる材料である為、用途が限定される。
Furthermore, as an infrared shielding material having solar radiation shielding ability, a film formed by slightly reducing tungsten oxide, molybdenum oxide, and vanadium oxide can be given. These films are materials used as so-called electrochromic materials. In addition, it is transparent in a sufficiently oxidized state, and when it is reduced by an electrochemical method, it is a material that develops absorption from the long-wavelength visible light region to the near-infrared region.

特許文献1には、透明なガラス基板上に、基板側より第1層として周期律表のIIIa族
、IVa族、Vb族、VIb族及びVIII族から成る群から選ばれた少なくとも1種類以上の金
属イオンを含有する複合酸化タングステン膜を設け、前記第1層上に第2層として透明誘
電体を設け、該第2層上に第3層として周期律表のIIIa族、IVa族、Vb族、VIb族及び
VIII族から成る群から選ばれた少なくとも1種類以上の金属イオンを含有する複合酸化タ
ングステン膜を設け、且つ前記第2層の透明誘電体膜の屈折率よりも低くする熱線遮蔽ガ
ラスが提案されている。また、当該文献によれば、金属イオンを含有する複合酸化タング
ステン膜は、特に大面積化及び生産性等の観点からスパッタリング法によって成膜する旨
が提案されている。
In Patent Document 1, on a transparent glass substrate, as a first layer from the substrate side, at least one kind selected from the group consisting of IIIa group, IVa group, Vb group, VIb group and VIII group of the periodic table is used. A composite tungsten oxide film containing metal ions is provided, a transparent dielectric is provided as a second layer on the first layer, and a group IIIa, IVa, or Vb of the periodic table is provided as a third layer on the second layer. , VIb group and
A heat ray shielding glass is proposed in which a composite tungsten oxide film containing at least one metal ion selected from the group consisting of group VIII is provided, and the refractive index of the transparent dielectric film of the second layer is lower. Yes. Further, according to this document, it has been proposed that a composite tungsten oxide film containing metal ions is formed by a sputtering method particularly from the viewpoint of increasing the area and productivity.

特許文献2には、特許文献1と同様の方法で、透明なガラス基板上に、基板側より第1
層として第1の誘電体膜を設け、該第1層上に第2層として酸化タングステン膜を設け、
該第2層上に第3層として第2の誘電体膜を設けた熱線遮蔽ガラスが提案されている。
In Patent Document 2, the same method as Patent Document 1 is used, on a transparent glass substrate, the first from the substrate side.
Providing a first dielectric film as a layer, and providing a tungsten oxide film as a second layer on the first layer;
A heat ray shielding glass in which a second dielectric film is provided as a third layer on the second layer has been proposed.

特許文献3では、特許文献1と同様な方法で、透明な基板上に、基板側より第1層とし
て同様の金属元素を含有する複合酸化タングステン膜を設け、前記第1層上に第2層とし
て透明誘電体膜を設けた熱線遮蔽ガラスが提案されている。
In Patent Document 3, a composite tungsten oxide film containing the same metal element is provided as a first layer from the substrate side on a transparent substrate by the same method as Patent Document 1, and a second layer is formed on the first layer. A heat ray shielding glass provided with a transparent dielectric film has been proposed.

特許文献4では、タングステンからなるターゲットを用い、二酸化炭素を含む雰囲気中
でスパッタリングすることで、高遮熱性を有し、面内における光学特性が均一な酸化タン
グステン膜を安定して生産できる、電波透過型熱線遮蔽膜の成膜方法が提案されている。
In Patent Document 4, by using a target made of tungsten and sputtering in an atmosphere containing carbon dioxide, it is possible to stably produce a tungsten oxide film having high heat shielding properties and uniform optical characteristics in a plane. A method of forming a transmissive heat ray shielding film has been proposed.

特許文献1から特許文献4に記載されているように、従来、タングステン化合物を含む
赤外線遮蔽膜の製造方法としては、スパッタリング法が用いられてきた。しかし、このよ
うな物理成膜法では、大掛かりな装置や真空設備を必要とした。この結果、生産性の観点
から課題があり、大面積化を行うことは技術的には可能であっても、膜の製造コストが高
くなるという課題もあった。また、日射遮蔽体としての観点からは、赤外線領域や近赤外
線領域の遮蔽性能を低下させることなく、可視光領域での光透過性をより向上させたいと
いう課題がある。また、生産性の観点より、当該赤外線遮蔽膜を単相膜とした場合、当該
赤外線遮蔽膜が酸化しやすく、傷つきやすいという耐久性の弱さの問題があった。
As described in Patent Document 1 to Patent Document 4, conventionally, a sputtering method has been used as a method for manufacturing an infrared shielding film containing a tungsten compound. However, such a physical film formation method requires a large-scale apparatus and vacuum equipment. As a result, there is a problem from the viewpoint of productivity, and even though it is technically possible to increase the area, there is also a problem that the manufacturing cost of the film increases. Further, from the viewpoint of a solar radiation shield, there is a problem that it is desired to further improve the light transmittance in the visible light region without reducing the shielding performance in the infrared region and the near infrared region. From the viewpoint of productivity, when the infrared shielding film is a single-phase film, there is a problem of low durability that the infrared shielding film is easily oxidized and easily damaged.

上述の問題を解決するため特許文献5では、可視光透過率を高く保ったまま、赤外線の
透過率を低くできる日射遮蔽体(微粒子分散体)に用いるタングステン酸化物微粒子とそ
の製造方法およびMxWyOzで表される複合タングステン酸化物微粒子が提案されてい
る。
当該MxWyOzで表される複合タングステン酸化物微粒子は、xの値が0.001≦
x≦1、z/yの値が2.2≦z/y≦2.999の範囲内であり、元素Mにアルカリ金
属、アルカリ土類金属、希土類金属、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir
、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、
Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、
Ta、Reのうちから選択される1種類以上の元素である。
In order to solve the above-described problem, Patent Document 5 discloses tungsten oxide fine particles used for a solar radiation shielding body (fine particle dispersion) that can reduce infrared transmittance while keeping visible light transmittance high, a manufacturing method thereof, and MxWyOz. The represented composite tungsten oxide fine particles have been proposed.
In the composite tungsten oxide fine particles represented by MxWyOz, the value of x is 0.001 ≦
The value of x ≦ 1, z / y is in the range of 2.2 ≦ z / y ≦ 2.999, and the element M is alkali metal, alkaline earth metal, rare earth metal, Zr, Cr, Mn, Fe, Ru , Co, Rh, Ir
Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si,
Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo,
One or more elements selected from Ta and Re.

特許文献5に記載の複合タングステン酸化物微粒子を分散させた可視光透過型の日射遮
蔽体(微粒子分散体)は、可視光透過率を高く保ったまま、赤外線の透過率を低くする観
点から有用な材料である。しかし、当該日射遮蔽体に紫外線を含む強い光を照射されるこ
とで、当該日射遮蔽体の青色が濃くなり、可視光透過率が下がるという問題があった(以
下、「光着色」と記載する。)。但し、この光着色は、当該日射遮蔽体を一定時間(数日
)暗所で放置することで元に戻る性質がある。
The visible light transmissive solar shading material (fine particle dispersion) in which the composite tungsten oxide fine particles described in Patent Document 5 are dispersed is useful from the viewpoint of reducing the infrared transmittance while keeping the visible light transmittance high. Material. However, there has been a problem that when the solar shading body is irradiated with strong light including ultraviolet rays, the solar shading body becomes deep blue and the visible light transmittance is lowered (hereinafter referred to as “light coloring”). .) However, this light coloring has a property of returning to the original state by leaving the solar shading body in a dark place for a certain period of time (several days).

上記問題を解決するため、特許文献6では、MxWyOzで表される複合タングステン
酸化物微粒子の結晶中または/および該微粒子表面に、Cu、Fe、Mn、Ni、Co、
Pt、Au、Ag、Na、In、Sn、Cs、Rbのうちから選択された1種類以上の元
素、または、その化合物が含まれていることを特徴とするタングステン含有酸化物微粒子
が提案されている。
In order to solve the above problem, in Patent Document 6, Cu, Fe, Mn, Ni, Co, in the crystal of composite tungsten oxide fine particles represented by MxWyOz or / and on the surface of the fine particles are disclosed.
Proposed tungsten-containing oxide fine particles characterized by containing one or more elements selected from Pt, Au, Ag, Na, In, Sn, Cs, and Rb, or a compound thereof. Yes.

さらに、特許文献7には、六方晶を有する複合タングステン酸化物微粒子にマグネリ相
と呼ばれるタングステン酸化物(一般式W3n−1、W3n−2で記載される)
を混在させることで、良好な赤外線遮蔽特性の付加、さらに耐候性の向上することが記載
されている。
Further, Patent Document 7 (described by the general formula W n O 3n-1, W n O 3n-2) tungsten oxide called Magneli phase in the composite tungsten oxide nanoparticles having a hexagonal
It is described that the addition of good infrared shielding properties and weather resistance can be improved by mixing these.

特開平8−59300号公報JP-A-8-59300 特開平8−12378号公報JP-A-8-12378 特開平8−283044号公報JP-A-8-283044 特開平10−183334号公報Japanese Patent Laid-Open No. 10-183334 特開2005−187323号公報JP 2005-187323 A 特開2007−238353号公報JP 2007-238353 A WO2005/037932号公報WO2005 / 037932 Publication

本発明者らの検討によると、特許文献5に記載されている複合タングステン酸化物は、
高い可視光透過率を有し、且つ優れた赤外線透過率の遮蔽できる日射遮蔽体料である。し
かし、有機バインダーに該日射遮蔽材料を含有させて単相膜とした場合、熱による当該日
射遮蔽材料の日射遮蔽特性の劣化が知見された。
According to the study by the present inventors, the composite tungsten oxide described in Patent Document 5 is
It is a solar shading material that has high visible light transmittance and can shield excellent infrared transmittance. However, it has been found that when the sunscreen material is contained in an organic binder to form a single phase film, the sunscreen properties of the sunscreen material are deteriorated by heat.

また本発明者らの検討によると、特許文献6に記載される複合タングステン酸化物微粒
子の結晶中または/および該微粒子表面に、Cu、Fe、Mn、Ni、Co、Pt、Au
、Ag、Na、In、Sn、Cs、Rbのうちから選択された1種類以上の元素、または
、その化合物が添加されているタングステン含有酸化物微粒子は、当該添加元素における
過剰量の一部が、日射遮蔽能が低いまたは日射遮蔽能を有しない金属として析出し、電子
伝導型の粒子となって可視光領域の光を吸収または反射させてしまう場合があることを知
見した。さらに、当該文献に記載の方法を用いることにより、また、添加効果の高いCu
やFeは、日射遮蔽体を形成するバインダー樹脂の劣化を加速させ、基板同士の密着性や
膜の強度不足を招く要因となる場合があることも知見した。
Further, according to the study by the present inventors, Cu, Fe, Mn, Ni, Co, Pt, Au are present in the crystal of composite tungsten oxide fine particles described in Patent Document 6 and / or on the surface of the fine particles.
In addition, one or more elements selected from Ag, Na, In, Sn, Cs, and Rb, or tungsten-containing oxide fine particles to which the compound is added, have a part of the excess amount in the added element. It has been found that there is a case where it is deposited as a metal having low solar radiation shielding ability or not having solar radiation shielding ability and becomes an electron conduction type particle and absorbs or reflects light in the visible light region. Furthermore, by using the method described in the document, Cu having a high addition effect is also obtained.
It has also been found that Fe and Fe accelerate the deterioration of the binder resin that forms the solar shading body, and may cause inadequate adhesion between substrates and insufficient film strength.

さらに本発明者らは、特許文献7では、マグネリ相が混在することで良好な赤外線遮蔽
特性の付加、さらに耐光性の向上が図られたが、耐熱性については十分ではないことも知
見した。
Furthermore, the present inventors have found in Patent Document 7 that a good infrared shielding property is added and light resistance is improved by mixing the magnetic phase, but the heat resistance is not sufficient.

本発明は、上述の状況の下で為されたものであり、その解決しようとする課題は、可視
光透過率が高く保たれ、赤外線の透過率が低く保たれながら、耐熱性に優れ、光着色が抑
制される耐光性を有している日射遮蔽体形成用複合タングステン酸化物微粒子とその製造
方法、当該微粒子を用いた日射遮蔽体形成用複合タングステン酸化物微粒子分散液および
日射遮蔽体を提供することである。尚、本発明に係る日射遮蔽体は、日射遮蔽膜を含む概
念である。
The present invention has been made under the above-described circumstances, and the problem to be solved is that the visible light transmittance is kept high and the infrared transmittance is kept low, while being excellent in heat resistance, light Provided are a composite tungsten oxide fine particle for forming a solar shading body having light resistance capable of suppressing coloring, a method for producing the same, a composite tungsten oxide fine particle dispersion for forming a solar shading body using the fine particle, and a solar shading body. It is to be. The solar shading body according to the present invention is a concept including a solar shading film.

本発明者等は、鋭意研究の結果、タングステンとセシウムとの混合モル比を所定範囲内
に調整した、タングステン酸(HWO)粉体と炭酸セシウム(CsCO)粉体と
の混合粉、または、タングステン酸(HWO)粉体と炭酸セシウム水溶液との混合物
を乾燥して得た混合粉を、所定温度範囲内の還元雰囲気下で焼成することにより、可視光
透過率が高く保たれ、赤外線の透過率を低く保たれながら、耐熱性に優れ、光着色が抑制
される耐光性を有している日射遮蔽体形成用複合タングステン酸化物微粒子を得ることが
できることを知見し、本発明を完成した。
As a result of intensive studies, the present inventors have made a mixture of tungsten and cesium with a molar ratio of tungsten and cesium within a predetermined range, with tungstic acid (H 2 WO 4 ) powder and cesium carbonate (Cs 2 CO 3 ) powder. Visible light transmittance is obtained by firing a mixed powder or a mixed powder obtained by drying a mixture of a tungstic acid (H 2 WO 4 ) powder and an aqueous cesium carbonate solution in a reducing atmosphere within a predetermined temperature range. Has been found that it is possible to obtain composite tungsten oxide fine particles for forming a solar shading body that have excellent heat resistance and light resistance that suppresses photo-coloring while maintaining high infrared transmittance and low infrared transmittance. The present invention has been completed.

すなわち、上述の課題を解決する為の第1の発明は、
一般式CsxWyOz(但し、Csはセシウム、Wはタングステン、Oは酸素、0.30≦x/y≦0.33、2.2≦z/y≦3.0)で表され、六方晶系の結晶構造を有する日射遮蔽体形成用複合タングステン酸化物微粒子であって、
六方晶以外のタングステン酸化物の生成量が10重量%以下であり
WOの生成量が1重量%以下であり
Wの生成量が0重量%であり
前記六方晶以外のタングステン酸化物または前記WO の1種以上を含み、
c軸の格子定数が7.61101Å以上7.61242Å以下である、ことを特徴とする日射遮蔽体形成用複合タングステン酸化物微粒子である。
That is, the first invention for solving the above-described problem is
It is represented by the general formula CsxWyOz (where Cs is cesium, W is tungsten, O is oxygen, 0.30 ≦ x / y ≦ 0.33, 2.2 ≦ z / y ≦ 3.0). A composite tungsten oxide fine particle for forming a solar radiation shielding body having a crystal structure,
The amount of tungsten oxide other than hexagonal does not exceed 10 wt% or less,
The amount of WO 2 is not more than 1 wt%,
The amount of W produced is 0% by weight,
Including one or more of tungsten oxides other than the hexagonal crystals or the WO 2
It is a composite tungsten oxide fine particle for forming a solar shading body characterized by having a c-axis lattice constant of from 7.61101 to 7.61242.

第2の発明は、The second invention is
第1の発明に記載の日射遮蔽体形成用複合タングステン酸化物微粒子と、溶媒と、分散剤とを含むことを特徴とする日射遮蔽体形成用複合タングステン酸化物微粒子分散液である。A composite tungsten oxide fine particle dispersion for forming a solar radiation shield, comprising the composite tungsten oxide fine particles for forming a solar radiation shield according to the first invention, a solvent, and a dispersant.

第3発明は、The third invention is
さらに樹脂バインダーを含むことを特徴とする第2の発明に記載の日射遮蔽体形成用複合タングステン酸化物微粒子分散液である。Further, the composite tungsten oxide fine particle dispersion for forming a solar shading body according to the second invention, further comprising a resin binder.

第4の発明は、The fourth invention is:
第1の発明に記載の日射遮蔽体形成用複合タングステン酸化物微粒子が、樹脂中に分散されていることを特徴とする日射遮蔽体である。A solar radiation shielding body characterized in that the composite tungsten oxide fine particles for solar radiation shielding formation according to the first invention are dispersed in a resin.

本発明によれば、可視光透過率が高く保たれ、赤外線の透過率が低く保たれ、耐熱性に
優れ、光着色が抑制される耐光性を有している日射遮蔽体形成用複合タングステン酸化物
微粒子とその製造方法、当該微粒子を用いた日射遮蔽体形成用複合タングステン酸化物微
粒子分散液および日射遮蔽体を得ることが出来た。
According to the present invention, the composite tungsten oxide for forming a solar shading body has high visible light transmittance, low infrared transmittance, excellent heat resistance, and light resistance to suppress photo-coloring. It was possible to obtain an object fine particle, a method for producing the same, a composite tungsten oxide fine particle dispersion for forming a solar shield using the fine particle, and a solar shield.

本発明に係るタングステン酸粉体と炭酸セシウム粉体との混合粉の示差熱熱重量同時測定(TG−DTA)結果である。It is a differential thermothermal weight simultaneous measurement (TG-DTA) result of the mixed powder of the tungstic acid powder and cesium carbonate powder according to the present invention. 本発明に係る日射遮蔽体形成用複合タングステン酸化物微粒子の結晶構造を図示したものである。1 is a diagram illustrating a crystal structure of a composite tungsten oxide fine particle for forming a sunscreen according to the present invention.

以下、本発明を実施するための形態について、具体的に説明する。
本発明者らは、タングステン酸(HWO)粉体と炭酸セシウム(CsCO)粉
体との混合粉、または、タングステン酸(HWO)粉体と炭酸セシウム水溶液との混
合物を乾燥して得た混合粉において、タングステンとセシウムとの混合モル比が0.33
≦Cs/W≦0.37である混合粉を製造した。そして、当該混合粉を、不活性ガスと還
元性ガスとの混合ガス雰囲気下で500℃以上、600℃以下の温度で焼成することで、
一般式Cs(但し、Csはセシウム、Wはタングステン、Oは酸素、0.30
≦x/y≦0.33、2.2≦z/y≦3.0)で表され、主相が六方晶系の結晶構造を
有するセシウム添加タングステン酸化物微粒子を得た。
Hereinafter, the form for implementing this invention is demonstrated concretely.
The present inventors have prepared a mixed powder of a tungstic acid (H 2 WO 4 ) powder and a cesium carbonate (Cs 2 CO 3 ) powder, or a tungstic acid (H 2 WO 4 ) powder and a cesium carbonate aqueous solution. In the mixed powder obtained by drying the mixture, the mixing molar ratio of tungsten and cesium is 0.33.
A mixed powder satisfying ≦ Cs / W ≦ 0.37 was produced. And by baking the mixed powder at a temperature of 500 ° C. or higher and 600 ° C. or lower in a mixed gas atmosphere of an inert gas and a reducing gas,
General formula Cs x W y O z (where Cs is cesium, W is tungsten, O is oxygen, 0.30
≦ x / y ≦ 0.33, 2.2 ≦ z / y ≦ 3.0), and cesium-added tungsten oxide fine particles having a hexagonal crystal structure as a main phase were obtained.

そして本発明者らは、当該本発明に係るセシウム添加タングステン酸化物微粒子が、従
来の技術に係る複合タングステン酸化物微粒子と同等の可視光透過率と赤外線の透過率と
を保持しながら、さらに、耐熱性に優れ、光着色が抑制される耐光性に優れていることを
知見し、日射遮蔽体形成用複合タングステン酸化物微粒子として最適なものであることを
知見した。
さらに本発明者らは、当該本発明に係るセシウム添加タングステン酸化物微粒子を用い
た日射遮蔽体形成用複合タングステン酸化物微粒子分散液に想到した。
And the present inventors, while maintaining the visible light transmittance and infrared transmittance equivalent to the composite tungsten oxide fine particles according to the prior art, the cesium-added tungsten oxide fine particles according to the present invention, It has been found that it is excellent in heat resistance and light resistance in which photo-coloring is suppressed, and has been found to be optimal as a composite tungsten oxide fine particle for forming a solar shading body.
Furthermore, the present inventors have conceived a composite tungsten oxide fine particle dispersion for forming a solar radiation shield using the cesium-added tungsten oxide fine particles according to the present invention.

そして、当該本発明に係るセシウム添加タングステン酸化物微粒子を用いた日射遮蔽体
形成用複合タングステン酸化物微粒子分散液を用いることで、高コストの物理成膜法を用
いることなく、簡便な塗布法または練りこみ法を用いることで、本発明に係る日射遮蔽体
を製造することが出来た。当該本発明に係る日射遮蔽体は、赤外線領域や近赤外線領域の
遮蔽性能を保持したまま、可視光領域での光透過性を向上し、耐熱特性が向上し、光着色
が抑制されていた。
以下、本発明に係る日射遮蔽体形成用複合タングステン酸化物微粒子として用いるセシ
ウム添加タングステン酸化物微粒子について説明する。
And, by using the composite tungsten oxide fine particle dispersion for solar radiation shielding using the cesium-added tungsten oxide fine particles according to the present invention, a simple coating method or By using the kneading method, the solar shading body according to the present invention could be produced. The solar radiation shielding body according to the present invention has improved light transmittance in the visible light region, improved heat resistance, and suppressed light coloring while maintaining the shielding performance in the infrared region and near infrared region.
Hereinafter, the cesium-added tungsten oxide fine particles used as the composite tungsten oxide fine particles for forming the sunscreen according to the present invention will be described.

1.本発明に係るセシウム添加タングステン酸化物微粒子と、その製造方法
タングステン酸(HWO、三酸化タングステン一水和物)と、炭酸セシウム(Cs
CO)水溶液とを混合すると、多量の気体発生を伴って反応し混合物が生成する。一
般に立方晶を有する三酸化タングステンは、その空隙内に非化学量論的にセシウムがイン
ターカレートされることが知られている。従って、当該気体発生反応は、当該三酸化タン
グステン結晶内に、セシウムがインターカレートすることにより発生した炭酸ガスである
と考えられる。
1. Cesium-added tungsten oxide fine particles according to the present invention, and production method thereof Tungstic acid (H 2 WO 4 , tungsten trioxide monohydrate), cesium carbonate (Cs)
When the 2 CO 3 ) aqueous solution is mixed, it reacts with a large amount of gas generation to produce a mixture. In general, tungsten trioxide having cubic crystals is known to intercalate cesium non-stoichiometrically in the voids. Therefore, the gas generation reaction is considered to be carbon dioxide gas generated by cesium intercalating in the tungsten trioxide crystal.

生成したタングステン酸と炭酸セシウム水溶液との混合物を乾燥して得られた混合乾燥
粉の結晶構造をXRDにて分析すると、セシウムタングステン酸化物(CsW、立
方晶)に酷似したX線回折ピークを示した。
When the crystal structure of the mixed dry powder obtained by drying the mixture of the generated tungstic acid and cesium carbonate aqueous solution is analyzed by XRD, X-ray diffraction very similar to cesium tungsten oxide (CsW 2 O 6 , cubic crystal) Showed a peak.

当該混合乾燥粉を示差熱熱重量同時測定しながら還元ガス気流中で熱処理した。すると
、373℃付近で示差熱(DTA)曲線にピークが確認され、構造解析から立方晶から六
方晶に相転移するものであることが確認された(図1参照)。
The mixed dry powder was heat-treated in a reducing gas stream while simultaneously measuring differential thermogravimetric weight. Then, a peak was confirmed in the differential heat (DTA) curve around 373 ° C., and it was confirmed from the structural analysis that the phase transition was from cubic to hexagonal (see FIG. 1).

ここで図1は、本発明に係るタングステン酸粉体と炭酸セシウム粉体との混合粉試料の
示差熱熱重量同時測定(TG−DTA)結果のグラフである。
当該グラフの横軸は温度であり、縦軸はΔTG、TG、およびDTAであり、それぞれ
実線、2点鎖線、破線を示している。
Here, FIG. 1 is a graph of the differential thermothermal weight simultaneous measurement (TG-DTA) result of a mixed powder sample of tungstic acid powder and cesium carbonate powder according to the present invention.
The horizontal axis of the graph is temperature, and the vertical axis is ΔTG, TG, and DTA, which indicate a solid line, a two-dot chain line, and a broken line, respectively.

図1のTG(熱重量)曲線において、550℃付近より混合粉試料の重量減少が確認さ
れた。550℃以上で作製された混合粉試料を構造解析するとWO、W等が確認された
。WO、W等は、セシウム添加タングステン酸化物または原料であるタングステン酸が
還元分解したときに生成するものであり、混合粉試料の重量減少の原因と考えられる。特
にWOは着色力が強く、少量でも含まれていると透過率を下げてしまう。そのため、W
の生成量は1重量%以下であることが好ましい。
In the TG (thermogravimetric) curve of FIG. 1, a decrease in the weight of the mixed powder sample was confirmed from around 550 ° C. When a mixed powder sample prepared at 550 ° C. or higher was subjected to structural analysis, WO 2 , W, and the like were confirmed. WO 2 , W, and the like are produced when cesium-added tungsten oxide or the raw material tungstic acid undergoes reductive decomposition, which is considered to be a cause of weight reduction of the mixed powder sample. In particular, WO 2 has a strong coloring power, and if it is contained even in a small amount, the transmittance is lowered. Therefore, W
The amount of O 2 produced is preferably 1% by weight or less.

六方晶タングステン酸化物の空隙に入るセシウムは、Cs/Wモル比で0.33が上限
となる。ところが、Cs/Wモル比で0.33という化学量論的(ストイキオメトリー)
組成にて、タングステン酸化物へセシウムを混合して仕込んだ場合、タングステン酸化物
とセシウムとの混合ムラにより、セシウムプアとなる部分が発生する場合がある。当該セ
シウムプアとなるタングステン酸化物の部分においては、六方晶以外のタングステン酸化
物が生成すると考えられる。六方晶以外のタングステン酸化物には日射遮蔽機能がないた
め、不純物として多く生成すると、日射遮蔽体の日射遮蔽機能を下げてしまう。そこで、
当該六方晶以外のタングステン酸化物の生成量は10重量%以下であることが好ましく、
1重量%以下であればさらに好ましい。
The upper limit of the cesium entering the voids of the hexagonal tungsten oxide is 0.33 in terms of the Cs / W molar ratio. However, the stoichiometric Cs / W molar ratio of 0.33 (stoichiometry)
When cesium is mixed and charged into tungsten oxide by composition, a portion that becomes cesium poor may be generated due to uneven mixing of tungsten oxide and cesium. It is considered that tungsten oxide other than hexagonal crystals is formed in the portion of tungsten oxide that becomes the cesium poor. Since tungsten oxides other than hexagonal crystals have no solar radiation shielding function, if they are produced in large amounts as impurities, the solar radiation shielding function of the solar radiation shielding body is lowered. there,
The amount of tungsten oxide other than the hexagonal crystal is preferably 10% by weight or less,
More preferably, it is 1% by weight or less.

一方、当該六方晶以外のタングステン酸化物生成を抑制する為、セシウム添加量を過剰
にした場合、わずかな過剰であるとセシウムは水酸化セシウムとして、粒子表面に堆積す
ると考えられ、これは日射遮蔽体の膜特性にはほとんど影響しない。さらに過剰のセシウ
ム添加を行った場合、タングステン酸化物中にCs/Wモル比で0.33以上のセシウム
が過剰にドープされた部分が発生する。当該Cs/Wモル比で0.33以上のセシウムが
過剰にドープされた部分においては、相転移が阻害され、正方格子構造のタングステン酸
セシウムが発生して混在することになる。当該正方格子構造のタングステン酸セシウムの
混在が少量であれば、日射遮蔽体の膜特性に大きく影響しない。しかし、正方格子構造の
タングステン酸セシウムが増加すると日射遮蔽体の日射透過率が悪化してしまう。
On the other hand, in order to suppress the formation of tungsten oxides other than the hexagonal crystal, when the amount of cesium added is excessive, it is considered that cesium accumulates on the particle surface as cesium hydroxide if it is slightly excessive. It has little effect on the body membrane properties. Further, when excessive cesium is added, a portion in which tungsten oxide is excessively doped with cesium having a Cs / W molar ratio of 0.33 or more is generated. In a portion where cesium having a Cs / W molar ratio of 0.33 or more is excessively doped, phase transition is inhibited, and cesium tungstate having a square lattice structure is generated and mixed. If the amount of the cesium tungstate having the square lattice structure is small, the film characteristics of the solar radiation shield are not greatly affected. However, if the cesium tungstate having a square lattice structure is increased, the solar transmittance of the solar shield is deteriorated.

以上より、タングステン酸(HWO)と、炭酸セシウム(CsCO)を混合し
た混合粉、または、タングステン酸(HWO)と炭酸セシウム(CsCO)水溶
液を混合し、乾燥させた混合乾燥粉を作製する場合、日射遮蔽特性の低い異相の生成を抑
制するため、Cs/Wモル比において、0.33≦Cs/W≦0.37であることが好ま
しい。さらに好ましくはCs/W=0.35である。
Above, and tungstic acid (H 2 WO 4), mixed powder was mixed cesium carbonate (Cs 2 CO 3), or, tungstic acid (H 2 WO 4) and cesium carbonate (Cs 2 CO 3) solution were mixed In the case of producing the dried mixed dry powder, it is preferable that 0.33 ≦ Cs / W ≦ 0.37 in the Cs / W molar ratio in order to suppress generation of a heterogeneous phase having low solar radiation shielding characteristics. More preferably, Cs / W = 0.35.

本発明に係るセシウム添加タングステン酸化物微粒子に対し、望まれる性状および光学
特性並びに耐熱特性の観点から、タングステン酸(HWO)と炭酸セシウム(Cs
CO)との混合乾燥粉の焼成温度は、500℃以上、600℃以下である。
これは、上述した、混合乾燥粉に対するTG−DTA測定の結果より、混合乾燥粉は3
73℃以上で立方晶から六方晶へ相転移することを知見したことによる。さらに、焼成温
度が500℃以上であれば、相転移を完結するために焼成時間を大幅に伸ばすことも不要
で好ましいからである。また、焼成温度が550℃付近より重量減少が確認され、徐々に
セシウム添加タングステン酸化物の還元分解が起こるため、焼成温度は還元分解の影響が
少ない600℃以下であることが好ましいからである。
Tungstic acid (H 2 WO 4 ) and cesium carbonate (Cs 2 ) from the viewpoint of desired properties and optical characteristics and heat resistance characteristics of the cesium-doped tungsten oxide fine particles according to the present invention.
The firing temperature of the mixed dry powder with CO 3 ) is 500 ° C. or more and 600 ° C. or less.
From the result of the TG-DTA measurement for the mixed dry powder, the mixed dry powder is 3
This is because the phase transition from cubic to hexagonal at 73 ° C or higher was found. Furthermore, if the firing temperature is 500 ° C. or higher, it is unnecessary and preferable to significantly extend the firing time in order to complete the phase transition. Moreover, since the weight reduction is confirmed from around 550 ° C. and the cesium-added tungsten oxide gradually undergoes reductive decomposition, the calcination temperature is preferably 600 ° C. or less, which is less affected by reductive decomposition.

焼成時の処理時間は処理温度に応じて適宜選択すればよいが、1時間以上、5時間以下
でよい。不活性ガスと還元性ガスの混合ガス雰囲気下で焼成する場合、不活性ガス中の還
元性ガスの濃度は処理温度に応じて適宜選択すれば良く、特に限定されないが、例えば2
0vol%以下、好ましくは10vol%以下、安全性の観点からもより好ましくは5v
ol%以下である。
The treatment time during firing may be appropriately selected according to the treatment temperature, but may be 1 hour or more and 5 hours or less. When firing in a mixed gas atmosphere of an inert gas and a reducing gas, the concentration of the reducing gas in the inert gas may be appropriately selected according to the processing temperature, and is not particularly limited.
0 vol% or less, preferably 10 vol% or less, more preferably 5 v from the viewpoint of safety.
ol% or less.

ここで、本発明において用いるタングステン化合物は、原料コストや排ガス処理の観点
からタングステン酸が望ましい。セシウム化合物については、原料コストや排ガス処理の
観点から炭酸セシウムが望ましい。
Here, the tungsten compound used in the present invention is preferably tungstic acid from the viewpoint of raw material costs and exhaust gas treatment. As for the cesium compound, cesium carbonate is desirable from the viewpoint of raw material costs and exhaust gas treatment.

2.セシウム添加タングステン酸化物微粒子、および当該セシウム添加タングステン酸化
物微粒子の粉砕微粒子
上記工程によって得られた本発明に係るセシウム添加タングステン酸化物微粒子は、一
般式Cs(但し、Csはセシウム、Wはタングステン、Oは酸素、0.30≦
x/y≦0.33、2.2≦z/y<3.0)で表されるセシウム添加タングステン酸化
物微粒子である。
2. Cesium-added tungsten oxide fine particles and pulverized fine particles of the cesium-added tungsten oxide fine particles The cesium-added tungsten oxide fine particles according to the present invention obtained by the above-described steps are represented by the general formula Cs x W y O z (where Cs is cesium , W is tungsten, O is oxygen, 0.30 ≦
cesium-added tungsten oxide fine particles represented by x / y ≦ 0.33, 2.2 ≦ z / y <3.0).

当該Csで表される本発明に係るセシウム添加タングステン酸化物は、高い
可視光透過率を維持したまま、赤外線を遮蔽する特徴を有し、且つ耐熱性に優れる日射遮
蔽微粒子である。そして、z/yの値が2.2以上であれば、日射遮蔽機能を有しないW
の生成が回避され、3.0未満であれば、十分な伝導電子が生成されるので、十分な
日射遮蔽機能を発揮することとなる。また、x/yの値が0.30以上であれば、伝導電
子が生成し、0.33以下であれば不純物の生成を回避でき、耐熱性に優れる。さらに好
ましくはx/yの値が0.32以上0.33以下の範囲において優れた耐熱特性を発揮す
る。
The cesium-added tungsten oxide according to the present invention represented by Cs x W y O z is a solar-shielding fine particle having a characteristic of shielding infrared rays while maintaining high visible light transmittance and excellent in heat resistance. is there. And if the value of z / y is 2.2 or more, W which does not have solar radiation shielding function
If generation of O 2 is avoided and less than 3.0, sufficient conduction electrons are generated, so that a sufficient solar radiation shielding function is exhibited. Further, if the value of x / y is 0.30 or more, conduction electrons are generated, and if it is 0.33 or less, the generation of impurities can be avoided and the heat resistance is excellent. More preferably, excellent heat resistance characteristics are exhibited when the value of x / y is in the range of 0.32 to 0.33.

また、本発明に係るセシウム添加タングステン酸化物微粒子の粒子径は、当該微粒子の
使用目的によって適宜選択することができる。例えば、日射遮蔽体の透明性を保持した応
用に使用する場合は、平均分散粒径は800nm以下であることが好ましく、より好まし
くは100nm以下、更に好ましくは50nm以下がよい。タングステン酸化物や複合タ
ングステン酸化物の平均分散粒径が800nmを超えた場合、幾何学散乱またはミー散乱
によって、波長380nm〜780nmの可視光線領域の光を散乱してしまうことから、
作製した日射遮蔽体の外観は曇りガラスのようになり好ましくない。平均分散粒径が10
0nm以下になると、幾何学散乱またはミー散乱が低減し、レイリー散乱領域になる。レ
イリー散乱領域において、散乱光は平均分散粒径の6乗に反比例して低減するため、可視
光線の散乱が低減して外観が良好となる。更に、平均分散粒径が50nm以下になると散
乱光は非常に少なくなることから好ましい。
Moreover, the particle diameter of the cesium-added tungsten oxide fine particles according to the present invention can be appropriately selected depending on the purpose of use of the fine particles. For example, when used for an application that maintains the transparency of the solar shading body, the average dispersed particle size is preferably 800 nm or less, more preferably 100 nm or less, and even more preferably 50 nm or less. When the average dispersion particle size of tungsten oxide or composite tungsten oxide exceeds 800 nm, the light in the visible light region having a wavelength of 380 nm to 780 nm is scattered by geometric scattering or Mie scattering.
The appearance of the produced solar shading body is not preferable because it looks like frosted glass. Average dispersed particle size is 10
When the thickness is 0 nm or less, geometric scattering or Mie scattering is reduced, and a Rayleigh scattering region is obtained. In the Rayleigh scattering region, the scattered light is reduced in inverse proportion to the sixth power of the average dispersed particle size, so that the visible light scattering is reduced and the appearance is improved. Further, it is preferable that the average dispersed particle size is 50 nm or less because scattered light is extremely reduced.

粒子径の簡便な測定方法として、一般的には粒度分布計が用いられる。しかし、本発明
に係る微粒子のように粉砕により生じた活性面を有し、非常に小さなナノ微粒子では、溶
液中で凝集・分散を繰り返す。この為、粒度分布計では二次粒子の大きさを測定してしま
い、正確な一次粒子の大きさを測定することが出来ない。
一方、一次粒子の大きさを測定する為には、TEM観察が有効ではあるが、測定に時間
と手間がかかり、現実的の方法ではない。
そこで本発明においては、セシウム添加タングステン酸化物微粒子の透過散乱光強度を
測定している。上述したように、微粒子の粒子径が小さくなるとレイリー散乱領域となり
、散乱光は平均分散粒径の6乗に反比例して低減するため、粒径の変化に応じて透過散乱
光強度は変化する。そこで、予め、透過散乱光強度とTEMの粒径との関係を調べておく
ことで、透過散乱光強度から一次粒子の大きさを推測することが可能となる。
透過散乱光強度の測定は、微粒子分散液の状態で所定の厚みのセルに入れたもの、また
は、塗布成膜した膜を試料として測定することにより行う。その際、試料の全光線透過率
の値が同程度になるように、微粒子分散液の濃度や膜厚を調整する。
As a simple method for measuring the particle diameter, a particle size distribution meter is generally used. However, in the case of a very small nanoparticle having an active surface generated by pulverization like the fine particle according to the present invention, aggregation and dispersion are repeated in a solution. For this reason, the particle size distribution meter measures the size of the secondary particles, and cannot accurately measure the size of the primary particles.
On the other hand, in order to measure the size of the primary particles, TEM observation is effective, but the measurement takes time and labor and is not a practical method.
Therefore, in the present invention, the transmitted scattered light intensity of the cesium-added tungsten oxide fine particles is measured. As described above, when the particle size of the fine particles is reduced, a Rayleigh scattering region is formed, and the scattered light is reduced in inverse proportion to the sixth power of the average dispersed particle size, so that the transmitted scattered light intensity changes according to the change in the particle size. Therefore, by examining the relationship between the transmitted scattered light intensity and the TEM particle size in advance, the size of the primary particles can be estimated from the transmitted scattered light intensity.
The measurement of the transmitted scattered light intensity is performed by measuring a sample that has been placed in a cell having a predetermined thickness in the state of a fine particle dispersion or a film formed by coating. At that time, the concentration and film thickness of the fine particle dispersion are adjusted so that the total light transmittance of the sample is approximately the same.

本発明に係るセシウム添加タングステン酸化物は、原料であるタングステン酸の粒子径
および焼成温度帯で決まる粒成長により粒子径が決定される。当該セシウム添加タングス
テン酸化物を適宜粉砕処理し上述の粒子径とすることで、可視光領域の散乱を低減させて
高い透明性を得る。
この粉砕には一定以上の粉砕エネルギーが必要となるため、超音波振動や超遠心力処理
を利用した二次粒子の凝集体を解きほぐす程度の力では不十分であり、メディアビーズの
衝突エネルギー等を用いた方法が適している。
The particle diameter of the cesium-added tungsten oxide according to the present invention is determined by grain growth determined by the particle diameter of the tungstic acid as a raw material and the firing temperature zone. The cesium-added tungsten oxide is appropriately pulverized to have the above-described particle size, whereby scattering in the visible light region is reduced and high transparency is obtained.
Since this grinding requires a certain level of grinding energy, it is not sufficient to break up the aggregates of secondary particles using ultrasonic vibration or ultracentrifugal force treatment. The method used is suitable.

セシウム添加タングステン酸化物は、図2において四角形で表すWO八面体が互いに
結合して六角形のトンネルを形成している。このトンネル内には、セシウムが非化学量論
的に収容され、収容されたセシウムはイオン化する。さらにこの平面構造は垂直方向(c
軸方向)にスタックされる。この結果、セシウムイオンは、酸化タングステンを骨格とし
た構造内に安定に保持される為、酸化タングステンの格子定数a、格子定数cの値が理論
値に近づくほど安定化する。そして、構造内のセシウムはタングステン酸化物への電子供
給体として寄与し、赤外線吸収能を高める働きをする為、セシウムの脱離は日射遮蔽能の
低下につながる。
ところが、可視光領域の散乱を低減させる為に行う、上述した粉砕により、セシウム添
加タングステン酸化物粒子の格子定数の値は、粉砕前後で大きく変化する。この為、粉砕
後のセシウム添加タングステン酸化物微粒子は、収容されたセシウムが脱離しやすい構造
へと変化してしまう。
従って、セシウム添加タングステン酸化物微粒子は、粉砕頻度が少なくて済む微粒子で
あることが望ましい。具体的には、粉砕前のセシウム添加タングステン酸化物微粒の粒子
径が500nm以下、さらに好ましくは300nm以下であることが望ましい。
In the cesium-added tungsten oxide, WO 6 octahedrons represented by squares in FIG. 2 are bonded to each other to form a hexagonal tunnel. In this tunnel, cesium is stored non-stoichiometrically, and the stored cesium is ionized. In addition, this planar structure has a vertical direction (c
Stacked in the axial direction). As a result, cesium ions are stably held in the structure having tungsten oxide as a skeleton, so that the values of the lattice constant a and the lattice constant c of tungsten oxide are stabilized as they approach the theoretical values. The cesium in the structure contributes as an electron supplier to the tungsten oxide and functions to increase the infrared absorption ability. Therefore, the cesium detachment leads to a decrease in the solar shielding ability.
However, the lattice constant of the cesium-added tungsten oxide particles greatly changes before and after the pulverization by the above-described pulverization performed to reduce the scattering in the visible light region. For this reason, the cesium-added tungsten oxide fine particles after pulverization are changed to a structure in which the contained cesium is easily detached.
Accordingly, it is desirable that the cesium-added tungsten oxide fine particles are fine particles that need only be pulverized less frequently. Specifically, the particle diameter of the cesium-added tungsten oxide fine particles before pulverization is preferably 500 nm or less, more preferably 300 nm or less.

3.日射遮蔽体形成用複合タングステン酸化物微粒子分散液
上述した本発明に係るセシウム添加タングステン酸化物微粒子と分散剤とを、適宜な溶
媒中に混合、分散したものが、本発明に係る日射遮蔽体形成用複合タングステン酸化物微
粒子分散液である。当該溶媒は特に限定されるものでなく、塗布条件、塗布環境、さらに
樹脂バインダーを含有させたときは、当該バインダーに合わせて適宜選択すればよい。例
えば、ケトン類、エステル類、炭化水素類、エーテル類、アルコール類から選ばれた1種
類以上であることが好ましい。具体例として、メチルエチルケトン、メチルイソブチルケ
トン等のケトン類;酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イ
ソブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコール
モノエチルエーテルアセテート等のエステル類;トルエン、キシレン等の炭化水素類;エ
チルエーテル、イソプロピルエーテル等のエーテル類、メタノール、エタノール、プロパ
ノール、イソプロパノール、ブタノール、イソブタノール、tert−ブタノール等のア
ルコール類が挙げられる。中でも、ケトン類、エステル類は危険性や毒性が低く、しかも
取り扱いが容易な溶媒であることからより好ましい。また、さらに、界面活性剤などの添
加剤を加えても良い。
3. Composite tungsten oxide fine particle dispersion for solar radiation shield formation The above-described cesium-added tungsten oxide fine particles and dispersant are mixed and dispersed in an appropriate solvent to form the solar radiation shield according to the present invention. Composite tungsten oxide fine particle dispersion. The said solvent is not specifically limited, What is necessary is just to select suitably according to the said binder, when a coating condition, a coating environment, and also the resin binder is contained. For example, at least one selected from ketones, esters, hydrocarbons, ethers, and alcohols is preferable. Specific examples include ketones such as methyl ethyl ketone and methyl isobutyl ketone; esters such as ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; toluene, xylene and the like And hydrocarbons such as ethyl ether and isopropyl ether, and alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, and tert-butanol. Of these, ketones and esters are more preferable because they are low in danger and toxicity and are easy to handle. Further, an additive such as a surfactant may be added.

セシウム添加タングステン酸化物微粒子の溶媒への分散方法は、微粒子を分散液中へ均
一に分散する方法であれば特に限定されず、例えば、メディアビーズを用いたビーズミル
、ボールミル、ペイントシェーカーなどが挙げられる。これらの機材を用いた分散処理工
程によって、セシウム添加タングステン酸化物微粒子の溶媒中への分散と同時に媒体攪拌
メディアにより粉砕を行い、より微粒子化して分散させることができる。
The method for dispersing the cesium-added tungsten oxide fine particles in the solvent is not particularly limited as long as the fine particles are uniformly dispersed in the dispersion, and examples thereof include a bead mill using media beads, a ball mill, and a paint shaker. . By the dispersion treatment step using these equipments, the cesium-added tungsten oxide fine particles can be dispersed in the solvent and simultaneously pulverized with a medium agitating medium to be finer and dispersed.

4.日射遮蔽体
上記日射遮蔽体形成用複合タングステン酸化物微粒子分散液を、透明基材上に塗布して
被膜を形成する場合の塗布法は、例えばスピンコート法、バーコート法、スプレーコート
法、ディップコート法、スクリーンコート法、ロールコート法、流し塗り等、分散液を平
坦且つ薄く均一に塗布できる方法であればいずれの方法でもよい。
4). Solar shield The coating method for forming a film by applying the composite tungsten oxide fine particle dispersion for forming the solar shield on a transparent substrate is, for example, spin coating, bar coating, spray coating, dip Any method such as a coating method, a screen coating method, a roll coating method, and a flow coating method can be used as long as the dispersion can be applied flatly and thinly and uniformly.

また、上記日射遮蔽体形成用複合タングステン酸化物微粒子分散液が、樹脂バインダー
を含む分散液である場合、当該分散液を基材に塗布後、それぞれの樹脂の硬化方法に従っ
て硬化させればよい。例えば、該樹脂バインダーが、紫外線硬化樹脂であれば紫外線を適
宜照射すればよく、また常温硬化樹脂であれば塗布後そのまま放置しておけばよい。この
ため、当該構成を有する日射遮蔽体形成用複合タングステン酸化物微粒子分散液は、既存
のガラス等への現場における塗布が可能である。
Moreover, when the said composite tungsten oxide fine particle dispersion for solar radiation shielding body is a dispersion containing a resin binder, what is necessary is just to harden | cure according to the hardening method of each resin after apply | coating the said dispersion to a base material. For example, if the resin binder is an ultraviolet curable resin, ultraviolet rays may be appropriately irradiated. If the resin binder is a room temperature curable resin, the resin binder may be left as it is after application. For this reason, the composite tungsten oxide fine particle dispersion liquid for solar radiation shielding body which has the said structure can be apply | coated to the existing glass etc. on the spot.

得られた日射遮蔽体は、光学特性として日射透過率(ST)と可視光透過率(VLT)
を評価した。
日射透過率値は、可視光透過率(VLT)VS日射透過率(ST)のグラフを作成し、
5点をプロットする。当該プロット点を結ぶ線より、可視光透過率(VLT)値が70%
のときの日射透過率(ST)値を算出して求めた。
セシウム添加タングステン酸化物微粒子の耐熱性は、日射遮蔽体を大気中120℃の恒
温槽に12日間保管し、その後、日射透過率を測定し、耐熱試験前後における日射透過率
の差(ΔST)を算出することにより評価した。また、日射遮蔽体の光着色は、日射遮蔽
体を60℃、35%RH雰囲気下、照度100mW/cmで60分の光照射を行い、光
照射前後における可視光透過率の差(ΔVLT)を算出することにより評価した。
尚、上述の評価の際、同じサンプルを用いても試験ごとに結果がばらつくことがある為
、基準となるサンプルを用意し、STやVLTの変化を相対比較することにより、安定し
た評価が可能となった。
The obtained solar shading body has solar transmittance (ST) and visible light transmittance (VLT) as optical characteristics.
Evaluated.
The solar transmittance value creates a graph of visible light transmittance (VLT) VS solar transmittance (ST),
Plot 5 points. From the line connecting the plotted points, the visible light transmittance (VLT) value is 70%.
The solar radiation transmittance (ST) value at that time was calculated and obtained.
The heat resistance of the cesium-added tungsten oxide fine particles is that the solar radiation shield is stored in a thermostatic bath at 120 ° C. in the atmosphere for 12 days, and then the solar radiation transmittance is measured to determine the difference in solar radiation transmittance before and after the heat resistance test (ΔST). Evaluation was made by calculating. The light shielding of the sunscreen is performed by irradiating the sunscreen at 60 ° C. and 35% RH at an illuminance of 100 mW / cm 2 for 60 minutes, and the difference in visible light transmittance before and after the light irradiation (ΔVLT). Was evaluated by calculating.
In the above evaluation, even if the same sample is used, results may vary from test to test. Therefore, it is possible to perform stable evaluation by preparing a reference sample and comparing the changes in ST and VLT relative to each other. It became.

5.まとめ
本発明に係るセシウム添加タングステン酸化物微粒子は、不活性ガスと還元性ガスとの
混合ガス雰囲気下で500℃以上、600℃以下で焼成することにより製造できる。そし
て、従来の技術に係る複合タングステン酸化物微粒子と同様に、本発明に係るセシウム添
加タングステン酸化物微粒子を用いてセシウム添加タングステン酸化物微粒子分散液を製
造出来た。
5. Summary The cesium-added tungsten oxide fine particles according to the present invention can be produced by firing at 500 ° C. or more and 600 ° C. or less in a mixed gas atmosphere of an inert gas and a reducing gas. And the cesium addition tungsten oxide fine particle dispersion was able to be manufactured using the cesium addition tungsten oxide fine particle which concerns on this invention similarly to the composite tungsten oxide fine particle which concerns on the prior art.

そして、本発明に係るセシウム添加タングステン酸化物微粒子分散液を用いて、高コス
トな物理成膜法を用いることなく、簡便な塗布法等で日射遮蔽体を形成でき、赤外線領域
や近赤外線領域の遮蔽性能を落とすことなく、可視光領域での光透過性が優れ、且つ従来
のセシウム添加タングステン酸化物微粒子を用いた日射遮蔽体より遮蔽性能に係る耐熱特
性や光着色を改善させた日射遮蔽体を、安価な製造コストで製造することができた。
The cesium-added tungsten oxide fine particle dispersion according to the present invention can be used to form a solar shading body by a simple coating method or the like without using an expensive physical film forming method. A solar shading body that has excellent light transmission in the visible light region without degrading the shielding performance, and has improved heat resistance characteristics and light coloring related to the shielding performance over the conventional solar shading body using cesium-added tungsten oxide fine particles Can be manufactured at a low manufacturing cost.

さらに、本発明に係るセシウム添加タングステン酸化物微粒子を、適宜な樹脂へ練りこ
み法等により分散させることで、赤外線領域や近赤外線領域の遮蔽性能を落とすことなく
、可視光領域での光透過性が優れ、且つ従来のセシウム添加タングステン酸化物微粒子を
用いた日射遮蔽体より遮蔽性能に係る耐熱特性を向上させた日射遮蔽体を安価な生産コス
トで製造することができた。
Furthermore, by dispersing the cesium-added tungsten oxide fine particles according to the present invention into an appropriate resin by a kneading method or the like, light transmittance in the visible light region can be obtained without reducing the shielding performance in the infrared region or near infrared region. It was possible to manufacture a solar shading body having excellent heat resistance characteristics related to shielding performance compared to the conventional solar shading body using cesium-added tungsten oxide fine particles at a low production cost.

尚、本発明に係る日射遮蔽体形成用複合タングステン酸化物微粒子分散液を用いた日射
遮蔽体の形成は、本発明に係るセシウム添加タングステン酸化物微粒子の分解反応、また
は、化学反応を用いたものではないため、当該微粒子の特性の安定した本発明に係る日射
遮蔽体を形成することができた。
In addition, the formation of the solar shield using the composite tungsten oxide fine particle dispersion for forming the solar shield according to the present invention uses a decomposition reaction or a chemical reaction of the cesium-added tungsten oxide fine particles according to the present invention. Therefore, the solar radiation shielding body according to the present invention with stable characteristics of the fine particles could be formed.

また、373℃以上600℃以下の温度範囲において、還元雰囲気下で焼成して得られ
た本発明に係るセシウム添加タングステン酸化物微粒子は、従来の技術に係る複合ングス
テン酸化物微粒子と比較して耐熱特性、耐光性が向上しており優れた日射遮蔽効果を持続
して発揮できた。
例えば、太陽光線の当たる部位に使用しても、日射遮蔽体の温度が上昇しても、従来の
技術に係る複合タングステン酸化物微粒子と比較して、色や諸機能の劣化を殆ど生じない

また、本発明に係る日射遮蔽体形成用複合タングステン酸化物微粒子分散液を用いた本
発明に係る日射遮蔽体は、光着色による外観異常が抑制されており、優れた日射遮蔽効果
を持続して発揮できる。この結果、車両、ビル、事務所、一般家庭などの窓材や、電話ボ
ックス、ショーウィンドー、照明用ランプ、透明ケースなどに使用される単板ガラス、合
わせガラスの日射遮蔽機能を必要とする日射遮蔽体などの広汎な分野に長期間安定した日
射遮蔽が可能となった。
Further, the cesium-added tungsten oxide fine particles according to the present invention obtained by firing in a reducing atmosphere in a temperature range of 373 ° C. or higher and 600 ° C. or lower are more heat resistant than the composite tungsten oxide fine particles according to the prior art. The characteristics and light resistance have been improved, and the excellent solar shading effect has been sustained.
For example, even if it is used for a portion exposed to sunlight or the temperature of the solar shading body is increased, the color and various functions are hardly deteriorated as compared with the composite tungsten oxide fine particles according to the prior art.
Further, the solar shading body according to the present invention using the composite tungsten oxide fine particle dispersion for solar shading formation according to the present invention has suppressed appearance abnormality due to photo-coloring, and maintains an excellent solar shading effect. Can demonstrate. As a result, solar radiation that requires solar shading functions for window materials for vehicles, buildings, offices, general households, etc., and for single-panel glass and laminated glass used in telephone boxes, show windows, lighting lamps, transparent cases, etc. Long-term stable solar radiation shielding has become possible in a wide range of fields such as shields.

以下、本発明について実施例を挙げて具体的に説明する。但し、本発明は以下の実施例
に限定されるものではない。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.

[実施例1]
炭酸セシウム(CsCO,ケメタルジャパン製)1.95gを純水によく溶解させ
た水溶液と、タングステン酸(HWO、日本無機化学工業株式会社製)9.06gと
を十分に混合して混合液とした。炭酸セシウムの添加量は、タングステン酸中のWに対し
て炭酸セシウム中のCsのモル比が0.33となるようにした。
そして当該混合溶液を100℃大気中で十分に乾燥させ、得られた残留混合物を、擂潰
器を用いて15分間混合した。そして、当該混合物9gを石英菅状炉にセットし、N
スをキャリアとした1%Hガスを供給しながら加熱し、600℃の温度で60分間の還
元処理を行って微粒子(a)を得た。この微粒子(a)のXRD測定を行い、リートベル
ト解析により微粒子(a)の(Cs)におけるx/y値、格子定数、正方格子
構造のタングステン酸セシウム相(本発明において「異相1」と記載する場合がある。)
の量、WO相(本発明において「異相2」と記載する場合がある。)の量、W相(本発
明において「異相3」と記載する場合がある。)の量、および粉砕前粒子径を求めた。そ
の結果を表1に示す。
[Example 1]
An aqueous solution in which 1.95 g of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) is well dissolved in pure water and 9.06 g of tungstic acid (H 2 WO 4 , manufactured by Nippon Inorganic Chemical Industry Co., Ltd.) are sufficiently obtained. A mixed solution was obtained by mixing. The amount of cesium carbonate added was such that the molar ratio of Cs in cesium carbonate to W in tungstic acid was 0.33.
And the said mixed solution was fully dried in 100 degreeC air | atmosphere, and the obtained residual mixture was mixed for 15 minutes using the crusher. Then, 9 g of the mixture was set in a quartz furnace and heated while supplying 1% H 2 gas using N 2 gas as a carrier, and subjected to a reduction treatment at a temperature of 600 ° C. for 60 minutes to obtain fine particles (a) Got. Performed XRD measurement of the fine particles (a), x / y value in the Rietveld analysis microparticles of (a) (Cs x W y O z), lattice constant, cesium tungstate phase of tetragonal lattice structure (in the present invention " It may be described as “different phase 1”.)
, The amount of WO 2 phase (may be described as “different phase 2” in the present invention), the amount of W phase (sometimes described as “different phase 3” in the present invention), and the particles before grinding The diameter was determined. The results are shown in Table 1.

次に、当該微粒子(a)10重量%と、高分子分散液(EFKA4400,BASF社
製)10重量%と、メチルイソブチルケトン80重量%とを、総重量20gとなるように
秤量した。当該秤量物を、0.3mmφZrOビーズ(東レ製 トレセラムビーズ H
IP処理品)120gを入れた70ccガラス瓶に装填し、ペイントシェーカーを用いて
粉砕・分散処理をすることで日射遮蔽体形成用複合タングステン酸化物微粒子分散液(A
液)を製造した。
Next, 10% by weight of the fine particles (a), 10% by weight of a polymer dispersion (EFKA4400, manufactured by BASF), and 80% by weight of methyl isobutyl ketone were weighed so as to have a total weight of 20 g. The weighed product was added to 0.3 mmφZrO 2 beads (Toray serum beads H manufactured by Toray
IP treated product) Loaded into a 70 cc glass bottle containing 120 g, and pulverized and dispersed using a paint shaker to form a composite tungsten oxide fine particle dispersion (A
Liquid).

ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(A液)中におけるセ
シウム添加タングステン酸化物微粒子の大きさの評価は、樹脂中に単分散させた微粒子の
散乱強度(透過光)により行った。
具体的には、セシウム添加タングステン酸化物微粒子と、UV硬化樹脂成分と重量比を
固定して試料フィルムを作製し、当該試料フィルムの全光線透過率(以下、Ttと略す場
合がある)の値が50%となるように、膜厚を調整した。当該膜厚を調整した試料フィル
ムの透過散乱光強度を測定したところ、最大ピークが1.17%となっていた。
一方、当該条件で作製した膜において、透過散乱光強度の最大ピークが1.2〜1.3
%となる場合に、セシウム添加タングステン酸化物微粒子をTEM観察したところ、粒径
20nm前後の一次粒子が観察された。
Here, the evaluation of the size of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (liquid A) for solar radiation shielding was evaluated by the scattering intensity (transmitted light) of the finely dispersed fine particles in the resin. went.
Specifically, a sample film is prepared by fixing the weight ratio of the cesium-added tungsten oxide fine particles and the UV curable resin component, and the value of the total light transmittance (hereinafter sometimes abbreviated as Tt) of the sample film. Was adjusted to 50%. When the transmitted scattered light intensity of the sample film with the film thickness adjusted was measured, the maximum peak was 1.17%.
On the other hand, in the film produced under the conditions, the maximum peak of transmitted scattered light intensity is 1.2 to 1.3.
%, The cesium-added tungsten oxide fine particles were observed with a TEM. As a result, primary particles having a particle diameter of about 20 nm were observed.

次に得られた日射遮蔽体形成用複合タングステン酸化物微粒子分散液(A液)6.0g
、UV硬化樹脂3.0gを秤量し、混合・攪拌して日射遮蔽体形成用複合タングステン酸
化物微粒子分散樹脂液(AA液)を製造した。そして、全光線透過率が68.5%となる
ように適当なバーコーターを用い、厚さ3mmのガラス基板上へ日射遮蔽体形成用複合タ
ングステン酸化物微粒子分散樹脂液(AA液)を塗布した後、70℃、1分間の溶剤除去
を行い、高圧水銀ランプを照射し、実施例1に係る日射遮蔽体(A)を得た。
Next, 6.0 g of the obtained composite tungsten oxide fine particle dispersion liquid (liquid A) for formation of solar shading material
Then, 3.0 g of UV curable resin was weighed, mixed and stirred to produce a composite tungsten oxide fine particle dispersed resin liquid (AA liquid) for formation of a solar radiation shield. Then, using a suitable bar coater so that the total light transmittance was 68.5%, a composite tungsten oxide fine particle-dispersed resin liquid (AA liquid) for solar radiation shielding was applied onto a glass substrate having a thickness of 3 mm. Thereafter, the solvent was removed at 70 ° C. for 1 minute, and irradiation with a high-pressure mercury lamp was performed to obtain a solar radiation shielding body (A) according to Example 1.

ここで、分光光度計(U−4000,株式会社日立ハイテクフィールディング製)を用
い、日射遮蔽体(A)の光学特性として日射透過率を測定した。この値を「初期値」とし
て耐熱性試験および耐光性試験を行った。耐熱性試験は、日射遮蔽体(A)を大気中12
0℃の恒温槽に12日間保管することで行った。耐光性試験は、日射遮蔽体(A)へ10
0mW/cmの強度でメタルハライドランプによる1時間の照射をすることで行った。
Here, using a spectrophotometer (U-4000, manufactured by Hitachi High-Tech Fielding Co., Ltd.), the solar transmittance was measured as an optical characteristic of the solar shield (A). With this value as the “initial value”, a heat resistance test and a light resistance test were conducted. In the heat resistance test, the solar radiation shield (A) was placed in the atmosphere 12
It was carried out by storing in a thermostatic bath at 0 ° C. for 12 days. The light resistance test was applied to the solar shield (A) 10
The irradiation was performed for 1 hour with a metal halide lamp at an intensity of 0 mW / cm 2 .

(従来の技術に係るセシウム添加タングステン酸化物微粒子)
上述した耐熱性および耐光性の評価は、従来の技術に係るセシウム添加タングステン酸
化物微粒子を用いた日射遮蔽体を比較サンプルとして同時に耐熱性試験および耐光性試験
を実施し、実施例1に係るセシウム添加タングステン酸化物微粒子を用いた日射遮蔽体(
A)との日射透過率および可視光透過率の変化を比較し、その改善割合を算出することに
より行った。
即ち、試験後において、日射透過率および可視光透過率の変化が全くない場合を改善率
100%とし、日射透過率および可視光透過率が比較サンプルと同じだけ変化した場合を
改善率0%とした。耐熱性および耐光性試験の結果を表2に示す。
(Cesium-doped tungsten oxide fine particles according to the prior art)
The evaluation of heat resistance and light resistance described above was carried out by simultaneously carrying out a heat resistance test and a light resistance test using a solar radiation shield using cesium-added tungsten oxide fine particles according to the prior art as a comparative sample. Sunscreen using added tungsten oxide fine particles (
The change of the solar transmittance and the visible light transmittance with A) was compared, and the improvement rate was calculated.
That is, after the test, the improvement rate is 100% when there is no change in the solar transmittance and the visible light transmittance, and the improvement rate is 0% when the solar transmittance and the visible light transmittance change as much as the comparative sample. did. Table 2 shows the results of the heat resistance and light resistance test.

尚、上述した、従来の技術に係るセシウム添加タングステン酸化物微粒子の製造方法に
ついて説明する。
タングステン酸(HWO、日本無機化学工業株式会社製)34.57kgに対し、
炭酸セシウム(CsCO,ケメタルジャパン製)7.43kgを水6.70kgに溶
解させた水溶液を添加し、混合した後、100℃で攪拌しながら水分を除去して乾燥粉を
得た。
次に、Nガスをキャリアーとした5%のHガスを供給しながら当該乾燥粉を加熱し
、800℃の温度条件で5.5時間焼成してCs0.33WO微粒子を得た。
In addition, the manufacturing method of the cesium addition tungsten oxide microparticles | fine-particles based on the prior art mentioned above is demonstrated.
For 34.57 kg of tungstic acid (H 2 WO 4 , manufactured by Japan Inorganic Chemical Industry Co., Ltd.)
An aqueous solution in which 7.43 kg of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) was dissolved in 6.70 kg of water was added and mixed, and then moisture was removed while stirring at 100 ° C. to obtain a dry powder. .
Next, the dry powder was heated while supplying 5% H 2 gas using N 2 gas as a carrier, and calcined at 800 ° C. for 5.5 hours to obtain Cs 0.33 WO 3 fine particles. .

[実施例2]
炭酸セシウム(CsCO,ケメタルジャパン製)2.06gを純水によく溶解させ
た水溶液とタングステン酸(HWO,日本無機化学工業株式会社製)9.06gを十
分混合し、混合物を得た以外は、実施例1と同様にして微粒子(b)を得た。この微粒子
(b)のx/y値、格子定数、異相の量および粉砕前粒子径を表1に示す。
[Example 2]
An aqueous solution in which 2.06 g of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) was well dissolved in pure water and 9.06 g of tungstic acid (H 2 WO 4 , manufactured by Nippon Inorganic Chemical Co., Ltd.) were sufficiently mixed, Fine particles (b) were obtained in the same manner as in Example 1 except that a mixture was obtained. Table 1 shows the x / y value, the lattice constant, the amount of different phases, and the particle size before pulverization of the fine particles (b).

次に、微粒子(a)に代えて微粒子(b)を用いたこと以外は、実施例1と同様の操作
を行い、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(B液)、日射遮蔽体(
B)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(B液)中
におけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させ
た際の透過散乱光の強度により評価し、最大ピークが1.29%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(B)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
Next, the same operation as in Example 1 was performed except that the fine particles (b) were used instead of the fine particles (a), and the composite tungsten oxide fine particle dispersion liquid (B solution) for forming the solar radiation shielding material and solar radiation shielding were used. body(
B) was obtained. Here, the dispersion particle diameter of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (liquid B) for solar radiation shielding body evaluation was evaluated based on the intensity of transmitted and scattered light when contained in the UV curable resin. The maximum peak was 1.29%.
And the heat resistance and light resistance test was implemented similarly to Example 1 with respect to the solar radiation shielding body (B) produced similarly to Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[実施例3]
実施例2において製造した混合物へ、500℃、120分間の還元処理を行ったこと以
外は、実施例1と同様の操作を行って微粒子(c)を得た。この微粒子(c)のx/y値
、格子定数、異相の量および粉砕前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(c)を用いたこと以外は、実施例1と同様の操作
を行い日射遮蔽体形成用複合タングステン酸化物微粒子分散液(C液)、日射遮蔽体(C
)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(C液)中に
おけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させた
際の透過散乱光の強度により評価し、最大ピークが1.22%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(C)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Example 3]
Fine particles (c) were obtained by carrying out the same operation as in Example 1, except that the mixture produced in Example 2 was subjected to a reduction treatment at 500 ° C. for 120 minutes. Table 1 shows the x / y value, the lattice constant, the amount of the different phase, and the particle diameter before pulverization of the fine particles (c).
Next, the same operation as in Example 1 was performed except that the fine particles (c) were used in place of the fine particles (a), and a composite tungsten oxide fine particle dispersion (liquid C) for forming a solar radiation shielding body, a solar radiation shielding body. (C
) Here, the dispersion particle size of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (liquid C) for solar radiation shielding was evaluated by the intensity of the transmitted scattered light when contained in the UV curable resin. The maximum peak was 1.22%.
And the heat-resistant and light-proof test was implemented similarly to Example 1 with respect to the solar radiation shield (C) produced similarly to Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[実施例4]
炭酸セシウム(CsCO,ケメタルジャパン製)2.06gを純水によく溶解させ
た水溶液と、タングステン酸(HWO,日本無機化学工業株式会社製)9.06gと
を十分混合し、100℃大気中で乾燥させ、残留混合物を得た以外は、実施例3と同様の
操作を行って微粒子(d)を得た。この微粒子(d)のx/y値、格子定数、異相の量お
よび粉砕前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(d)を用いたこと以外は、実施例1と同様の操作
を行い、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(D液)、日射遮蔽体(
D)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(D液)中
におけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させ
た際の透過散乱光の強度により評価し、最大ピークが1.25%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(D)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Example 4]
An aqueous solution in which 2.06 g of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) is well dissolved in pure water and 9.06 g of tungstic acid (H 2 WO 4 , manufactured by Nippon Inorganic Chemical Industry Co., Ltd.) are sufficiently mixed. Then, the same operation as in Example 3 was performed to obtain fine particles (d) except that the residue was dried in the atmosphere at 100 ° C. to obtain a residual mixture. Table 1 shows the x / y value, the lattice constant, the amount of the different phase, and the particle size before pulverization of the fine particles (d).
Next, except that the fine particles (d) were used in place of the fine particles (a), the same operation as in Example 1 was performed, and the solar cell shielding composite tungsten oxide fine particle dispersion (liquid D) and solar radiation shielding were performed. body(
D) was obtained. Here, the dispersion particle diameter of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (liquid D) for solar radiation shielding was evaluated by the intensity of the transmitted scattered light when contained in the UV curable resin. The maximum peak was 1.25%.
And the heat-resistant and light resistance test was implemented similarly to Example 1 with respect to the solar radiation shielding body (D) produced like Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[実施例5]
炭酸セシウム(CsCO,ケメタルジャパン製)2.12gを純水によく溶解させ
た水溶液と、タングステン酸(HWO,日本無機化学工業株式会社製)9.06gと
を十分混合し、100℃大気中で乾燥させ、残留混合物を得た以外は、実施例3と同様の
操作を行って微粒子(e)を得た。この微粒子(e)のx/y値、格子定数、異相の量お
よび粉砕前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(e)を用いたこと以外は、実施例1と同様の操作
を行い、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(E液)、日射遮蔽体(
E)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(E液)中
におけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させ
た際の透過散乱光の強度により評価し、最大ピークが1.24%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(E)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Example 5]
An aqueous solution in which 2.12 g of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) is well dissolved in pure water and 9.06 g of tungstic acid (H 2 WO 4 , manufactured by Nippon Inorganic Chemical Industry Co., Ltd.) are sufficiently mixed. Then, fine particles (e) were obtained in the same manner as in Example 3 except that the residue was dried in the air at 100 ° C. to obtain a residual mixture. Table 1 shows the x / y value, the lattice constant, the amount of different phases, and the particle size before pulverization of the fine particles (e).
Next, except for using the fine particles (e) in place of the fine particles (a), the same operation as in Example 1 was performed, and the composite tungsten oxide fine particle dispersion liquid (E solution) for forming the solar radiation shielding material and the solar radiation shielding were used. body(
E) was obtained. Here, the dispersion particle diameter of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (E liquid) for solar radiation shielding was evaluated by the intensity of the transmitted scattered light when it was contained in the UV curable resin. The maximum peak was 1.24%.
And the heat-resistant and light-proof test was implemented similarly to Example 1 with respect to the solar radiation shield (E) produced like Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[実施例6]
炭酸セシウム(CsCO,ケメタルジャパン製)2.15gを純水によく溶解させ
た水溶液とタングステン酸(HWO,日本無機化学工業株式会社製)9.06gとを
十分混合し、100℃大気中で乾燥させ、残留混合物を得た以外は、実施例3と同様の操
作を行って微粒子(f)を得た。この微粒子(f)のx/y値、格子定数、異相の量およ
び粉砕前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(f)を用いたこと以外は、実施例1と同様の操作
を行い、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(F液)、日射遮蔽体(
F)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(F液)中
におけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させ
た際の透過散乱光の強度により評価し、最大ピークが1.31%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(F)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Example 6]
An aqueous solution in which 2.15 g of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) was well dissolved in pure water and 9.06 g of tungstic acid (H 2 WO 4 , manufactured by Nippon Inorganic Chemical Co., Ltd.) were sufficiently mixed. Fine particles (f) were obtained in the same manner as in Example 3 except that the residue was dried in the air at 100 ° C. to obtain a residual mixture. Table 1 shows the x / y value, the lattice constant, the amount of the different phase, and the particle size before pulverization of the fine particles (f).
Next, the same operation as in Example 1 was performed except that the fine particles (f) were used instead of the fine particles (a), and the composite tungsten oxide fine particle dispersion liquid (F solution) for solar radiation shielding, solar radiation shielding was performed. body(
F) was obtained. Here, the dispersion particle size of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (F solution) for solar radiation shielding was evaluated by the intensity of transmitted and scattered light when contained in the UV curable resin. The maximum peak was 1.31%.
And the heat-resistant and light resistance test was implemented similarly to Example 1 with respect to the solar radiation shield (F) produced similarly to Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[実施例7]
炭酸セシウム(CsCO,ケメタルジャパン製)2.18gを純水によく溶解させ
た水溶液と、タングステン酸(HWO,日本無機化学工業株式会社製)9.06gを
十分混合し、100℃大気中で乾燥させ、残留混合物を得た以外は、実施例1と同様にし
て微粒子(g)を得た。この微粒子(g)のx/y値、格子定数、異相の量および粉砕前
粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(g)を用いたこと以外は、実施例1と同様の操作
を行い、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(G液)、日射遮蔽体(
G)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(G液)中
におけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させ
た際の透過散乱光の強度により評価し、最大ピークが1.24%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(G)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Example 7]
An aqueous solution in which 2.18 g of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) is well dissolved in pure water and 9.06 g of tungstic acid (H 2 WO 4 , manufactured by Nippon Inorganic Chemical Industry Co., Ltd.) are sufficiently mixed. Fine particles (g) were obtained in the same manner as in Example 1 except that the mixture was dried in the air at 100 ° C. to obtain a residual mixture. Table 1 shows the x / y value, the lattice constant, the amount of different phases, and the particle size before pulverization of the fine particles (g).
Next, except that the fine particles (g) were used in place of the fine particles (a), the same operation as in Example 1 was performed, and the solar cell shielding composite tungsten oxide fine particle dispersion (liquid G) and solar radiation shielding were performed. body(
G) was obtained. Here, the dispersed particle diameter of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (liquid G) for forming a solar radiation shield is evaluated by the intensity of the transmitted scattered light when contained in the UV curable resin. The maximum peak was 1.24%.
And the heat-resistant and light-proof test was implemented similarly to Example 1 with respect to the solar radiation shielding body (G) produced like Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[比較例1]
タングステン酸(HWO,日本無機化学工業株式会社製)9.06gと、水とを十
分混合し、100℃大気中で乾燥させ、残留混合物を得た以外は、実施例1と同様の操作
を行って微粒子(h)を得た。この微粒子(h)のx/y値、格子定数、異相の量および
粉砕前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(h)を用いたこと以外は、実施例1と同様の操作
を行い、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(H液)、日射遮蔽体(
H)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(H液)中
におけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させ
た際の透過散乱光の強度により評価し、最大ピークが1.22%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(H)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Comparative Example 1]
Tungstic acid (H 2 WO 4 , manufactured by Japan Inorganic Chemical Industry Co., Ltd.) 9.06 g and water were sufficiently mixed and dried in the atmosphere at 100 ° C., except that a residual mixture was obtained. The operation was performed to obtain fine particles (h). Table 1 shows the x / y value, the lattice constant, the amount of different phases, and the particle size before pulverization of the fine particles (h).
Next, the same operation as in Example 1 was performed except that the fine particles (h) were used instead of the fine particles (a), and the composite tungsten oxide fine particle dispersion liquid (H liquid) for solar radiation shielding body formation and solar radiation shielding were used. body(
H) was obtained. Here, the dispersion particle diameter of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (H liquid) for solar radiation shielding was evaluated by the intensity of the transmitted scattered light when contained in the UV curable resin. The maximum peak was 1.22%.
Then, heat resistance and light resistance tests were conducted in the same manner as in Example 1 on the solar radiation shield (H) produced in the same manner as in Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[比較例2]
炭酸セシウム(CsCO,ケメタルジャパン製)0.59gを純水によく溶解させ
た水溶液と、タングステン酸(HWO,日本無機化学工業株式会社製)9.06gを
十分混合し、100℃大気中で乾燥させ、残留混合物を得た以外は、実施例1と同様の操
作を行って微粒子(i)を得た。この微粒子(i)のx/y値、格子定数、異相の量およ
び粉砕前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(i)を用いたこと以外は、実施例1と同様の操作
を行い、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(I液)、日射遮蔽体(
I)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(I液)中
におけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させ
た際の透過散乱光の強度により評価し、最大ピークが1.34%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(I)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Comparative Example 2]
An aqueous solution in which 0.59 g of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) is well dissolved in pure water and 9.06 g of tungstic acid (H 2 WO 4 , manufactured by Nippon Inorganic Chemical Co., Ltd.) are sufficiently mixed. Except for drying in the atmosphere at 100 ° C. to obtain a residual mixture, the same operation as in Example 1 was performed to obtain fine particles (i). Table 1 shows the x / y value, the lattice constant, the amount of the different phase, and the particle size before pulverization of the fine particles (i).
Next, the same operation as in Example 1 was performed except that the fine particles (i) were used instead of the fine particles (a), and the composite tungsten oxide fine particle dispersion liquid (I liquid) for forming the solar radiation shielding material and the solar radiation shielding were used. body(
I) was obtained. Here, the dispersion particle diameter of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (I liquid) for solar radiation shielding was evaluated by the intensity of the transmitted scattered light when contained in the UV curable resin. The maximum peak was 1.34%.
And the heat-resistant and light-proof test was implemented similarly to Example 1 with respect to the solar radiation shielding body (I) produced like Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[比較例3]
炭酸セシウム(CsCO,ケメタルジャパン製)1.18gを純水によく溶解させ
た水溶液と、タングステン酸(HWO,日本無機化学工業株式会社製)9.06gと
を十分混合し、100℃大気中で乾燥させ、残留混合物を得た以外は、実施例1と同様の
操作を行って微粒子(j)を得た。この微粒子(j)のx/y値、格子定数、異相の量お
よび粉砕前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(j)を用いたこと以外は、実施例1と同様の操作
を行い、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(J液)、日射遮蔽体(
J)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(J液)中
におけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させ
た際の透過散乱光の強度により評価し、最大ピークが1.29%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(J)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Comparative Example 3]
An aqueous solution in which 1.18 g of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) is well dissolved in pure water and 9.06 g of tungstic acid (H 2 WO 4 , manufactured by Nippon Inorganic Chemical Co., Ltd.) are sufficiently mixed. Then, the same procedure as in Example 1 was performed to obtain fine particles (j) except that the residue was dried in the atmosphere at 100 ° C. to obtain a residual mixture. Table 1 shows the x / y value, the lattice constant, the amount of the different phase, and the particle size before pulverization of the fine particles (j).
Next, the same operation as in Example 1 was performed except that the fine particles (j) were used instead of the fine particles (a), and the composite tungsten oxide fine particle dispersion liquid (J liquid) for forming the solar radiation shielding material and the solar radiation shielding were used. body(
J) was obtained. Here, the dispersion particle size of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (liquid J) for forming a solar radiation shield was evaluated by the intensity of the transmitted scattered light when contained in the UV curable resin. The maximum peak was 1.29%.
And the heat-resistant and light-proof test was implemented similarly to Example 1 with respect to the solar radiation shield (J) produced like Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[比較例4]
炭酸セシウム(CsCO,ケメタルジャパン製)1.65gを純水によく溶解させ
た水溶液と、タングステン酸(HWO,日本無機化学工業株式会社製)9.06gと
を十分混合し、100℃大気中で乾燥させ、残留混合物を得た以外は、実施例1と同様に
して微粒子(k)を得た。この微粒子(k)のx/y値、格子定数、異相の量および粉砕
前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(k)を用いたこと以外は、実施例1と同様の操作
を行い、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(K液)、日射遮蔽体(
K)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(K液)中
におけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させ
た際の透過散乱光の強度により評価し、最大ピークが1.34%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(K)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Comparative Example 4]
An aqueous solution in which 1.65 g of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) is well dissolved in pure water and 9.06 g of tungstic acid (H 2 WO 4 , manufactured by Nippon Inorganic Chemical Industry Co., Ltd.) are sufficiently mixed. Then, fine particles (k) were obtained in the same manner as in Example 1 except that the residue was dried in the air at 100 ° C. to obtain a residual mixture. Table 1 shows the x / y value, the lattice constant, the amount of the different phase, and the particle size before pulverization of the fine particles (k).
Next, the same operation as in Example 1 was performed except that the fine particles (k) were used instead of the fine particles (a), and the composite tungsten oxide fine particle dispersion liquid (K solution) for forming the solar radiation shielding material and solar radiation shielding were used. body(
K) was obtained. Here, the dispersion particle diameter of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (K solution) for solar radiation shielding is evaluated by the intensity of the transmitted scattered light when it is contained in the UV curable resin. The maximum peak was 1.34%.
Then, heat resistance and light resistance tests were conducted in the same manner as in Example 1 on the solar radiation shield (K) produced in the same manner as in Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[比較例5]
炭酸セシウム(CsCO,ケメタルジャパン製)1.77gを純水によく溶解させ
た水溶液と、タングステン酸(HWO,日本無機化学工業株式会社製)9.06gを
十分混合し、100℃大気中で乾燥させ、残留混合物を得た以外は、実施例1と同様にし
て微粒子(l)を得た。この微粒子(l)のx/y値、格子定数、異相の量および粉砕前
粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(l)を用いたこと以外は、実施例1と同様の操作
を行い、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(L液)、日射遮蔽体(
L)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(L液)中
におけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させ
た際の透過散乱光の強度により評価し、最大ピークが1.32%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(L)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Comparative Example 5]
An aqueous solution in which 1.77 g of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) is well dissolved in pure water and 9.06 g of tungstic acid (H 2 WO 4 , manufactured by Nippon Inorganic Chemical Co., Ltd.) are sufficiently mixed. Fine particles (l) were obtained in the same manner as in Example 1 except that the residue was dried in the air at 100 ° C. to obtain a residual mixture. Table 1 shows the x / y value, the lattice constant, the amount of the different phase, and the particle size before pulverization of the fine particles (l).
Next, the same operation as in Example 1 was performed except that the fine particles (l) were used in place of the fine particles (a), and the composite tungsten oxide fine particle dispersion liquid (L solution) for forming the solar radiation shielding material and solar radiation shielding were used. body(
L) was obtained. Here, the dispersion particle diameter of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (L liquid) for solar radiation shielding is evaluated by the intensity of the transmitted scattered light when contained in the UV curable resin. The maximum peak was 1.32%.
And the heat-resistant and light-proof test was implemented similarly to Example 1 with respect to the solar radiation shield (L) produced similarly to Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[比較例6]
炭酸セシウム(CsCO,ケメタルジャパン製)2.36gを純水によく溶解させ
た水溶液と、タングステン酸(HWO,日本無機化学工業株式会社製)9.06gと
を十分混合し、100℃大気中で乾燥させ、残留混合物を得た以外は、実施例1と同様に
して微粒子(m)を得た。この微粒子(m)のx/y値、格子定数、異相の量および粉砕
前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(m)を用いたこと以外は、実施例1と同様の操作
を行い、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(M液)、日射遮蔽体(
M)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(M液)中
におけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させ
た際の透過散乱光の強度により評価し、最大ピークが1.25%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(M)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Comparative Example 6]
An aqueous solution in which 2.36 g of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) is well dissolved in pure water and 9.06 g of tungstic acid (H 2 WO 4 , manufactured by Nippon Inorganic Chemical Industry Co., Ltd.) are sufficiently mixed. Then, fine particles (m) were obtained in the same manner as in Example 1 except that the residue was dried in the atmosphere at 100 ° C. to obtain a residual mixture. Table 1 shows the x / y value, lattice constant, amount of heterogeneous phase, and particle size before pulverization of the fine particles (m).
Next, except for using the fine particles (m) in place of the fine particles (a), the same operation as in Example 1 was performed, and the composite tungsten oxide fine particle dispersion liquid (M liquid) for forming the solar shading material, the solar radiation shielding was used. body(
M) was obtained. Here, the dispersion particle diameter of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (liquid M) for solar radiation shielding was evaluated by the intensity of the transmitted scattered light when contained in the UV curable resin. The maximum peak was 1.25%.
And the heat-resistant and light resistance test was implemented similarly to Example 1 with respect to the solar radiation shielding body (M) produced similarly to Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[比較例7]
炭酸セシウム(CsCO,ケメタルジャパン製)2.65gを純水によく溶解させ
た水溶液と、タングステン酸(HWO,日本無機化学工業株式会社製)9.06gを
十分混合し、100℃大気中で乾燥させ、残留混合物を得た以外は、実施例1と同様にし
て微粒子(n)を得た。この微粒子(n)のx/y値、格子定数、異相の量および粉砕前
粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(n)を用いたこと以外は、実施例1と同様の操作
を行い、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(N液)、日射遮蔽体(
N)を得た。ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(N液)中
におけるセシウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させ
た際の透過散乱光の強度により評価し、最大ピークが1.25%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(N)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Comparative Example 7]
An aqueous solution in which 2.65 g of cesium carbonate (Cs 2 CO 3 , manufactured by Kemetal Japan) is well dissolved in pure water and 9.06 g of tungstic acid (H 2 WO 4 , manufactured by Nippon Inorganic Chemical Co., Ltd.) are sufficiently mixed. Fine particles (n) were obtained in the same manner as in Example 1 except that the residue was dried in the air at 100 ° C. to obtain a residual mixture. Table 1 shows the x / y value, the lattice constant, the amount of the different phase, and the particle diameter before pulverization of the fine particles (n).
Next, the same operation as in Example 1 was performed except that the fine particles (n) were used instead of the fine particles (a), and a composite tungsten oxide fine particle dispersion liquid (N liquid) for forming a solar radiation shield, solar radiation shielding was used. body(
N) was obtained. Here, the dispersion particle size of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (N solution) for solar radiation shielding body evaluation was evaluated based on the intensity of transmitted scattered light when contained in the UV curable resin. The maximum peak was 1.25%.
And the heat-resistant and light-proof test was implemented similarly to Example 1 with respect to the solar radiation shield (N) produced similarly to Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

[比較例8]
実施例1において製造した混合物を、Nガスをキャリアとした1%Hガスを供給し
ながら加熱し、1000℃の温度で16分間の還元処理を行ったこと以外は、実施例1と
同様の操作を行い、微粒子(o)を得た。この微粒子(o)のx/y値、格子定数、異相
の量および粉砕前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(o)を用いたこと以外は、実施例1と同様に日射
遮蔽体形成用複合タングステン酸化物微粒子分散液(O液)を得た。この分散液を用いて
実施例1と同様に日射遮蔽体を作製したが、異相として混在していたタングステンにより
透明膜を得ることが出来なかった。
[Comparative Example 8]
The mixture produced in Example 1 was heated while supplying 1% H 2 gas with N 2 gas as a carrier, and was subjected to reduction treatment at a temperature of 1000 ° C. for 16 minutes, as in Example 1. The fine particles (o) were obtained. Table 1 shows the x / y value, the lattice constant, the amount of the different phase, and the particle size before pulverization of the fine particles (o).
Next, a composite tungsten oxide fine particle dispersion liquid (O liquid) for solar radiation shielding was obtained in the same manner as in Example 1 except that the fine particles (o) were used instead of the fine particles (a). Using this dispersion, a solar shield was produced in the same manner as in Example 1. However, a transparent film could not be obtained from tungsten mixed as a different phase.

[比較例9]
実施例1において製造した混合物を、Nガスをキャリアとした1%Hガスを供給し
ながら加熱し、900℃の温度で18分間の還元処理を行ったこと以外は、実施例1と同
様の操作を行い、微粒子(p)を得た。この微粒子(p)のx/y値、格子定数、異相の
量および粉砕前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(p)を用いたこと以外は、実施例1と同様に日射
遮蔽体形成用複合タングステン酸化物微粒子分散液(P液)を得た。この分散液を用いて
実施例1と同様に日射遮蔽体を作製したが、異相として混在していたタングステンにより
透明膜を得ることが出来なかった。
[Comparative Example 9]
The mixture produced in Example 1 was heated while supplying 1% H 2 gas with N 2 gas as a carrier, and was subjected to reduction treatment at a temperature of 900 ° C. for 18 minutes, as in Example 1. To obtain fine particles (p). Table 1 shows the x / y value, the lattice constant, the amount of different phases, and the particle size before pulverization of the fine particles (p).
Next, a composite tungsten oxide fine particle dispersion liquid (P solution) for solar radiation shielding was obtained in the same manner as in Example 1 except that the fine particles (p) were used instead of the fine particles (a). Using this dispersion, a solar shield was produced in the same manner as in Example 1. However, a transparent film could not be obtained from tungsten mixed as a different phase.

[比較例10]
実施例1において製造した混合物を、Nガスをキャリアとした1%Hガスを供給し
ながら加熱し、800℃の温度で20分間の還元処理を行ったこと以外は、実施例1と同
様の操作を行い、微粒子(q)を得た。この微粒子(q)のx/y値、格子定数、異相の
量および粉砕前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(q)を用いたこと以外は、実施例1と同様に日射
遮蔽体形成用複合タングステン酸化物微粒子分散液(Q液)を得た。この分散液を用いて
実施例1と同様に日射遮蔽体を作製したが、異相として混在していたタングステンにより
透明膜を得ることが出来なかった。
[Comparative Example 10]
The mixture produced in Example 1 was heated while supplying 1% H 2 gas with N 2 gas as a carrier, and was subjected to a reduction treatment at a temperature of 800 ° C. for 20 minutes, as in Example 1. Thus, the fine particles (q) were obtained. Table 1 shows the x / y value, the lattice constant, the amount of the different phase, and the particle size before pulverization of the fine particles (q).
Next, a composite tungsten oxide fine particle dispersion (Q liquid) for solar radiation shielding was obtained in the same manner as in Example 1 except that the fine particles (q) were used in place of the fine particles (a). Using this dispersion, a solar shield was produced in the same manner as in Example 1. However, a transparent film could not be obtained from tungsten mixed as a different phase.

[比較例11]
実施例1において製造した混合物を、Nガスをキャリアとした1%Hガスを供給し
ながら加熱し、700℃の温度で23分間の還元処理を行ったこと以外は、実施例1と同
様の操作を行い、微粒子(r)を得た。この微粒子(r)のx/y値、格子定数、異相の
量および粉砕前粒子径を表1に示す。
次に、微粒子(a)に代えて微粒子(r)を用いたこと以外は、実施例1と同様に日射
遮蔽体形成用複合タングステン酸化物微粒子分散液(R液)、日射遮蔽体(R)を得た。
ここで、日射遮蔽体形成用複合タングステン酸化物微粒子分散液(R液)中におけるセシ
ウム添加タングステン酸化物微粒子の分散粒径は、UV硬化樹脂中含有させた際の透過散
乱光の強度により評価し、最大ピークが1.30%となっていた。
そして、この分散樹脂液を用いて実施例1と同様に作製した日射遮蔽体(R)に対して
、実施例1と同様に耐熱性および耐光性試験を実施した。耐熱性および耐光性試験の結果
を表2に示す。
[Comparative Example 11]
The mixture produced in Example 1 was heated while supplying 1% H 2 gas with N 2 gas as a carrier, and was subjected to reduction treatment at a temperature of 700 ° C. for 23 minutes, as in Example 1. Thus, fine particles (r) were obtained. Table 1 shows the x / y value, the lattice constant, the amount of the different phase, and the particle size before pulverization of the fine particles (r).
Next, a composite tungsten oxide fine particle dispersion liquid (R liquid) for solar radiation shielding body formation, a solar radiation shielding body (R), as in Example 1, except that the fine particle (r) was used instead of the fine particle (a). Got.
Here, the dispersion particle size of the cesium-added tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion (R solution) for solar radiation shielding is evaluated by the intensity of the transmitted scattered light when it is contained in the UV curable resin. The maximum peak was 1.30%.
And the heat-resistant and light resistance test was implemented similarly to Example 1 with respect to the solar radiation shielding body (R) produced like Example 1 using this dispersion resin liquid. Table 2 shows the results of the heat resistance and light resistance test.

表2に示した結果より明らかなように、実施例1〜6に係る日射遮蔽体A〜Fは、従来
のセシウム添加タングステン酸化物を用いた日射遮蔽体K〜Rと比較して日射遮蔽能が高
ことが判明した。特に、実施例2、3では、高い日射遮蔽能を有し耐候性の高い日射遮蔽
体を得ることが出来た。本発明に係る日射遮蔽体を、車両、ビル、事務所、一般住宅など
の窓材や、電話ボックス、ショーウィンドー、照明用ランプ、透明ケースなどに使用され
る単板ガラス、合わせガラス、プラスティック、繊維等の日射遮蔽機能を必要とする日射
遮蔽体として用いた場合、日射遮蔽特性の劣化が起こり難く、信頼性の高い製品として使
用出来る。
As is clear from the results shown in Table 2, the solar shields A to F according to Examples 1 to 6 are compared with the solar shields K to R using the conventional cesium-added tungsten oxide. Turned out to be high. In particular, in Examples 2 and 3, a solar shading body having high solar shading ability and high weather resistance could be obtained. The solar shading body according to the present invention is used for window materials for vehicles, buildings, offices, ordinary houses, telephone boxes, show windows, lamps for lighting, transparent cases, etc. When used as a solar shading body that requires a solar shading function such as fiber, the solar shading characteristics are hardly deteriorated and can be used as a highly reliable product.

Claims (4)

一般式CsxWyOz(但し、Csはセシウム、Wはタングステン、Oは酸素、0.30≦x/y≦0.33、2.2≦z/y≦3.0)で表され、六方晶系の結晶構造を有する日射遮蔽体形成用複合タングステン酸化物微粒子であって、
六方晶以外のタングステン酸化物の生成量が10重量%以下であり
WOの生成量が1重量%以下であり
Wの生成量が0重量%であり
前記六方晶以外のタングステン酸化物または前記WO の1種以上を含み、
c軸の格子定数が7.61101Å以上7.61242Å以下である、ことを特徴とする日射遮蔽体形成用複合タングステン酸化物微粒子。
It is represented by the general formula CsxWyOz (where Cs is cesium, W is tungsten, O is oxygen, 0.30 ≦ x / y ≦ 0.33, 2.2 ≦ z / y ≦ 3.0). A composite tungsten oxide fine particle for forming a solar radiation shielding body having a crystal structure,
The amount of tungsten oxide other than hexagonal does not exceed 10 wt% or less,
The amount of WO 2 is not more than 1 wt%,
The amount of W produced is 0% by weight,
Including one or more of tungsten oxides other than the hexagonal crystals or the WO 2
A composite tungsten oxide fine particle for forming a solar radiation shielding material, wherein the c-axis lattice constant is from 7.61101 to 7.61242.
請求項1に記載の日射遮蔽体形成用複合タングステン酸化物微粒子と、溶媒と、分散剤とを含むことを特徴とする日射遮蔽体形成用複合タングステン酸化物微粒子分散液。   A composite tungsten oxide fine particle dispersion for solar radiation shielding, comprising the composite tungsten oxide fine particles for solar radiation shielding according to claim 1, a solvent, and a dispersant. さらに樹脂バインダーを含むことを特徴とする請求項2に記載の日射遮蔽体形成用複合タングステン酸化物微粒子分散液。   The composite tungsten oxide fine particle dispersion for forming a solar shading body according to claim 2, further comprising a resin binder. 請求項1に記載の日射遮蔽体形成用複合タングステン酸化物微粒子が、樹脂中に分散されていることを特徴とする日射遮蔽体。   The solar radiation shielding body, wherein the composite tungsten oxide fine particles for solar radiation shielding formation according to claim 1 are dispersed in a resin.
JP2015101227A 2015-05-18 2015-05-18 Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield Active JP6187540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015101227A JP6187540B2 (en) 2015-05-18 2015-05-18 Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101227A JP6187540B2 (en) 2015-05-18 2015-05-18 Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012038654A Division JP5849766B2 (en) 2012-02-24 2012-02-24 Composite tungsten oxide fine particles for forming solar radiation shield, composite tungsten oxide fine particle dispersion for forming solar radiation shield, and method for producing solar radiation shield

Publications (2)

Publication Number Publication Date
JP2015199668A JP2015199668A (en) 2015-11-12
JP6187540B2 true JP6187540B2 (en) 2017-08-30

Family

ID=54551306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101227A Active JP6187540B2 (en) 2015-05-18 2015-05-18 Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield

Country Status (1)

Country Link
JP (1) JP6187540B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018289676A1 (en) 2017-06-19 2020-02-06 Sumitomo Metal Mining Co., Ltd. Agricultural and horticultural soil-covering film, and method for manufacturing same
EP3643754A4 (en) * 2017-06-19 2021-03-24 Sumitomo Metal Mining Co., Ltd. Near-infrared-curable ink composition, method for producing same, near-infrared-cured film, and optical shaping method
WO2019054477A1 (en) * 2017-09-14 2019-03-21 住友金属鉱山株式会社 Cover-soil film for agricultural gardening and method for producing same
WO2019058737A1 (en) * 2017-09-22 2019-03-28 住友金属鉱山株式会社 Cesium tungsten oxide film and method for manufacturing same
JP7081183B2 (en) * 2017-09-22 2022-06-07 住友金属鉱山株式会社 Cesium Tungsten Oxide Film and Its Manufacturing Method
JP6911721B2 (en) * 2017-11-14 2021-07-28 住友金属鉱山株式会社 Infrared absorber
WO2023190758A1 (en) * 2022-03-31 2023-10-05 住友金属鉱山株式会社 Composite tungsten oxide particles, near-infrared-absorbing particle dispersion liquid, and near-infrared-absorbing particle dispersion

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701735B1 (en) * 2003-10-20 2007-03-29 스미토모 긴조쿠 고잔 가부시키가이샤 Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
JP2011063484A (en) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd Near-infrared ray shielding material microparticle, method for producing the same, near-infrared ray shielding material microparticle dispersion and near-infrared ray shielding body
JP2011063739A (en) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd Microparticle of near infrared ray shielding material, production method therefor, particle dispersion of near infrared ray shielding material, and near infrared ray shielding body
JP2011100710A (en) * 2009-10-06 2011-05-19 Tohoku Univ Method of manufacturing conductive particulate and conductive particulate
JP5695356B2 (en) * 2010-07-13 2015-04-01 株式会社カネカ Curable coating agent having near-infrared absorbing ability, and near-infrared absorbing material
JP2011198518A (en) * 2010-03-17 2011-10-06 Tohoku Univ Conductive particulate and method for manufacturing the same, and visible light transmission type particle dispersion conductor
ITRM20100227A1 (en) * 2010-05-10 2011-11-10 Bayer Materialscience Ag POLYMER COMPOSITION WITH HIGH STABILITY HEAT ABSORPTION CHARACTERISTICS.
JP5840830B2 (en) * 2010-06-10 2016-01-06 株式会社ブリヂストン Heat ray shielding double-glazed glass

Also Published As

Publication number Publication date
JP2015199668A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP5849766B2 (en) Composite tungsten oxide fine particles for forming solar radiation shield, composite tungsten oxide fine particle dispersion for forming solar radiation shield, and method for producing solar radiation shield
JP6187540B2 (en) Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield
KR102371492B1 (en) Near-infrared shielding material fine particles, method for preparing the same, and near-infrared shielding material fine particle dispersion
JP6825619B2 (en) Near-infrared shielding material Fine particle dispersion, near-infrared shielding body and combined structure for near-infrared shielding, and their manufacturing method
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP5070796B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP5034272B2 (en) Tungsten-containing oxide fine particles, method for producing the same, and infrared shielding body using the same
JP2008194563A (en) Solar radiation barrier film and wavelength selection type barrier film
JP5585812B2 (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding material, method for producing near-infrared shielding material fine particles, and near-infrared shielding material fine particles
JP2011063739A (en) Microparticle of near infrared ray shielding material, production method therefor, particle dispersion of near infrared ray shielding material, and near infrared ray shielding body
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JP2011063493A (en) Near-infrared ray shielding material microparticle dispersion, near-infrared ray shielding body and method for producing near-infrared ray shielding material dispersion
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
JP4826126B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP2010075775A (en) Wavelength selective barrier film and wavelength selective barrier
JP3915880B2 (en) Method for producing fine particles for solar radiation shielding film formation
JP2011063484A (en) Near-infrared ray shielding material microparticle, method for producing the same, near-infrared ray shielding material microparticle dispersion and near-infrared ray shielding body
JP6413969B2 (en) Dispersion for forming solar shading body and solar shading body using the dispersion
CN113039159B (en) Fine particle dispersion of infrared absorbing material and method for producing same
JP6575443B2 (en) Heat ray shielding film and heat ray shielding glass
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material
JP2017222540A (en) Heat ray-shielding fine particle and heat ray-shielding fine particle dispersion liquid
JP6164132B2 (en) Lithium titanate particles for heat ray shielding
CN117043299A (en) Infrared absorbing particles, infrared absorbing particle dispersion, infrared absorbing interlayer transparent substrate, and infrared absorbing transparent substrate
JPWO2020110906A1 (en) Surface-treated infrared absorbing fine particle dispersion and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R150 Certificate of patent or registration of utility model

Ref document number: 6187540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150