JP2011063493A - Near-infrared ray shielding material microparticle dispersion, near-infrared ray shielding body and method for producing near-infrared ray shielding material dispersion - Google Patents

Near-infrared ray shielding material microparticle dispersion, near-infrared ray shielding body and method for producing near-infrared ray shielding material dispersion Download PDF

Info

Publication number
JP2011063493A
JP2011063493A JP2009217540A JP2009217540A JP2011063493A JP 2011063493 A JP2011063493 A JP 2011063493A JP 2009217540 A JP2009217540 A JP 2009217540A JP 2009217540 A JP2009217540 A JP 2009217540A JP 2011063493 A JP2011063493 A JP 2011063493A
Authority
JP
Japan
Prior art keywords
shielding material
infrared shielding
fine particles
resin
material fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009217540A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Yasumasa Hattori
靖匡 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009217540A priority Critical patent/JP2011063493A/en
Publication of JP2011063493A publication Critical patent/JP2011063493A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a near-infrared ray shielding material microparticle dispersion in which composite tungsten oxide microparticles whose coloring power is improved are dispersed in a medium, a near-infrared ray shielding body and a method for producing the near-infrared ray shielding material microparticle dispersion. <P>SOLUTION: The near-infrared ray shielding material microparticle dispersion, which includes near-infrared ray shielding material microparticles dispersed in a medium, is characterized in that the near-infrared ray shielding material microparticle contains composite tungsten oxide microparticles B represented by the formula: LixMyWOz (wherein M is one or more kinds of elements selected from among Cs, Rb, K, Na, Ba, Ca, Sr and Mg; W is tungsten; O is oxygen; 0.1≤x<1.0; 0.1≤y≤0.5; and 2.2≤z≤3.0), the composite tungsten oxide microparticle B is a microparticle having a hexagonal crystal structure and the particle diameter of the near-infrared ray shielding material microparticle is 1-500 nm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、可視光領域においては透明で、近赤外線領域においては吸収を持ち、かつ着色力の強い酸化物材料微粒子を媒体に分散させた近赤外線遮蔽材料微粒子分散体、当該近赤外線遮蔽材料微粒子分散体より製造した近赤外線遮蔽体、近赤外線遮蔽材料分散体の製造方法に関する。詳しくは、リチウムが固溶した複合タングステン酸化物微粒子を含有する近赤外線遮蔽材料微粒子が媒体中に分散されて成る近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽材料分散体の製造方法に関する。   The present invention relates to a near-infrared shielding material fine particle dispersion in which oxide material fine particles that are transparent in the visible light region, absorb in the near-infrared region, and have strong coloring power are dispersed in a medium, and the near-infrared shielding material fine particles It is related with the manufacturing method of the near-infrared shielding body manufactured from the dispersion, and a near-infrared shielding material dispersion. Specifically, a near-infrared shielding material fine particle dispersion, a near-infrared shielding material fine particle dispersion, a near-infrared shielding material dispersion, and a near-infrared shielding material dispersion in which near-infrared shielding material fine particles containing composite tungsten oxide fine particles in which lithium is dissolved are dispersed in a medium Regarding the method.

近年、各種建築物や車両の窓材等の分野において、可視光線を十分に取り入れながら近赤外領域の光を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制することを目的とした近赤外線遮蔽体の需要が急増し、これに伴って近赤外線遮蔽材料や近赤外線遮蔽ガラス等の開発が盛んになされている。   In recent years, in the fields of various buildings and vehicle window materials, etc., it has been aimed to suppress near-infrared light while sufficiently absorbing visible light, and to suppress indoor temperature rise while maintaining brightness. With the rapid increase in demand for near-infrared shields, development of near-infrared shielding materials, near-infrared shielding glass, and the like has been actively conducted.

特許文献1では、透明なガラス基板上に、基板側より第1層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも一種の金属イオンを含有する複合タングステン酸化物を設け、前記第1層上に第2層として透明誘電体膜を設け、該第2層上に第3層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合タングステン酸化物膜を設け、かつ前記第2層の透明誘電体膜の屈折率が前記第1層および前記第3層の複合タンスステン酸化物膜の屈折率よりも低くすることにより、高い可視光透過率および良好な熱線遮蔽性能が要求される部位に好適に使用することができる熱線遮断ガラスが提案されている。   In Patent Document 1, on a transparent glass substrate, at least one metal ion selected from the group consisting of Group IIIa, Group IVa, Group Vb, Group VIb and Group VIIb of the periodic table is provided as a first layer from the substrate side. A composite tungsten oxide is provided, a transparent dielectric film is provided as a second layer on the first layer, and a group IIIa, IVa, Vb, VIb of the periodic table is provided as a third layer on the second layer. And a composite tungsten oxide film containing at least one metal ion selected from the group consisting of group VIIb and group VIIb, and the refractive index of the transparent dielectric film of the second layer is the first layer and the third layer By reducing the refractive index of the composite tungsten oxide film of the layer, a heat ray-shielding glass that can be suitably used in a site where high visible light transmittance and good heat ray shielding performance are required is proposed. To have.

特許文献2では、特許文献1と同様の方法で、透明なガラス基板上に、基板側より第1層として第1の誘電体膜を設け、該第1層上に第2層としてタングステン酸化物膜を設け、該第2層上に第3層として第2の誘電体膜を設けた熱線遮断ガラスが提案されている。   In Patent Document 2, a first dielectric film is provided as a first layer from the substrate side on a transparent glass substrate in the same manner as Patent Document 1, and tungsten oxide is formed as a second layer on the first layer. There has been proposed a heat ray-shielding glass in which a film is provided and a second dielectric film is provided as a third layer on the second layer.

特許文献3では、特許文献1と同様の方法で、透明な基板上に、基板側より第1層として同様の金属元素を含有する複合タングステン酸化物膜を設け、前記第1層上に第2層として透明誘電体膜を設けた熱線遮断ガラスが提案されている。
特許文献4では、水素、リチウム、ナトリウムまたはカリウムなどの添加材料を含有する三酸化タングステン(WO)、三酸化モリブデン(MoO)、五酸化ニオブ(Nb)、五酸化タンタル(Ta)、五酸化バナジウム(V)および二酸化バナジウム(VO)の一種以上から選択された金属酸化物膜を、CVD法あるいはスプレ−法で被覆され250℃程度で熱分解して形成された太陽光遮蔽特性を有する太陽光制御ガラスシ−トが提案されている。
In Patent Document 3, a composite tungsten oxide film containing the same metal element is provided as a first layer from the substrate side on a transparent substrate by the same method as Patent Document 1, and the second layer is formed on the first layer. Heat ray blocking glass provided with a transparent dielectric film as a layer has been proposed.
In Patent Document 4, tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), tantalum pentoxide (Ta) containing an additive material such as hydrogen, lithium, sodium, or potassium. 2 O 5 ), a metal oxide film selected from one or more of vanadium pentoxide (V 2 O 5 ) and vanadium dioxide (VO 2 ) is coated with a CVD method or a spray method and thermally decomposed at about 250 ° C. A solar control glass sheet having solar light shielding properties formed in this manner has been proposed.

特許文献5には、タングステン酸を加水分解して得られたタングステン酸化物を用い、該タングステン酸化物に、ポリビニルプロリドンという特定の構造の有機ポリマ−を添加することにより、太陽光が照射されると光線中の紫外線が、該タングステン酸化物に吸収され、励起電子とホ−ルとが発生し、少量の紫外線量により5価のタングステンの出現量が著しく増加して、着色反応が速くなることに伴って着色濃度が高くなると共に、光を遮断することによって5価タングステンが極めて速やかに6価に酸化されて、消色反応が速くなる特性を用い、太陽光に対する着色および消色反応が速く、着色時近赤外域の波長1250nmに吸収ピ−クが現れ、太陽光の近赤外線を遮断することができる太陽光可変調光断熱材料が得られることが提案されている。   In Patent Document 5, sunlight is irradiated by using a tungsten oxide obtained by hydrolyzing tungstic acid and adding an organic polymer having a specific structure called polyvinylprolidone to the tungsten oxide. Then, the ultraviolet rays in the light are absorbed by the tungsten oxide, and excited electrons and holes are generated. The appearance amount of pentavalent tungsten is remarkably increased by a small amount of ultraviolet rays, and the coloring reaction is accelerated. In connection with this, the color density increases, and the property that the pentavalent tungsten is oxidized to hexavalent very quickly by blocking the light and the decoloring reaction is accelerated, the coloring and decoloring reaction to sunlight is performed. It is suggested that an absorption peak appears at a wavelength of 1250 nm in the near-infrared region at the time of coloring, and that a sunlight-modulable light insulating material capable of blocking the near-infrared light of sunlight can be obtained. It is.

また、特許文献6には、六塩化タングステンをアルコ−ルに溶解し、そのまま溶媒を蒸発させるか、若しくは加熱還流した後溶媒を蒸発させ、その後100℃〜500℃で加熱することにより、三酸化タングステン若しくはその水和物または両者の混合物からなる粉末を得ること、該タングステン酸化物微粒子を用いてエレクトロクロミック素子が得られること、多層の積層体を構成し膜中にプロトンを導入したときに当該膜の光学特性を変化させることができること、などを提案している。   In Patent Document 6, tungsten trichloride is dissolved in alcohol, and the solvent is evaporated as it is, or the solvent is evaporated after heating to reflux, and then heated at 100 ° C. to 500 ° C. Obtaining a powder composed of tungsten or a hydrate thereof or a mixture of both, obtaining an electrochromic device using the tungsten oxide fine particles, forming a multilayer stack, and introducing protons into the film It proposes that the optical properties of the film can be changed.

また、特許文献7には、メタ型タングステン酸アンモニウムと水溶性の各種金属塩とを原料とし、約300〜700℃に加熱しながら、その混合水溶液の乾固物に対して不活性ガス(添加量;約50vol%以上)または水蒸気(添加量;約15vol%以下)を添加した水素ガスを供給することにより、MxWO3(M;アルカリIa族、IIa族、希土類などの金属元素、0<x<1)で表される種々のタングステンブロンズの調製方法が提案されている。   Further, Patent Document 7 uses an ammonium metatungstate and various water-soluble metal salts as raw materials and is heated to about 300 to 700 ° C. while being heated with an inert gas (added) MxWO3 (M: metal element such as alkali group Ia, group IIa, rare earth, 0 <x <, by supplying hydrogen gas to which an amount; about 50 vol% or more) or water vapor (addition amount: about 15 vol% or less) is added. Various methods for preparing tungsten bronzes represented by 1) have been proposed.

さらに、特許文献8には、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子から成る近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体、および近赤外線遮蔽材料微粒子の製造方法、並びに近赤外線遮蔽材料微粒子が提案されている。
ところで、特許文献1〜3に記載の熱線遮断材は、主にスパッタリング法、蒸着法、イオンプレ−ティング法および化学気相法(CVD法)などの真空成膜方式による乾式法を用いた方法で製造される。このため、大型の製造装置を必要とし製造コストが高くなるという課題がある。また、熱線遮断材の基材が高温のプラズマに曝されたり、成膜後加熱を必要としたりすることになるため、フィルムなどの樹脂を基材とする場合には別途、設備上、成膜条件の検討を行う必要があった。
Further, Patent Document 8 discloses a near-infrared shielding material fine particle dispersion comprising tungsten oxide fine particles and / or composite tungsten oxide fine particles, a near-infrared shielding material, a method for producing near-infrared shielding material fine particles, and a near-infrared shielding material. Fine particles have been proposed.
By the way, the heat ray blocking materials described in Patent Documents 1 to 3 are mainly methods using a dry method such as a sputtering method, a vapor deposition method, an ion plating method and a chemical vapor deposition method (CVD method). Manufactured. For this reason, there exists a subject that a large sized manufacturing apparatus is required and manufacturing cost becomes high. In addition, since the base material of the heat ray blocking material is exposed to high-temperature plasma or needs to be heated after the film formation, when a resin such as a film is used as a base material, the film is separately formed on the equipment. It was necessary to examine the conditions.

また、特許文献4に記載の太陽光制御被覆ガラスシ−トは、原料をCVD法、またはスプレ−法と熱分解法との併用によりガラス上に被膜形成するが、前駆体となる原料が高価であること、高温で分解すること、などからフィルムなどの樹脂を基材とする場合には別途、成膜条件の検討を行う必要があった。   Further, the solar control coated glass sheet described in Patent Document 4 forms a film on the glass by using a CVD method or a combination of a spray method and a thermal decomposition method, but the precursor material is expensive. In the case of using a resin such as a film as a base material because of the fact that it is decomposed at a high temperature, etc., it was necessary to separately examine the film forming conditions.

さらに、特許文献5〜6に記載の太陽光可変調光断熱材料、エレクトロクロミック素子は、紫外線や電位差によりその色調を変化させる材料であるため膜の構造が複雑であり、色調変化が望まれない用途分野には適用が困難であった。
さらに、特許文献7にはタングステンブロンズの調製方法が記載されているが、得られた粉体の粒子直径や、光学特性の記載が皆無である。これは、当該タングステンブロンズの用途として電解装置や燃料電池の電極材料および有機合成の触媒材料が考えられ、本発明の様に、太陽光線遮蔽用途ではないとためと考えられる。
Furthermore, since the sunlight-modulable light insulating material and the electrochromic element described in Patent Documents 5 to 6 are materials that change the color tone by ultraviolet rays or a potential difference, the structure of the film is complicated and the color tone change is not desired. It was difficult to apply in the field of use.
Furthermore, Patent Document 7 describes a method for preparing tungsten bronze, but there is no description of the particle diameter and optical characteristics of the obtained powder. This is considered to be because the tungsten bronze is used for an electrolysis apparatus, a fuel cell electrode material, and an organic synthesis catalyst material, and not for solar ray shielding as in the present invention.

他方、特許文献1〜7に記載された上述の従来技術と較べ、特許文献8においては近赤外線遮蔽体の製造に用いられるタングステン酸化物微粒子または/および複合タングステン酸化物微粒子が提案され、これ等酸化物微粒子は優れた可視光透過性と良好な近赤外線遮蔽効果を有している。このため、各種建築物や車両の窓材等の分野において好適に利用される近赤外線遮蔽体として注目されている。   On the other hand, compared with the above-described conventional techniques described in Patent Documents 1 to 7, Patent Document 8 proposes tungsten oxide fine particles and / or composite tungsten oxide fine particles used for the production of a near-infrared shield. The oxide fine particles have excellent visible light permeability and good near infrared shielding effect. For this reason, it attracts attention as a near-infrared shield that is suitably used in the fields of various buildings and vehicle window materials.

しかし、特許文献8には、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子に関して記載されているが、着色力については十分満足すべきものでなく改善の余地が残されていた。   However, Patent Document 8 describes tungsten oxide fine particles and / or composite tungsten oxide fine particles, but the coloring power is not fully satisfactory, and there is room for improvement.

特開平8−59300号公報JP-A-8-59300 特開平8−12378号公報JP-A-8-12378 特開平8−283044号公報JP-A-8-283044 特開2000−119045号公報JP 2000-1119045 A 特開平9−127559号公報JP-A-9-127559 特開2003−121884号公報JP 2003-121884 A 特開平8−73223号公報JP-A-8-73223 特許第4096205号公報Japanese Patent No. 4096205

本発明は、上述の課題を解決するためになされたものであり、可視光線を十分に透過し、ハ−フミラ−状の外観を有さず、基材への成膜に際し大掛かりな製造装置を必要とせず、成膜時に高温熱処理も不要でありながら、複合タングステン酸化物微粒子で近赤外線を効率よく遮蔽し、近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽材料微粒子分散体の製造方法を提供することである。より詳しくその課題を説明すれば、着色力を改善した複合タングステン酸化物微粒子が媒体中に分散している近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽材料微粒子分散体の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is a large-scale manufacturing apparatus that can transmit visible light sufficiently, does not have a half-miller-like appearance, and forms a film on a substrate. Although not required and high-temperature heat treatment is not required at the time of film formation, near-infrared rays are efficiently shielded by composite tungsten oxide fine particles, and near-infrared shielding material fine particle dispersion, near-infrared shielding material and near-infrared shielding material fine particle dispersion It is to provide a manufacturing method. More specifically, the problem will be described. Near-infrared shielding material fine particle dispersion in which composite tungsten oxide fine particles with improved coloring power are dispersed in a medium, near-infrared shielding material, and method for producing near-infrared shielding material fine particle dispersion The purpose is to provide.

上記課題を解決するため本発明者等が鋭意研究を継続した結果、近赤外線遮蔽機能を有する微粒子として、一般式MyWOz(但し、Mは、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物(以下に述べるリチウムが固溶された複合タングステン酸化物と区別するため複合タングステン酸化物Aと称する)の微粒子を原料とし、かつ、一般式LixMyWOz(但し、Mは、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦x<1.0、0.1≦y≦0.5、2.2≦z≦3.0)と表記される組成となるようにリチウムを含有する化合物を上記原料に添加して得られる混合体を大気中若しくは不活性ガス雰囲気中で焼成した後、還元性ガス雰囲気中または還元性ガスと不活性ガスの混合雰囲気中で熱処理して得られる前記複合タングステン酸化物(リチウムが固溶される前の上記複合タングステン酸化物Aと区別するため複合タングステン酸化物Bと称する)が、複合タングステン酸化物Aをに対して着色力が増加することを発見し、かつ、近赤外線遮蔽材料微粒子分散体に複合タングステン酸化物Bを用いると複合タングステン酸化物Aよりも使用量が削減できることを見出し、本発明に至った。   As a result of continual research conducted by the present inventors in order to solve the above problems, as a fine particle having a near-infrared shielding function, a general formula MyWOz (where M is Cs, Rb, K, Na, Ba, Ca, One or more elements selected from Sr and Mg, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) And a general formula LixMyWOz (wherein M is Cs, Rb, One or more elements selected from K, Na, Ba, Ca, Sr, Mg, W is tungsten, O is oxygen, 0.1 ≦ x <1.0, 0.1 ≦ y ≦ 0.5 2.2 ≦ z ≦ 3.0) After baking the mixture obtained by adding a lithium-containing compound to the above raw material in the air or in an inert gas atmosphere, in a reducing gas atmosphere or in a mixed atmosphere of a reducing gas and an inert gas The composite tungsten oxide (referred to as composite tungsten oxide B for distinction from the composite tungsten oxide A before lithium is dissolved) obtained by heat treatment in FIG. It has been found that the force increases, and when the composite tungsten oxide B is used in the near-infrared shielding material fine particle dispersion, the amount of use can be reduced as compared with the composite tungsten oxide A, and the present invention has been achieved.

すなわち、請求項1に係る発明は、
近赤外線遮蔽材料微粒子が媒体中に分散してなる近赤外線遮蔽材料微粒子分散体おいて、
前記近赤外線遮蔽材料微粒子が、一般式LixMyWOz(但し、Mは、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦x<1.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物の微粒子Bを含有し、前記複合タングステン酸化物Bの微粒子が、六方晶の結晶構造を有する微粒子であることと、前記近赤外線遮蔽材料微粒子の粒子直径は1nm〜500nmであることを特徴とする。
That is, the invention according to claim 1
In a near-infrared shielding material fine particle dispersion in which near-infrared shielding material fine particles are dispersed in a medium,
The near-infrared shielding material fine particles have a general formula LixMyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O contains oxygen, 0.1 ≦ x <1.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) fine particles B of composite tungsten oxide, The fine particles of the composite tungsten oxide B are fine particles having a hexagonal crystal structure, and the near-infrared shielding material fine particles have a particle diameter of 1 nm to 500 nm.

また、請求項2に係る発明は、
請求項1に係る近赤外線遮蔽材料微粒子分散体おいて、
前記近赤外線遮蔽材料微粒子が、一般式MyWOz(但し、Mは、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aとリチウムを含有する化合物との混合体を大気中若しくは不活性ガス雰囲気中で焼成した後、還元性ガス雰囲気中または還元性ガスと不活性ガスの混合雰囲気中で熱処理して得られる一般式一般式LixMyWOz(但し、Mは、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦x<1.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物の微粒子Bであることと、前記近赤外線遮蔽材料微粒子の粒子直径は1nm〜500nmであることを特徴とする。
The invention according to claim 2
In the near-infrared shielding material fine particle dispersion according to claim 1,
The near-infrared shielding material fine particles have a general formula MyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O represents oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0), a mixture of a compound tungsten oxide A represented by lithium and a compound containing lithium in the atmosphere or an inert gas After calcination in an atmosphere, heat treatment is performed in a reducing gas atmosphere or a mixed atmosphere of a reducing gas and an inert gas. General formula LixMyWOz (where M is Cs, Rb, K, Na , Ba, Ca, Sr, and Mg, one or more elements selected from W, tungsten is tungsten, O is oxygen, 0.1 ≦ x <1.0, 0.1 ≦ y ≦ 0.5, 2 ≦ z ≦ 3.0) composite tungsten oxide fine particles And it is the particle diameter of the near infrared ray shielding material particles is characterized in that it is a 1 nm to 500 nm.

請求項3に係る発明は、
請求項2に係る近赤外線遮蔽材料微粒子分散体において、
上記リチウム元素を有する化合物が炭酸リチウムであることを特徴とする。
The invention according to claim 3
In the near-infrared shielding material fine particle dispersion according to claim 2,
The compound having a lithium element is lithium carbonate.

請求項4に係る発明は、
請求項1から3に係る近赤外線遮蔽材料微粒子分散体において、
前記媒体が、樹脂またはガラスであることを特徴とする。
The invention according to claim 4
In the near-infrared shielding material fine particle dispersion according to claim 1,
The medium is a resin or glass.

請求項5に係る発明は、
請求項4に係る近赤外線遮蔽材料微粒子分散体において、
前記樹脂が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコ−ル樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレ−ト樹脂、フッ素樹脂、ポリカ−ボネ−ト樹脂、アクリル樹脂、ポリビニルブチラ−ル樹脂の内のいずれか1種類以上であることを特徴とする。
請求項6に係る発明は、
請求項1から5に係る近赤外線遮蔽材料微粒子分散体が、板状またはフィルム状に形成されたものであることを特徴とする近赤外線遮蔽体である。
請求項7に係る発明は、
近赤外線遮蔽材料微粒子が媒体中に分散してなる近赤外線遮蔽材料微粒子分散体の製造方法おいて、
前記近赤外線遮蔽材料微粒子が、一般式MyWOz(但し、Mは、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの微粒子を原料とし、かつ、一般式LixMyWOz(但し、Mは、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦x<1.0、0.1≦y≦0.5、2.2≦z≦3.0)と表記される組成となるようにリチウムを含有する化合物を上記原料に添加して得られる混合体を大気中若しくは不活性ガス雰囲気中で焼成した後、還元性ガス雰囲気中または還元性ガスと不活性ガスの混合雰囲気中で熱処理して得られることと、前記近赤外線遮蔽微材料粒子と媒体に分散すること特徴とする。
The invention according to claim 5
In the near-infrared shielding material fine particle dispersion according to claim 4,
The resin is polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, polycarbonate resin. -Any one or more of a sulfonate resin, an acrylic resin, and a polyvinyl butyral resin.
The invention according to claim 6
The near-infrared shielding material fine particle dispersion according to claim 1 is formed in a plate shape or a film shape.
The invention according to claim 7 provides:
In the method for producing a near-infrared shielding material fine particle dispersion in which near-infrared shielding material fine particles are dispersed in a medium,
The near-infrared shielding material fine particles have a general formula MyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O is oxygen, 0.1 ≤ y ≤ 0.5, 2.2 ≤ z ≤ 3.0) as a raw material, fine particles of composite tungsten oxide A, and the general formula LixMyWOz (where M is M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, and Mg, W is tungsten, O is oxygen, 0.1 ≦ x <1.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) A mixture obtained by adding a lithium-containing compound to the raw material so as to have a composition represented by After firing in a reducing gas atmosphere or a mixture of reducing and inert gases And it can be obtained by heat treatment in 囲気, characterized by distributing to the near infrared ray shielding fine material particles and the medium.

請求項8に係る発明は、
請求項7に係る近赤外線遮蔽材料微粒子分散体の製造方法おいて、上記リチウム元素を有する化合物が炭酸リチウムであることを特徴とする。
The invention according to claim 8 provides:
The method for producing a near-infrared shielding material fine particle dispersion according to claim 7, wherein the lithium element-containing compound is lithium carbonate.

本発明によれば、複合タングステン酸化物微粒子にリチウムを固溶することにより、着色力が高くなるため、複合タングステン酸化物微粒子本来の高透明性と日射遮蔽特性を維持したままフィラ−使用量すなわち近赤外線遮蔽材料微粒子を削減することができる。   According to the present invention, since the coloring power is increased by dissolving lithium in the composite tungsten oxide fine particles, the amount of filler used, that is, while maintaining the original high transparency and solar shading characteristics of the composite tungsten oxide fine particles, Near-infrared shielding material fine particles can be reduced.

六方晶を有する複合タングステン酸化物の結晶構造の模式図。The schematic diagram of the crystal structure of the composite tungsten oxide which has a hexagonal crystal. 実施例1に係る分散液中の微粒子のTEM像。4 is a TEM image of fine particles in the dispersion according to Example 1. FIG.

本発明の近赤外線遮蔽材料微粒子分散体は、リチウムが固溶した複合タングステン酸化物微粒子を含有する近赤外線遮蔽材料微粒子が分散していることを特徴とする本発明の近赤外線遮蔽材料微粒子分散体である。   The near-infrared shielding material fine particle dispersion of the present invention is characterized in that near-infrared shielding material fine particles containing composite tungsten oxide fine particles in which lithium is dissolved are dispersed. It is.

1.近赤外線遮蔽材料微粒子
近赤外線領域において吸収を持つ本発明に係る近赤外線遮蔽材料微粒子は、
一般式LixMyWOz(但し、Liはリチウム、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦x<1.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記されるリチウムが固溶した六方晶の結晶構造を有する複合タングステン酸化物Bの微粒子で構成されることを特徴とするものである。
1. Near-infrared shielding material fine particles Near-infrared shielding material fine particles according to the present invention having absorption in the near-infrared region,
General formula LixMyWOz (where Li is lithium, M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O is oxygen, 0.1 ≦ x <1.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) Fine particles of composite tungsten oxide B having a hexagonal crystal structure in which lithium is solid-solved It is characterized by comprising.

まず、一般式LixMyWOzと一般式MyWOzで表記される複合タングステン酸化物において、タングステン(W)の組成を1としたときの酸素(O)の組成比zは、各一般式のカッコ中に示されているように2.2以上3.0以下である。組成比zがこの範囲の場合、材料としての化学的安定性を得ることができるため、有効な近赤外線遮蔽材料として適用できる。また、タングステン(W)の組成を1としたときの元素(M)の組成比yは、各一般式のカッコ中に示されているように光学特性の観点から0.1以上0.5以下であることを要する。yの値が0.1未満であると、一般式LixMyWOzおよび一般式MyWOzで表記される複合タングステン酸化物が化合物として不安定になり、WO3やWO2等の異相が析出する。また、yの値が大きいほど近赤外線吸収特性は向上するが、上記複合タングステン酸化物が化合物として安定に存在する最大の値は0.5以下であり、好ましくは0.33付近である。 First, in the composite tungsten oxide represented by the general formula LixMyWOz and the general formula MyWOz, the composition ratio z of oxygen (O) when the composition of tungsten (W) is 1 is shown in parentheses of each general formula. It is 2.2 or more and 3.0 or less. When the composition ratio z is within this range, chemical stability as a material can be obtained, and therefore it can be applied as an effective near-infrared shielding material. The composition ratio y of the element (M) when the composition of tungsten (W) is 1 is 0.1 or more and 0.5 or less from the viewpoint of optical characteristics as shown in parentheses of each general formula. It is necessary to be. When the value of y is less than 0.1, the composite tungsten oxide represented by the general formula LixMyWOz and the general formula MyWOz becomes unstable as a compound, and foreign phases such as WO 3 and WO 2 are precipitated. Moreover, although the near-infrared absorption characteristics improve as the value of y increases, the maximum value at which the composite tungsten oxide stably exists as a compound is 0.5 or less, and preferably around 0.33.

また、一般式LixMyWOzおよび一般式MyWOzで表記される複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、この微粒子の可視光領域での透過性が向上しかつ近赤外域での吸収性が向上する。この六方晶の結晶構造の模式的な平面図である図1を参照して説明する。図1において、符号1で示すWO単位にて形成される8面体が、6個集合して六角形の空隙(トンネル)が構成され、当該空隙中に、符号2で示す元素(M)が配置して1箇の単位を構成し、この1箇の単位が多数集合して六方晶の結晶構造を構成する。 Further, when the composite tungsten oxide fine particles represented by the general formulas LixMyWOz and the general formula MyWOz have a hexagonal crystal structure, the transparency of the fine particles is improved in the visible light region and the absorbability in the near infrared region is improved. improves. This will be described with reference to FIG. 1, which is a schematic plan view of the hexagonal crystal structure. In FIG. 1, six octahedrons formed of WO 6 units denoted by reference numeral 1 are assembled to form a hexagonal void (tunnel), and the element (M) denoted by reference numeral 2 is formed in the void. The unit is arranged to constitute one unit, and a large number of these one units are assembled to form a hexagonal crystal structure.

この六角形の空隙に元素(M)の陽イオンが添加されて存在するとき、近赤外線領域の吸収が向上する。ここで、一般的には、イオン半径の大きな元素(M)を添加したとき当該六方晶が形成されるので好ましい。   When the cation of the element (M) is added to the hexagonal void, the absorption in the near infrared region is improved. Here, generally, when an element (M) having a large ionic radius is added, the hexagonal crystal is formed, which is preferable.

六方晶の結晶構造を有する複合タングステン酸化物粒子が均一な結晶構造を有するとき、元素(M)の添加量yは、上述したように0.1以上0.5以下であり、好ましくは0.33付近である。酸素(O)の組成比z=3のとき、yの値が0.33となることで、元素(M)が六角形の空隙の全てに配置されると考えられる。   When the composite tungsten oxide particles having a hexagonal crystal structure have a uniform crystal structure, the addition amount y of the element (M) is not less than 0.1 and not more than 0.5 as described above, and preferably 0.8. It is around 33. When the composition ratio z = 3 of oxygen (O), the value of y is 0.33, so that the element (M) is considered to be disposed in all hexagonal voids.

また、一般式LixMyWOzで表記されるリチウムが固溶した複合タングステン酸化物B微粒子が、上述した六方晶以外に、正方晶、立方晶のタングステンブロンズの構造をとるときも近赤外線遮蔽材料として有効である。上記リチウムが固溶した複合タングステン酸化物B微粒子がとる結晶構造によって、近赤外線領域の吸収位置が変化する傾向があり、この近赤外線領域の吸収位置は、立方晶よりも正方晶のときが長波長側に移動し、更に六方晶のときは正方晶のときよりも長波長側に移動する傾向がある。また、上記吸収位置の変動に付随して、可視光線領域の吸収は六方晶が最も少なく、次に正方晶であり、立方晶はこの中では最も大きい。よって、より可視光領域の光を透過し、より近赤外線領域の光を遮蔽する用途には、上述したように六方晶のタングステンブロンズを用いることが必要である。但し、ここで述べた光学特性の傾向は、あくまで大まかな傾向であり、添加元素の種類や、添加量、酸素量によっても変化するものであり、これに限定されるわけではない。従って、一般式MyWOzで表記される複合タングステン酸化物A微粒子と、炭酸リチウム等のリチウム元素を有する化合物を反応させて製造した、一般式LixMyWOzで表記されるリチウムが固溶した複合タングステン酸化物B微粒子に、上述した六方晶以外の、正方晶、立方晶のタングステンブロンズ構造が若干含まれていても本発明の近赤外線遮蔽材料として使用することは可能である。   It is also effective as a near-infrared shielding material when the composite tungsten oxide B fine particles in which lithium represented by the general formula LixMyWOz has a tetragonal or cubic tungsten bronze structure other than the hexagonal crystal described above. is there. The absorption position in the near-infrared region tends to change depending on the crystal structure of the composite tungsten oxide B fine particles in which lithium is dissolved, and the absorption position in the near-infrared region is longer when it is a tetragonal crystal than a cubic crystal. It moves to the wavelength side, and when it is hexagonal, it tends to move to the longer wavelength side than when it is tetragonal. Further, accompanying the change in the absorption position, the absorption in the visible light region is the smallest in the hexagonal crystal, the next is the tetragonal crystal, and the cubic is the largest among them. Therefore, as described above, it is necessary to use hexagonal tungsten bronze for the purpose of transmitting light in the visible light region and shielding light in the near infrared region. However, the tendency of the optical characteristics described here is merely a rough tendency, and varies depending on the kind of additive element, the amount of addition, and the amount of oxygen, and is not limited to this. Accordingly, a composite tungsten oxide B produced by reacting a composite tungsten oxide A fine particle represented by the general formula MyWOz with a compound having a lithium element such as lithium carbonate and having a solid solution of lithium represented by the general formula LixMyWOz. Even if the fine particles contain some tetragonal or cubic tungsten bronze structures other than the hexagonal crystals described above, they can be used as the near-infrared shielding material of the present invention.

次に、一般式LixMyWOzで表記される複合タングステン酸化物Bにおいて、タングステン(W)の組成を1としたときのリチウム(Li)の組成比xは、一般式のカッコ中に示されているように0.1≦x<1.0である。より望ましくは、xは0.1以上でかつ、一般式LixMyWOzのxとyの和が0.1≦x+y<1.0である。六方晶の結晶構造を有する複合タングステン酸化物では、酸素(O)の組成比z=3のとき、上記WO単位にて形成される8面体が6個集合して構成する六角形の空隙以外に、同じくWO単位にて形成される8面体が3個集合して三角形の空隙(トンネル)が構成される。すなわち、M元素とは異なるサイトが存在するが、三角形の空隙中にリチウムが配置すると考えられる。 Next, in the composite tungsten oxide B represented by the general formula LixMyWOz, the composition ratio x of lithium (Li) when the composition of tungsten (W) is 1 is shown in parentheses in the general formula. 0.1 ≦ x <1.0. More preferably, x is 0.1 or more, and the sum of x and y in the general formula LixMyWOz is 0.1 ≦ x + y <1.0. In the composite tungsten oxide having a hexagonal crystal structure, when the composition ratio of oxygen (O) is z = 3, other than hexagonal voids formed by assembling six octahedrons formed of the above WO 6 units In addition, three octahedrons that are also formed in units of WO 6 are assembled to form a triangular void (tunnel). That is, although there is a site different from the M element, it is considered that lithium is arranged in the triangular void.

ここで、上記リチウム(Li)が固溶しているとは、リチウム元素を有する化合物から供給される添加リチウムの一部若しくは全てが固溶している状態をいう。そして、この固溶している状態は、複合タングステン酸化物BのX線回折による結晶相の同定を行えば確認することができる。すなわち、複合タングステン酸化物BのX線回折を行い、複合タングステン酸化物Aに帰属するピークのみが認められれば、リチウム元素を有する化合物から供給される添加リチウムの全てが固溶しているといえる。   Here, the lithium (Li) is in solid solution means a state in which part or all of the added lithium supplied from the compound having a lithium element is in solid solution. This solid solution state can be confirmed by identifying the crystal phase of the composite tungsten oxide B by X-ray diffraction. That is, when X-ray diffraction of composite tungsten oxide B is performed and only the peak attributed to composite tungsten oxide A is observed, it can be said that all of the added lithium supplied from the compound containing lithium element is in solid solution. .

ところで、一般式LixMyWOzで表記されるリチウムが固溶した複合タングステン酸化物Bで構成される本発明に係る近赤外線遮蔽材料微粒子は、特に波長1000nm付近の光を大きく吸収するためその透過色調は青色系となる。また、本発明に係る近赤外線遮蔽材料微粒子の粒子直径については、近赤外線遮蔽材料微粒子の使用目的によって適宜選定することができる。まず、透明性を保持した目的に使用する場合は500nm以下の粒子直径を有していることが好ましい。この理由は、500nmよりも小さい粒子は散乱により光を完全に遮蔽することが無く、可視光領域の視認性を保持し同時に効率よく透明性を保持することができるからである。特に可視光領域の透明性を重視する場合は、粒子による散乱を更に考慮することが好ましい。   By the way, the near-infrared shielding material fine particles according to the present invention composed of the composite tungsten oxide B in which lithium is solid-solved represented by the general formula LixMyWOz particularly absorbs light in the vicinity of a wavelength of 1000 nm, so that the transmission color tone is blue. Become a system. In addition, the particle diameter of the near-infrared shielding material fine particles according to the present invention can be appropriately selected depending on the intended use of the near-infrared shielding material fine particles. First, when used for the purpose of maintaining transparency, it preferably has a particle diameter of 500 nm or less. This is because particles smaller than 500 nm do not completely block light by scattering, and can maintain visibility in the visible light region and at the same time efficiently maintain transparency. In particular, when importance is attached to transparency in the visible light region, it is preferable to further consider scattering by particles.

上記粒子による散乱の低減を重視するときは、粒子直径は200nm以下、好ましくは100nm以下がよい。この理由は、粒子の粒子直径が小さければ、幾何学散乱若しくはミー散乱による400nm〜780nmの可視光線領域の光の散乱が低減される結果、近赤外線遮蔽体が曇りガラスのようになって鮮明な透明性が得られなくなる弊害を回避できるからである。すなわち、粒子直径が200nm以下になると、上記幾何学散乱若しくはミー散乱が低減しレイリー散乱領域になる。レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、粒子直径の減少に伴って散乱が低減し透明性が向上するからである。更に、粒子直径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは粒子直径が小さい方が好ましく、粒子直径が1nm以上であれば工業的な製造は可能である。   When importance is attached to the reduction of scattering by the particles, the particle diameter is 200 nm or less, preferably 100 nm or less. The reason for this is that if the particle diameter of the particles is small, the scattering of light in the visible light region of 400 nm to 780 nm due to geometric scattering or Mie scattering is reduced. This is because it is possible to avoid the adverse effect that transparency cannot be obtained. That is, when the particle diameter is 200 nm or less, the geometric scattering or Mie scattering is reduced, and a Rayleigh scattering region is obtained. This is because in the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the particle diameter decreases. Furthermore, when the particle diameter is 100 nm or less, the scattered light is preferably extremely small. From the viewpoint of avoiding light scattering, a smaller particle diameter is preferable, and industrial production is possible if the particle diameter is 1 nm or more.

本発明に係る近赤外線遮蔽材料微粒子の粒子直径を500nm以下に選定することにより、樹脂やガラス等の媒体中に近赤外線遮蔽材料微粒子を分散させて成る近赤外線遮蔽材料微粒子分散体のヘイズ値は、可視光透過率85%以下でヘイズ30%以下とすることができる。尚、ヘイズが30%よりも大きい値であると曇りガラスのようになり、鮮明な透明性が得られない。   By selecting the particle diameter of the near-infrared shielding material fine particles according to the present invention to be 500 nm or less, the haze value of the near-infrared shielding material fine particle dispersion obtained by dispersing the near-infrared shielding material fine particles in a medium such as resin or glass is The visible light transmittance can be 85% or less and the haze can be 30% or less. When the haze is greater than 30%, it becomes like frosted glass, and clear transparency cannot be obtained.

尚、本発明に係る近赤外線遮蔽材料微粒子表面が、Si、Ti、Zr、Alの一種類以上の元素を含有する酸化物で被覆されていることは、近赤外線遮蔽材料微粒子の耐候性を向上させる観点から好ましい。   Note that the near-infrared shielding material fine particle surface according to the present invention is coated with an oxide containing one or more elements of Si, Ti, Zr, and Al, which improves the weather resistance of the near-infrared shielding material fine particles. From the viewpoint of making it.

2.近赤外線遮蔽材料微粒子の製造
(1)一般式LixMyWOzで表記される複合タングステン酸化物B微粒子の製造
上記一般式LixMyWOz(但し、Liはリチウム、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦x<1.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記されるリチウムが固溶した六方晶の結晶構造を有する複合タングステン酸化物B微粒子を製造するには、まず、一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aを合成し、得られた複合タングステン酸化物A微粒子にリチウム元素を有する化合物を添加し、この混合物を、大気中若しくは不活性ガス雰囲気中で焼成した後、還元性ガス雰囲気中または還元性ガスと不活性ガスの混合雰囲気中で焼成(熱処理)して製造することができる。
2. Production of near-infrared shielding material fine particles (1) Production of composite tungsten oxide B fine particles represented by general formula LixMyWOz The above general formula LixMyWOz (where Li is lithium, M is Cs, Rb, K, Na, Ba, Ca, One or more elements selected from Sr and Mg, W is tungsten, O is oxygen, 0.1 ≦ x <1.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3 In order to produce a composite tungsten oxide B fine particle having a hexagonal crystal structure in which lithium is represented by a solid solution, first, the general formula MyWOz (where M is Cs, Rb, K, Na, Ba) , Ca, Sr, Mg, one or more elements, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) Composite tungsten oxide A was synthesized and the resulting composite tongue The compound containing lithium element is added to the gusten oxide A fine particles, and the mixture is baked in the atmosphere or in an inert gas atmosphere, and then in a reducing gas atmosphere or a mixed atmosphere of a reducing gas and an inert gas. It can be manufactured by firing (heat treatment).

上記複合タングステン酸化物A微粒子とリチウム元素を有する化合物との混合物を大気中若しくは不活性ガス雰囲気中で焼成した後に、還元性ガスと不活性ガスの混合雰囲気中で焼成(熱処理)する場合、不活性ガス中における還元性ガスの濃度については、焼成(熱処理)温度に応じて適宜選定すれば特に限定されないが、好ましくは20vol %以下、より好ましくは10vol %以下、更に好ましくは7〜0.01vol %である。不活性ガス中における還元性ガスの濃度が20vol %以下であると、複合タングステン酸化物A微粒子の急速な還元を回避することができるからである。   When the mixture of the composite tungsten oxide A fine particles and the compound containing lithium element is baked in the atmosphere or an inert gas atmosphere and then baked (heat treatment) in a mixed atmosphere of a reducing gas and an inert gas, Although it will not specifically limit if the density | concentration of the reducing gas in active gas is suitably selected according to baking (heat processing) temperature, Preferably it is 20 vol% or less, More preferably, it is 10 vol% or less, More preferably, it is 7-0.01 vol. %. This is because when the concentration of the reducing gas in the inert gas is 20 vol% or less, rapid reduction of the composite tungsten oxide A fine particles can be avoided.

焼成温度については雰囲気に応じて適宜選択すればよいが、複合タングステン酸化物A微粒子とリチウム元素を有する化合物との混合物を大気中で焼成する場合には650℃を超え1000℃以下であり、その後に行う還元性ガス雰囲気中または還元性ガスと不活性ガスの混合雰囲気中での焼成(熱処理)温度は400℃以上1000℃以下、好ましくは500℃以上900℃以下である。また、焼成(熱処理)時間は、処理量に応じて適宜選定すればよいが、5分以上10時間以下で十分である。尚、リチウム元素を有する上記化合物には炭酸リチウムが望ましい。   The firing temperature may be appropriately selected according to the atmosphere, but when firing a mixture of the composite tungsten oxide A fine particles and the compound containing lithium element in the air, the temperature is higher than 650 ° C. and 1000 ° C. or lower. The firing (heat treatment) temperature in the reducing gas atmosphere or in the mixed atmosphere of reducing gas and inert gas is 400 ° C. or higher and 1000 ° C. or lower, preferably 500 ° C. or higher and 900 ° C. or lower. The firing (heat treatment) time may be appropriately selected according to the amount of treatment, but 5 minutes or more and 10 hours or less is sufficient. In addition, lithium carbonate is desirable for the compound having a lithium element.

また、複合タングステン酸化物A微粒子とリチウム元素を有する化合物との混合物を不活性ガス単独の雰囲気中で焼成する場合には、製造時間の短縮と単相性の観点から、200℃を超え600℃未満、好ましくは300℃を超え500℃未満、より好ましくは350℃を超え450℃未満の条件である。   Further, when a mixture of the composite tungsten oxide A fine particles and the compound containing lithium element is baked in an atmosphere of an inert gas alone, it is more than 200 ° C. and less than 600 ° C. from the viewpoint of shortening the manufacturing time and single phase. The temperature is preferably more than 300 ° C. and less than 500 ° C., more preferably more than 350 ° C. and less than 450 ° C.

上記焼成(熱処理)温度が低すぎるとリチウム原子の拡散に時間を要するため生産的ではない。反対に焼成(熱処理)温度が高すぎると異相が生成してしまう。一方、複合タングステン酸化物A微粒子とリチウム元素を有する化合物との混合物を大気中若しくは不活性ガス雰囲気中で焼成した後、還元性ガスと不活性ガスの混合雰囲気中で焼成(熱処理)する場合は、還元性ガス濃度に応じてWOが生成しない温度を適宜選定すればよい。このときの焼成(熱処理)時間は、選定した温度に応じて適宜選択すればよい。 If the calcination (heat treatment) temperature is too low, it takes time to diffuse lithium atoms, which is not productive. Conversely, if the firing (heat treatment) temperature is too high, a heterogeneous phase is generated. On the other hand, when the mixture of the composite tungsten oxide A fine particles and the compound containing lithium element is fired in the air or in an inert gas atmosphere, and then fired (heat treatment) in a mixed atmosphere of a reducing gas and an inert gas. The temperature at which WO 2 is not generated may be appropriately selected according to the reducing gas concentration. The firing (heat treatment) time at this time may be appropriately selected according to the selected temperature.

(2)一般式MyWOzで表記される複合タングステン酸化物A微粒子の製造
次に、上記一般式LixMyWOz(但し、Liはリチウム、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦x<1.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記されるリチウムが固溶した六方晶の結晶構造を有する複合タングステン酸化物Bを得るための原料、すなわち、一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの製造方法について説明する。
(2) Production of Composite Tungsten Oxide A Fine Particles Represented by General Formula MyWOz Next, the above general formula LixMyWOz (where Li is lithium, M is Cs, Rb, K, Na, Ba, Ca, Sr, Mg) 1 or more elements selected from the above, W is tungsten, O is oxygen, 0.1 ≦ x <1.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) A raw material for obtaining a composite tungsten oxide B having a hexagonal crystal structure in which lithium is solid-solved, that is, a general formula MyWOz (where M is Cs, Rb, K, Na, Ba, Ca, Sr, One or more elements selected from Mg, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) The manufacturing method will be described.

タングステン化合物として、タングステン酸(HWO)、タングステン酸アンモニウム、六塩化タングステン、アルコールに溶解した六塩化タングステンに水を添加して加水分解させた後に溶媒を蒸発させたタングステンの水和物から選ばれる1種以上のタングステン化合物と、M元素(Cs、Rb、K、Na、Ba、Ca、Sr、Mg)を有する化合物として、タングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物等のM元素を有する化合物とを乾式混合し、得られた混合粉体を、不活性ガス単独または不活性ガスと還元性ガスの混合ガス雰囲気下において1ステップで1段焼成して製造するか、あるいは、上記混合粉体を、1ステップ目の不活性ガスと還元性ガスの混合ガス雰囲気下で焼成しかつ2ステップ目の不活性ガス雰囲気下において焼成する2段焼成して製造する方法が例示される。尚、上記タングステン化合物に替えてタングステン酸化物微粒子を用いてもよい。 Tungsten acid (H 2 WO 4 ), ammonium tungstate, tungsten hexachloride, tungsten hydrate obtained by adding water to tungsten hexachloride dissolved in alcohol and hydrolyzing it, and then evaporating the solvent. As a compound having at least one selected tungsten compound and M element (Cs, Rb, K, Na, Ba, Ca, Sr, Mg), tungstate, chloride, nitrate, sulfate, oxalate , Oxides, carbonates, hydroxides, and other compounds having M element are dry-mixed, and the resulting mixed powder is mixed with an inert gas alone or in a mixed gas atmosphere of an inert gas and a reducing gas. It can be manufactured by one-step firing in steps, or the mixed powder can be fired in a mixed gas atmosphere of inert gas and reducing gas in the first step. An example is a method of producing by two-stage firing in an inert gas atmosphere in the second step. Note that tungsten oxide fine particles may be used instead of the tungsten compound.

また、上記方法とは異なる製造方法として以下の方法が例示される。すなわち、タングステン化合物として、タングステン酸(HWO)、タングステン酸アンモニウム、六塩化タングステン、アルコールに溶解した六塩化タングステンに水を添加して加水分解させた後に溶媒を蒸発させたタングステンの水和物から選ばれる1種以上のタングステン化合物と、上記M元素の塩を含む水溶液とを湿式混合して調製された混合液を乾燥して乾燥粉を得、得られた乾燥粉を、不活性ガス単独または不活性ガスと還元性ガスの混合ガス雰囲気下において1ステップで1段焼成して製造するか、あるいは、上記乾燥粉を、1ステップ目の不活性ガスと還元性ガスの混合ガス雰囲気下で焼成しかつ2ステップ目の不活性ガス雰囲気下において焼成する2段焼成して製造する方法が例示される。尚、上記タングステン化合物に替えてタングステン酸化物微粒子を用いてもよい。また、上記M元素の塩としては特に限定されるものでなく、例えば、硝酸塩、硫酸塩、塩化物、炭酸塩等が挙がられる。また、湿式混合して調製された上記混合液を乾燥させる際の乾燥温度や時間は、特に限定されるものでない。 Moreover, the following method is illustrated as a manufacturing method different from the said method. That is, as a tungsten compound, hydration of tungsten obtained by adding water to tungstic acid (H 2 WO 4 ), ammonium tungstate, tungsten hexachloride, tungsten hexachloride dissolved in alcohol, hydrolyzing it, and then evaporating the solvent. The mixture prepared by wet-mixing one or more tungsten compounds selected from the above and an aqueous solution containing the M element salt is dried to obtain a dried powder, and the resulting dried powder is converted into an inert gas. It is manufactured by firing in one step in a single step or in a mixed gas atmosphere of an inert gas and a reducing gas, or the dried powder is mixed in an inert gas and reducing gas atmosphere in the first step. And a method of producing by performing two-stage firing in which the second step is performed in an inert gas atmosphere. Note that tungsten oxide fine particles may be used instead of the tungsten compound. The salt of the M element is not particularly limited, and examples thereof include nitrates, sulfates, chlorides and carbonates. Moreover, the drying temperature and time at the time of drying the said liquid mixture prepared by wet mixing are not specifically limited.

そして、上記混合粉体または乾燥粉を不活性ガスと還元性ガスの混合ガス雰囲気下で焼成する場合、不活性ガス中における還元性ガスの濃度については、焼成温度に応じて適宜選定すれば特に限定されないが、好ましくは20vol %以下、より好ましくは10vol %以下、更に好ましくは7〜0.01vol %である。不活性ガス中における還元性ガスの濃度が20vol %以下であると、上記混合粉体または乾燥粉中のタングステン化合物の急速な還元を回避することができるからである。   When the mixed powder or dry powder is fired in a mixed gas atmosphere of an inert gas and a reducing gas, the concentration of the reducing gas in the inert gas can be selected as appropriate depending on the firing temperature. Although not limited, Preferably it is 20 vol% or less, More preferably, it is 10 vol% or less, More preferably, it is 7-0.01 vol%. This is because when the concentration of the reducing gas in the inert gas is 20 vol% or less, rapid reduction of the tungsten compound in the mixed powder or dry powder can be avoided.

焼成温度については雰囲気に応じて適宜選定すればよいが、上記混合粉体または乾燥粉を不活性ガス単独の雰囲気下で焼成する場合は、一般式MyWOzで表記される複合タングステン酸化物A微粒子としての結晶性や着色力の観点から500℃を超え1200℃以下、好ましくは1100℃以下、より好ましくは1000℃以下である。一方、上記混合粉体または乾燥粉を不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成する場合は、還元性ガス濃度に応じてWOが生成しない温度を適宜選定すればよい。更に、2段焼成して複合タングステン酸化物A微粒子を製造する場合は、1ステップ目の不活性ガスと還元性ガスの混合ガス雰囲気下において100℃以上650℃以下で焼成し、2ステップ目の不活性ガス雰囲気下において500℃を超え1200℃以下で焼成する条件が、近赤外線遮蔽特性の観点から好ましい条件として例示される。このときの焼成処理時間は、焼成温度に応じて適宜選択すればよいが、5分以上10時間以下で十分である。 The firing temperature may be appropriately selected depending on the atmosphere, but when the mixed powder or dry powder is fired in an atmosphere of an inert gas alone, the composite tungsten oxide A fine particles represented by the general formula MyWOz are used. From the viewpoint of the crystallinity and coloring power, it exceeds 500 ° C. and is 1200 ° C. or less, preferably 1100 ° C. or less, more preferably 1000 ° C. or less. On the other hand, when the mixed powder or the dried powder is fired in a mixed gas atmosphere of an inert gas and a reducing gas, a temperature at which WO 2 is not generated may be appropriately selected according to the reducing gas concentration. Furthermore, when producing composite tungsten oxide A fine particles by two-stage firing, firing is performed at 100 ° C. or more and 650 ° C. or less in a mixed gas atmosphere of an inert gas and a reducing gas at the first step. The conditions for firing at over 500 ° C. and below 1200 ° C. in an inert gas atmosphere are exemplified as preferred conditions from the viewpoint of near-infrared shielding properties. The firing treatment time at this time may be appropriately selected according to the firing temperature, but 5 minutes or more and 10 hours or less is sufficient.

ここで、タングステン酸(HWO)、タングステン酸アンモニウム、六塩化タングステン、アルコールに溶解した六塩化タングステンに水を添加して加水分解させた後に溶媒を蒸発させたタングステンの水和物、および、タングステン酸化物微粒子から選ばれる1種以上のタングステン化合物に対し、タングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物等のM元素を有する化合物を上述した乾式混合法を用いて添加するとき、M元素を有する化合物としては酸化物、水酸化物が好ましい。 Here, tungstic acid (H 2 WO 4 ), ammonium tungstate, tungsten hexachloride, tungsten hydrate obtained by adding water to tungsten hexachloride dissolved in alcohol and hydrolyzing it, and then evaporating the solvent, and A compound having M element such as tungstate, chloride, nitrate, sulfate, oxalate, oxide, carbonate, hydroxide, etc., for one or more tungsten compounds selected from tungsten oxide fine particles Is added using the dry mixing method described above, the compound having the element M is preferably an oxide or hydroxide.

また、上記乾式混合は、市販の擂潰機、ニーダー、ボールミル、サンドミル、ペイントシェーカー等で行えばよい。   The dry mixing may be performed with a commercially available grinder, kneader, ball mill, sand mill, paint shaker, or the like.

3.近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
一般式LixMyWOz(但し、Liはリチウム、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦x<1.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記されるリチウムが固溶した六方晶の結晶構造を有する複合タングステン酸化物Bの微粒子で構成される本発明に係る近赤外線遮蔽材料微粒子の適用方法としては、この微粒子を適宜媒体中に分散し所望の基材表面に形成する方法がある。この方法は、予め高温で焼成した近赤外線遮蔽材料微粒子を、基材中若しくはバインダーによって基材表面に結着させることが可能なため、樹脂材料等の耐熱温度の低い基材材料への応用が可能であり、形成の際に大型の装置を必要とせず安価であるという利点を有している。
3. Near-infrared shielding material fine particle dispersion and near-infrared shielding material General formula LixMyWOz (where Li is lithium, M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg) W is tungsten, O is oxygen, 0.1 ≦ x <1.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0). As a method of applying the near-infrared shielding material fine particles according to the present invention composed of the fine particles of the composite tungsten oxide B having the following crystal structure, there is a method in which the fine particles are appropriately dispersed in a medium and formed on a desired substrate surface. is there. This method can be applied to a base material having a low heat-resistant temperature such as a resin material because the near-infrared shielding material fine particles fired at a high temperature in advance can be bound to the base material surface in the base material or by a binder. It is possible and has the advantage of being inexpensive and does not require a large device for formation.

尚、複合タングステン酸化物Bの微粒子で構成される本発明に係る近赤外線遮蔽材料微粒子は導電性を有するため、連続的な膜として使用した場合、携帯電話等の電波を吸収反射して妨害する恐れがある。しかし、上記近赤外線遮蔽材料微粒子をマトリックス中に分散させた場合は、粒子一つ一つが孤立した状態で分散しているため電波透過性を発揮することから汎用性を有する。   In addition, since the near-infrared shielding material fine particles according to the present invention composed of fine particles of composite tungsten oxide B have conductivity, when used as a continuous film, they absorb and interfere with radio waves from mobile phones and the like. There is a fear. However, when the near-infrared shielding material fine particles are dispersed in the matrix, since each particle is dispersed in an isolated state, it has radio wave permeability and thus has versatility.

以下、上記近赤外線遮蔽材料微粒子が媒体中に分散して成る本発明に係る近赤外線遮蔽材料微粒子分散体と、この近赤外線遮蔽材料微粒子分散体を用いて製造される本発明に係る近赤外線遮蔽体について説明する。
(1)微粒子を液体媒体中に分散し、基材表面に薄膜状に形成する方法
本発明に係る近赤外線遮蔽材料を微粒子化した近赤外線遮蔽材料微粒子を適宜液体媒体中に分散させて近赤外線遮蔽材料微粒子の分散液を得るか、あるいは、上記近赤外線遮蔽材料微粒子を適宜溶媒と混合して得られた混合物を湿式粉砕して近赤外線遮蔽材料微粒子の分散液を得る。
Hereinafter, the near-infrared shielding material fine particle dispersion according to the present invention in which the above-mentioned near-infrared shielding material fine particles are dispersed in a medium, and the near-infrared shielding according to the present invention produced using this near-infrared shielding material fine particle dispersion Explain the body.
(1) Method of dispersing fine particles in a liquid medium and forming a thin film on the surface of the substrate Near-infrared shielding material fine particles obtained by finely pulverizing the near-infrared shielding material according to the present invention are appropriately dispersed in a liquid medium to obtain near-infrared rays. A dispersion liquid of shielding material fine particles is obtained, or a mixture obtained by appropriately mixing the near infrared shielding material fine particles with a solvent is wet pulverized to obtain a dispersion of near infrared shielding material fine particles.

そして、得られた近赤外線遮蔽材料微粒子の分散液に樹脂媒体を添加した後、適宜基材表面にコーティングして塗膜を形成し、然る後に溶媒を蒸発させて所定方法により樹脂を硬化させることにより、近赤外線遮蔽材料微粒子が樹脂媒体中に分散した薄膜(近赤外線遮蔽体)の形成が可能となる。尚、コーティングの方法は、近赤外線遮蔽材料微粒子を含有する樹脂膜(塗膜)を基材表面上に均一にコートできれば特に限定されず、バーコート法、グラビヤコート法、スプレーコート法、ディップコート法等が例示される。また、近赤外線遮蔽材料微粒子を直接バインダー樹脂中に分散させたものは、基材表面に塗布後、溶媒を蒸発させる必要がないため、環境的、工業的に好ましい。   Then, after adding a resin medium to the obtained dispersion liquid of the near-infrared shielding material fine particles, a coating film is formed by appropriately coating on the surface of the substrate, and then the solvent is evaporated and the resin is cured by a predetermined method. This makes it possible to form a thin film (near-infrared shielding body) in which near-infrared shielding material fine particles are dispersed in a resin medium. The coating method is not particularly limited as long as a resin film (coating film) containing fine particles of near-infrared shielding material can be uniformly coated on the substrate surface. Bar coating method, gravure coating method, spray coating method, dip coating Laws are exemplified. Further, those in which the near-infrared shielding material fine particles are directly dispersed in the binder resin do not need to evaporate the solvent after being applied to the surface of the substrate, and therefore are environmentally and industrially preferable.

上記樹脂媒体としては、例えば、UV硬化型樹脂、熱硬化型樹脂、電子線硬化型樹脂、常温硬化型樹脂、熱可塑性樹脂等が目的に応じて適宜選定可能である。具体的には、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、フッ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂等が挙げられる。これ等の樹脂は、単独使用であっても混合使用であってもよい。また、金属アルコキシドを用いたバインダーの利用も可能である。上記金属アルコキシドとしては、Si、Ti、Al、Zr等のアルコキシドが代表的である。これ等の金属アルコキシドを用いたバインダーは、加熱等により加水分解・縮重合させることで、酸化物膜を形成することが可能である。   As the resin medium, for example, a UV curable resin, a thermosetting resin, an electron beam curable resin, a room temperature curable resin, a thermoplastic resin, and the like can be appropriately selected according to the purpose. Specifically, polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, polycarbonate resin, acrylic resin And polyvinyl butyral resin. These resins may be used alone or in combination. Also, a binder using a metal alkoxide can be used. Representative examples of the metal alkoxide include alkoxides such as Si, Ti, Al, and Zr. Binders using these metal alkoxides can form oxide films by hydrolysis and polycondensation by heating or the like.

また、近赤外線遮蔽材料微粒子の分散液等が塗布される上記基材としては、所望によりフィルムでもボードでもよく、形状は限定されない。透明の基材材料としては、PET、アクリル、ウレタン、ポリカーボネート、ポリエチレン、エチレン酢酸ビニル共重合体、塩化ビニル、フッ素樹脂等が、各種目的に応じて使用可能である。また、樹脂以外ではガラスを用いることができる。   Moreover, as said base material with which the dispersion liquid of near-infrared shielding material microparticles | fine-particles etc. are apply | coated, a film or a board may be used if desired, and a shape is not limited. As the transparent base material, PET, acrylic, urethane, polycarbonate, polyethylene, ethylene vinyl acetate copolymer, vinyl chloride, fluororesin, and the like can be used according to various purposes. Moreover, glass other than resin can be used.

(2)固体媒体中に微粒子を分散させ、板(ボード)状、フィルム状に形成する方法
次に、本発明に係る近赤外線遮蔽材料微粒子を用いる別の方法として、微粒子を固体媒体(基材)中に直接分散させてもよい。微粒子を固体媒体(基材)中に分散させるには、基材表面から浸透させてもよいし、基材の溶融温度以上に温度を上げて基材を溶融させた後、微粒子と基材とを混合してもよい。このようにして得られた近赤外線遮蔽材料微粒子を含有する樹脂(近赤外線遮蔽材料微粒子分散体)を、所定の方法でフィルムや板(ボード)状に成形し、近赤外線遮蔽体として応用が可能である。
(2) Method of Dispersing Fine Particles in Solid Medium and Forming into Plate (Board) Shape or Film Shape Next, as another method using the near-infrared shielding material fine particles according to the present invention, fine particles are treated as a solid medium (substrate ) May be directly dispersed therein. In order to disperse the fine particles in the solid medium (base material), the fine particles may be permeated from the surface of the base material, or after the base material is melted by raising the temperature to a temperature higher than the melting temperature of the base material, May be mixed. The resin containing near-infrared shielding material fine particles obtained in this way (near-infrared shielding material fine particle dispersion) can be formed into a film or board shape by a predetermined method and applied as a near-infrared shielding body. It is.

例えば、固体媒体としてのPET樹脂に近赤外線遮蔽材料微粒子を分散する方法として、上述した方法により上記微粒子が分散された分散液をまず調製し、かつ、上記PET樹脂とこの微粒子分散液とを混合した後、分散液を蒸発させてからPET樹脂の溶融温度である300℃程度に加熱し、更に、PET樹脂を溶融させて混合し、冷却することで、微粒子が分散したPET樹脂の作製が可能となる。   For example, as a method for dispersing near-infrared shielding material fine particles in a PET resin as a solid medium, a dispersion in which the fine particles are dispersed is first prepared by the above-described method, and the PET resin and the fine particle dispersion are mixed. After that, the dispersion liquid is evaporated and then heated to about 300 ° C., which is the melting temperature of the PET resin, and further, the PET resin is melted, mixed, and cooled to produce a PET resin in which fine particles are dispersed. It becomes.

そして、上記近赤外線遮蔽材料微粒子を粉砕しあるいは分散させる方法は、特に限定されず、例えば、超音波照射、ビーズミル、サンドミル等を使用することができる。また、均一な分散体を得るために、各種添加剤や分散剤を添加したり、pHを調整したりしてもよい。分散剤は用途に合わせて適宜選定可能であり、例えば、高分子系分散剤やシラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられるが、これ等に限定されるものではない。   And the method of grind | pulverizing or disperse | distributing the said near-infrared shielding material microparticles | fine-particles is not specifically limited, For example, ultrasonic irradiation, a bead mill, a sand mill etc. can be used. Moreover, in order to obtain a uniform dispersion, various additives and dispersants may be added, or the pH may be adjusted. The dispersant can be appropriately selected according to the application, and examples thereof include a polymer dispersant, a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent, but are not limited thereto. It is not a thing.

以下に、本発明の実施例を比較例とともに具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。尚、各実施例において、可視光透過率並びに日射透過率は、日立製作所(株)製の分光光度計U−4000を用いて測定し、JIS R 3106に基づいて算出した。また、膜評価においては線径の異なる3種のバ−コ−タ−で成膜し、前記膜の3点プロットから日射透過率40%のときのフィラ−使用量(g/m2)と可視光透過率を求めた。フィラ−使用量は、成膜前後のPET(ポリエチレンテレフタレ−ト)フィルムを一定の寸法に切り取り、その重量を測定することによって算出した。
なお、可視光透過率の測定波長域は380nm〜780nm、日射透過率の測定波長域は200nm〜2600nmである。
Examples of the present invention will be specifically described below together with comparative examples. However, the present invention is not limited to the following examples. In each example, the visible light transmittance and the solar radiation transmittance were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd. and calculated based on JIS R 3106. In the film evaluation, the film was formed with three types of bar coaters with different wire diameters, and the amount of filler used (g / m 2) and visible when the solar transmittance was 40% from the three-point plot of the film. The light transmittance was determined. The amount of filler used was calculated by cutting a PET (polyethylene terephthalate) film before and after film formation into a certain size and measuring its weight.
In addition, the measurement wavelength range of visible light transmittance is 380 nm to 780 nm, and the measurement wavelength range of solar transmittance is 200 nm to 2600 nm.

[実施例1]
水25gに炭酸セシウム9.75gを溶解した水溶液に、タングステン酸45.30gを添加して混合した後、105℃で乾燥し乾燥粉を得た。次に、当該乾燥粉を、Nガスをキャリア−とした1.6%Hガスを供給しながら加熱し、800℃の温度で1時間加熱処理することによってCs0.33WO微粒子を得た。当該焼成粉の粉末X線回折による結晶相の同定の結果、Cs0.33WO単相であることが確認された。リチウムが固溶していると考えられる。
[Example 1]
After adding 45.30 g of tungstic acid to an aqueous solution in which 9.75 g of cesium carbonate was dissolved in 25 g of water, the mixture was dried at 105 ° C. to obtain a dry powder. Next, the dry powder is heated while supplying 1.6% H 2 gas using N 2 gas as a carrier, and heat-treated at a temperature of 800 ° C. for 1 hour to obtain Cs 0.33 WO 3 fine particles. Obtained. As a result of identifying the crystal phase by powder X-ray diffraction of the fired powder, it was confirmed that it was a Cs 0.33 WO 3 single phase. It is thought that lithium is dissolved.

次に、前記微粒子10gと炭酸リチウム0.268gを擂潰機で十分混合した後、大気中800℃の温度で6時間加熱処理し、さらに1.6%H/N雰囲気下で20分加熱処理することによってLi0.2Cs0.33WO微粒子aを得た。当該焼成粉の粉末X線回折による結晶相の同定の結果、Cs0.3WO単相(六方晶)であることがわかった。これにより、次に、Cs0.33WO換算で8重量%となるようにLi0.2Cs0.33WOと、高分子系分散剤8重量%(固型分40%)、トルエン84重量%を秤量し、0.3mmφZrO2ビ−ズを入れたペイントシェ−カ−で8時間粉砕・分散処理することによ分散液Aを得た。分散液中のLi0.2Cs0.33WO微粒子の粒径は、図2のTEM像より明らかなように100nm以下であった。 Next, after 10 g of the fine particles and 0.268 g of lithium carbonate were sufficiently mixed in a crusher, the mixture was heat-treated at 800 ° C. for 6 hours in the atmosphere, and further 20 minutes in a 1.6% H 2 / N 2 atmosphere. Li 0.2 Cs 0.33 WO 3 fine particles a were obtained by heat treatment. As a result of identifying the crystal phase by powder X-ray diffraction of the calcined powder, it was found that it was Cs 0.3 WO 3 single phase (hexagonal crystal). Thus, then, Cs 0.33 WO 3 and Li 0.2 Cs 0.33 WO 3 such that 8% by weight in terms of, polymeric dispersing agent 8% by weight (solid content: 40%), toluene Dispersion A was obtained by weighing 84% by weight and pulverizing and dispersing with a paint shaker containing 0.3 mmφZrO 2 beads for 8 hours. The particle diameter of the Li 0.2 Cs 0.33 WO 3 fine particles in the dispersion was 100 nm or less, as is apparent from the TEM image in FIG.

次に、上記分散液(A液)66.7重量%と、紫外線硬化樹脂〔東亜合成(株)社製UV3701〕33.3重量%をよく混合してLi0.002Cs0.33WO微粒子(複合タングステン酸化物B微粒子)を含有する塗布液を調製し、線径の異なる3種のバーコーター(すなわち、番手14、24、30のバー)を用い、厚さ3mmのガラス基板上に上記塗布液を塗布して膜厚が異なる3種の塗膜を形成し、かつ、70℃で1分間乾燥して溶媒を蒸発させた後、高圧水銀ランプにより紫外線を塗膜へ照射して実施例1に係る近赤外線遮蔽体1を得た。近赤外線遮蔽体1の可視光透過率とフィラ−使用量を表1に示す。 Next, 66.7% by weight of the above dispersion (liquid A) and 33.3% by weight of UV curable resin [UV3701 manufactured by Toa Gosei Co., Ltd.] were mixed well and Li 0.002 Cs 0.33 WO 3 A coating solution containing fine particles (composite tungsten oxide B fine particles) was prepared, and three kinds of bar coaters (that is, bars of counts 14, 24, and 30) having different wire diameters were used on a glass substrate having a thickness of 3 mm. The coating solution is applied to form three types of coatings with different thicknesses, and after drying for one minute at 70 ° C to evaporate the solvent, the coating is irradiated with ultraviolet rays using a high-pressure mercury lamp. A near-infrared shield 1 according to Example 1 was obtained. Table 1 shows the visible light transmittance and filler usage of the near-infrared shield 1.

[実施例2]
Cs0.33WO微粒子10gに対し、炭酸リチウムを2.68×10-3g添加した実施例1の条件に代えて、炭酸リチウムを0.133g添加したことを除いて実施例1と同様にして、比較例2に係るLi0.10Cs0.33WO微粒子(複合タングステン酸化物B微粒子)を製造した。
[Example 2]
As in Example 1, except that 0.133 g of lithium carbonate was added instead of the condition of Example 1 in which 2.68 × 10 −3 g of lithium carbonate was added to 10 g of Cs 0.33 WO 3 fine particles. Thus, Li 0.10 Cs 0.33 WO 3 fine particles (composite tungsten oxide B fine particles) according to Comparative Example 2 were produced.

実施例2に係る焼成粉のX線回折による結晶相の同定の結果、Cs0.33WOに帰属するピークのみが認められた。リチウムが固溶していると考えられる。
そして、実施例1と同様、実施例2に係る近赤外線遮蔽体2の可視光透過率とフィラ−使用量を表1に示す。
As a result of identifying the crystal phase of the calcined powder according to Example 2 by X-ray diffraction, only a peak attributed to Cs 0.33 WO 3 was observed. It is thought that lithium is dissolved.
As in Example 1, the visible light transmittance and filler usage of the near-infrared shield 2 according to Example 2 are shown in Table 1.

[比較例1]
実施例1において製造したCs0.33WO微粒子(複合タングステン酸化物A微粒子)を近赤外線遮蔽材料微粒子として適用した以外は実施例1と同様にして、比較例1に係る近赤外線遮蔽体を製造した。
[Comparative Example 1]
The near-infrared shielding material according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the Cs 0.33 WO 3 fine particles (composite tungsten oxide A fine particles) produced in Example 1 were applied as the near-infrared shielding material fine particles. Manufactured.

尚、比較例1に係るCs0.33WO微粒子は、実施例1と同様、Cs0.33WO単相であった。
また、Cs0.33WO微粒子8重量%となるように実施例1と同様にして調製した分散液(A液)を得た。
そして、実施例1と同様、比較例1に係る近赤外線遮蔽体3の可視光透過率とフィラ−使用量を表1に示す。
Incidentally, the Cs 0.33 WO 3 fine particles according to Comparative Example 1 were Cs 0.33 WO 3 single phase as in Example 1.
Further, to obtain dispersion prepared in the same manner as in Example 1 so that the Cs 0.33 WO 3 fine particles 8 weight percent (A solution).
As in Example 1, Table 1 shows the visible light transmittance and filler usage of the near-infrared shield 3 according to Comparative Example 1.

[評価]
表1に示した結果より、実施例1と2に係る近赤外線遮蔽体1と2、比較例1に係る近赤外線遮蔽体3とを比較した。
[Evaluation]
From the results shown in Table 1, the near-infrared shields 1 and 2 according to Examples 1 and 2 and the near-infrared shield 3 according to Comparative Example 1 were compared.

その結果、近赤外線遮蔽体1と2は、日射透過率40%のときの可視高透過率が70%以上とするのにフィラ−使用量が1.4g/m以下である。一方、比較例1に係る近赤外線遮蔽体3は、日射透過率40%のときの可視高透過率が70%以上とするのにフィラ−使用量が1.5g/mを越えるものであった。すなわち、実施例1および2では、近赤外線遮蔽材料微粒子の使用量が、比較例1に比べて減少していることを示し、本発明で用いる近赤外線遮蔽材料微粒子(複合タングステン酸化物B)が、従来の複合タングステン酸化物Aに比べて着色力が向上していることを示している。 As a result, the near-infrared shields 1 and 2 have a filler usage of 1.4 g / m 2 or less, while the visible high transmittance is 70% or more when the solar radiation transmittance is 40%. On the other hand, the near-infrared shield 3 according to Comparative Example 1 has a filler usage of more than 1.5 g / m 2 even though the visible high transmittance is 70% or more when the solar transmittance is 40%. It was. That is, in Examples 1 and 2, it was shown that the amount of the near-infrared shielding material fine particles used was reduced compared to Comparative Example 1, and the near-infrared shielding material fine particles (composite tungsten oxide B) used in the present invention were reduced. This shows that the coloring power is improved as compared with the conventional composite tungsten oxide A.

本発明は、建築分野、輸送機器分野などに用いられる窓材などや電子機器などへ赤外線遮蔽効果を付与する際、好個に利用される。   INDUSTRIAL APPLICABILITY The present invention is suitably used when an infrared shielding effect is imparted to window materials and electronic devices used in the construction field, transportation equipment field, and the like.

1 WO単位
2 元素(M)
1 WO 6 units 2 Element (M)

Claims (8)

近赤外線遮蔽材料微粒子が媒体中に分散してなる近赤外線遮蔽材料微粒子分散体おいて、
前記近赤外線遮蔽材料微粒子が、一般式LixMyWOz(但し、Mは、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦x<1.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物の微粒子Bを含有し、
前記複合タングステン酸化物Bの微粒子が、六方晶の結晶構造を有する微粒子であることと、
前記近赤外線遮蔽材料微粒子の粒子直径は1nm〜500nmであることを特徴とする近赤外線遮蔽材料微粒子分散体。
In a near-infrared shielding material fine particle dispersion in which near-infrared shielding material fine particles are dispersed in a medium,
The near-infrared shielding material fine particles have a general formula LixMyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O contains oxygen, 0.1 ≦ x <1.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0), and composite tungsten oxide fine particles B represented by
The fine particles of the composite tungsten oxide B are fine particles having a hexagonal crystal structure;
The near-infrared shielding material fine particle dispersion, wherein the near-infrared shielding material fine particles have a particle diameter of 1 nm to 500 nm.
近赤外線遮蔽材料微粒子が媒体中に分散してなる近赤外線遮蔽材料微粒子分散体おいて、
前記近赤外線遮蔽材料微粒子が、一般式MyWOz(但し、Mは、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aとリチウムを含有する化合物との混合体を大気中若しくは不活性ガス雰囲気中で焼成した後、還元性ガス雰囲気中または還元性ガスと不活性ガスの混合雰囲気中で熱処理して得られる一般式一般式LixMyWOz(但し、Mは、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦x<1.0、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物の微粒子Bであることと、
前記近赤外線遮蔽材料微粒子の粒子直径は1nm〜500nmであることを特徴とする請求項1に記載の近赤外線遮蔽材料微粒子分散体。
In a near-infrared shielding material fine particle dispersion in which near-infrared shielding material fine particles are dispersed in a medium,
The near-infrared shielding material fine particles have a general formula MyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O represents oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0), a mixture of a compound tungsten oxide A represented by lithium and a compound containing lithium in the atmosphere or an inert gas After calcination in an atmosphere, heat treatment is performed in a reducing gas atmosphere or a mixed atmosphere of a reducing gas and an inert gas. General formula LixMyWOz (where M is Cs, Rb, K, Na , Ba, Ca, Sr, and Mg, one or more elements selected from W, tungsten is tungsten, O is oxygen, 0.1 ≦ x <1.0, 0.1 ≦ y ≦ 0.5, 2 ≦ z ≦ 3.0) composite tungsten oxide fine particles And it is,
The near-infrared shielding material fine particle dispersion according to claim 1, wherein the near-infrared shielding material fine particles have a particle diameter of 1 nm to 500 nm.
上記リチウム元素を有する化合物が炭酸リチウムであることを特徴とする請求項2に記載の近赤外線遮蔽材料微粒子分散体。   The near-infrared shielding material fine particle dispersion according to claim 2, wherein the compound having a lithium element is lithium carbonate. 前記媒体が、樹脂またはガラスであることを特徴とする請求項1から3のいずれか記載の近赤外線遮蔽材料微粒子分散体。   The near-infrared shielding material fine particle dispersion according to any one of claims 1 to 3, wherein the medium is resin or glass. 前記樹脂が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコ−ル樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレ−ト樹脂、フッ素樹脂、ポリカ−ボネ−ト樹脂、アクリル樹脂、ポリビニルブチラ−ル樹脂の内のいずれか1種類以上であることを特徴とする請求項4記載の近赤外線遮蔽材料微粒子分散体。   The resin is polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, polycarbonate resin. The near-infrared shielding material fine particle dispersion according to claim 4, wherein the near-infrared shielding material fine particle dispersion is one or more of a sulfonate resin, an acrylic resin, and a polyvinyl butyral resin. 請求項1から5のいずれか記載の近赤外線遮蔽材料微粒子分散体が、板状またはフィルム状に形成されたものであることを特徴とする近赤外線遮蔽体。   The near-infrared shielding material according to claim 1, wherein the near-infrared shielding material fine particle dispersion is formed into a plate shape or a film shape. 近赤外線遮蔽材料微粒子が媒体中に分散してなる近赤外線遮蔽材料微粒子分散体の製造方法おいて、
前記近赤外線遮蔽材料微粒子が、一般式MyWOz(但し、Mは、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される複合タングステン酸化物Aの微粒子を原料とし、かつ、一般式LixMyWOz(但し、Mは、MはCs、Rb、K、Na、Ba、Ca、Sr、Mgのうちから選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦x<1.0、0.1≦y≦0.5、2.2≦z≦3.0)と表記される組成なるようにリチウムを含有する化合物を上記原料に添加して得られる混合体を大気中若しくは不活性ガス雰囲気中で焼成した後、還元性ガス雰囲気中または還元性ガスと不活性ガスの混合雰囲気中で熱処理して得られることと、
前記近赤外線遮蔽微材料粒子と媒体に分散すること特徴とする近赤外線遮蔽材料微粒子分散体の製造方法。
In the method for producing a near-infrared shielding material fine particle dispersion in which near-infrared shielding material fine particles are dispersed in a medium,
The near-infrared shielding material fine particles have a general formula MyWOz (where M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, Mg, W is tungsten, O is oxygen, 0.1 ≤ y ≤ 0.5, 2.2 ≤ z ≤ 3.0) as a raw material, fine particles of composite tungsten oxide A, and the general formula LixMyWOz (where M is M is one or more elements selected from Cs, Rb, K, Na, Ba, Ca, Sr, and Mg, W is tungsten, O is oxygen, 0.1 ≦ x <1.0, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) A mixture obtained by adding a lithium-containing compound to the raw material so as to have a composition expressed as ≦ y ≦ 0.5, in air or in an inert gas atmosphere After firing in a reducing gas atmosphere or a mixed atmosphere of reducing gas and inert gas. And it can be obtained by heat treatment in mind,
A method for producing a near-infrared shielding material fine particle dispersion, wherein the near-infrared shielding fine material particles are dispersed in a medium.
上記リチウム元素を有する化合物が炭酸リチウムであることを特徴とする請求項7に記載の近赤外線遮蔽材料微粒子分散体の製造方法。   The method for producing a near-infrared shielding material fine particle dispersion according to claim 7, wherein the compound having a lithium element is lithium carbonate.
JP2009217540A 2009-09-18 2009-09-18 Near-infrared ray shielding material microparticle dispersion, near-infrared ray shielding body and method for producing near-infrared ray shielding material dispersion Pending JP2011063493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009217540A JP2011063493A (en) 2009-09-18 2009-09-18 Near-infrared ray shielding material microparticle dispersion, near-infrared ray shielding body and method for producing near-infrared ray shielding material dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009217540A JP2011063493A (en) 2009-09-18 2009-09-18 Near-infrared ray shielding material microparticle dispersion, near-infrared ray shielding body and method for producing near-infrared ray shielding material dispersion

Publications (1)

Publication Number Publication Date
JP2011063493A true JP2011063493A (en) 2011-03-31

Family

ID=43950134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009217540A Pending JP2011063493A (en) 2009-09-18 2009-09-18 Near-infrared ray shielding material microparticle dispersion, near-infrared ray shielding body and method for producing near-infrared ray shielding material dispersion

Country Status (1)

Country Link
JP (1) JP2011063493A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187350A1 (en) * 2012-06-11 2013-12-19 住友金属鉱山株式会社 Heat-shielding ply structure
JP2014114202A (en) * 2012-06-11 2014-06-26 Sumitomo Metal Mining Co Ltd Superposition structure for heat ray-shielding
JP2014193787A (en) * 2013-03-28 2014-10-09 Sumitomo Metal Mining Co Ltd Ply structure for shielding heat ray
JP2014193786A (en) * 2013-03-28 2014-10-09 Sumitomo Metal Mining Co Ltd Ply structure for shielding heat ray
WO2016067905A1 (en) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 Heat-ray-shielding particles, heat-ray-shielding particle liquid dispersion, heat-ray-shielding particle dispersion, heat-ray-shielding particle dispersion laminate transparent substrate, infrared-absorbent transparent substrate, and method for manufacturing heat-ray-shielding particles
EP3473679A4 (en) * 2016-06-15 2020-01-08 Sumitomo Metal Mining Co., Ltd. Heat-ray-shielding microparticle dispersion, heat-ray-shielding laminated transparent base, and production processes therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187350A1 (en) * 2012-06-11 2013-12-19 住友金属鉱山株式会社 Heat-shielding ply structure
JP2014114202A (en) * 2012-06-11 2014-06-26 Sumitomo Metal Mining Co Ltd Superposition structure for heat ray-shielding
US10384423B2 (en) 2012-06-11 2019-08-20 Sumitomo Metal Mining Co., Ltd. Heat shielding lamination structure
JP2014193787A (en) * 2013-03-28 2014-10-09 Sumitomo Metal Mining Co Ltd Ply structure for shielding heat ray
JP2014193786A (en) * 2013-03-28 2014-10-09 Sumitomo Metal Mining Co Ltd Ply structure for shielding heat ray
EP3214148A4 (en) * 2014-10-30 2018-04-04 Sumitomo Metal Mining Co., Ltd. Heat-ray-shielding particles, heat-ray-shielding particle liquid dispersion, heat-ray-shielding particle dispersion, heat-ray-shielding particle dispersion laminate transparent substrate, infrared-absorbent transparent substrate, and method for manufacturing heat-ray-shielding particles
KR20170064536A (en) * 2014-10-30 2017-06-09 스미토모 긴조쿠 고잔 가부시키가이샤 Heat-ray-shielding particles, heat-ray-shielding particle liquid dispersion, heat-ray-shielding particle dispersion, heat-ray-shielding particle dispersion laminate transparent substrate, infrared-absorbent transparent substrate, and method for manufacturing heat-ray-shielding particles
CN107207943A (en) * 2014-10-30 2017-09-26 住友金属矿山股份有限公司 Heat ray masking particle, heat ray masking particle dispersion, heat ray masking particle dispersion, heat ray masking particle dispersion interlayer transparent base, infrared absorption transparent base material, heat ray cover the manufacture method of particle
JP2016088960A (en) * 2014-10-30 2016-05-23 住友金属鉱山株式会社 Heat ray-shielding particle, heat ray-shielding particle dispersion liquid, heat ray-shielding particle dispersion, heat ray-shielding particle dispersion laminated transparent base material, infrared absorption transparent base material, and method for producing heat ray-shielding particle
CN107207943B (en) * 2014-10-30 2019-03-15 住友金属矿山股份有限公司 Heat ray covers particle and its dispersion liquid, dispersion, manufacturing method and transparent substrate
WO2016067905A1 (en) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 Heat-ray-shielding particles, heat-ray-shielding particle liquid dispersion, heat-ray-shielding particle dispersion, heat-ray-shielding particle dispersion laminate transparent substrate, infrared-absorbent transparent substrate, and method for manufacturing heat-ray-shielding particles
TWI681088B (en) * 2014-10-30 2020-01-01 日商住友金屬礦山股份有限公司 Method for manufacturing heat ray shielding particles, heat ray shielding particle dispersion, heat ray shielding particle dispersion, heat ray shielding particle dispersion laminated transparent substrate, infrared absorbing transparent substrate, heat ray shielding particles
KR102116808B1 (en) * 2014-10-30 2020-06-01 스미토모 긴조쿠 고잔 가부시키가이샤 Heat-ray-shielding particles, heat-ray-shielding particle liquid dispersion, heat-ray-shielding particle dispersion, heat-ray-shielding particle dispersion laminate transparent substrate, infrared-absorbent transparent substrate, and method for manufacturing heat-ray-shielding particles
US10787581B2 (en) 2014-10-30 2020-09-29 Sumitomo Metal Mining Co., Ltd. Heat ray shielding particles, heat ray shielding particle dispersion liquid, heat ray shielding particle dispersion, heat ray shielding particle dispersion laminated transparent base material, infrared ray absorbing transparent base material, and method of producing heat ray shielding particles
EP3473679A4 (en) * 2016-06-15 2020-01-08 Sumitomo Metal Mining Co., Ltd. Heat-ray-shielding microparticle dispersion, heat-ray-shielding laminated transparent base, and production processes therefor
US11180378B2 (en) 2016-06-15 2021-11-23 Sumitomo Metal Mining Co., Ltd. Heat ray shielding fine particle dispersion body, heat ray shielding laminated transparent substrate, and method for producing the same

Similar Documents

Publication Publication Date Title
KR100701735B1 (en) Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
JP2011063739A (en) Microparticle of near infrared ray shielding material, production method therefor, particle dispersion of near infrared ray shielding material, and near infrared ray shielding body
JP5585812B2 (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding material, method for producing near-infrared shielding material fine particles, and near-infrared shielding material fine particles
AU2017232748B2 (en) Near-infrared shielding material fine particle dispersion body, near-infrared shielding body and near-infrared shielding laminated structure, and method for producing the same
JP4678225B2 (en) Infrared shielding material fine particle dispersion and infrared shielding material
US8980135B2 (en) Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article
JP5034272B2 (en) Tungsten-containing oxide fine particles, method for producing the same, and infrared shielding body using the same
US11105959B2 (en) Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article
JP2011063493A (en) Near-infrared ray shielding material microparticle dispersion, near-infrared ray shielding body and method for producing near-infrared ray shielding material dispersion
JP2011063741A (en) Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate and building structure using these
JP5387925B2 (en) Infrared shielding material fine particle dispersion, infrared shielding body, method for producing infrared shielding material fine particles, and infrared shielding material fine particles
JP4904714B2 (en) Infrared shielding material fine particle dispersion, infrared shielding body, method for producing infrared shielding material fine particles, and infrared shielding material fine particles
JP2011063740A (en) Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate and building structure using these
JP2011063484A (en) Near-infrared ray shielding material microparticle, method for producing the same, near-infrared ray shielding material microparticle dispersion and near-infrared ray shielding body
CN114981214A (en) Near-infrared-absorbing material particles, near-infrared-absorbing material particle dispersion liquid, and near-infrared-absorbing material particle dispersion
JP6171733B2 (en) Heat ray shielding dispersion forming coating solution and heat ray shielding body
JP2006156121A (en) Visible light transmissive particle dispersed conductor, conductive particle, visible light transmissive conductive article, and method for producing the same
AU2011253581B2 (en) Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article
JP2017222091A (en) Heat ray-shielding film and heat ray-shielding glass
JP6164133B2 (en) Heat ray shielding paint and method for producing heat ray shielding film
JP2017039880A (en) Infrared ray-shielding material fine particle and production method of the same, dispersion of infrared ray-shielding material fine particle and infrared shielding body manufactured from the dispersion
JP2015182943A (en) Lithium titanate particle for thermal ray shielding