JP6183202B2 - Ashing apparatus and ashing method - Google Patents

Ashing apparatus and ashing method Download PDF

Info

Publication number
JP6183202B2
JP6183202B2 JP2013260842A JP2013260842A JP6183202B2 JP 6183202 B2 JP6183202 B2 JP 6183202B2 JP 2013260842 A JP2013260842 A JP 2013260842A JP 2013260842 A JP2013260842 A JP 2013260842A JP 6183202 B2 JP6183202 B2 JP 6183202B2
Authority
JP
Japan
Prior art keywords
processing
flow rate
processing gas
gas
ashing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013260842A
Other languages
Japanese (ja)
Other versions
JP2015119015A (en
Inventor
広瀬 賢一
賢一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2013260842A priority Critical patent/JP6183202B2/en
Priority to PCT/JP2014/080503 priority patent/WO2015093216A1/en
Publication of JP2015119015A publication Critical patent/JP2015119015A/en
Application granted granted Critical
Publication of JP6183202B2 publication Critical patent/JP6183202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0055After-treatment, e.g. cleaning or desmearing of holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0035Etching of the substrate by chemical or physical means by laser ablation of organic insulating material of blind holes, i.e. having a metal layer at the bottom

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

この発明は、紫外線ランプを用いて基板上のスミア(残渣)を除去するアッシング装置およびアッシング方法に関するものであり、特に、配線基板の製造工程等で基板上に残留した有機物系からなるスミアを処理するのに好適なアッシング装置およびアッシング方法に係わるものである。   The present invention relates to an ashing apparatus and an ashing method for removing smears (residues) on a substrate using an ultraviolet lamp, and in particular, treating smears made of organic matter remaining on a substrate in a wiring board manufacturing process or the like. The present invention relates to an ashing apparatus and an ashing method suitable for the above.

半導体集積回路素子等の半導体素子を搭載するため、絶縁層と配線導体とを交互に積層した多層配線基板が知られている。
かかる多層配線基板としては、ビルドアップ法が知られていて、下層の絶縁層上に形成された下層の配線導体と、該下層の絶縁層上および下層の配線導体上に積層された上層の絶縁層上に形成された上層の配線導体とを備え、下層の配線導体を底面として、上層の絶縁層にビアホールを設け、かかるビアホールの内部に前記上層の配線導体の一部を被着させることにより、上層と下層の配線導体を接続している。このような技術については、特開2010−205801号公報(特許文献1)などに記載されている。
In order to mount a semiconductor element such as a semiconductor integrated circuit element, a multilayer wiring board in which insulating layers and wiring conductors are alternately stacked is known.
As such a multilayer wiring board, a build-up method is known, and a lower wiring conductor formed on a lower insulating layer, and an upper insulating layer laminated on the lower insulating layer and the lower wiring conductor. An upper wiring conductor formed on the layer, with the lower wiring conductor as a bottom surface, a via hole is provided in the upper insulating layer, and a part of the upper wiring conductor is deposited inside the via hole. The upper and lower wiring conductors are connected. Such a technique is described in JP 2010-205801 A (Patent Document 1) and the like.

図8に特許文献1に開示された多層配線基板の製造方法の一部が示されている。
(A)下層の絶縁層21上に、配線導体22を含めて上層の絶縁層23が形成されている。
(B)この上層の絶縁層23の一部を、例えばレーザやドリルによって除去することで、ビアホール24を形成する。このとき、上層の絶縁層23の材料に起因するスミア(残渣)Sが、不可避的に残ってしまう。
(C)このスミアSを除去するため、例えば、アルカリ性溶液によって溶解することによりデスミア(スミア除去)処理し、配線導体22の上面を露出させる。
FIG. 8 shows a part of the manufacturing method of the multilayer wiring board disclosed in Patent Document 1.
(A) An upper insulating layer 23 including the wiring conductor 22 is formed on the lower insulating layer 21.
(B) The via hole 24 is formed by removing a part of the upper insulating layer 23 by, for example, a laser or a drill. At this time, smear (residue) S resulting from the material of the upper insulating layer 23 inevitably remains.
(C) In order to remove the smear S, for example, a desmear (smear removal) treatment is performed by dissolving with an alkaline solution to expose the upper surface of the wiring conductor 22.

このように、上層の絶縁層23のスミアSを除去する際に、アルカリ溶液で溶解するという、本来的な基板製造工程とは無関係に基板全体を湿式で処理する必要があることから、スループットが悪いという問題がある。
また、使用済の高濃度アルカリ廃液の処理コストやその後リンスなどで用いた低濃度アルカリ廃液の処理コストが高いという問題もある。
As described above, when the smear S of the upper insulating layer 23 is removed, the entire substrate needs to be processed in a wet manner irrespective of the original substrate manufacturing process of dissolving in an alkaline solution. There is a problem of being bad.
There is also a problem that the processing cost of the used high-concentration alkaline waste liquid and the processing cost of the low-concentration alkaline waste liquid used for rinsing thereafter are high.

このような問題点を解消すべく、上記基板製造工程におけるデスミア処理においては、従来のアルカリ性溶液を用いた湿式による方法ではなく、乾式(ドライプロセス)による方法が検討されていて、アッシング処理によってスミアを除去することが検討されている。
そのようなプロセスの一案として、酸素が存在する雰囲気下に被処理物である基板を配置し、紫外線として波長200nm以下の真空紫外光を照射し、有機物を分解、除去することが検討される。このように、乾式方法でデスミア処理を行うことで、湿式によるデスミア処理後のすすぎや乾燥が不要になり、廃液が発生しない上、次工程への移行を速やかにできて製造コストを大幅に抑えることができるようになる。
In order to solve such problems, in the desmear process in the above-mentioned substrate manufacturing process, a dry process is being studied instead of a conventional wet process using an alkaline solution. It is being considered to remove
As one proposal of such a process, it is considered that a substrate which is an object to be processed is placed in an atmosphere where oxygen is present, and ultraviolet rays having a wavelength of 200 nm or less are irradiated as ultraviolet rays to decompose and remove organic substances. . In this way, by performing desmear treatment by a dry method, rinsing and drying after wet desmear treatment become unnecessary, waste liquid is not generated, and the transition to the next process can be performed quickly, greatly reducing manufacturing costs. Will be able to.

このようなアッシング装置として、例えば特開2007−227496号公報(特許文献2)や特開2011−181535号公報(特許文献3)等に開示されるものが知られていて、そこには、紫外線を放射するランプを備え、石英ガラス製の窓を介してワークに対して光(真空紫外光)を照射するアッシング処理装置が開示されている。   As such an ashing device, those disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-227296 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2011-181535 (Patent Document 3) are known. There is disclosed an ashing processing apparatus that includes a lamp that radiates light and irradiates light (vacuum ultraviolet light) to a workpiece through a quartz glass window.

特許文献2に開示されるアッシング処理装置は、紫外線ランプを保護管内に収容し、ワークをチャンバー内に配置して、ワークを枚葉ごとにアッシング処理するものである。この文献に記載のアッシング装置では、チャンバー内に不活性ガスを導入しつつ排気を行うか、あるいは、チャンバー内の排気のみを行ってアッシング処理する機構である。   The ashing processing device disclosed in Patent Document 2 houses an ultraviolet lamp in a protective tube, places a work in a chamber, and performs an ashing process on each work piece. The ashing apparatus described in this document is a mechanism for performing ashing by exhausting while introducing an inert gas into the chamber or by exhausting only the interior of the chamber.

特開2010−205801号公報JP 2010-205801 A 特開2007−227496号公報Japanese Patent Laid-Open No. 2007-227496 特開2011−181535号公報JP 2011-181535 A

ところで、上述した配線基板等の製造工程で生じるスミアを除去処理する場合、スミアと同一成分である絶縁層が表面に存在する。スミアの処理を確実に行おうとして、長時間紫外光を照射すると、本来分解されるべきではない絶縁層も分解されてしまうという問題が生じ、この絶縁層が過剰に分解されて、絶縁機能を失うと、そもそも配線基板としての機能を果たすことができなくなってしまう。一方、絶縁層を保護するために、紫外線の積算照射量を少なく見積もると、スミアを完全に除去できず、ビアホールを介した配線導体の導通が不十分になるという事態が生じる。   By the way, when removing the smear generated in the manufacturing process of the wiring board or the like described above, an insulating layer having the same component as the smear is present on the surface. In order to ensure the smear treatment, if ultraviolet light is irradiated for a long time, there is a problem that the insulating layer which should not be decomposed will be decomposed. If lost, it will no longer function as a wiring board. On the other hand, if the accumulated amount of ultraviolet rays is estimated to be small in order to protect the insulating layer, smear cannot be completely removed, and there is a situation where the conduction of the wiring conductor through the via hole becomes insufficient.

このような、絶縁層を備える配線基板のアッシング処理においては、例えば半導体基板製造におけるレジストのように、一時的に形成し、その後に全部除去するような一過性に存在する有機物とは異なり、絶縁層は最終製品に必須の構成となるので、いかに絶縁層に影響が及ばないようにスミアを処理するかが問題となる。すなわち、本来必須に存在しなければならない絶縁層と、当該絶縁層を由来とするスミアとが混在する配線基板では、従来のアッシング処理のプロセスとは異なり、長時間処理すればよいということにならないため、従来の装置やプロセスをそのまま採用することができない。   In such an ashing process of a wiring board provided with an insulating layer, for example, a resist temporarily used in semiconductor substrate manufacturing, for example, temporarily formed and then temporarily removed, unlike organic substances that exist temporarily. Since the insulating layer is an essential component for the final product, it becomes a problem how to treat smear so as not to affect the insulating layer. In other words, in a wiring board in which an insulating layer that must be essentially present and a smear derived from the insulating layer are mixed, unlike a conventional ashing process, it does not have to be processed for a long time. Therefore, conventional apparatuses and processes cannot be employed as they are.

このような特有の課題に対しては、光源(ランプ)と被処理物との照射距離を縮めると、紫外線によるオゾン処理(アッシング)能力が上がることが分かっている。そして、照射距離が近い状態(具体的には3mm以下)で、処理ガスとして、例えば酸素をもいる場合、その酸素濃度を高く(50%以上)にすると、さらにその処理能力が上がることも分かっている。   For such a specific problem, it is known that the ozone treatment (ashing) ability by ultraviolet rays increases when the irradiation distance between the light source (lamp) and the object to be processed is shortened. And when the irradiation distance is close (specifically, 3 mm or less), for example, when oxygen is used as a processing gas, it is also found that if the oxygen concentration is increased (50% or more), the processing capacity further increases. ing.

従って、上述した配線基板のような被処理物に対するスミア除去処理においては、光源と被処理物との照射距離を近接化しながら酸素濃度を高くすることが、良好な処理を得る上で必要な条件であると考えられる。しかしながら、処理ガスの流量及び紫外線の照射条件を一定化して最適条件を見出しても、被処理物に処理ムラが生じて、満足できる結果を得ることができないことが判明した。その原因としては、紫外線照射により被処理物のスミアが分解する時に発生する炭酸ガスが被処理空間に留まってしまい、特に、処理ガスの下流側においてその濃度が高くなって、紫外線照射によって得られるはずのオゾンや活性酸素が有効に生成されないことや被処理物への紫外線照射が不充分になるためと推測される。
このような課題は400mmを越える被処理物(ワーク)のデスミア処理において、特に顕著になった。
Therefore, in the smear removing process for the object to be processed such as the wiring board described above, it is necessary to increase the oxygen concentration while making the irradiation distance between the light source and the object to be processed closer to obtain a good process. It is thought that. However, it has been found that even if the optimum conditions are found by fixing the flow rate of the processing gas and the irradiation condition of the ultraviolet rays, processing unevenness occurs in the object to be processed and a satisfactory result cannot be obtained. The cause is that carbon dioxide gas generated when the smear of the object to be processed is decomposed by ultraviolet irradiation stays in the processing space, and in particular, its concentration increases on the downstream side of the processing gas and is obtained by ultraviolet irradiation. It is presumed that ozone or active oxygen that should have not been generated effectively, and that ultraviolet light irradiation to the object to be processed becomes insufficient.
Such a problem becomes particularly remarkable in the desmear treatment of the workpiece (workpiece) exceeding 400 mm.

以上のような従来技術の問題に鑑み、本発明は、被処理物を内部に配置する処理室と、前記被処理物に紫外線を照射する紫外線ランプを収容し、前記処理室と区画する紫外線透過性の窓部材を有するランプ室と、前記被処理物と前記窓部材の間に形成された処理空間に処理ガスを供給する処理ガス供給手段とを備えたアッシング装置およびアッシング方法において、被処理物のスミアを除去処理する際に、処理ムラが生じることのない構成を提供することを目的とするものである。   In view of the problems of the prior art as described above, the present invention is an ultraviolet transmission that contains a processing chamber in which an object to be processed is disposed, and an ultraviolet lamp that irradiates the object to be processed with ultraviolet rays, and partitions the processing chamber. In an ashing apparatus and an ashing method, comprising: a lamp chamber having a conductive window member; and a processing gas supply means for supplying a processing gas to a processing space formed between the processing object and the window member. It is an object of the present invention to provide a configuration in which processing unevenness does not occur when the smear is removed.

上記課題を解決するために、この発明に係るアッシング装置は、前記処理ガス供給手段が、処理を行うための適正流量の処理ガスを供給可能であると共に、該適正流量を超える大流量の処理ガスを供給可能な制御部を有し、前記大流量の処理ガスを間欠的に供給して、一定時間ごとに前記処理空間内に発生した排ガス(炭酸ガス)を一掃して処理ガスに置換することを特徴とする。   In order to solve the above-described problems, in the ashing apparatus according to the present invention, the processing gas supply means can supply a processing gas having an appropriate flow rate for performing processing, and a processing gas having a large flow rate exceeding the appropriate flow rate. A control unit capable of supplying gas, intermittently supplying the processing gas at a large flow rate, and cleaning the exhaust gas (carbon dioxide gas) generated in the processing space at regular intervals to replace the processing gas. It is characterized by.

前記処理空間の容積(V)に対する前記間欠的に供給する前記大流量処理ガスの総流量(A)の比率(置換率A/V)が、0.64以上であることを特徴とする。
また、前記処理ガス供給手段が、前記大流量の処理ガス供給期間時に供給する処理ガス流量は、前記適正流量供給時の2倍以上であることを特徴とする。
また、前記処理ガス供給手段は、前記被処理物に紫外線を照射して処理し始める前に、前記大流量の処理ガスを供給して前記処理空間を処理ガスに置換し、その後適正流量に切り替えて紫外線を照射することを特徴とする。
また、この発明に係るアッシング方法は、前記処理ガスを、前記処理空間内に適正流量だけ供給する適正流量供給工程と、前記適正流量を超える大流量の処理ガスを間欠的に供給して、前記処理空間を処理ガスに置換する大流量供給工程と、を有していることを特徴とする。
The ratio (substitution rate A / V) of the total flow rate (A) of the large flow rate processing gas supplied intermittently to the volume (V) of the processing space is 0.64 or more.
Further, the processing gas supply means supplies the processing gas flow rate supplied during the high flow processing gas supply period at least twice as much as the appropriate flow rate supply.
The processing gas supply means supplies the large flow rate of processing gas to replace the processing space with the processing gas before irradiating the object to be processed with ultraviolet rays, and then switches to an appropriate flow rate. It is characterized by irradiating with ultraviolet rays.
Further, the ashing method according to the present invention includes an appropriate flow rate supplying step of supplying the process gas into the process space by an appropriate flow rate, and intermittently supplying a large flow of process gas exceeding the appropriate flow rate, And a large flow rate supplying step of replacing the processing space with the processing gas.

本発明のアッシング装置およびアッシング方法によれば、通常の処理を行う処理ガスの適正流量に対して大流量の処理ガスを間欠的に供給することで、スミア除去時に発生して処理空間内に溜まった排ガス(炭酸ガス)を速やかに排出して、処理空間内の雰囲気を処理ガス(酸素)に置換することができるので、該処理空間内での処理が的確にかつ速やかに行われ、その処理にムラが生じることなく、的確なスミアの除去が達成できるものである。
また、大流量の処理ガスを供給できるので、その大流量処理ガスを、処理プロセスの前、即ち、紫外線ランプ照射前に供給することで、処理空間の処理ガスによる置換が速やかに行われて、照射処理前の準備時間を短時間で行えるという効果もある。
According to the ashing apparatus and the ashing method of the present invention, by intermittently supplying a large flow rate of processing gas with respect to an appropriate flow rate of processing gas for performing normal processing, it is generated at the time of smear removal and accumulated in the processing space. The exhaust gas (carbon dioxide gas) can be quickly discharged and the atmosphere in the processing space can be replaced with the processing gas (oxygen), so that the processing in the processing space is performed accurately and promptly. Therefore, accurate smear removal can be achieved without causing unevenness.
In addition, since a large flow rate of processing gas can be supplied, by supplying the large flow rate processing gas before the processing process, that is, before the irradiation with the ultraviolet lamp, the replacement of the processing space with the processing gas is quickly performed. There is also an effect that the preparation time before the irradiation treatment can be performed in a short time.

本発明のアッシング装置の断面図。Sectional drawing of the ashing apparatus of this invention. 本発明の実施形態を説明するタイミングチャート図。FIG. 3 is a timing chart illustrating an embodiment of the present invention. 本発明の作用の説明図。Explanatory drawing of an effect | action of this invention. 処理均一度を示す実験結果表。The experimental result table | surface which shows a processing uniformity. 処理均一度の具体的なデータ。Specific data on processing uniformity. 各実験におけるガス置換率の表。Table of gas replacement rates in each experiment. ガス置換率と処理均一度の関係を示すグラフ。The graph which shows the relationship between a gas substitution rate and process uniformity. 多層配線基板の製造方法の一例を説明する断面図。Sectional drawing explaining an example of the manufacturing method of a multilayer wiring board.

図1は、本発明のアッシング装置の構成を示す断面図である。
本発明のアッシング装置1は、被処理物Wを内部に配置する処理室2と、被処理物Wに紫外線を照射する複数本の紫外線ランプ4、4を収納するランプ室3とからなる。
ランプ室3の下方には、前記処理室2と対向するように石英ガラス等の紫外線透過性の窓部材5が設けられている。前記ランプ室3内の紫外線ランプ4の上方には反射鏡6が設けられていて、該ランプ室3の内部は窒素ガス等の不活性ガス雰囲気に保たれている。
紫外線ランプ4は、真空紫外光(波長200nm以下の紫外線)を出射するものであって、種々の公知のランプを利用でき、例えば、キセノンガスを封入したキセノンエキシマランプ(波長172nm)、低圧水銀ランプ(波長185nm)などがあり、なかでも、この種のアッシング装置に用いるものとしては、キセノンエキシマランプが好適である。
FIG. 1 is a sectional view showing the structure of the ashing device of the present invention.
The ashing apparatus 1 according to the present invention includes a processing chamber 2 in which an object to be processed W is disposed, and a lamp chamber 3 in which a plurality of ultraviolet lamps 4 and 4 for irradiating the object to be processed W with ultraviolet rays are accommodated.
Below the lamp chamber 3, an ultraviolet transmissive window member 5 such as quartz glass is provided so as to face the processing chamber 2. A reflecting mirror 6 is provided above the ultraviolet lamp 4 in the lamp chamber 3, and the inside of the lamp chamber 3 is maintained in an inert gas atmosphere such as nitrogen gas.
The ultraviolet lamp 4 emits vacuum ultraviolet light (ultraviolet light having a wavelength of 200 nm or less), and various known lamps can be used. For example, a xenon excimer lamp (wavelength 172 nm) enclosing xenon gas, a low-pressure mercury lamp. Among them, a xenon excimer lamp is suitable for use in this type of ashing apparatus.

一方、処理室2には、筺体7内に被処理物Wを戴置するステージ8が配設され、前記ランプ室3と処理室2の筺体7とは気密に組み付けられていて、前記窓部材5とステージ8によって被処理物Wを収容する密閉処理空間10が形成されている。
被処理物Wは、図8に示すように、例えば平板状の多層配線基板であり、その表面が絶縁層23で構成され、当該絶縁層23に形成されたビアホールからなる開口24と、開口24の周囲に絶縁層23と同物質で構成されたスミア(残渣)Sとを有しているものである。
On the other hand, the processing chamber 2 is provided with a stage 8 for placing the workpiece W in the housing 7, and the lamp chamber 3 and the housing 7 of the processing chamber 2 are assembled in an airtight manner, and the window member A sealed processing space 10 for accommodating the workpiece W is formed by the stage 5 and the stage 8.
As illustrated in FIG. 8, the workpiece W is, for example, a flat multilayer wiring board, the surface of which is formed of an insulating layer 23, and an opening 24 including a via hole formed in the insulating layer 23, and an opening 24. And smear (residue) S composed of the same material as that of the insulating layer 23.

前記処理物Wは、図1に示すように、ランプ室3の窓部材5に対向して配置された前記ステージ8上に配置される。この被処理物Wとしての配線基板はスミアが処理ガスに曝され、紫外線ランプ4からの光に照射されるように、スミアが処理空間10に露出する態様で(同図では上側に)配置される。
前記ステージ8の一方の側縁部には処理ガス供給用の給気口11を備え、他方の側縁部には排気口12を備えていて、処理空間10内を流れる処理ガス、紫外線照射によって生成されたオゾンガス、及びスミアの分解によって発生した炭酸ガス等はこの排気口12から回収される。
そして、前記給気口11には、処理ガス供給手段13が接続され、所定の処理ガスが供給される。この処理ガス供給手段13は、ガスタンクなどの処理ガス供給部14、制御部15、流量調整弁16などからなる。
As shown in FIG. 1, the processed product W is disposed on the stage 8 disposed to face the window member 5 of the lamp chamber 3. The wiring substrate as the object to be processed W is disposed in a manner (in the upper side in the figure) in which the smear is exposed to the processing space 10 so that the smear is exposed to the processing gas and is irradiated with the light from the ultraviolet lamp 4. The
One side edge portion of the stage 8 is provided with a supply port 11 for supplying a processing gas, and the other side edge portion is provided with an exhaust port 12, so that the processing gas flowing in the processing space 10 is irradiated with ultraviolet rays. The generated ozone gas, carbon dioxide gas generated by the decomposition of smear, and the like are collected from the exhaust port 12.
A processing gas supply means 13 is connected to the air supply port 11 to supply a predetermined processing gas. The processing gas supply means 13 includes a processing gas supply unit 14 such as a gas tank, a control unit 15, a flow rate adjustment valve 16, and the like.

前記給気口11、排気口12の開口部形状は、例えば、ランプ4の管軸方向に沿った細長いスリット形状であり、被処理物Wの大きさが500mm×500mmである場合、給気口11の大きさは、例えば3mm×600mm、排気口12の大きさは、例えば10mm×600mmである。無論この形態に限定されるものではない。
また、排気口12の総開口面積は、給気口11の総開口面積よりも大きいことが好ましい。排出側の開口が大きいことで、ガスの流れが処理空間内で停滞することがなく、給気口11側から排気口12側に向かう一方向の一様な流れを形成できて、流れを安定に維持することができる。
このように、区画された処理空間10の一方の側縁部分から処理ガスが供給され、他方の側縁部分から排気されることにより、被処理物Wの表面に、一方から他方に向けてガスが流れ、処理ガスが被処理物Wの全体に行き渡るので、処理ムラの発生が低減される。
The shape of the openings of the air supply port 11 and the exhaust port 12 is, for example, an elongated slit shape along the tube axis direction of the lamp 4, and when the size of the workpiece W is 500 mm × 500 mm, the air supply port The size of 11 is, for example, 3 mm × 600 mm, and the size of the exhaust port 12 is, for example, 10 mm × 600 mm. Of course, it is not limited to this form.
The total opening area of the exhaust port 12 is preferably larger than the total opening area of the air supply port 11. The large opening on the discharge side makes it possible to form a uniform flow in one direction from the air supply port 11 side to the exhaust port 12 side without causing the gas flow to stagnate in the processing space, thereby stabilizing the flow. Can be maintained.
As described above, the processing gas is supplied from one side edge portion of the partitioned processing space 10 and exhausted from the other side edge portion, whereby the gas is directed to the surface of the workpiece W from one side to the other. Flows and the processing gas is spread over the entire workpiece W, so that the occurrence of processing unevenness is reduced.

処理ガスは、具体的には酸素ガスである。また、この酸素ガスに不活性ガスを混合した混合ガスとしてもよい。好ましい酸素濃度は50%以上、更に好ましくは70%以上、最も好ましくは90%以上である。   The processing gas is specifically oxygen gas. Moreover, it is good also as mixed gas which mixed inert gas with this oxygen gas. The preferred oxygen concentration is 50% or more, more preferably 70% or more, and most preferably 90% or more.

前記処理ガス供給手段13の制御部15は、処理空間10内に処理ガス(酸素ガス)を、通常処理時には所定の適正流量で供給し、この適正流量よりも大流量の処理ガスを間欠的に供給するように制御している。
適正流量とは、被処理物に残るスミアを一定時間で適正に除去することができる流量であって、処理空間10の容積、被処理物Wの材質や大きさ、被処理物Wの表面と窓部材5との離間距離、紫外線ランプ4の出力照度、更には処理ガス濃度などによって決定されるものである。
The control unit 15 of the processing gas supply means 13 supplies a processing gas (oxygen gas) into the processing space 10 at a predetermined appropriate flow rate during normal processing, and intermittently supplies a processing gas having a flow rate larger than the appropriate flow rate. It is controlled to supply.
The proper flow rate is a flow rate capable of properly removing smear remaining on the object to be processed in a certain time, and includes the volume of the processing space 10, the material and size of the object W, the surface of the object W to be processed, and the like. It is determined by the distance from the window member 5, the output illuminance of the ultraviolet lamp 4, and the processing gas concentration.

ここで、前記適正流量の意義は次の通りである。
適正流量の上限を超えて過剰に処理ガスを供給すると、ガス流速が速くなり過ぎて処理ガスから生成した活性種(活性酸素やオゾンガス)が即座に排気口に流されてしまい、被処理物表面のスミア除去の反応に寄与する確率が低減する。その結果、処理の効率(ランプエネルギーや総ガス量と対比した処理の効率)が悪くなる。
一方、処理ガスの供給量が適正流量の下限を下回る場合、アッシング処理開始直後は、処理ガスと紫外線の反応で生じた活性種(活性酸素やオゾンガス)がスミアに作用し、除去が行われるが、スミアの組成に由来して生じる炭酸ガスの濃度が、次第に高濃度になるため、紫外線透過率が悪くなる。この結果、活性種の発生及び被処理物への紫外線照射が不完全になって、効率の低下を招くことになる。
従って、ガスの流量は、処理ガス(活性種)および反応後の残留ガス(炭酸ガス)の流速によって処理の効率が変化することから、処理の効率が一定以上に維持されるよう、適正な範囲(上限値と下限値)が決定されることになる。
Here, the significance of the appropriate flow rate is as follows.
If the processing gas is excessively supplied beyond the upper limit of the appropriate flow rate, the gas flow rate becomes too fast, and the active species (active oxygen and ozone gas) generated from the processing gas are immediately flown to the exhaust port, and the surface of the object to be processed The probability of contributing to the smear removal reaction is reduced. As a result, the processing efficiency (processing efficiency compared with the lamp energy and the total gas amount) deteriorates.
On the other hand, when the supply amount of the processing gas is lower than the lower limit of the appropriate flow rate, immediately after the start of the ashing process, active species (active oxygen and ozone gas) generated by the reaction of the processing gas and ultraviolet rays act on smear and are removed. Since the concentration of carbon dioxide gas generated due to the smear composition gradually becomes higher, the ultraviolet transmittance is deteriorated. As a result, generation of active species and irradiation of ultraviolet rays to the object to be processed become incomplete, leading to a decrease in efficiency.
Therefore, the flow rate of the gas is in an appropriate range so that the processing efficiency is maintained above a certain level because the processing efficiency varies depending on the flow rate of the processing gas (active species) and the residual gas (carbon dioxide gas) after the reaction. (Upper limit value and lower limit value) are determined.

本発明に係るアッシング装置は、アッシング処理期間中、被処理物に紫外線が照射された状態で、一定の適正流量で処理ガスを供給しつつ、間欠的(定期的)に、前記一定の適正流量を越える大流量で、処理ガスが供給される。
即ち、適正流量のガスが供給されつつ、間欠的に大流量の処理ガスが供給されるものである。
このように、処理ガスの流量を変化させ、処理プロセス時間内にガス流量を大きくするのは、被処理物上に滞留する炭酸ガスを排気口から放出することで一掃し、処理空間内の雰囲気を処理ガスによって置換して、被処理物上の処理ガス濃度を一定高濃度にリフレッシュするためである。このプロセスが適宜の頻度で繰返されることで、処理能力が向上し、処理ムラの発生を抑えることができる。
そして、大流量とは具体的には、例えば、前記適正流量の2倍以上の流量である。
The ashing device according to the present invention supplies the processing gas at a constant appropriate flow rate while the workpiece is irradiated with ultraviolet rays during the ashing period, and intermittently (periodically) the constant appropriate flow rate. The processing gas is supplied at a large flow rate exceeding.
That is, a large flow rate of processing gas is intermittently supplied while an appropriate flow rate of gas is supplied.
In this way, the flow rate of the processing gas is changed and the gas flow rate is increased within the processing process time by removing the carbon dioxide gas staying on the object to be processed from the exhaust port and removing the atmosphere in the processing space. Is replaced with the processing gas to refresh the processing gas concentration on the object to be processed to a constant high concentration. By repeating this process at an appropriate frequency, the processing capability can be improved and the occurrence of processing unevenness can be suppressed.
Specifically, the large flow rate is, for example, a flow rate that is twice or more the appropriate flow rate.

図2に、ランプ点灯との関係で間欠的な大流量の処理ガスを供給するタイミングチャートが示されている。横軸は時間、縦軸は、処理ガスの供給量(リットル/分)である。時間T1〜T4はそれぞれ、T1:適正流量ガス供給時間(秒)、T2:大流量ガス供給時間(秒)、T3:初期置換時間(秒)、T4:プロセス時間(秒)である。   FIG. 2 shows a timing chart for supplying an intermittent large flow of processing gas in relation to lamp lighting. The horizontal axis represents time, and the vertical axis represents the supply amount of processing gas (liter / minute). Times T1 to T4 are T1: proper flow gas supply time (seconds), T2: large flow gas supply time (seconds), T3: initial replacement time (seconds), and T4: process time (seconds), respectively.

まず、アッシング処理を開始する以前に、ランプOFFした状態で、処理ガスを供給して、処理空間内のガスを置換して処理ガス雰囲気にする。この初期置換時間T3は、流量調整弁16を大流量Q2に設定して処理ガスを供給することにより短時間ですむ。
処理空間のガス雰囲気が処理ガス濃度で、例えば90%(以上)になったら置換完了とし、アッシングプロセスを開始する。適正流量(一定量)Q1のガスを供給しつつランプをONする(適正流量のガスを供給してランプをONする)。適正ガス流量供給時間T1が経過した時点でガスの供給量を変えて大流量Q2のガスの供給を開始する。この大流量ガス供給時間T2の経過後に、再び適正流量Q1に戻してガスを供給する。このように、被処理物に紫外線を照射した状態で、処理ガスを適正流量Q1供給しつつ、間欠的に大流量Q2の処理ガスを供給することによって、T1とT2の期間を交互に繰り返す。
全体のプロセスが終了後、ランプをOFFしてガス供給を停止する。
First, before the ashing process is started, the processing gas is supplied in a state where the lamp is turned off, and the gas in the processing space is replaced to form a processing gas atmosphere. This initial replacement time T3 can be shortened by setting the flow rate adjustment valve 16 to the large flow rate Q2 and supplying the processing gas.
When the gas atmosphere in the processing space reaches the processing gas concentration, for example, 90% (or higher), the replacement is completed and the ashing process is started. The lamp is turned on while supplying a gas at an appropriate flow rate (constant amount) Q1 (the gas is supplied at an appropriate flow rate to turn on the lamp). When the appropriate gas flow rate supply time T1 elapses, the supply amount of the gas is changed and the supply of the gas with the large flow rate Q2 is started. After the passage of the large flow rate gas supply time T2, the gas is supplied again by returning to the proper flow rate Q1. In this way, the period of T1 and T2 is alternately repeated by supplying the processing gas at the high flow rate Q2 intermittently while supplying the processing gas at the appropriate flow rate Q1 while the object to be processed is irradiated with ultraviolet rays.
After the entire process is completed, the gas supply is stopped by turning off the lamp.

このように処理ガスの流量を一定流量Q1からそれよりも大流量Q2に間欠的に変化させることによって、アッシング処理の効率が向上する。図3は、タイミングチャート中の矢印A,B,Cの各時点での処理空間の様子を模式的に示した図である。
(A)初期置換時間(T3)の経過直後は、ランプ点灯初期状態であり処理空間10内は処理ガスが雰囲気の大部分を占め、窓部材5を通過した紫外線が処理ガス及び被処理物Wを照射することで、スミアの分解が効率よく行われる。
(B)適正流量Q1の供給時間(T1)において、処理空間10の上流側〜下流側において処理が進行するが、処理の過程で発生した炭酸ガスがより下流側(排気口12側)に滞留し、特に、この領域において処理能力が低下する。その結果、上流側と下流側において処理にムラが生じやすくなる。
(C)大流量Q2で処理ガスを供給することによって、ほとんど全ての炭酸ガスが排気口12から排出され、処理空間10内部が処理ガス雰囲気に一新される。すなわち、初期置換時間(T3)経過直後の状態に雰囲気が切り替わる。
Thus, the efficiency of the ashing process is improved by intermittently changing the flow rate of the processing gas from the constant flow rate Q1 to the larger flow rate Q2. FIG. 3 is a diagram schematically showing the state of the processing space at each time point indicated by arrows A, B, and C in the timing chart.
(A) Immediately after the passage of the initial replacement time (T3), the lamp is in the initial lighting state, and the processing gas occupies most of the atmosphere in the processing space 10, and the ultraviolet rays that have passed through the window member 5 are processed gas and the workpiece W. Is efficiently decomposed.
(B) In the supply time (T1) of the appropriate flow rate Q1, the processing proceeds from the upstream side to the downstream side of the processing space 10, but the carbon dioxide gas generated during the processing stays further downstream (exhaust port 12 side). In particular, the processing capability is reduced in this region. As a result, unevenness is likely to occur in the processing on the upstream side and the downstream side.
(C) By supplying the processing gas at a large flow rate Q2, almost all of the carbon dioxide gas is discharged from the exhaust port 12, and the inside of the processing space 10 is renewed to a processing gas atmosphere. That is, the atmosphere is switched to a state immediately after the initial replacement time (T3) has elapsed.

この結果、図3(A)のように、処理ガスが雰囲気の大部分を占め、スミアの分解が被処理物全体で効率よく行われる状態が、定期的に訪れるため、被処理物の処理が、処理ガスの流れの上流側(給気口側)と下流側(排気口側)とで一様に処理され、処理面全体においてムラが生じ難くなる。なお、大流量Q2のガスを供給する期間(T2)は、適正流量Q1を超えてガスを供給するためスミアの分解は一時的に行われ難くなるが、この期間は短時間に留まるので、全体として処理の効率を向上させることができるようになる。   As a result, as shown in FIG. 3A, since the processing gas occupies most of the atmosphere and smear is efficiently decomposed throughout the entire processing object, the processing of the processing object is performed periodically. The processing gas is uniformly processed on the upstream side (air supply port side) and the downstream side (exhaust port side), and unevenness is less likely to occur on the entire processing surface. It should be noted that during the period (T2) during which the gas having the large flow rate Q2 is supplied, since the gas is supplied in excess of the appropriate flow rate Q1, it is difficult to disassemble the smear temporarily. As a result, the processing efficiency can be improved.

以下、本発明の実験例について説明する。
図1で示したアッシング装置の構成に基づいて実験用装置を製作し、下記条件で処理を行い、スミア処理の均一度を測定した。
<実験条件>
被処理物W:ビアホール付プリント基板。寸法は500mm×500mmであり、厚みが35μmの銅箔上に厚みが30μmの絶縁層が形成されたものである。ビアホールは、φ50μm。
ランプ:発光長が700mm、直径φ40mm。ランプ室に5本のランプを等間隔に並べて配置。ランプの定格入力電力は500W。
窓部材:合成石英ガラス製であり、550×550mm、厚さは5mm。
処理ステージ:650×650mm、厚さ20mm。
処理ガスの供給口と排気口が設けられており、ガス流路の幅は510mm。
被処理物と窓部材とのギャップ(離間距離)は0.5mm。
ステージは付設されたヒータによって120℃に加熱。
処理ガスは、酸素ガス100%。適正流量Q1は0.3リットル/分。
なお、ランプ室内は、約100Nl/minのNガスをパージした。これによりランプ室内での紫外線の減衰を極力減じることとした。
Hereinafter, experimental examples of the present invention will be described.
An experimental apparatus was manufactured based on the configuration of the ashing apparatus shown in FIG. 1 and processed under the following conditions to measure the uniformity of smear processing.
<Experimental conditions>
Workpiece W: Printed circuit board with via holes. The dimensions are 500 mm × 500 mm, and an insulating layer having a thickness of 30 μm is formed on a copper foil having a thickness of 35 μm. The via hole is φ50μm.
Lamp: Emission length is 700 mm, diameter is 40 mm. Five lamps are arranged at regular intervals in the lamp chamber. The rated input power of the lamp is 500W.
Window member: Made of synthetic quartz glass, 550 × 550 mm, thickness is 5 mm.
Processing stage: 650 × 650 mm, thickness 20 mm.
A processing gas supply port and an exhaust port are provided, and the width of the gas flow path is 510 mm.
The gap (separation distance) between the workpiece and the window member is 0.5 mm.
The stage is heated to 120 ° C by an attached heater.
The processing gas is 100% oxygen gas. The appropriate flow rate Q1 is 0.3 liter / min.
The lamp chamber was purged with about 100 Nl / min of N 2 gas. As a result, the attenuation of ultraviolet rays in the lamp chamber was reduced as much as possible.

比較例としては、処理ガスの適正流量Q1を0.3リットル/分とし、一定の流量で200秒間流し続けて処理した。
実験例1〜6において、適正流量Q1(0.3リットル/分)に対して、大流量の流量Q2を変化させるとともに、その供給時間T2と繰り返し回数も変化させた。
As a comparative example, the process gas was processed at an appropriate flow rate Q1 of 0.3 liter / min and kept flowing at a constant flow rate for 200 seconds.
In Experimental Examples 1 to 6, the large flow rate Q2 was changed with respect to the appropriate flow rate Q1 (0.3 liter / min), and the supply time T2 and the number of repetitions were also changed.

処理の均一度は、ビアホール底の炭素(C)の残量の比較をすることで求めた。
Cの残量分析方法は、EDX分析を行った。
○装置:走査型電子顕微鏡(SU−70 株式会社日立ハイテクノロジーズ社製)
○測定条件:被処理物を30°傾斜。加速電圧 10kV。ビアホール中央付近約□4.5μm程度の領域を測定した。
○観察位置は、処理ガス流の上流(端から30mm)、中央、下流(端から30mm)の3点であった。
絶縁層の下地のCu配線22のCuの強度と、ビアホール24底のスミア成分のC強度を測定し、強度を質量換算した後にC/Cuの質量濃度比を比較した。
The uniformity of the treatment was determined by comparing the remaining amount of carbon (C) at the bottom of the via hole.
As a method for analyzing the remaining amount of C, EDX analysis was performed.
○ Device: Scanning electron microscope (SU-70, manufactured by Hitachi High-Technologies Corporation)
○ Measurement conditions: The object to be treated is inclined by 30 °. Acceleration voltage 10kV. An area of about □ 4.5 μm was measured near the center of the via hole.
The observation positions were three points upstream (30 mm from the end), center, and downstream (30 mm from the end) of the processing gas flow.
The Cu strength of the Cu wiring 22 underlying the insulating layer and the C strength of the smear component at the bottom of the via hole 24 were measured. After the strength was converted into mass, the mass concentration ratio of C / Cu was compared.

スミア未処理状態でのC/Cu比は、0.80であった。
照射時間が長くなるとスミアは完全に除去されるので、C/Cu比は飽和する(0.1以下)。
このため、この実験においては、完全には除去できない照射時間約200sとして、各実験例と比較例における全体のプロセス時間を一定とし、同時間内における処理能力および均一度を測り、評価、判定を行うこととした。
The C / Cu ratio in the unsmeared state was 0.80.
As the irradiation time becomes longer, smear is completely removed, so the C / Cu ratio is saturated (0.1 or less).
Therefore, in this experiment, the irradiation time that cannot be completely removed is set to about 200 s, the entire process time in each experimental example and the comparative example is made constant, the processing ability and uniformity within the same time are measured, and evaluation and determination are performed. I decided to do it.

この結果、図4の表1で示すように、間欠的に大流量を流す本発明の実験1〜6においては、いずれも、一定の適正流量のみを流す比較例よりも処理の均一度が向上していることが分かる。
なお、表1における均一度の具体的なデータは図5の表2に示されている。
As a result, as shown in Table 1 of FIG. 4, in Experiments 1 to 6 of the present invention in which a large flow rate is intermittently flowed, the processing uniformity is improved as compared with the comparative example in which only a constant appropriate flow rate is flowed. You can see that
The specific data of the uniformity in Table 1 is shown in Table 2 of FIG.

また、これらの実験例において、大流量処理ガスが流れる時間(T2)で処理空間内のガスがどの程度の割合で置換されたか(置換率A/V)をみると、図6の表3およびこの表3をグラフ化した図7で示されるように、置換率0.64近傍に変曲点があり、特に置換率が0.64以上になると、C/Cu比の均一度が15%以内に収まり、均一性の高いデスミア処理を行うことができることが判明した。
これに反して処理の均一性が悪い場合、全てのビアホール底のスミアが完全に取れるまで照射が必要なため、デスミアに時間がかかる。
また、処理時間が長くなると、デスミアと同時に絶縁膜表面がアッシングされてしまう。処理ムラが大きいと絶縁層の厚さが変わってくるので、積層された配線間の絶縁破壊電圧のバラツキや、積層された配線間の静電容量に違いが出るために高周波信号応答性のばらつき等の問題となる。
Further, in these experimental examples, when the ratio of the gas in the processing space was replaced during the time (T2) when the large flow rate processing gas flows (replacement rate A / V), Table 3 in FIG. As shown in FIG. 7 in which Table 3 is graphed, there is an inflection point in the vicinity of the substitution rate of 0.64. Especially when the substitution rate is 0.64 or more, the uniformity of the C / Cu ratio is within 15%. It was found that a highly uniform desmear treatment can be performed.
On the other hand, when the uniformity of processing is poor, since it is necessary to irradiate until all the via hole bottom smear is completely removed, it takes time for desmear.
Further, when the processing time is lengthened, the surface of the insulating film is ashed simultaneously with desmear. If the processing unevenness is large, the thickness of the insulating layer will change. Therefore, variations in the dielectric breakdown voltage between the stacked wirings and differences in capacitance between the stacked wirings will cause variations in the high-frequency signal response. It becomes a problem such as.

以上説明したように、本発明においては、処理を行うための適正流量の処理ガスを流して紫外線を照射する処理期間中に、該適正流量を超える大流量の処理ガスを間欠的に供給して、一定時間ごとに前記処理空間内に発生した排ガス(炭酸ガス)を一掃して処理ガスに置換するようにしたことにより、被処理物の処理の均一度が向上し、ひいては、処理時間の短縮化が図られるものである。
また、前記大流量処理ガスを、処理プロセスの前段階の処理空間内の雰囲気の置換作業に用いることで、その初期置換時間の短縮化が図れる。
As described above, in the present invention, a large flow rate of processing gas exceeding the proper flow rate is intermittently supplied during a treatment period in which an ultraviolet ray is irradiated by flowing a treatment gas of an appropriate flow rate for performing the treatment. The exhaust gas (carbon dioxide) generated in the processing space at regular intervals is wiped out and replaced with the processing gas, so that the uniformity of processing of the object to be processed is improved and the processing time is shortened. Can be achieved.
Further, by using the large flow rate processing gas for the replacement work of the atmosphere in the processing space in the previous stage of the processing process, the initial replacement time can be shortened.

1 アッシング装置
2 処理室
3 ランプ室
4 紫外線ランプ
5 窓部材
6 反射鏡
7 処理室筺体
8 ステージ
10 処理空間
11 (処理ガス)給気口
12 (排ガス)排気口
13 処理ガス供給手段
14 処理ガス供給部
15 制御部
16 流量調整弁
W 被処理物


DESCRIPTION OF SYMBOLS 1 Ashing apparatus 2 Processing chamber 3 Lamp chamber 4 Ultraviolet lamp 5 Window member 6 Reflection mirror 7 Processing chamber housing 8 Stage 10 Processing space 11 (Processing gas) Supply port 12 (Exhaust gas) Exhaust port 13 Processing gas supply means 14 Processing gas supply Part 15 Control part 16 Flow control valve W Workpiece


Claims (5)

被処理物を内部に配置する処理室と、
前記被処理物に紫外線を照射する紫外線ランプを収容し、前記処理室と区画する紫外線透過性の窓部材を有するランプ室と、
前記被処理物と前記窓部材の間に形成された処理空間に処理ガスを供給する処理ガス供給手段と、
を備えたアッシング装置において、
前記処理ガス供給手段は、
処理を行うための適正流量の処理ガスを供給可能であると共に、該適正流量を超える大流量の処理ガスを供給可能な制御部を有し、
前記大流量の処理ガスを間欠的に供給して、前記被処理物から発生した排ガスを排出し、前記処理空間を処理ガスに置換する
ことを特徴とするアッシング装置。
A processing chamber in which the workpiece is placed;
A lamp chamber containing an ultraviolet lamp for irradiating the object to be processed with ultraviolet rays, and having an ultraviolet ray transmissive window member that divides the processing chamber;
A processing gas supply means for supplying a processing gas to a processing space formed between the object to be processed and the window member;
In an ashing device comprising:
The processing gas supply means includes
A control unit capable of supplying a processing gas with an appropriate flow rate for performing processing, and capable of supplying a processing gas with a large flow rate exceeding the appropriate flow rate,
An ashing apparatus characterized by intermittently supplying the processing gas having a large flow rate, discharging exhaust gas generated from the object to be processed, and replacing the processing space with the processing gas.
前記処理空間の容積(V)に対する前記間欠的に供給する前記大流量処理ガスの総流量(A)の比率(置換率A/V)が、0.64以上であることを特徴とする請求項1に記載のアッシング装置。   The ratio (substitution rate A / V) of the total flow rate (A) of the large flow rate processing gas supplied intermittently to the volume (V) of the processing space is 0.64 or more. 2. The ashing device according to 1. 前記処理ガス供給手段が、前記大流量の処理ガス供給期間時に供給する処理ガス流量は、前記適正流量供給時の2倍以上であることを特徴とする請求項1に記載のアッシング装置。   2. The ashing device according to claim 1, wherein the processing gas flow rate supplied by the processing gas supply unit during the high flow rate processing gas supply period is twice or more that when the appropriate flow rate is supplied. 前記処理ガス供給手段は、前記被処理物に紫外線を照射して処理し始める前に、前記大流量の処理ガスを供給して前記処理空間を処理ガスに置換し、その後適正流量に切り替えて紫外線を照射することを特徴とする請求項1に記載のアッシング装置。   The processing gas supply means supplies the large flow rate of processing gas to replace the processing space with the processing gas before irradiating the object to be processed with ultraviolet rays, and then switches the processing space to an appropriate flow rate. The ashing device according to claim 1, wherein the ashing device is irradiated. 処理空間内に処理ガスを供給し、被処理物に紫外線を照射してアッシング処理するアッシング方法において、
前記処理ガスを、前記処理空間内に適正流量だけ供給する適正流量供給工程と、
前記適正流量を超える大流量の処理ガスを間欠的に供給して、前記被処理物から発生した排ガスを排出し、前記処理空間を処理ガスに置換する大流量供給工程と、
を有していることを特徴とするアッシング方法。
In an ashing method in which a processing gas is supplied into a processing space and an object to be processed is irradiated with ultraviolet rays for ashing,
An appropriate flow rate supplying step of supplying the process gas by an appropriate flow rate into the processing space;
A high flow rate supply step of intermittently supplying a large flow rate of processing gas exceeding the appropriate flow rate, discharging exhaust gas generated from the object to be processed, and replacing the processing space with a processing gas;
An ashing method characterized by comprising:
JP2013260842A 2013-12-18 2013-12-18 Ashing apparatus and ashing method Active JP6183202B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013260842A JP6183202B2 (en) 2013-12-18 2013-12-18 Ashing apparatus and ashing method
PCT/JP2014/080503 WO2015093216A1 (en) 2013-12-18 2014-11-18 Ashing device and ashing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260842A JP6183202B2 (en) 2013-12-18 2013-12-18 Ashing apparatus and ashing method

Publications (2)

Publication Number Publication Date
JP2015119015A JP2015119015A (en) 2015-06-25
JP6183202B2 true JP6183202B2 (en) 2017-08-23

Family

ID=53402571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260842A Active JP6183202B2 (en) 2013-12-18 2013-12-18 Ashing apparatus and ashing method

Country Status (2)

Country Link
JP (1) JP6183202B2 (en)
WO (1) WO2015093216A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597323B2 (en) * 2016-01-08 2019-10-30 ウシオ電機株式会社 Ultraviolet treatment apparatus and ultraviolet treatment method
JP6672895B2 (en) * 2016-03-03 2020-03-25 ウシオ電機株式会社 Manufacturing method of wiring board
JP6702490B2 (en) * 2019-08-21 2020-06-03 ウシオ電機株式会社 UV treatment device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280151A (en) * 1997-04-08 1998-10-20 Fujitsu Ltd Cleaning of cvd system
JP4911982B2 (en) * 2006-02-06 2012-04-04 東京エレクトロン株式会社 Gas supply apparatus, substrate processing apparatus, gas supply method, and gas supply control method
JP2007227496A (en) * 2006-02-22 2007-09-06 Pre-Tech Co Ltd Ashing device and ashing method
JP2010027702A (en) * 2008-07-16 2010-02-04 Hitachi Kokusai Electric Inc Substrate processing apparatus and method of forming thin film
JP5461148B2 (en) * 2009-11-05 2014-04-02 株式会社日立ハイテクノロジーズ Plasma etching method and apparatus

Also Published As

Publication number Publication date
WO2015093216A1 (en) 2015-06-25
JP2015119015A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
WO2014156628A1 (en) Photo-irradiation device
JP5895929B2 (en) Light irradiation device
JP6183202B2 (en) Ashing apparatus and ashing method
TWI583525B (en) A template cleaning method, a pattern forming method, a light cleaning apparatus, and a nanoimprint apparatus
KR102355875B1 (en) Surface treatment method and device
JP2016538726A (en) System for processing substrates using two or more ultraviolet light sources of different wavelengths
JP5975527B2 (en) Method for cleaning photomask-related substrate and method for manufacturing photomask-related substrate
JP2003337432A (en) Method for removing resist using functional water and apparatus therefor
WO2016208110A1 (en) Optical treatment device and optical treatment method
WO2015083435A1 (en) Ashing method and ashing device
TWI620479B (en) Desmear treatment device and desmear treatment method
JP5271456B2 (en) Plasma processing apparatus and plasma processing method
JP5783472B2 (en) Ashing equipment
JP2016165014A (en) Desmear treatment device and desmear treatment method
JP6102842B2 (en) Desmear processing method and desmear processing apparatus
JPH11323576A (en) Wet etching method
JP6447292B2 (en) Light processing equipment
JP6459578B2 (en) Optical processing apparatus and optical processing method
KR101955109B1 (en) Light irradiation apparatus
JP6507701B2 (en) Light processing apparatus and light processing method
JP2017017070A (en) Light processing device and light processing method
JPH06333814A (en) Ashing device
JP6374735B2 (en) Vacuum processing apparatus and dry cleaning method
JP2016219656A (en) Optical processing apparatus and optical processing method
JP2013030625A (en) Method of manufacturing semiconductor device, and processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6183202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250