本発明の実施の形態を、添付図面に例示した本発明の実施例に基づいて以下に具体的に説明する。
先ず、図1〜図13を参照して本発明の第1実施形態について説明するに、図1,図2には、作業車両としての塵芥収集車Vが示され、これは、ベース車両Vbと、そのベース車両Vbの組立完成後にその車体F上に架装される塵芥収集作業用の架装物Kとから構成される。そして、ベース車両Vbには車両側制御装置UVが、また架装物Kには架装物側制御装置UKがそれぞれ配備される。
図3,図4も併せて参照して、ベース車両Vbの車体Fには、車輪Wに駆動力を付与可能なエンジンEと、バッテリBと、そのバッテリBにインバータ12を介して接続されてバッテリBからの電力で作動する電動モータMと、それらエンジンE及び電動モータMを含む駆動系としての車輪駆動系DからエンジンE又は電動モータMの動力を選択的に取出可能な動力選択取出機構PSと、それらエンジンE、電動モータM及び動力選択取出機構PSを制御可能な、マイクロコンピュータを主要部とする前記車両側制御装置UVとが少なくとも搭載されている。
前記車輪駆動系Dは、エンジンEの出力側に変速機10を介して車輪即ち後輪Wが連動、連結されて成るものであり、その変速機10の入力側とエンジンEの出力側との間には、その間を断接する電磁クラッチ11が設けられ、またその電磁クラッチ11と変速機10との間には、電動モータMのモータ軸(図示せず)が直列に介装される。
そして、車両側制御装置UVにより、電磁クラッチ11を接続した状態で電動モータMを非通電にしてモータ軸を空回りさせれば、エンジンEの出力は、電磁クラッチ11、モータ軸及び変速機10を経て車輪W側に伝動されるから、車輪WをエンジンEで走行駆動することができる。一方、電磁クラッチ11を遮断した状態で電動モータMにバッテリBから通電すれば、その電動モータMの出力は変速機10を経て車輪W側に伝動されるため、車輪Wを電動モータMで走行駆動することができる。このように塵芥収集車Vは、エンジンEと電動モータMの何れを動力源としても車輪Wを走行駆動し得るハイブリッド式作業車両である。
また、車輪WをエンジンEで走行駆動しているときに、電動モータMは、モータ軸の前記空回りに伴い起電力を発生し得るので、これをバッテリBに充電可能である。尚、電動モータMを上記のように発電機に兼用してもよいし、或いは、エンジンEで駆動される充電専用発電機を電動モータMとは別個に設けて、その発電機で発電した電力でバッテリBに充電するようにしてもよい。
エンジンE、電動モータM、バッテリB及び電磁クラッチ11は、車両側制御装置UVに接続され、またエンジンEを始動操作するためのスタータスイッチS−SWも車両側制御装置UVに接続される。
また、図4のブロック図に示されるバッテリBには、バッテリBの状態を検出する電圧計、電流計等よりなるバッテリセンサや、バッテリBと電動モータM間での給電・充電を車両側制御装置UVからの制御信号に基づき制御する給充電回路部が含まれるものであり、それらセンサや給充電回路部は車両側制御装置UVに接続され、また特にバッテリ残量を検知するバッテリセンサは、架装物側制御装置UK(後述する第2制御装置UK2)にも接続される。
また、図4のブロック図に示されるエンジンEには、エンジン各部の状態を検出するセンサや、車載の他のバッテリとエンジンの電気的な負荷部(例えば点火プラグ、スタータモータ、ジェネレータ等)との間での給電・充電を車両側制御装置UVからの制御信号に基づき制御する給充電回路部が含まれるものであり、それらエンジン側のセンサや給充電回路部は車両側制御装置UVに接続される。またエンジンEに設けられるセンサのうち、特にエンジンが運転中であることを検出してエンジン作動中信号を出力するセンサは、架装物側制御装置UK(第2制御装置UK2)にも接続される。
而して、車両側制御装置UVと、エンジンE、電動モータM及びバッテリBとの各間は、実際には複数の電力線及び/又は信号線で各々接続されるが、その表示を図4では簡略的に示す。
前記変速機10には、その変速機出力を随時取出可能な動力取出装置PTOが付設されており、その動力取出装置PTOの出力側は、架装物Kの一部である、後述する油圧ポンプPに連動、連結される。また、その動力取出装置PTOは、車両側制御装置UVに接続されており、同じく車両側制御装置UVに接続された動力取出スイッチP−SWへの操作入力に応じて変速機10の出力を車輪W側と油圧ポンプP側とに選択的に切換えて伝達できるようになっている。即ち、その動力取出スイッチP−SWがオフの状態では変速機10の出力が車輪W側に伝達されて走行駆動に利用されるが、同スイッチがオン操作された状態では、変速機10の出力が油圧ポンプP側に伝達されてポンプ駆動に利用される。尚、斯かる動力取出装置PTOの構造機能は従来周知であるので、これ以上の説明を省略する。
而して、前記した電磁クラッチ11、動力取出装置PTO及び動力取出スイッチP−SWは、互いに協働して前記動力選択取出機構PSを構成している。
尚、図示例の車輪駆動系Dでは、エンジンE及び電動モータMが互いに直列に配置されるが、本発明では、電動モータM及びエンジンEを互いに並列に変速機10側に接続するようにしてもよい。
ところで前記架装物Kは、後端を開放したボックス状の塵芥収容箱1をベース体(即ち架装物本体)としており、この塵芥収容箱1は、ベース車両Vbの車体F上に後付けで搭載、固定される。その塵芥収容箱1の後端には、塵芥を塵芥収容箱1内に投入するための塵芥投入口3aを後端に有する塵芥投入箱3が連設され、その塵芥投入口3aは開閉扉3tで開閉可能である。この塵芥投入箱3の上端部は塵芥収容箱1の後端上部に回動可能に軸支されており、その軸支部回りに塵芥投入箱3を投入箱回動用の第1シリンダA1により上下回動させることで、塵芥投入箱3が、図1実線で示す如く塵芥収容箱1の後端開口1aを閉じる積込位置(下げ位置)と、図1鎖線で示す如く同後端開口1aを開放する排出位置(上げ位置)との間を随時に移動可能である。
塵芥投入箱3内には、該塵芥投入箱3が前記積込位置にあるときに該塵芥投入箱3内の投入塵芥を塵芥収容箱1内に強制的に積込む積込工程を実行可能な作業機としての塵芥積込装置2が設けられる。この塵芥積込装置2の構造は、圧縮板式と呼ばれる従来周知のもので、図示例では、塵芥収容箱1の後端開口1aに臨む位置で塵芥投入箱3の左右両側壁に昇降可能に支持される昇降体4と、その昇降体4を強制昇降させる昇降体昇降用の第2シリンダA2と、塵芥投入箱3内でその横幅一杯に延び且つ昇降体4の下部に前後回動可能に軸支される圧縮板5と、この圧縮板5を強制回動させる圧縮板進退用の第3シリンダA3とを備える。
而して圧縮板5を後方位置に保持した状態で昇降体4を上昇位置から下降位置まで下降させることにより行なわれる一次圧縮作用と、昇降体4を下降位置に保持した状態で行なう圧縮板5の後方位置から前方位置への前方回動により行なわれる二次圧縮作用と、圧縮板5を前方位置に保持した状態で昇降体4を下降位置から上昇位置まで上昇させることにより行なわれる積込作用とからなる一連の塵芥積込サイクルを実行することで、塵芥投入箱3内の投入塵芥が塵芥収容箱1内に強制的に押し込まれる。そして、上記各作用を順次動作させるために、塵芥投入箱3内の適所には、昇降体4の上昇位置及び下降位置、並びに圧縮板5の後方位置及び前方位置を各々検出する複数の近接スイッチ(図示せず)が設けられ、これら近接スイッチは、後述する第1制御装置UK1に接続される。
また塵芥収容箱1には、その内部に収容された塵芥を外部に排出させる作業機としての塵芥排出装置7が設けられる。この塵芥排出装置7は、塵芥収容箱1内でその横幅一杯に延び且つ前記積込位置にある塵芥投入箱3に対して進退可能な排出板6と、その排出板6の背面と塵芥収容箱1の前部との間に介装されて排出板6を塵芥投入箱3に対し進退駆動する第4シリンダA4と、前記第1シリンダA1とで構成される。そして、塵芥投入箱3が前記排出位置(上げ位置)にあるときに排出板6を塵芥収容箱1内で後退させることで、塵芥収容箱1内の収容塵芥をその後端開口1aより強制的に排出可能である。
図6を併せて参照して、ベース車両Vbの運転室には前部操作盤CFが設けられ、この前部操作盤CFには、塵芥積込装置2及び塵芥排出装置7の作動態様を任意に選択操作するための各種操作スイッチCF−SW1〜3と、油圧ポンプPをエンジンEで駆動するエンジン駆動状態と電動モータMで駆動するモータ駆動状態とを切換操作するための第2動力源選択スイッチM−SW2と、各種の報知ランプL1〜L5とが設けられる。その第2動力源選択スイッチM−SW2は、モータ駆動状態を選択すべくオン操作されたときにだけモータ選択信号を出力する。
この前部操作盤CFの前記各種操作スイッチには、例えば、作業選択操作のためのメインスイッチCF−SW1、塵芥投入箱3を上下回動される上下選択スイッチCF−SW2、排出板6を前進・後退動作させる進退選択スイッチCF−SW3、その他の操作スイッチ(図示せず)が含まれる。そのメインスイッチCF−SW1は、塵芥積込装置2の積込作動を許可する積込選択位置と、塵芥排出装置7の排出作動を許可する排出選択位置と、塵芥積込装置2及び塵芥排出装置7の各作動を休止させるオフ位置とを任意に選択操作可能であり、その3位置に各々選択保持できるように構成してもよいし、或いは積込選択位置又は排出選択位置からオフ位置に自動復帰できるように構成してもよい。而して、メインスイッチCF−SW1、上下選択スイッチCF−SW2及び進退選択スイッチCF−SW3は、塵芥排出工程の作業終了スイッチとして機能する。
また図7を併せて参照して、塵芥投入箱3の塵芥投入口3a周辺の外面には後部操作盤CRが固定、支持される。この後部操作盤CRには、塵芥積込装置2の作動態様を任意に選択操作するための各種操作スイッチCR−SW1〜3と、油圧ポンプPをエンジンEで駆動するエンジン駆動状態と電動モータMで駆動するモータ駆動状態とを切換操作するための第1動力源選択スイッチM−SW1と、各種報知ランプL1〜L5とが設けられる。その動力源選択スイッチM−SW1は、モータ駆動状態を選択すべくオン操作されたときにだけモータ選択信号を出力する。尚、後部操作盤CRは、図示例では塵芥投入箱3の塵芥投入口3a左側に配設しているが、これに加えて(又は代えて)、塵芥投入口3a右側に後部操作盤CRを配設するようにしてもよい。
この後部操作盤CRの前記各種操作スイッチには、例えば塵芥積込装置2に積込作動を開始させる指令信号を出力する積込スイッチCR−SW1、塵芥積込装置2の前記積込サイクルを1回だけ運転するか連続運転するかを選択する連単スイッチCR−SW2、塵芥積込装置2の積込作動や塵芥排出装置7の排出作動を緊急停止させる指令信号を出力する緊急停止スイッチCR−SW3、その他の操作スイッチ(説明は省略)が含まれる。而して、連単スイッチCR−SW2を連続運転位置に保持して前記積込サイクルを連続運転している状態で連単スイッチCR−SW2を1回運転位置に切換えると、塵芥積込装置2の積込作動は実行中の積込サイクルの終了と同時に終了するので、この連単スイッチCR−SW2が連続運転時の作業終了スイッチを兼ねる。
また前、後部操作盤CF,CRにおける前記各種報知ランプ群には、車両のキースイッチ(図示せず)がオン操作されている状態で、油圧ポンプPが電動モータMで正常に駆動可能な状態である旨を報知する第1の報知手段としての第1報知ランプL1と、バッテリBの残量が所定値以下に低下した旨を報知する第2の報知手段として第2報知ランプL2と、油圧ポンプPが電動モータMで駆動された状態(即ちモータ駆動中)にある旨を報知する第3の報知手段としての第3報知ランプL3と、バッテリBの残量が所定値を超えて十分にある旨を報知する第4の報知手段として第4報知ランプL4と、動力源選択スイッチM−SW1,2がモータ駆動状態を選択する操作位置にある旨を報知する第5の報知手段としての第5報知ランプL5とが含まれ、また前、後部操作盤CF,CRには、これら報知ランプL1〜L5の報知内容の表示がそれぞれ付されている。
尚、前記第1報知ランプL1が報知する「電動モータMで正常に駆動可能な状態」とは、バッテリBの残量(即ち充電されている電気量)が十分に、即ち所定下限値以上、確保されており、且つ電動モータMをバッテリBからの電力で作動させるための、電動モータM及びバッテリBを含む電気系統(以下、本明細書では単に「電気系統」という)が故障していない状態(即ち断線、短絡、素子破損等の故障がなくて、該電気系統が正常に機能する状態)をいう。
而して、前部操作盤CFのメインスイッチCF−SW1を積込選択位置に切換えた上で、後部操作盤CRの積込スイッチCR−SW1をオン操作すれば、塵芥積込装置2の積込作動を開始させることができ、またメインスイッチCF−SW1を排出選択位置に切換えた上で、上下選択スイッチCF−SW2を上げ位置に操作すれば塵芥投入箱3を上方回動させ、しかる後に、進退選択スイッチCF−SW3を排出位置に操作すれば、排出板6を後退動作させて塵芥収容箱1内の収容塵芥を排出することができる。
尚、以上説明した報知ランプL1〜L5は、報知機能を視覚的により識別し易くするために報知機能毎に適宜色分けしたり、或いは、少なくとも一部の報知ランプの点滅態様を変更(例えば点滅間隔を変更)してもよい。また第1〜第5の報知手段としては、図示例の第1〜第5報知ランプL1〜L5に代えて(或いは加えて)、所定の報知音又はアナウンス音を発する音声発生手段を用いることも可能である。尚、本明細書で報知ランプL1〜L5とは、電球やパイロットランプは元より、LED(発光ダイオード)やバックライト付き液晶をも含む広い概念で使用される。
ところで図示例では、前部操作盤CFは、運転室に設置したが、この配置構成に加えて、或いは代えて、第3の操作盤(図示せず)を運転室外で且つ塵芥投入箱3から離間した部位に配置してもよい。例えば、第3の操作盤を塵芥収容箱1の側面適所に設置、固定すると、後部操作盤CRの積込スイッチCR−SW1等にも比較的近くなり、配線も纏め易くなる利点がある。また第3の操作盤を塵芥収容箱1の前部、例えば後述する制御ユニットボックスUKBの近くに設置、固定すると、架装物側制御装置UKに比較的近くなり、配線も纏め易くなる利点がある。また第3の操作盤をマグネット着脱式の有線リモコン又は無線リモコンとして、これを作業員が塵芥投入箱3から離れた車両(例えば塵芥収容箱1外面)又は車外固定物の任意の位置に吸着固定したり、或いは作業員が携帯するようにしてもよい。これにより、塵芥投入箱3が図1点線示の如く上昇して第1動力源選択スイッチM−SW1が後部操作盤CRと共に上昇変位しても、前部操作盤CF或いは前記第3の操作盤の第2動力源選択スイッチM−SW2で駆動源の切換操作を支障なく行うことができる。
更に塵芥収容箱1には、車載の油圧作動式の各作業機、即ち塵芥積込装置2及び塵芥排出装置7(以下、単に作業機2,7と呼ぶ)を作動させるための、油圧ポンプPを含む油圧回路Cが搭載される。この油圧回路Cは、図5に示すように、吸込側が油タンクTに接続された油圧ポンプPと、この油圧ポンプPの吐出側を前記第1〜第4シリンダA1〜A4の作動油室に並列に接続する油路に各々介装される第1〜第4バルブv1〜v4と、油圧ポンプPの吐出圧を所定値以下に抑えるべく油圧ポンプPの吐出側と油タンクT間に介装されるリリーフ弁Rとを備える。
その第1〜第4バルブv1〜v4は、対応するシリンダA1〜A4の作動を各独立して切換制御すべく、該シリンダA1〜A4の作動油室と油圧ポンプPとの各間での作動油の給排制御を行えるように構成される。そして、その各バルブv1〜v4が中立位置に切換えられると、それと同時に各バルブv1〜v4と対応するシリンダA1〜A4の作動油室との間が遮断されてシリンダA1〜A4が油圧ロックされ、これにより、対応する作業機2,7がその時点の作業位置に停止、ロックされる。尚、図示例では、第1〜第4バルブv1〜v4は、マルチバルブMVとして単一の基体内に集中配備されてユニット化されており、このマルチバルブMVがバルブ装置を構成する。
油圧ポンプPは、吐出容量可変型の油圧ポンプで構成され、特に本実施形態では、図示しないポンプケーシングに環状配列されて各々摺動可能に嵌装される複数のプランジャと、それらプランジャの端部に摺接する、ポンプケーシングに対し相対回転可能な斜板とを有する斜板式プランジャポンプから構成されていて、その斜板の傾斜角度の変更により各プランジャの作動ストローク、延いてはポンプ吐出容量を変更可能となっている。前記斜板には、その傾斜角度を変更すべく斜板を駆動する電動式のアクチュエータAが連動、連結される。このような斜板式プランジャポンプの構造は、従来周知であるので、これ以上の説明は省略する。斯かる斜板式プランジャポンプを油圧ポンプPとして使用すれば、吐出容量の変更が容易で、その切換制御を迅速且つ的確に行い得る利点がある。尚、前記アクチュエータAとしては、電磁アクチュエータ、電動モータ等より適宜選定可能であり、本実施形態では電磁アクチュエータが用いられる。
ところで前記架装物Kは、車両側制御装置UVから独立した架装物側制御装置UKを備えるものであり、これは、塵芥収容箱1の適所(図示例では前端部)に付設した制御ユニットボックスUKBに内蔵される。この架装物側制御装置UKは、前、後部操作盤CF,CRの各種操作スイッチCF−SW1〜3,CR−SW1〜3への操作入力に応じて作業機2,7を作動制御すべく前記マルチバルブMVにバルブ制御信号を出力可能な、マイクロコンピュータを主要部とする第1制御装置UK1と、その第1制御装置UK1及び車両側制御装置UV間に介装されてその間の信号授受、即ちインターフェース機能を発揮し得る第2制御装置UK2とより構成される。尚、車両側制御装置UV及び架装物側制御装置UKは、何れも車両のキースイッチがオン操作されるのに応じて車載電源に通電されて起動され、そのキースイッチがオフ操作されるのに応じて非通電となって作動停止する。
前記第1制御装置UK1は、作業機2,7を作動制御すべく塵芥収集車Vに従来普通に搭載、使用される作業機用制御装置と基本的に同一構造の制御装置であり、これには、前、後部操作盤CF,CRに設けた各種操作スイッチCF−SW1〜3;CR−SW1〜3がその操作入力信号を受信できるように接続される。また、第1制御装置UK1は、作業機2,7を作動させる各シリンダA1〜A4を作動制御するマルチバルブMV(各バルブv1〜v4)に接続され、該バルブv1〜v4に作動指令信号を個別に出力可能である。
更に第1制御装置UK1は、前記各種操作スイッチの操作入力状況から作業機2,7が作動中であると判断したときにエンジンEをアイドルアップするためのアイドルアップ信号を第2制御装置UK2に出力可能であり、このアイドルアップ信号の入力に応じて、第2制御装置UK2は、作業機2,7が作動中である旨の作業機作動中信号を車両側制御装置UVのモータ制御部に出力可能とし、更に車両側制御装置UVのエンジン制御部に電子ガバナ信号を出力してエンジン回転数を増大(アイドルアップ)制御可能とする。
一方、第2制御装置UK2には、第1及び第2動力源選択スイッチM−SW1,2がその操作入力信号を受信できるように接続され、また前記第1〜第5報知ランプL1〜5が第2制御装置UK2からの出力電流により報知(点灯)作動できるよう接続される。
また、第2制御装置UK2からは、各動力源選択スイッチM−SW1,2がオン操作されてモータ選択信号が出力されるのに応じてモータ駆動指令信号を車両側制御装置UVのモータ制御部に出力可能とし、そのモータ駆動指令信号と前記作業機作動中信号とに基づいて、バッテリBから電動モータMへの通電(従ってモータ作動)を実行可能としている。即ち、車両側制御装置UVは、第2制御装置UK2からモータ駆動指令信号を受けると、油圧ポンプPの駆動源を電動モータMとするようエンジンE、電動モータM及び動力選択取出機構PSを制御可能であり、また第2制御装置UK2からモータ駆動指令信号を受けない場合は、油圧ポンプPの駆動源をエンジンEとするようエンジンE、電動モータM及び動力選択取出機構PSを制御可能である。かくして、第2制御装置UK2は、第1,第2動力源選択スイッチM−SW1,2への操作入力に応じて、且つ車両側制御装置UVと協働して、油圧ポンプPをエンジンEで駆動するエンジン駆動状態と電動モータMで駆動するモータ駆動状態とを切換制御可能である。
また、第2制御装置UK2は、これに前部操作盤CFのメインスイッチCF−SW1の出力信号を入力できるようになっており、その出力信号から積込作動選択状態にあるか或いは排出作動選択状態にあるかを判断可能である。そして、その判断結果に基づき第2制御装置UK2は、積込作動選択中は動力源選択スイッチM−SW1からの切換操作信号は有効とするが動力源選択スイッチM−SW2からの切換操作信号は無効とし、一方、排出作動選択中は、動力源選択スイッチM−SW2からの切換操作信号は有効とするが動力源選択スイッチM−SW1からの切換操作信号は無効とする。
また車両側制御装置UVから第2制御装置UK2側へは、モータ駆動許可信号が出力可能となっている。但し、そのモータ駆動許可信号は、前記電気系統が正常であり且つバッテリBが電池切れ(即ち残量が所定下限値未満に低下)していない場合と、前記電気系統は正常であるがバッテリBの残量がある程度(即ち前記所定下限値よりは高い所定値以下に)低下した場合とで出力態様(例えば出力信号のデューティ比)が互いに異なるよう設定され、また、前記電気系統が故障したり或いはバッテリBが前記電池切れを起こした場合にはモータ駆動許可信号が出力されなくなる。尚、モータ駆動許可信号は、車両側制御装置UVが前記作業機作動中信号を受信中にだけ出力するようにしてもよい。
また、図示はしないが、バッテリB及び電動モータM間には、前記電気系統の故障の有無を検出する故障診断回路が設けられており、この故障診断回路や、バッテリBに設けた前記バッテリセンサからの各検出信号が車両側制御装置UVに入力されることにより、該車両側制御装置UVで何れの出力態様のモータ駆動許可信号を出力すべきか、或いは出力を停止すべきかの各判断がなされる。
更に架装物側制御装置UKの第2制御装置UK2には、エンジンEが運転中にあるか停止中であるかを識別させるエンジン作動中信号が、エンジンEに設けたセンサから入力可能であり、またバッテリBの残量を示すバッテリ残量信号が、バッテリBに設けたセンサから入力可能であり、またエンジンEがスタータスイッチS−SWへの操作入力で始動操作されたときに出力されるエンジン始動信号が、スタータスイッチS−SWに設けたセンサから入力可能である。
そして、第2制御装置UK2は、これに入力される車両側制御装置UVからの前記モータ駆動許可信号や動力源選択スイッチM−SW1,2からのモータ選択信号等に基づき、前、後部操作盤CF,CRの第1〜第5報知ランプL1〜L5を報知(点灯)制御することができ、また油圧ポンプPのモータ駆動状態でバッテリBが電池切れ(即ち残量が所定下限値未満に低下)したり或いは前記電気系統に異常が発生したと判断した場合には緊急停止信号を第1制御装置UK1側に出力する。この場合、第1制御装置UK1は、第2制御装置UK2から緊急停止信号を受けると、作業機2,7を緊急停止させるようにマルチバルブMVを中立位置に作動制御すべく、マルチバルブMV(各バルブv1〜v4)に停止指令信号を出力する。さらに油圧ポンプPのモータ駆動状態で、スタータスイッチS−SWが不用意に操作入力されてエンジンEの始動操作がなされた場合にも、第2制御装置UK2は緊急停止信号を第1制御装置UK1側に出力し、この場合も、第1制御装置UK1は、作業機2,7を緊急停止させるようにマルチバルブMVを作動制御すべく、マルチバルブMVに停止指令信号(各バルブv1〜v4)を出力する。
以上説明した第1制御装置UK1によるマルチバルブMVの作動制御による作業機緊急停止手法は、作業機2,7の作動中に前記緊急停止スイッチCR−SW3がオン操作された場合に第1制御装置UK1によりマルチバルブMVを中立位置に作動制御して作業機を一斉に緊急停止する手法と同様である。特に本実施形態では、第2制御装置UK2から前記緊急停止信号を出力する配線が緊急停止スイッチCR−SW3の配線に接続されており、従って、第2制御装置UK2からの緊急停止信号入力のための入力端子を第1制御装置UK1に特別に設けずとも、第2制御装置UK2から第1制御装置UK1側へ緊急停止信号を送ることが可能となる。尚、第2制御装置UK2から緊急停止信号を出力する配線を、緊急停止スイッチCR−SW3の配線に接続せずに第1制御装置UK1に直接接続することも可能である。
而して、本実施形態の架装物側制御装置UKにおいては、第1及び第2動力源選択スイッチM−SW1,2への操作入力に応じて油圧ポンプPのモータ駆動状態とエンジン駆動状態とを切換制御するに際して、架装物側制御装置UKと車両側制御装置UVとの間で授受すべき全信号の、架装物側制御装置UK側の信号入,出力部が第2制御装置UK2にのみ設けられる。
従って、架装物側制御装置UKにおいて、これと車両側制御装置UVとの間で情報(信号)を授受すべきインターフェース機能部分を第2制御装置UK2に集約させることができるため、前、後部操作盤CR,CFの各種操作スイッチ群CF−SW1〜3;CR−SW1〜3への操作入力に基づき作業機2,7を作動制御する従来公知の作業機用制御装置(即ち第1制御装置UK1に相当する制御装置)をそのまま流用した上で、これに新開発の第2制御装置UK2を単に追加、接続するだけで、ハイブリッド式作業車両に対応した新たな架装物側制御装置UKを簡単に構築可能となる。その結果、開発コストの節減と開発期間の短縮が図られ、また、エンジンのみで作業機用の油圧ポンプを駆動する通常タイプの作業車両と、ハイブリッド式作業車両との間で、部品(即ち第1制御装置UK1に相当する制御装置)の共通化が図られる。
また本実施形態の第2制御装置UK2は、前述のように油圧ポンプPのモータ駆動状態でバッテリBの前記電池切れ又は前記電気系統の故障が発生した場合、或いはエンジンEの始動操作がなされた場合に、第1制御装置UK1が作業機2,7を緊急停止させるべくマルチバルブMVを作動制御するように、車両側制御装置UVが出力する信号あるいはエンジン始動信号を従来公知の緊急停止信号に変換して、これを第1制御装置UK1に向けて出力する。そのため、架装物側制御装置UKにおいて、作業機制御用の従来公知の第1制御装置UK1はそのまま流用しながらも、これに前記インターフェース機能を持つ第2制御装置UK2から緊急停止用信号を出力するだけで、作業機を緊急停止させることができ、全体として制御構成を極力簡素化できる。
また、前記第2制御装置UK2は、油圧ポンプPの前記した斜板駆動用の電磁アクチュエータAに接続されていて、斜板角度変更信号を該アクチュエータAに出力可能である。そして、その斜板角度変更信号に基づき電磁アクチュエータAは斜板角度を変更駆動して油圧ポンプPの各プランジャのストローク、延いては吐出容量を、油圧ポンプPがエンジン駆動状態にあるかモータ駆動状態にあるかに応じて変更制御する。
例えば、図示例では、第2制御装置UK2は、斜板角度変更信号を前記モータ駆動状態でのみ斜板駆動用アクチュエータAに出力し、これにより、油圧ポンプPの前記モータ駆動状態での吐出容量(例えば80cc/rev )を前記エンジン駆動状態での吐出容量(例えば63cc/rev )よりも大きくなるように設定する。これにより、そのモータ駆動状態では、騒音対策等のために電動モータMを低回転としても、油圧ポンプPを比較的高い吐出容量に設定したことで作業機駆動に必要な吐出油量が確保可能となる。また、エンジン駆動状態では、エンスト防止等のためにエンジンEをある程度は高回転としても、油圧ポンプPを比較的低い吐出容量に設定したことで、吐出油量が過剰となるのを効果的に防止可能となる。
次に前記実施形態の作用について説明する。
[積込工程]
塵芥積込装置2による、塵芥投入箱3内の投入塵芥の積込工程は、塵芥投入箱3を積込位置(図1実線)に、また排出板6を塵芥収容箱1の後端近くの所定後退位置にそれぞれ保持した状態で開始される。この場合、前部操作盤CFのメインスイッチCF−SW1を積込位置に操作した上で、後部操作盤CRの積込スイッチCR−SW1をオン操作することで積込工程が開始となり、前記した積込サイクルが、連単スイッチCR−SW2の操作位置に応じて1回だけ又は連続で運転される。尚、連続運転中、連単スイッチCR−SW2を1回運転位置に切換操作すれば、当該積込サイクルの終了時点で塵芥積込装置2は停止する。
上記積込工程の実行により塵芥収容箱1内に押し込まれた塵芥は、排出板6と塵芥積込装置2との間で適度に圧縮されつつ塵芥収容箱1内に収容される。この場合、図示例では、排出板6が収容塵芥より受ける圧縮反力で第4シリンダA4が徐々に収縮作動して排出板6を徐々に前進させる。
[排出工程]
塵芥収容箱1内が収容塵芥で満杯になると、塵芥収集車Vを塵芥処分場まで走行移動させる。その塵芥処分場では、前部操作盤CFのメインスイッチCF−SW1を排出選択位置に操作した上で、上下選択スイッチCF−SW2を上げ位置に操作すれば塵芥投入箱3を上方回動させ、しかる後に、進退選択スイッチCF−SW3を排出位置に操作すれば、排出板6を後退動作させて塵芥収容箱1内の収容塵芥を排出することができる。そして、斯かる排出工程の終了後は、上下選択スイッチCF−SW2を下げ操作して塵芥投入箱3を積込位置まで復帰回動させると共に、進退選択スイッチCF−SW3を前進操作して排出板6を塵芥収容箱1後部の所定後退位置に戻した状態で排出板6を静止、待機させる。その後、塵芥収集車Vを塵芥収集場所まで走行させ、前記待機状態から、次回の塵芥積込装置2による積込工程を開始させる。
而して、上記積込・排出工程は、架装物側制御装置UKの主として第1制御装置UK1が、前、後部操作盤CF,CRの操作スイッチ群CF−SW1〜3,CR−SW1〜3への操作入力に応じてマルチバルブMVにバルブ制御信号を出力して作業機2,7の各シリンダA1〜A4を作動制御することで実行可能であり、その制御手順は従来周知であるので説明を省略する。
次に架装物側制御装置UK及び車両側制御装置UVが互いに協働して油圧ポンプPの駆動源をエンジンEと電動モータMとに切換制御する際の制御手順の一例を図8〜図13のフローチャートを参照して説明する。尚、これらの制御は、何れも車両のキースイッチがオン操作されて車両側制御装置UV及び架装物側制御装置UK(第1,第2制御装置UK1,2)に通電されている状態において実行される。
[駆動源切換制御の基本フロー]
先ず、図8において、動力取出スイッチP−SWがオン操作されたか否かが判断され(ステップS1)、オン操作された場合にはステップS2に進んで、動力源選択スイッチM−SW1,2の何れかがオン操作(即ちモータ駆動選択)されたか判断され、否(即ちエンジン駆動選択)の場合はステップS3に進んでエンジン運転中か否かが判断される。そのステップS3で否の場合はステップS4に進んでエンジンEが始動され、またエンジン運転中の場合はステップS4を飛ばしてステップS5に進む。尚、この時点では、油圧ポンプPがエンジンEで駆動されるが、マルチバルブMVの各バルブv1〜v4は中立位置にあるため、油圧ポンプPの吐出油はリリーフ弁Rを経て油タンクT側に戻されるだけであり、作業機2,7の各シリンダA1〜A4は、作動することなく待機状態に置かれる。
前記ステップS5では、作業機2,7の操作スイッチが、積込工程又は排出工程を実行すべく操作入力され(例えばメインスイッチCF−SW1が積込操作され且つ積込スイッチCR−SW1がオン操作され)たか否かが判断され、その操作入力があったと判断された場合はステップS6に進んで、該操作入力に応じてマルチバルブMVのバルブv1〜v4を切換制御し、作業機2,7の各シリンダA1〜A4を作動させて作業機2,7の作業(例えば積込作業)を実行処理するが、そのステップS6の処理手順については、図9のサブルーチンで具体的に説明する。また、ステップS5で否と判断された場合は、リターンとなる。
また、前記ステップS2で動力源選択スイッチM−SW1,2がオン操作された(即ちモータ駆動選択)と判断された場合には、ステップS7に進む。このステップS7では、バッテリBが電池切れ(即ち残量が所定下限値未満に低下)しておらず且つ前記電気系統が正常であってモータ駆動が可能な状態にあるか否かが判断され、そこで否(即ちモータ駆動不可)と判断された場合はステップS8に進んで動力源選択スイッチM−SW1,2がオン操作(即ちモータ駆動選択)されたか判断される。そのステップS8で、否(即ちエンジン駆動選択)の場合はステップS3に進み、またオン操作(即ちモータ駆動選択)のままであればリターンとなる。従って、次に動力源選択スイッチM−SW1,2がオフ操作(即ちエンジン駆動選択)される迄の間、作業機2,7は作業開始されずに待機状態となる。尚、ステップS7で否(即ちモータ駆動不可)のときはモータ駆動ランプL1が消灯しているため、前記待機状態で作業員に動力源選択スイッチM−SW1,2のオフ操作(即ちエンジン駆動選択)を促すことができる。
また前記ステップS7で、モータ駆動可能な状態であると判断された場合は、ステップS9に進んで、エンジンEが運転中であればその運転を停止させ、更にステップS10に進む。
そのステップS10では、前記ステップS5と同様、作業機2,7の操作スイッチが、積込工程又は排出工程を実行すべく操作入力されたか否かが判断され、否と判断された場合はリターンとなり、また前記操作入力があったと判断された場合はステップS11に進んで、第2制御装置UK2から車両側制御装置UV側にモータ駆動指令信号が出力され、これにより電動モータMを作動させて油圧ポンプPを駆動すると共に、該操作入力に対応した作業機2,7の各シリンダA1〜A4を作動させて作業機2,7の作業(例えば積込作業)を実行処理し、そのステップS11の処理手順については、図10のサブルーチンで具体的に説明する。
[エンジン駆動選択時の作業フロー]
図9は、前記ステップS6(図8)の処理を具体的に示すサブルーチンである。この図9において、先ず、ステップS101において、油圧ポンプPがエンジンEで駆動された状態で操作スイッチの前記操作入力に応じた作業機2,7の作業(例えば積込作業)が開始される。
次いでステップS102に進んで、上記作業中において動力源選択スイッチM−SW1,2がオン操作(即ちモータ駆動選択)されたか判断され、否(即ちエンジン駆動選択)の場合は、ステップS103に進んでエンジンが運転中か否かが判断される。そのステップS103でエンジン運転中と判断された場合は、ステップS110に進んで、油圧ポンプPのエンジン駆動状態での作業機2,7の作業が継続され、次いでステップS111に進む。
また前記ステップS102で、動力源選択スイッチM−SW1,2がオン操作(即ちモータ駆動選択)されたと判断された場合は、ステップS109に進んでそのオン操作信号(モータ選択信号)が第2制御装置UK2で無視され、その後、ステップS110に進むことで、油圧ポンプPのエンジン駆動状態での作業機2,7の作業が継続される。
また前記ステップS103で、否(エンジン停止)と判断された場合は、ステップS104に進んで、前記作業機2,7の作業を緊急停止する。この緊急停止は、第2制御装置UK2から第1制御装置UK1側に緊急停止信号が入力されるのに応じて第1制御装置UK1がマルチバルブMVの各バルブv1〜v4を中立位置に作動制御すべく、マルチバルブMVに停止指令信号を出力することで行われる。次いで、ステップS105〜ステップS107に順次進んで、所定の再開操作がなされたことを確認してから作業が再開される。即ち、ステップS105では、動力源選択スイッチM−SW1,2が引き続きオフ操作位置(エンジン駆動選択位置)にあるか否かが判断され、ステップS106では、エンジンEが再始動されたか否かが判断され、ステップS107では作業機2,7の操作スイッチCF−SW1〜3,CR−SW1,2が作業を再開すべく操作入力されたか否かが判断され、何れも否でない場合はステップS108に進んで、油圧ポンプPのエンジン駆動状態での作業機2,7の作業が再開され、その後、ステップS111に進む。
前記ステップS111では、実行中の作業を終了させる条件が整った場合、例えば操作スイッチへの、作業終了のための操作入力(例えば、メインスイッチCF−SW1のオフ位置への切換操作や、積込工程の連続運転中に連単スイッチCR−SW2を1回運転側への切換操作)があった場合や、積込工程の1回運転が終了した場合であるか否かが判断され、否でないと判断されたときは、ステップS112に進んで、実行中の作業を終了させ、リターンとなる。尚、前記ステップS111で否と判断された場合は、ステップS102に戻って、実行中の作業が継続する。
[モータ駆動選択時の作業フロー]
図10は、ステップS11(図8)の処理を具体的に示すサブルーチンである。この図10において、先ず、ステップS201において、油圧ポンプPが電動モータMで駆動された状態で操作スイッチの操作入力に応じた作業機2,7の作業(例えば積込作業)が開始される。
次いでステップS202に進んで、上記作業中において、バッテリBが電池切れ(即ち残量が所定下限値以下に低下)を起こしておらず且つ前記電気系統が正常であってモータ駆動が可能な状態か否かが判断され、そこで否(即ちモータ駆動不可)と判断された場合はステップS203に進んで前記作業機2,7の作業を緊急停止する。この緊急停止は、前記ステップS104と同様、第2制御装置UK2から第1制御装置UK1側に緊急停止信号が入力されるのに応じて第1制御装置UK1がマルチバルブMVの各バルブv1〜v4を中立位置に作動制御すべく、マルチバルブMVに停止指令信号を出力することで行われる。
次いで、ステップS204〜ステップS206に順次進んで、所定の再開操作がなされたことを確認してから作業が再開される。即ち、ステップS204では、動力源選択スイッチM−SW1,2がオフ操作位置(エンジン駆動選択)に操作されたか否かが判断され、ステップS205では、エンジンEが始動されたか否かが判断され、ステップS206では、作業機2,7の作業開始スイッチとして機能する操作スイッチCF−SW1〜3,CR−SW1,2が作業を再開すべく操作入力されたか否かが判断され、何れも否でない場合はステップS207に進んでからリターンとなる。
前記ステップS207では、油圧ポンプPのエンジン駆動状態で、操作スイッチの作業再開のための前記操作入力に対応した作業機2,7の作業(例えば積込作業)を実行処理するが、その処理手順は、図9のサブルーチンで具体的に説明したのと同様である。
前記ステップS202で否でない(即ちモータ駆動可能)と判断された場合は、ステップS208に進んで、作業中において動力源選択スイッチM−SW1,2が引き続きオン操作(即ちモータ駆動選択)されているか否かが判断され、オン操作(即ちモータ駆動選択)されている場合は、ステップS209に進んでエンジンEが始動操作されたか否かが判断される。そのステップS209でエンジンが始動操作されていない(即ちエンジン停止継続中)と判断された場合はステップS214に進んで、油圧ポンプPのモータ駆動状態での作業機2,7の作業が継続され、ステップS215に進む。
前記ステップS209で、エンジンEが始動操作されたと判断された場合は、ステップS210に進んで、電動モータMの作動を停止させると共にエンジンEの始動も禁止してエンジン停止状態を維持し、次いでステップS211に進む。このステップS211では、ステップS203と同様に、前記作業機2,7の作業を緊急停止させ、その後、ステップS204に進む。
また前記ステップS208で、動力源選択スイッチM−SW1,2がオフ操作(即ちエンジン駆動選択)されたと判断された場合は、ステップS213に進んでそのオフ操作信号が第2制御装置UK2で無視され、その後、ステップS214に進むことで油圧ポンプPのモータ駆動状態での作業機2,7の作業が継続される。
前記ステップS215では、前記ステップS111と同様に、実行中の作業を終了させる条件が整った場合であるか否かが判断され、否でないと判断されたときは、ステップS216に進んで、実行中の作業を終了させ、リターンとなる。尚、前記ステップS111で否と判断された場合は、ステップS202に戻って、実行中の作業が継続する。
以上説明した本実施形態(図8〜10)による駆動源切換の制御態様によれば、ハイブリッド式の塵芥収集車Vにおいて、油圧作動式の作業機2,7に作動油を供給する油圧ポンプPを、動力源選択スイッチM−SW1,2の切換操作に基づきエンジンE及び電動モータMの何れの動力でも選択的に駆動できるので、油圧ポンプPの駆動源を作業状況や環境に応じて適宜使い分けることができて便利である。例えばエンジンEの騒音排気が問題となる住宅街等の場所では電動モータMで、また問題とならない場所ではエンジンEでそれぞれ油圧ポンプPを駆動可能となって、好都合である。
また、本実施形態の第2制御装置UK2は、図10に示す油圧ポンプPのモータ駆動状態で、バッテリBが電池切れを起こしたり或いは前記電気系統に異常が発生したと判断した場合(即ち前記作業機作動中信号が入力されるにも拘わらず車両側制御装置UVから前記モータ駆動許可信号が出力されなくなった場合)には緊急停止信号を第1制御装置UK1側に出力する。これに応じて第1制御装置UK1は、停止指令信号をマルチバルブMVに発してこれを一斉に中立位置に作動制御することで、作動中の作業機2,7を緊急停止させる(ステップS202,203に対応)。同じく油圧ポンプPのモータ駆動状態で、エンジンEのスタータスイッチS−SWが誤って操作入力されてエンジンEの始動操作がなされた場合にも、第2制御装置UK2は緊急停止信号を第1制御装置UK1側に出力し、この場合も、上記と同様にして、作動中の作業機2,7を緊急停止させる(ステップS209〜211に対応)。
このように油圧ポンプPのモータ駆動状態でバッテリBが前記電池切れを起こしたり或いは前記電気系統に異常が発生した場合には、作業機2,7を緊急停止させるので、電動モータMを正常に駆動できなくなることで作業機2,7が予期せぬ動作をするのを未然に且つ確実に防止できる。また同じく油圧ポンプPのモータ駆動状態でエンジンEが誤って始動操作された場合にも、作業機2,7を緊急停止させるので、エンジンEの誤始動操作で電動モータMが停止しても、作業機2,7が予期せぬ動作をするのを未然に且つ確実に防止できる。その上、作業機2,7の前記緊急停止の後は、動力源選択スイッチM−SW1,2に対する切換操作(ステップS204)に加えて、他の所定の再開操作(ステップS205,206)、特に作業開始スイッチとしての操作スイッチCF−SW1〜3,CR−SW1,2に対する作業再開のためのオン操作(ステップS206)を実行するまでは、緊急停止が解除されないようマルチバルブMV作動制御する(具体的には第2制御装置UK2が緊急停止信号を出力し続ける)ので、緊急停止した作業機2,7が不用意に再稼働してしまうのをより確実に防止できる。
また、本実施形態の制御装置UK2,UVにおいては、油圧ポンプPがエンジン駆動状態又はモータ駆動状態の何れの駆動状態にある場合でも、その駆動状態の最中に動力源選択スイッチM−SW1,2が切換操作されたときには、その操作入力を無効(ステップS109、S213参照)として切換操作前の駆動状態を維持できるため、その駆動状態の切換えに起因して作業機2,7が予期せぬ動作をするのを未然に且つ確実に防止できる。
ところで上記制御態様は、作業機2,7が作動停止状態にあるときに、動力源選択スイッチM−SW1,2の切換操作入力に基づく前記両駆動状態の切換制御を実行する、といった技術思想としても捉えることができる。この場合、作業機2,7の作動停止状態は、例えば第1制御装置UK1から第2制御装置UK2側にアイドルアップ信号が出力されなくなることで検出可能であり、その作動停止状態の検出中でなければ、動力源選択スイッチM−SW1,2が切換操作されても、その切換操作に基づいて第2制御装置UK2から車両側制御装置UV側にモータ駆動指令信号が出力されたり或いは出力停止されたりすることはない。即ち、作業機2,7の作動中に動力源選択スイッチM−SW1,2が切換操作されても、必ず作業機2,7が作動停止した状態で駆動状態の切換制御が行われるので、その駆動状態の切換えに起因して作業機2,7が予期せぬ動作をするのを未然に且つ確実に防止することができる。
また、本実施形態においては、作業機2,7には、その塵芥積込作業又は塵芥排出作業を任意に終了させる作業終了スイッチとして機能するスイッチCF−SW1〜3、CR−SW2が設けられており、その作業終了スイッチへの操作入力に基づき作業機2,7の作動を一旦停止させてからでないと(即ちステップS111からステップS112を経ないと、或いはステップS215からステップS216を経ないと)、動力源選択スイッチM−SW1,2の切換操作入力に基づく油圧ポンプPの駆動源切換制御が実行されないため、駆動源が不用意に切換えられるのを効果的に防止することができる。
本実施形態において、塵芥排出装置7は、上下選択スイッチCF−SW2又は進退選択スイッチCF−SW3を操作している限り作動するものであり、例えば塵芥投入箱3を積込位置(下げ位置)から排出位置(上げ位置)に向かって上方回動している途中で作業員が上下選択スイッチCF−SW2の操作を中断すると、塵芥投入箱3が排出位置よりも下方の位置で停止する。この場合、作業途中ではあるが、作業機(塵芥排出装置7)の作動を一旦停止しているため、動力源選択スイッチM−SW1,2の切換操作入力に基づく油圧ポンプPの駆動源切換制御を実行可能としてもよい。
また、緊急停止スイッチCR−SW3が操作されて作業機2,7が緊急停止したときも、その作動が一旦停止するので、動力源選択スイッチM−SW1,2の切換操作入力に基づく油圧ポンプPの駆動源切換制御を実行可能である。尚、緊急停止時に安全性が十分に確保できない場合や安全性を最優先とする場合等には、緊急停止後は動力源選択スイッチM−SW1,2の切換操作入力に基づく油圧ポンプPの駆動源切換制御を禁止する設定としてもよい。
ところで前記実施形態においては、作業機2,7の作動中に動力源選択スイッチM−SW1,2が切換操作された場合に、作業終了スイッチCF−SW1〜3、CR−SW2への操作入力に基づき作業機2,7の作動を一旦停止させ、その後に行われる動力源選択スイッチM−SW1,2の切換操作(再操作)に基づき油圧ポンプPの駆動源切換制御を実行するようにしたものを示したが、斯かる制御態様に代えて、作業機2,7の一旦停止後、動力源選択スイッチM−SW1,2を改めて切換操作(再操作)しなくても油圧ポンプPの駆動源切換制御を自動的に実行する制御も採用可能であり、この場合には、動力源選択スイッチM−SW1,2の再操作が不要となり、便利であると共に作業能率が高められる。
例えば、塵芥積込装置2を運転中、その塵芥積込サイクルの途中で、動力源選択スイッチM−SW1,2が切換操作された場合に、その新たな切換操作位置を制御装置UK2に記憶させておくと共に、実行中の塵芥積込サイクルを、駆動源切換を行わずに実行中のサイクルの終了までそのまま実行させ、そのサイクルの終了と同時に塵芥積込装置2を一旦停止させる。そして、先に記憶した動力源選択スイッチM−SW1,2の新たな切換操作位置に基づき油圧ポンプPの駆動源切換制御を実行し、その間、駆動源切換中である旨を音声案内をしたり或いは案内画面に視覚的に報知する。こうして駆動源切換が終了すると、作業員は、先の塵芥積込工程が1回運転だった場合は、積込スイッチCR−SW1をオン操作することで塵芥積込工程が再開し、また先の塵芥積込工程が連続運転だった場合は、積込スイッチCR−SW1をオン操作することなく塵芥積込工程の連続運転が再開する。尚、連続運転の場合でも、積込スイッチCR−SW1をオン操作することで塵芥積込工程を再開するように設定してもよく、この場合には、急な積込再開に伴う巻き込まれ事故を未然に防止することができる。
[動力源選択スイッチの信号の無効化フロー]
第1,第2動力源選択スイッチM−SW1,2からの出力信号は、作業機が積込作業中であるか排出作業中かで有効・無効が選択制御され、この制御は、例えば図11に例示したような制御フローで制御される。
先ず、ステップS301で、メインスイッチCF−SW1が積込操作位置又はオフ位置にあるか否かが判断され、否でない(即ち塵芥排出工程が選択されていない)場合には、ステップS302に進み、そのメインスイッチCF−SW1から第2制御装置UK2に出力されるメインスイッチ信号に基づき第2制御装置UK2が、後部操作盤CRの動力源選択スイッチM−SW1のみを有効とする。
また前記ステップS301で、否(即ち塵芥排出工程が選択されている)と判断された場合には、ステップS303に進んで、メインスイッチCF−SW1から第2制御装置UK2に出力されるメインスイッチ信号に基づき第2制御装置UK2が、前部操作盤CFの動力源選択スイッチM−SW2のみを有効とする。
このように第2制御装置UK2は、塵芥積込作業が選択されている場合には、塵芥投入箱3側の操作盤CRに設けた動力源選択スイッチM−SW1への操作入力に基づき同スイッチが出力するモータ選択信号だけを有効とし、また塵芥排出作業が選択されている場合には、塵芥投入箱3から離間した位置で操作可能な動力源選択スイッチM−SW2への操作入力に基づき同スイッチが出力するモータ選択信号だけを有効とするので、例えば、塵芥積込作業の選択状態で、塵芥投入箱3から離れた場所にいる別の作業員により動力源選択スイッチM−SW2が切換操作されても、駆動源が切換わらずにそのまま維持され、従って、塵芥積込装置2の動きが塵芥投入箱3周辺の作業員にとって予期せぬ動きとなる虞れはなくなる。一方、塵芥排出作業の選択状態で、塵芥投入箱3近傍の動力源選択スイッチM−SW1を塵芥投入箱3周辺の作業員が万一、切換操作しても駆動源は切換わらずにそのまま維持されるため、塵芥排出装置7の動きが、塵芥投入箱3から離れた位置で操作盤CFを操作する別の作業員にとって予期せぬ動きとなる虞れもなくなる。
[油圧ポンプの斜板角度制御のフロー]
斜板式プランジャポンプよりなる油圧ポンプPの吐出容量(即ち斜板の傾斜角度)は、第2制御装置UK2から斜板駆動用アクチュエータAに斜板角度変更信号が出力されるか否かにより切換制御され、この切換制御は、例えば図12に例示したような制御フローで制御される。
先ず、ステップS401で、動力源選択スイッチM−SW1,2がオン操作されてモータ選択信号が第2制御装置UK2側に有効に入力されているか否かが判断され、そこで、否(エンジン駆動選択)と判断された場合には、ステップS402に進む。このステップS402では、第2制御装置UK2は、斜板角度変更信号を出力せず、そのため、斜板駆動用アクチュエータAは非励磁状態に置かれて、油圧ポンプPの吐出容量が、エンジン駆動状態での最適吐出容量(例えば63cc/rev )に設定される。
また前記ステップS401において、否でない(モータ駆動選択)と判断された場合には、ステップS403に進む。このステップS403では、第2制御装置UK2が斜板角度変更信号を出力し、この信号に基づき斜板駆動用アクチュエータAは励磁状態に置かれ、その結果、油圧ポンプPの吐出容量が、モータ駆動状態での最適吐出容量(例えば80cc/rev )に設定される。これにより、油圧ポンプPのモータ駆動状態では、騒音対策等のために電動モータMを低回転(例えば650rpm )としても、油圧ポンプPを比較的高い吐出容量に設定したことで作業機駆動に必要な吐出油量が確保可能となり、一方、油圧ポンプPのエンジン駆動状態では、エンスト防止等のためにエンジンEをある程度は高回転(例えば825rpm )としても、油圧ポンプPを比較的低い吐出容量に設定したことで、吐出油量が過剰となるのを効果的に防止可能となる。
尚、前記ステップS401の判断条件としては、前記した動力源選択スイッチM−SW1,2がオン操作(モータ駆動選択)されてモータ選択信号が第2制御装置UK2側に有効に入力されたか否かに加えて、前記ステップS7、S202の判断条件(電動モータで正常に駆動可能な状態か否か)も加えるようにして、ステップS401の判断条件をより絞り込むようにしてもよい。
[報知手段の報知制御フロー]
第1〜第5報知ランプL1〜L5の報知作動は、例えば図13に例示したような制御フローで制御される。
先ず、ステップS501で動力源選択スイッチM−SW1,2がオン操作された(即ちモータ駆動選択)か否かが判断され、否でなければ(即ちオン操作中であれば)、ステップS502で第5報知ランプL5を点灯させて、動力源選択スイッチM−SW1,2がオン操作中である旨が報知され、次いでステップS503に進む。また、ステップS501で否であれば、ステップS502を飛ばしてステップS503に進む。
前記ステップS503では、バッテリBの残量が十分ある(即ち所定値を超えている)か否かが判断され、十分あると判断された場合には、ステップS504に進んで第4報知ランプL4を点灯させて、残量が十分である旨が報知される。
次いでステップS505に進んで、前記電気系統が正常であるか否か(即ち、前記ステップS503又は後述するステップS509の判断結果とも相俟って油圧ポンプPが電動モータMで正常に駆動可能な状態であるか否か)が判断され、否であればリターンとなり、また否でなければ(即ちモータ駆動可能状態であれば)、ステップS506に進んで第1報知ランプL1を点灯させて、モータ駆動可能状態である旨が報知され、次いでステップS507に進む。
そのステップS507では、動力源選択スイッチM−SW1,2がオン操作された(即ちモータ駆動選択)か否かが判断され、そこでオン操作された(即ちステップS503,505の判断結果とも相俟って油圧ポンプPがモータ駆動中である)と判断された場合は、ステップS508に進んで第3報知ランプL3を点灯させて、モータ駆動中である旨が報知され、リターンとなる。
また、前記ステップS503で否(即ちバッテリBの残量が所定値以下に低下していて十分ではない)と判断された場合は、ステップS509に進んでバッテリBが電池切れ(即ち前記所定値よりも低い所定下限値未満に低下)したか否かが判断される。このステップS509で、電池切れは起こしていない(即ちバッテリ残量は低下傾向であるがモータ駆動し得る必要最小限、例えば塵芥積込サイクルをあと1回〜数回実行し得る程度(即ち前記所定下限値以上)は確保されている)と判断された場合には、ステップS510に進んで第2報知ランプL2を点灯させて、残量が低下している旨が報知され、次いで、前記ステップS505に進む。また、前記ステップS509で否(即ちバッテリBが電池切れを起こして残量が所定下限値未満である)と判断された場合は、リターンとなる。
而して第1報知ランプL1によれば、油圧ポンプPを電動モータMで正常に駆動可能なモータ駆動可能状態にあることを報知できるため、動力源選択スイッチM−SW1,2により油圧ポンプPの駆動源を切換え操作するに当たり、電動モータMで正常にポンプ駆動可能な状態にあるか(即ち前記電気系統が正常であり且つバッテリBも電池切れを起こしていないか)否かを事前に確認可能となり、その確認結果を踏まえて駆動源切換えの判断を適切に行うことができる。尚、前記第1報知ランプL1とは逆に、油圧ポンプPを電動モータMで正常に駆動可能なモータ駆動可能状態にない旨を報知する報知ランプ等の報知手段を別途設けるようにすれば、作業機2,7をモータ駆動不可能な状態であることの注意喚起をより確実に行うことができる。
また第2報知ランプL2によれば、バッテリBの残量が所定値以下に低下した(但し前述の如く電池切れ状態ではなく、残量の必要最小限は確保されている)ことを報知できるため、バッテリBの残量の低下傾向を早めに確認可能となり、モータ駆動状態からエンジン駆動状態への切換えを作業員に促すことができると共に、エンジン駆動状態からモータ駆動状態への切換えを抑制できる。尚、ステップS509で用いる前記所定下限値は、バッテリBの残量としては電池切れの状態に比較的近い少なめの残量値であるため、ステップS510からステップS505に移行しないで直ちにリターンとして、モータ駆動不能な(モータ駆動切換も不能な)状態としてもよい。
また第3報知ランプL3によれば、前記モータ駆動可能状態にあると判断され且つ動力源選択スイッチM−SW1,2がオン操作(モータ駆動選択)位置にあるときに、モータ駆動状態である旨を報知できるので、油圧ポンプPがモータ駆動中であるか否かを確認可能となり、駆動源の切換え判断をより適切に行うことができる。
また第4報知ランプL4によれば、バッテリBの残量が所定値以上有って、モータ駆動に十分余裕があることを確認できるため、駆動源の切換え判断をより適切に行うことができる。尚、図示例では、第4報知ランプL4の作動条件であるバッテリ残量の閾値(即ちステップS503で用いる前記所定値)よりも、第2報知ランプL2の作動条件であるバッテリ残量の閾値(即ちステップS509で用いる前記所定下限値)を低く設定したが、その両閾値を同じに設定してもよい。
ところで一般の自動車では、エンジンの通常のアイドリング運転中もバッテリへの充電がなされてバッテリの残量確保が図られる一方で、特にハイブリッド車両では、回生制動時に回生エネルギをバッテリに充電できるようバッテリに必要最小限の空き容量が確保されることが望ましいとされていて、バッテリの残量が所定の充電限界まで上昇すると、それ以上は、アイドリング運転による充電を行わないように充電制御がなされる。しかし本実施形態の第4報知ランプL4はバッテリBの残量が所定値以上有ることを単に報知するだけであって、バッテリの残量が該所定値を超えて前記充電限界に達したか否かが明確ではない。そこでバッテリの残量が前記充電限界に達したことを報知する報知ランプ等の報知手段を別途設けるようにすれば、ドライバーに対して、エンジンのアイドリング運転を継続してバッテリ充電を行う必要のない旨の情報を提供できて、無用のアイドリング運転を回避可能となる。
また第5報知ランプL5によれば、動力源選択スイッチM−SW1,2がオン操作(モータ駆動選択)位置にあるか否かを明確に確認可能となって、駆動源の切換え判断をより適切に行うことができ、特に動力源選択スイッチM−SW1,2が押しボタンスイッチのように外見上、操作位置の判りづらいスイッチ構成の場合に有利である。
尚、上記第1〜第5報知ランプL1〜L5は、その各々の報知ランプの前記した作動条件を満たし且つ塵芥収集車Vのキースイッチがオン操作された状態(即ち各制御装置UK,UVが起動した状態)で報知作動する。従って、車両のキースイッチがオン操作中は(従って車両運転中も)、常に各報知ランプL1〜L5による報知作動が可能な状態に置くことができる。
次に図14を参照して、本発明の第2実施形態について説明する。図4に示す前記第1実施形態では、第2制御装置UK2は、メインスイッチCF−SW1への操作入力で塵芥積込作業が選択された場合には、塵芥投入箱3側の動力源選択スイッチM−SW1への操作入力に基づき同スイッチが出力するモータ選択信号だけを有効とし、また塵芥排出作業が選択された場合は、塵芥投入箱3から離間した位置で操作可能な操作盤CFの動力源選択スイッチM−SW2への操作入力に基づき同スイッチが出力するモータ選択信号だけを有効とするように構成されるが、第2実施形態では、第2制御装置UK2は、塵芥投入箱3側の動力源選択スイッチM−SW1が切換操作されたときは塵芥積込作業のみ許可する積込許可信号を第1制御装置UK1に出力し、また塵芥投入箱3から離間した位置で操作可能な動力源選択スイッチM−SW2が切換操作されたときは、塵芥排出作業のみ許可する排出許可信号を第1制御装置UK1に出力するように構成される。
また、エンジンEが作動中であることを示すエンジン作動中信号と、スタータスイッチS−SWが操作されたことを示すエンジン始動信号と、バッテリBの残量を示すバッテリ残量信号とは、車両側制御装置UVから架装物側制御装置UKの第2制御装置UK2に入力されるようにして、第1の実施形態のようにエンジンE、スタータスイッチS−SW及びバッテリBに各々設けたセンサを第2制御装置UK2に接続することを不要としている。尚、この第2の実施形態でも、第1の実施形態と同様の信号入力形態とすることが可能であり、また第1の実施形態でも、第2の実施形態と同様の信号入力形態とすることが可能である。
その他の構成は、第1の実施形態と同様であるので、説明を省略する。
本実施形態のように塵芥投入箱3側の動力源選択スイッチM−SW1が切換操作されたときは、塵芥積込作業のみが許可されて塵芥排出作業は許可されず、また塵芥投入箱3から離間した位置で操作可能な動力源選択スイッチM−SW2が切換操作されたときは、塵芥排出作業のみが許可されて塵芥積込作業は許可されないようにすれば、図11のステップS301〜303で説明した制御例と同様の効果が達成可能である。
次に図15を参照して、本発明の第3実施形態について説明する。先の実施形態では、油圧ポンプPとして吐出容量可変型ポンプが使用されたが、第3実施形態では、所定のポンプ回転数領域ではポンプ回転数の高低に関係なく単位時間当たりの吐出量が一定である、所謂コンスタントフロー特性を有するタイプの油圧ポンプが使用される。このタイプの油圧ポンプは従来公知であるので、具体的なポンプ構造は省略するが、本実施形態では、例えば、図15に示すように、ポンプ回転数がゼロから所定値(例えば650rpm )までは単位時間当たりの吐出油量がポンプ回転数の増加に伴い徐々に増加し、ポンプ回転数が該所定値以上に達してからは吐出油量が一定(例えば52L/min )となるコンスタントフロー特性を有する油圧ポンプが使用される。この場合、油圧ポンプPのポンプ回転数を、吐出油量一定(例えば52L/min )の前記所定のポンプ回転数領域内でモータ駆動状態でのポンプ回転数が比較的低回転(例えば650rpm )になり、またエンジン駆動状態でのポンプ回転数が比較的高回転(例えば825rpm )になるよう設定すれば、油圧ポンプPのモータ駆動状態での吐出容量(例えば80cc/rev )を、エンジン駆動状態での吐出容量(例えば63cc/rev )よりも高めに設定できるため、前記第1実施形態と同様の効果を得ることができる。
以上、本発明の実施形態について説明したが、本発明はそれら実施形態に限定されることなく、本発明の範囲内で種々の実施形態が可能である。
例えば、前記実施形態では、作業車両として所謂圧縮板式の塵芥収集車を例示したが、本発明では、塵芥積込装置2を回転板と押込板との協働による所謂回転板式の塵芥積込装置としたり、或いは塵芥排出装置7を、塵芥収容箱1を傾動させる所謂ダンプ式の塵芥排出装置としたりしてもよい。また本発明では、作業車両が塵芥収集車に限定されず、油圧ポンプで作業機を駆動する他の種々の作業車両、例えばコンクリートミキサー車、コンクリートポンプ車、コンテナの積み降ろし機能付きコンテナ運搬車、自動車の積み降ろし機能付き自動車卸運搬車等の作業車両に適用可能である。
また、前記実施形態では、電動モータMの動力を油圧ポンプの駆動の他、車輪の駆動にも利用できるようにしたハイブリッド車両に実施したものを示したが、本発明では、電動モータの動力を油圧ポンプの駆動のみに用いるようにしてもよい。この場合、そのポンプ駆動専用の電動モータと、該電動モータに電力供給するバッテリと、車輪に駆動力を付与する走行用エンジンから別個独立に構成されて油圧ポンプの駆動のみに用いられるエンジンと、そのエンジン又は電動モータの動力を選択的に取出可能な動力選択取出機構とを架装物Kに搭載した実施形態も採用可能であり、この実施形態では、前記第1〜第3実施形態における車両側制御装置UVのエンジン・モータ制御部の機能は、架装物UK側のエンジン・モータの制御に関して架装物側制御装置UK、特に第2制御装置UK2が担うように構成すればよい。
また、前記実施形態では、各々の動力源選択スイッチM−SW1,2が、モータ駆動選択位置(実施形態ではオン操作位置)とエンジン駆動選択位置(実施形態ではオフ操作位置)とを有していて、1個のスイッチで両選択位置を交互に選択操作できるようにしたものを示したが、本発明では、何れの動力源選択スイッチM−SW1,2を切換操作しても、その操作前の油圧ポンプの駆動状態(例えばエンジン駆動状態)を他の駆動状態(例えばモータ駆動状態)に切換え操作できるように構成してもよい。また、複数の動力源選択スイッチM−SW1,2のうち油圧ポンプの駆動源選択操作(例えばモータ駆動を選択するためのオン操作)を前回、行った動力源選択スイッチだけが、次回の駆動源切換操作(例えばエンジン駆動を選択するためのオフ操作)を行えるように構成してもよい。
また、前記実施形態では、動力源選択スイッチM−SW1,2のオン操作でモータ駆動状態が選択され、またオフ操作でエンジン駆動状態が選択されるものとしたが、動力源選択スイッチM−SW1,2の出力信号は、2つの駆動源(モータ・エンジン)を区別して選択できる出力態様であればよく、例えば、オン操作でエンジン駆動が選択され、またオフ操作でモータ駆動が選択されるように構成してもよい。
また、前記実施形態では、動力源選択スイッチM−SW1,2が油圧ポンプの駆動源切換に専用されるものを示したが、本発明では、既存の操作スイッチを動力源選択スイッチに兼用させてもよい。例えば、メインスイッチCF−SW1を動力源選択スイッチに兼用する場合には、メインスイッチCF−SW1を積込位置又は排出位置からオフ位置側に自動復帰するタイプとした上で、これを例えば積込位置又は排出位置へ選択操作した後、再度同じ操作位置に操作すると駆動源が切換わり、更にもう一度同じ操作位置に操作すると駆動源が更に切換わり、更にもう一度同じ操作位置に操作すると駆動源が更に切換わるといった手順で交互の切換操作を行えるようにしてもよい。
また、前記実施形態では、作業時の騒音抑制等のために、油圧ポンプPの駆動状態でのモータ回転数よりもエンジン回転数を大に設定しているが、使用目的、環境等によっては、他の理由でモータ回転数よりもエンジン回転数を小に設定してもよい。