JP6169950B2 - Aluminum alloy substrate for magnetic disk - Google Patents

Aluminum alloy substrate for magnetic disk Download PDF

Info

Publication number
JP6169950B2
JP6169950B2 JP2013230429A JP2013230429A JP6169950B2 JP 6169950 B2 JP6169950 B2 JP 6169950B2 JP 2013230429 A JP2013230429 A JP 2013230429A JP 2013230429 A JP2013230429 A JP 2013230429A JP 6169950 B2 JP6169950 B2 JP 6169950B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
alloy substrate
magnetic disk
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013230429A
Other languages
Japanese (ja)
Other versions
JP2015089956A (en
Inventor
北脇高太郎
林稔
戸次洋一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2013230429A priority Critical patent/JP6169950B2/en
Publication of JP2015089956A publication Critical patent/JP2015089956A/en
Application granted granted Critical
Publication of JP6169950B2 publication Critical patent/JP6169950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、耐熱性、平滑性、平坦性に優れ、高温加熱後も十分な強度を有する磁気ディスク用アルミニウム合金基板に関するものである。   The present invention relates to an aluminum alloy substrate for a magnetic disk that is excellent in heat resistance, smoothness and flatness and has sufficient strength even after high-temperature heating.

コンピュータの記憶装置に用いられるアルミニウム合金製磁気ディスクは、良好なメッキ性を有することとともに機械的特性や加工性が優れたJIS5086(Mg:3.5〜4.5mass%(以下、単に%と記す。)、Fe≦0.50%、Si≦0.40%、Mn:0.20〜0.70%、Cr:0.05〜0.25%、Cu≦0.10%、Ti≦0.15%、Zn≦0.25%、残部Al及び不可避的不純物)によるアルミニウム合金基板、JIS5086中の不純物であるFe、Si等を制限しマトリックス中の金属間化合物を小さくしたアルミニウム合金基板、或いはCuやZnを意識的に添加してメッキ性を改善したアルミニウム合金基板等から製造されている。
一般的なアルミニウム合金製磁気ディスクは、まず円環状アルミニウム合金基板を作製し、次いで該合金基板表面に磁性体を付着させることにより製造されている。
例えば前記JIS5086合金によるアルミニウム合金製磁気ディスクは以下の工程により製造される。まず、鋳塊を熱間圧延し、次いで焼鈍を施しながら冷間圧延し圧延材を作製する。次に、該圧延材を円環状に打抜き、円環状にしたアルミニウム合金板を積層し、両面から加圧して平坦化する焼鈍(加圧焼鈍)を行う工程により、円環状アルミニウム合金基板は作製される。
このようにして作製された円環状アルミニウム合金基板に、前処理として切削加工、研削加工、脱脂、エッチング、ジンケート処理(Zn置換処理)を施し、次いで下地処理として硬質非磁性金属であるNi−Pを無電解メッキし、該メッキ表面にポリッシングを施した後、磁性体をスパッタリングしてアルミニウム合金製磁気ディスクは製造される。
ところで、近年、磁気ディスクには、マルチメディア等のニーズから大容量化および高密度化が求められおり、面記録密度1Tb/in以上を達成する記録方式として、熱アシスト磁気記録方式が期待されている。熱アシスト磁気記録方式は、高い保磁力を持つ磁性体をレーザ光により加熱し、磁性体の保磁力を低下させ記録を行う方式である。
現在、高い保磁力を持つ磁性体としてFe−Pt系等が検討されているが、Fe−Pt系はこれまでのCo−Cr−Pt系の磁性体よりも高温(600℃程度)でのスパッタリングが必要であることが知られている。現在広く使われているJIS5086アルミニウム合金基板を用い600℃でスパッタリングを行った場合には、溶融が起こってしまうため、アルミニウム合金基板には高温での耐熱性が強く望まれている。
また、磁気ディスクの記録密度の向上には、磁気ディスクに対する磁気ヘッドの浮上量をより少なく、かつより安定させる必要がある。このためには、磁気ディスク用アルミニウム合金基板には高い平滑性、平坦性が求められている。
このような実情から、近年ではアルミニウム合金基板には優れた耐熱性と平滑性、平坦性が強く望まれ、様々な検討がなされている。
An aluminum alloy magnetic disk used for a storage device of a computer has JIS 5086 (Mg: 3.5 to 4.5 mass% (hereinafter simply referred to as%), which has excellent plating properties and excellent mechanical properties and workability. ), Fe ≦ 0.50%, Si ≦ 0.40%, Mn: 0.20 to 0.70%, Cr: 0.05 to 0.25%, Cu ≦ 0.10%, Ti ≦ 0. 15%, Zn ≦ 0.25%, balance Al and inevitable impurities) aluminum alloy substrate, aluminum alloy substrate with reduced intermetallic compounds in the matrix by limiting Fe, Si, etc., impurities in JIS5086, or Cu It is manufactured from an aluminum alloy substrate or the like in which plating properties are improved by intentionally adding Zn or Zn.
A general aluminum alloy magnetic disk is manufactured by first producing an annular aluminum alloy substrate and then attaching a magnetic material to the surface of the alloy substrate.
For example, an aluminum alloy magnetic disk made of the JIS 5086 alloy is manufactured by the following process. First, the ingot is hot-rolled, and then cold-rolled while annealing to produce a rolled material. Next, an annular aluminum alloy substrate is produced by a process of punching the rolled material into an annular shape, laminating aluminum alloy plates having an annular shape, and performing annealing (pressure annealing) by pressing from both sides and flattening. The
The annular aluminum alloy substrate thus manufactured is subjected to cutting, grinding, degreasing, etching, zincate treatment (Zn substitution treatment) as a pretreatment, and then Ni—P, which is a hard nonmagnetic metal, as a base treatment. After the electroless plating is performed and the plating surface is polished, a magnetic material is sputtered to produce an aluminum alloy magnetic disk.
Incidentally, in recent years, magnetic disks are required to have a large capacity and high density due to the need for multimedia and the like, and a heat-assisted magnetic recording system is expected as a recording system that achieves a surface recording density of 1 Tb / in 2 or more. ing. The heat-assisted magnetic recording method is a method in which recording is performed by heating a magnetic material having a high coercive force with a laser beam to reduce the coercive force of the magnetic material.
At present, Fe—Pt system and the like are being studied as magnetic materials having high coercive force, but Fe—Pt system is sputtering at a higher temperature (about 600 ° C.) than conventional Co—Cr—Pt system magnetic materials. Is known to be necessary. When sputtering is performed at 600 ° C. using a JIS5086 aluminum alloy substrate that is currently widely used, the aluminum alloy substrate is strongly desired to have heat resistance at high temperatures.
In order to improve the recording density of the magnetic disk, it is necessary to make the flying height of the magnetic head with respect to the magnetic disk smaller and more stable. For this purpose, high smoothness and flatness are required for aluminum alloy substrates for magnetic disks.
Under such circumstances, in recent years, excellent heat resistance, smoothness and flatness are strongly desired for aluminum alloy substrates, and various studies have been made.

特許文献1では、不純物であるFe、Si等を制限したJIS5086にZr等を選択的に添加し、加圧焼鈍の加熱温度を350℃以上、昇温・降温速度を2℃/分以下とすることで、耐熱性と平滑性、平坦性を向上させている。
特開2012−099179号公報
In Patent Document 1, Zr or the like is selectively added to JIS5086 in which impurities such as Fe and Si are limited, and the heating temperature of the pressure annealing is set to 350 ° C. or more and the temperature increase / decrease rate is 2 ° C./min or less. Thus, heat resistance, smoothness and flatness are improved.
JP2012-099179A

しかしながら、特許文献1に開示されている方法では、500℃で磁性材料のスパッタを行うことまでしか想定しておらず(特許文献1の段落0009〜0012)、600℃で加熱した時に溶融が起こり、それにより平滑性、平坦性が悪化する可能性があり、十分な耐熱性、平滑性、平坦性は得られていなかった。   However, the method disclosed in Patent Document 1 only assumes that sputtering of a magnetic material is performed at 500 ° C. (paragraphs 0009 to 0012 of Patent Document 1), and melting occurs when heated at 600 ° C. As a result, smoothness and flatness may be deteriorated, and sufficient heat resistance, smoothness and flatness have not been obtained.

一般的に使われているJIS5086アルミニウム合金基板で耐熱性を向上させるにはMg量を減らし、固相線温度(融点)を上げる方法が考えられるが、Mg量の減少と高温加熱により強度が低下してしまうという問題があった。   In order to improve heat resistance with a JIS5086 aluminum alloy substrate that is commonly used, a method of reducing the amount of Mg and increasing the solidus temperature (melting point) can be considered, but the strength decreases due to reduction of the amount of Mg and high temperature heating. There was a problem of doing.

よって、本発明は、耐熱性、平滑性、平坦性に優れ、高温加熱後も十分な強度を有する磁気ディスク用アルミニウム合金基板の提供を課題とする。 Therefore, an object of the present invention is to provide an aluminum alloy substrate for a magnetic disk that is excellent in heat resistance, smoothness, and flatness and has sufficient strength even after high-temperature heating.

本発明者らは上記問題点、特にアルミニウム合金基板の成分、Al−Cu系析出物の分布状態と耐熱性、平滑性、高温加熱後の平坦性及び強度の関係について鋭意調査研究した。この結果、磁気ディスク用アルミニウム合金基板として熱処理型Al−Cu−Mg系合金を用いることで優れた耐熱性と平滑性、平坦性、そして高温加熱後も十分な強度が得られることを見出した。具体的には、固相線温度が600℃を超える熱処理型Al−Cu−Mg系合金をアルミニウム合金基板として用いることで、600℃でスパッタリングを行っても溶融が抑えられ、更にスパッタリング時にCuが固溶し、その後の室温時効で化合物を析出させることで、高温加熱後も十分な強度が得られることを見出し、本発明をなすに至ったものである。   The inventors of the present invention conducted intensive research and research on the above-mentioned problems, in particular, the relationship between the components of the aluminum alloy substrate, the distribution state of the Al—Cu-based precipitates, heat resistance, smoothness, flatness after high-temperature heating, and strength. As a result, it has been found that by using a heat-treatable Al—Cu—Mg alloy as an aluminum alloy substrate for a magnetic disk, excellent heat resistance, smoothness, flatness, and sufficient strength can be obtained even after high-temperature heating. Specifically, by using a heat-treatable Al—Cu—Mg-based alloy having a solidus temperature exceeding 600 ° C. as an aluminum alloy substrate, melting is suppressed even when sputtering is performed at 600 ° C., and Cu is further suppressed during sputtering. It has been found that sufficient strength can be obtained even after high-temperature heating by solid solution and precipitation of the compound by subsequent aging at room temperature, and the present invention has been made.

本発明請求項1記載の磁気ディスク用アルミニウム合金基板は、Cu:0.5%以上2.0%未満、Mg:0.1%以上1.0%未満を含有し、残部Alと不可避的不純物からなり、円相当径0.5μm以上のAl−Cu系析出物の密度が1.0×10個/mm以下であることを特徴とする。 The aluminum alloy substrate for a magnetic disk according to claim 1 of the present invention contains Cu: 0.5% or more and less than 2.0%, Mg: 0.1% or more and less than 1.0%, and the balance Al and inevitable impurities. The density of Al—Cu based precipitates having an equivalent circle diameter of 0.5 μm or more is 1.0 × 10 5 pieces / mm 2 or less.

また、本発明請求項2記載の磁気ディスク用アルミニウム合金基板は、請求項1記載の合金に、更にZn:0.05〜1.0%、Cr:0.03〜0.3%、Zr:0.03〜0.3%のうち1種以上を含有し、円相当径0.5μm以上のAl−Cu系析出物の密度が1.0×10個/mm以下であることを特徴とする。 Moreover, the aluminum alloy substrate for magnetic disks according to claim 2 of the present invention is the same as the alloy according to claim 1, further Zn: 0.05 to 1.0%, Cr: 0.03 to 0.3%, Zr: The density of Al—Cu-based precipitates containing one or more of 0.03 to 0.3% and having an equivalent circle diameter of 0.5 μm or more is 1.0 × 10 5 pieces / mm 2 or less. And

また、本発明の磁気ディスク用アルミニウム合金基板用アルミニウム合金板の製造方法は、前記に記載の磁気ディスク用アルミニウム合金基板の製造方法であって、前記アルミニウム合金鋳塊に均質化処理を施し、熱間圧延、冷間圧延を行うにあたり、前記均質化処理は450℃以上で行ない、さらに均質化処理終了から冷間圧延前までに該アルミニウム合金の温度が380℃〜430℃である時間を15分以下に規定することにより、円相当径0.5μm以上のAl−Cu系析出物の密度を1.0×10個/mm以下とする磁気ディスク基板用であるアルミニウム合金板基板を製造することを特徴とする。 The method for producing an aluminum alloy plate for an aluminum alloy substrate for a magnetic disk according to the present invention is the method for producing an aluminum alloy substrate for a magnetic disk as described above, wherein the aluminum alloy ingot is subjected to a homogenization treatment and heated. In performing the cold rolling and the cold rolling, the homogenization treatment is performed at 450 ° C. or higher, and the time during which the temperature of the aluminum alloy is 380 ° C. to 430 ° C. from the end of the homogenization treatment to before the cold rolling is 15 minutes. By defining the following, an aluminum alloy plate substrate for a magnetic disk substrate having a density of Al-Cu based precipitates having an equivalent circle diameter of 0.5 μm or more of 1.0 × 10 5 pieces / mm 2 or less is manufactured. It is characterized by that.

本発明の磁気ディスク用アルミニウム合金基板は、耐熱性と平滑性、平坦性、強度に優れるため、高容量化および高密度化が可能な磁気ディスク用アルミニウム合金基板を提供することができる。   Since the aluminum alloy substrate for magnetic disks of the present invention is excellent in heat resistance, smoothness, flatness and strength, it is possible to provide an aluminum alloy substrate for magnetic disks which can be increased in capacity and density.

アルミニウム合金基板の製造工程から磁気ディスクの製造に至る工程のフローを示す図である。It is a figure which shows the flow of the process from the manufacturing process of an aluminum alloy substrate to manufacture of a magnetic disc.

以下、本発明を詳細に説明する。
先ず、アルミニウム合金基板の製造工程から磁気ディスクの製造工程を図1に示すフローで説明する。
ステップ1:必要に応じたアルミニウム合金組成に配合する。例えば後述する表1に示す成分組成のアルミニウム合金に配合する。
ステップ2:配合したアルミニウム合金を鋳造する。
ステップ3:鋳塊を面削し、均質化処理をする。
ステップ4:熱間圧延し板材とする。
ステップ5:熱間圧延した板を冷間圧延してアルミニウム合金圧延板とする。冷間圧延中もしくは前に中間焼鈍を行う(必須ではない)。
ステップ6:アルミニウム合金圧延板を円環状に打ち抜き、ディスクブランクを作成する。
ステップ7:ディスクブランクを加圧焼鈍により平坦化しアルミニウム合金基板を作成する。
ステップ8:アルミニウム合金基板を切削加工、研削加工する。
ステップ9:磁気ディスク用アルミニウム合金基板表面に下地処理を施す。
ステップ10:下地処理した表面にスパッタリングで磁性体を付着させ磁気ディスクとする。
Hereinafter, the present invention will be described in detail.
First, the manufacturing process of the magnetic disk from the manufacturing process of the aluminum alloy substrate will be described with reference to the flow shown in FIG.
Step 1: Blend into aluminum alloy composition as needed. For example, it mix | blends with the aluminum alloy of the component composition shown in Table 1 mentioned later.
Step 2: Cast the blended aluminum alloy.
Step 3: The ingot is chamfered and homogenized.
Step 4: Hot rolled to obtain a plate material.
Step 5: Cold-roll the hot-rolled plate to obtain an aluminum alloy rolled plate. Intermediate annealing during or before cold rolling (not required).
Step 6: A rolled aluminum alloy sheet is punched into an annular shape to form a disk blank.
Step 7: The disk blank is flattened by pressure annealing to produce an aluminum alloy substrate.
Step 8: The aluminum alloy substrate is cut and ground.
Step 9: Apply a ground treatment to the surface of the aluminum alloy substrate for magnetic disk.
Step 10: A magnetic material is attached to the surface of the ground surface by sputtering to obtain a magnetic disk.

ステップ1のアルミニウム合金の各組成の配合について詳細に説明する。アルミニウム合金の成分組成限定理由は次の通りである。   The composition of each composition of the aluminum alloy in Step 1 will be described in detail. The reasons for limiting the component composition of the aluminum alloy are as follows.

Cu:0.5%以上2.0%未満
Cuはスパッタリング後にMgとAlCuMgを時効析出することにより材料の強度を大幅に向上させる。Cuの含有量が0.5%未満では、この効果が十分に得られない。一方、Cu含有量が2.0%以上になると、粗大な化合物を形成し、研削加工時にこの化合物が脱落して平滑性低下の原因となる大きなピットが発生する。したがって、Cuの含有量は0.5%以上2.0%未満とする。なお、Cuの含有量の一層好ましい範囲は1.0〜1.5%である。
Cu: 0.5% or more and less than 2.0% Cu significantly improves the strength of the material by aging precipitation of Mg and Al 2 CuMg after sputtering. If the Cu content is less than 0.5%, this effect cannot be sufficiently obtained. On the other hand, when the Cu content is 2.0% or more, a coarse compound is formed, and this compound is dropped during grinding, and large pits that cause a decrease in smoothness are generated. Therefore, the Cu content is 0.5% or more and less than 2.0%. In addition, the more preferable range of content of Cu is 1.0 to 1.5%.

Mg:0.1%以上1.0%未満
Mgはスパッタリング後にCuとAlCuMgを時効析出することにより材料の強度を大幅に向上させる。Mgの含有量が0.1%未満ではこの効果が十分に得られない。一方、Mgの含有量が1.0%以上になると、アルミニウム合金基板の固相線温度が低下する。したがって、Mgの含有量は0.1%以上1.0%未満とする。なお、Mgの含有量の一層好ましい範囲は0.3〜0.8%である。
Mg: 0.1% or more and less than 1.0% Mg significantly improves the strength of the material by aging precipitation of Cu and Al 2 CuMg after sputtering. If the Mg content is less than 0.1%, this effect cannot be sufficiently obtained. On the other hand, when the Mg content is 1.0% or more, the solidus temperature of the aluminum alloy substrate decreases. Therefore, the Mg content is 0.1% or more and less than 1.0%. In addition, the more preferable range of content of Mg is 0.3 to 0.8%.

更に強度を向上させるために、以下の元素を単独で、もしくは複数を選択的に添加しても良い。
Mn:0.5〜1.6%
MnはAl−Mn系化合物を形成し、分散強化に寄与する。Mnの含有量が0.5%未満では、上記の効果が十分に得られず、一方、1.6%を越えると、粗大な晶出物を形成し、研削加工時にこの晶出物が脱落して平滑性低下の原因となる大きなピットが発生する。したがって、Mnの含有量は0.5〜1.6%とする。なお、Mnの含有量の一層好ましい範囲は0.5〜1.1%である。
Zn:0.05〜1.0%
Znはスパッタリング後に化合物として析出し、強度向上に寄与する。Znの添加量が0.05%未満では上記の効果が十分に得られず、一方、1.0%を超えるとアルミニウム合金基板の固相線温度が低下する。したがって、Znの含有量は0.05〜1.0%とする。なお、Znの含有量の一層好ましい範囲は0.1〜0.8%である。
Cr:0.03〜0.3%
Crはアルミニウム合金中で微細な金属間化合物を生成して、その強度を向上させる。含有量は、0.03%未満では効果が十分に得られず、一方0.3%を越えると粗大な化合物を形成し、研削加工時にこの化合物が脱落して平滑性低下の原因となる大きなピットが発生する。したがって、Crの含有量は各0.03〜0.3%とする。なお、Crの含有量の一層好ましい範囲は0.05〜0.2%である。
Zr:0.03〜0.3%
ZrもCrと同様アルミニウム合金中で微細な金属間化合物を生成して、その強度を向上させる。また、Al−Zr系化合物はスパッタリング時に結晶粒の粗大化を抑え、平坦性の低下を抑制する効果がある。含有量は、0.03%未満では効果が十分に得られず、一方0.3%を越えると粗大な化合物を形成し、研削加工時にこの化合物が脱落して平滑性低下の原因となる大きなピットが発生する。したがって、Zrの含有量は各0.03〜0.3%とする。なお、Zrの含有量の一層好ましい範囲は0.05〜0.2%である。
In order to further improve the strength, the following elements may be added alone or in combination.
Mn: 0.5 to 1.6%
Mn forms an Al—Mn compound and contributes to dispersion strengthening. If the Mn content is less than 0.5%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 1.6%, a coarse crystallized product is formed, and this crystallized product falls off during grinding. As a result, large pits that cause a decrease in smoothness are generated. Therefore, the Mn content is set to 0.5 to 1.6%. In addition, the more preferable range of content of Mn is 0.5 to 1.1%.
Zn: 0.05-1.0%
Zn precipitates as a compound after sputtering and contributes to strength improvement. If the added amount of Zn is less than 0.05%, the above effect cannot be obtained sufficiently, while if it exceeds 1.0%, the solidus temperature of the aluminum alloy substrate decreases. Therefore, the Zn content is 0.05 to 1.0%. A more preferable range of the Zn content is 0.1 to 0.8%.
Cr: 0.03-0.3%
Cr produces a fine intermetallic compound in the aluminum alloy and improves its strength. If the content is less than 0.03%, sufficient effects cannot be obtained. On the other hand, if it exceeds 0.3%, a coarse compound is formed, and this compound falls off during grinding and causes a decrease in smoothness. A pit is generated. Therefore, the Cr content is 0.03 to 0.3%. In addition, the more preferable range of Cr content is 0.05 to 0.2%.
Zr: 0.03-0.3%
Zr, like Cr, produces a fine intermetallic compound in an aluminum alloy and improves its strength. Further, the Al—Zr-based compound has an effect of suppressing coarsening of crystal grains during sputtering and suppressing deterioration of flatness. If the content is less than 0.03%, sufficient effects cannot be obtained. On the other hand, if it exceeds 0.3%, a coarse compound is formed, and this compound falls off during grinding and causes a decrease in smoothness. A pit is generated. Therefore, the Zr content is 0.03 to 0.3%. A more preferable range of the Zr content is 0.05 to 0.2%.

不純物元素
Si:0.001%以上0.1%未満
Siは通常不可避的不純物としてアルミニウム合金中に混入するものであり、アルミニウム合金中で固溶、析出強化してその強度を向上させる。しかし、多量のCuが共存する場合、単体のSiやAl−Cu−Si系化合物として析出し、Siが0.1%以上になると、これらの析出物が粗大化し、研削加工時にこの析出物が脱落して平滑性低下の原因となる大きなピットを発生する恐れがある。一方、アルミニウム地金からSiを0.001%未満まで取り除くことはアルミニウム地金を高純度に精錬することとなり、コスト高を招き好ましくない。したがって、Siは0.001以上0.1%未満が好ましい。なお、Siの含有量の一層好ましい範囲は0.001%以上0.05%以下である。
Fe:0.001%以上0.1%未満
Feは通常不可避的不純物としてアルミニウム合金中に混入するものであり、アルミニウム中には殆ど固溶せず、Al−Mn−Fe系化合物として晶出、析出して分散強化に寄与する。しかし、含有量が0.1%以上だと粗大なAl−Mn−Fe系化合物が生成して、研削加工時にこの化合物が脱落して平滑性低下の原因となる大きなピットを発生する恐れがある。一方、Feを0.001%未満まで取り除くのはアルミニウム地金を高純度に精錬することになりコスト高を招き好ましくない。Fe含有量は、0.025%未満に抑えることが好ましい。したがって、Feは0.001以上0.1%未満が好ましい。なお、Feの含有量の一層好ましい範囲は0.001%以上0.05%以下である。
それ以外の不純物(例えばTi、V、Ga、B等)は、各々が0.03%未満で、かつ合計で0.15%以下であれば、本発明で得られるアルミニウム合金基板としてその特性を損なうことはない。
Impurity element
Si: 0.001% or more and less than 0.1% Si is usually mixed in the aluminum alloy as an unavoidable impurity, and improves its strength by solid solution and precipitation strengthening in the aluminum alloy. However, when a large amount of Cu coexists, it precipitates as a simple Si or Al-Cu-Si compound, and when Si becomes 0.1% or more, these precipitates become coarse, and these precipitates appear during grinding. There is a risk of generating large pits that fall off and cause a reduction in smoothness. On the other hand, removing Si from the aluminum ingot to less than 0.001% is not preferable because the aluminum ingot is refined with high purity, resulting in an increase in cost. Therefore, Si is preferably 0.001 or more and less than 0.1%. Note that a more preferable range of the Si content is 0.001% or more and 0.05% or less.
Fe: 0.001% or more and less than 0.1% Fe is usually mixed in an aluminum alloy as an unavoidable impurity, hardly dissolves in aluminum, and crystallizes as an Al—Mn—Fe compound. Precipitates and contributes to dispersion strengthening. However, if the content is 0.1% or more, a coarse Al—Mn—Fe-based compound is generated, and this compound may drop off during grinding, which may generate large pits that cause a decrease in smoothness. . On the other hand, removing Fe to less than 0.001% is not preferable because it refining aluminum ingots with high purity, resulting in high costs. The Fe content is preferably suppressed to less than 0.025%. Therefore, Fe is preferably 0.001 or more and less than 0.1%. A more preferable range of the Fe content is 0.001% or more and 0.05% or less.
Other impurities (for example, Ti, V, Ga, B, etc.) have characteristics as an aluminum alloy substrate obtained by the present invention as long as each is less than 0.03% and not more than 0.15% in total. There is no loss.

次に、本発明の磁気ディスク用アルミニウム合金基板のスパッタリング前の金属組織について説明する。   Next, the metal structure before sputtering of the aluminum alloy substrate for magnetic disks of the present invention will be described.

円相当径0.5μm以上のAl−Cu系析出物の密度が1.0×10個/mm以下
円相当径0.5μm以上のAl−Cu系析出物(たとえば、Al−CuやAl−Cu−Fe又はAl−Cu−Mn等)は、比較的そのサイズが大きいため、スパッタリング時に固溶せず、消失し難い。そのため、スパッタリング後にもAl−Cu系析出物が残存し、これによりスパッタリング後のCu固溶量が低下する。スパッタリング後のCuの固溶量が低いと、AlCuMgの時効析出による強度上昇の効果が十分に得られない。したがって、本発明における円相当径0.5μm以上のAl−Cu系析出物の密度は1.0×10個/mm以下である。なお、円相当径0.5μm以上のAl−Cu系析出物の好ましい密度は1×10個/mm以下である。なお、円相当径0.5μm以上のAl−Cu系析出物の分散密度の下限は特に規定されるものではないが、アルミニウム合金の組成と製造工程によって自ずとこの下限は決まり、本発明で採用する合金組成と製造工程によれば、1.0×10個/μm程度が分散密度の下限となる。
円相当径0.5μm以上のAl−Cu系析出物の密度は、アルミニウム合金基板の断面をSEMにより観察し、SEM像を画像解析することにより求めた。
Density of Al-Cu-based precipitates with an equivalent circle diameter of 0.5 μm or more is 1.0 × 10 5 pieces / mm 2 or less Al—Cu-based precipitates with an equivalent circle diameter of 0.5 μm or more (for example, Al—Cu or Al -Cu-Fe or Al-Cu-Mn, etc.) is relatively large in size, so it does not dissolve at the time of sputtering and hardly disappears. For this reason, Al—Cu-based precipitates remain even after sputtering, thereby reducing the amount of Cu solid solution after sputtering. If the solid solution amount of Cu after sputtering is low, the effect of increasing the strength due to aging precipitation of Al 2 CuMg cannot be obtained sufficiently. Therefore, the density of Al—Cu-based precipitates having an equivalent circle diameter of 0.5 μm or more in the present invention is 1.0 × 10 5 pieces / mm 2 or less. Note that the preferable density of the Al—Cu-based precipitates having an equivalent circle diameter of 0.5 μm or more is 1 × 10 4 pieces / mm 2 or less. The lower limit of the dispersion density of the Al—Cu-based precipitates having an equivalent circle diameter of 0.5 μm or more is not particularly defined, but this lower limit is naturally determined by the composition of the aluminum alloy and the manufacturing process, and is adopted in the present invention. According to the alloy composition and the manufacturing process, about 1.0 × 10 3 pieces / μm 3 is the lower limit of the dispersion density.
The density of Al—Cu-based precipitates having a circle-equivalent diameter of 0.5 μm or more was determined by observing the cross section of the aluminum alloy substrate with an SEM and analyzing the SEM image.

次に磁気ディスク用アルミニウム合金基板の製造方法について説明する。
前記ステップ1で本発明の合金組成範囲に調整されたアルミニウム合金地金を、半連続鋳造(DC鋳造)法などの常法に従って鋳造(ステップ2)し、得られた鋳塊に均質化処理(ステップ3)、熱間圧延(ステップ4)、冷間圧延(ステップ5)を施しアルミニウム合金圧延板を製造する。いずれの工程もAl−Cu系析出物の分布状態に関係するが、本発明者らは特にステップ3からステップ5の直前、すなわち均質化処理終了から冷間圧延前までの特定範囲の温度における保持(滞在)時間が大きく影響することを発見し本発明に至った。
Next, a method for manufacturing an aluminum alloy substrate for a magnetic disk will be described.
The aluminum alloy ingot adjusted to the alloy composition range of the present invention in Step 1 is cast according to a conventional method such as a semi-continuous casting (DC casting) method (Step 2), and the resulting ingot is homogenized ( Step 3), hot rolling (step 4), and cold rolling (step 5) are performed to produce a rolled aluminum alloy sheet. All the processes are related to the distribution state of the Al—Cu-based precipitates, but the present inventors particularly maintain the temperature within a specific range immediately before Step 3 to Step 5, that is, from the end of the homogenization treatment to before cold rolling. (Residence) It was discovered that time greatly affects the present invention.

均質化処理の保持温度450℃以上
均質化処理の保持温度を450℃以上とすると、円相当径0.5μm以上のAl-Cu系の析出物が母相に固溶し、析出物の密度が減少する。一方、450℃未満の温度で保持を行うと、円相当径0.5μm以上のAl−Cu系の析出物の密度が増加し、それに伴いスパッタリング後のCuの固溶量が下がり、AlCuMgの時効析出による強度上昇の効果が十分に得られない。このため、均質化処理は450℃以上の温度で行う。均質化処理温度の上限は特に設けないが、560℃以下が好ましい。またAl-Cu系析出物の固溶を確実にするために均質化処理の保持時間は0.5時間以上。好ましくは3時間以上とする。
Homogenization retention temperature 450 ° C or higher If the homogenization retention temperature is 450 ° C or higher, Al-Cu-based precipitates with an equivalent circle diameter of 0.5 µm or more are dissolved in the matrix, and the density of the precipitates is Decrease. On the other hand, when holding at a temperature of less than 450 ° C., the density of Al—Cu-based precipitates having an equivalent circle diameter of 0.5 μm or more increases, and accordingly, the solid solution amount of Cu after sputtering decreases, and Al 2 CuMg. The effect of increasing the strength due to aging precipitation is not sufficiently obtained. For this reason, the homogenization process is performed at a temperature of 450 ° C. or higher. The upper limit of the homogenization treatment temperature is not particularly set, but is preferably 560 ° C or lower. Also, in order to ensure the solid solution of the Al—Cu-based precipitates, the homogenization treatment time is 0.5 hours or more. Preferably it is 3 hours or more.

均質化処理終了から冷間圧延前までに該アルミニウム合金の温度が380℃〜430℃である時間が15分以下
均質化処理終了から冷間圧延前までの、380℃〜430℃の温度域では、材料中に固溶しているCuが粗大なAl−Cu系の化合物として析出する。そのため、この温度域で15分を越えて保持すると、円相当径0.5μm以上のAl−Cu系析出物の密度が1.0×10個/mmを越える。このため、均質化処理終了から冷間圧延前までの380℃〜430℃の温度域での保持時間は15分以下とする。なお、430℃超え450℃未満の温度域でも粗大なAl−Cu系化合物は析出するが、析出物の生成数が少ないためその影響は無視することができる。
The time during which the temperature of the aluminum alloy is 380 ° C. to 430 ° C. is 15 minutes or less from the end of the homogenization treatment to before cold rolling In the temperature range of 380 ° C. to 430 ° C. from the end of the homogenization treatment to before cold rolling , Cu dissolved in the material is precipitated as a coarse Al-Cu compound. Therefore, if the temperature is maintained for more than 15 minutes, the density of Al—Cu based precipitates having an equivalent circle diameter of 0.5 μm or more exceeds 1.0 × 10 5 pieces / mm 2 . For this reason, the holding time in the temperature range of 380 ° C. to 430 ° C. from the end of the homogenization treatment to before cold rolling is 15 minutes or less. In addition, although a coarse Al-Cu type compound precipitates also in the temperature range over 430 degreeC and less than 450 degreeC, since there are few production | generation numbers of a precipitate, the influence can be disregarded.

熱間圧延終了後は、冷間圧延(ステップ5)によって所要の製品板厚に仕上げる。冷間圧延の条件は特に限定されるものではなく、必要な製品板強度や板厚に応じて定めれば良く、圧延率を20〜80%とする。   After the hot rolling is finished, the product is finished to the required product thickness by cold rolling (step 5). The conditions for cold rolling are not particularly limited, and may be determined according to the required product sheet strength and sheet thickness, and the rolling rate is 20 to 80%.

冷間圧延中もしくは冷間圧延前後に焼鈍を行う場合は、380℃以上で加熱すると粗大なAl−Cu系の化合物が析出するため、380℃未満で行う。250〜330℃の温度で行うことがより好ましい。なお、380℃未満で加熱を行ってもAl−Cu系の化合物は析出するが、円相当径0.5μm未満の微細な化合物のため、その影響は無視することができる。 When annealing is performed during cold rolling or before and after cold rolling, a coarse Al—Cu compound precipitates when heated at 380 ° C. or higher, and is performed at a temperature lower than 380 ° C. It is more preferable to carry out at a temperature of 250 to 330 ° C. In addition, although it heats at less than 380 degreeC, an Al-Cu type compound will precipitate, but since it is a fine compound with an equivalent circle diameter of less than 0.5 micrometer, the influence can be disregarded.

その後、このようにして製造したアルミニウム合金圧延板を用途に応じて加工する。
アルミニウム合金圧延板を磁気ディスク用として加工するには、該基板を円環状に打ち抜き(ステップ6)、加圧焼鈍(ステップ7)を行う。加圧焼鈍は、380℃以上で加熱すると粗大なAl−Cu系の化合物が析出するため、380℃未満で行う。250〜330℃の温度で行うことがより好ましい。
平坦化したディスクブランクを切削加工、研削加工、(ステップ8)して、下地処理(ステップ9)、スパッタリング(ステップ10)を行い磁気ディスクとする。
Then, the aluminum alloy rolled plate manufactured in this way is processed according to a use.
In order to process the aluminum alloy rolled plate for a magnetic disk, the substrate is punched into an annular shape (step 6) and subjected to pressure annealing (step 7). The pressure annealing is performed at a temperature lower than 380 ° C. because a coarse Al—Cu compound precipitates when heated at 380 ° C. or higher. It is more preferable to carry out at a temperature of 250 to 330 ° C.
The flattened disk blank is cut and ground (step 8), and subjected to ground processing (step 9) and sputtering (step 10) to obtain a magnetic disk.

以下に本発明を磁気ディスク基板に使用した実施例により詳細に説明する。
ステップ1:表1に示す成分組成のアルミニウム合金溶湯を溶製した。なお、表1の合金組成において、「−」は無添加 であることを示す。
In the following, the present invention will be described in detail with reference to an embodiment using a magnetic disk substrate.
Step 1: A molten aluminum alloy having the composition shown in Table 1 was melted. In the alloy composition shown in Table 1, “-” indicates no addition.

Figure 0006169950
Figure 0006169950

ステップ2:アルミニウム合金溶湯をDC鋳造法により厚さ500mmの鋳塊とした。
ステップ3:表2に示す条件で均質化処理を施した。
Step 2: The aluminum alloy melt was made into an ingot having a thickness of 500 mm by a DC casting method.
Step 3: A homogenization treatment was performed under the conditions shown in Table 2.

Figure 0006169950
Figure 0006169950

ステップ4:熱間圧延を行ない、板厚3.0mmの熱延板とした。
ステップ5:実施例No.3の合金以外の熱延板は中間焼鈍を行なわずに冷間圧延(圧延率66.7%)により最終板厚の1.0mmまで圧延し、圧延板とした。
実施例No.3は、まず第1の冷間圧延(圧延率33.3%)を施した後、バッチ式焼鈍炉を用いて、320℃で2時間の条件で中間焼鈍を行なった。次いで、第2の冷間圧延(圧延率50.0%)により最終板厚の1.0mmまで圧延し、圧延板とした。
Step 4: Hot rolling was performed to obtain a hot rolled sheet having a thickness of 3.0 mm.
Step 5: Example No. Hot rolled sheets other than the alloy No. 3 were rolled to a final sheet thickness of 1.0 mm by cold rolling (rolling ratio: 66.7%) without performing intermediate annealing to obtain rolled sheets.
Example No. In No. 3, first cold rolling (rolling rate: 33.3%) was performed, and then intermediate annealing was performed at 320 ° C. for 2 hours using a batch annealing furnace. Subsequently, it rolled to 1.0 mm of the final board thickness by the 2nd cold rolling (rolling rate 50.0%), and was set as the rolled sheet.

ステップ6:前記圧延板から外径96mm、内径24mmの円環状に打抜き、ディスクブランクを作製した。
ステップ7:ディスクブランクを325℃で4時間加圧焼鈍を施した。
ステップ8:端面加工後、研削加工を施した。
Step 6: A blank disc was produced by punching the rolled plate into an annular shape having an outer diameter of 96 mm and an inner diameter of 24 mm.
Step 7: The disc blank was subjected to pressure annealing at 325 ° C. for 4 hours.
Step 8: Grinding was performed after the end face processing.

前記冷延(ステップ5)後、加圧焼鈍(ステップ7)後、及び研削加工(ステップ8)後の磁気ディスク用アルミニウム合金基板について以下の評価を行った。表2に均質化処理終了から冷間圧延前までにアルミニウム合金基板が380℃〜430℃であった時間を示す。なお、比較例No.19、20、22、25は600℃で加熱したときに溶解が起こったため、耐力の評価は行っていない。   The following evaluation was performed on the aluminum alloy substrate for a magnetic disk after the cold rolling (step 5), after pressure annealing (step 7), and after grinding (step 8). Table 2 shows the time during which the aluminum alloy substrate was 380 ° C. to 430 ° C. from the end of the homogenization treatment to before cold rolling. Comparative Example No. Since 19, 20, 22, and 25 melt | dissolved when heated at 600 degreeC, the proof stress was not evaluated.

〔耐熱性〕
耐熱性は、加圧焼鈍後のアルミニウム合金基板の固相線温度を熱分析により求めることで、評価を行った。固相線温度が600℃を超える場合を優良(◎印)とし、600℃以下の場合を不良(×印)とした。
〔Heat-resistant〕
The heat resistance was evaluated by determining the solidus temperature of the aluminum alloy substrate after pressure annealing by thermal analysis. A case where the solidus temperature exceeded 600 ° C. was judged as excellent (◎), and a case where the solidus temperature was 600 ° C. or lower was judged as defective (×).

〔耐力〕
冷延後のアルミニウム合金板を325℃、4時間の条件で加熱した後、赤外線加熱装置を用い600℃/分で昇温し、600℃、10secの条件で加熱し、1週間室温で保持した後、圧延方向に切り出したJIS5号試験片の耐力を測定した。測定条件は、標点距離50mm、クロスヘッド速度10mm/分とした。耐力100MPa以上のものを優良(◎印)とし、耐力100MPa未満のものを不良(×印)とした。
[Strength]
The aluminum alloy sheet after cold rolling was heated at 325 ° C. for 4 hours, then heated at 600 ° C./min using an infrared heating device, heated at 600 ° C. for 10 seconds, and kept at room temperature for 1 week. Then, the proof stress of the JIS5 test piece cut out in the rolling direction was measured. The measurement conditions were a gauge distance of 50 mm and a crosshead speed of 10 mm / min. A material having a yield strength of 100 MPa or more was regarded as excellent (◎), and a material having a yield strength of less than 100 MPa was regarded as defective (x).

〔円相当径0.5μm以上のAl−Cu系析出物の密度(個/mm)〕
SEMにより、加圧焼鈍後のアルミニウム合金基板の断面の組成(COMP)像を倍率1000倍にて撮影(視野:0.2mm)し、円相当径0.5μm以上のAl−Cu系析出物の密度を求めた。Al−Cu系析出物はCOMP像ではマトリックスに比べて白く写るため、白く写る粒子をAl−Cu系析出物としてカウントした。
[Density of Al-Cu-based precipitates having an equivalent circle diameter of 0.5 μm or more (pieces / mm 2 )]
A composition (COMP) image of the cross section of the aluminum alloy substrate after pressure annealing was taken by SEM at a magnification of 1000 times (field of view: 0.2 mm 2 ), and an Al—Cu based precipitate having an equivalent circle diameter of 0.5 μm or more. The density of was determined. Since the Al—Cu-based precipitate appears whiter than the matrix in the COMP image, the particles that appear white are counted as Al—Cu-based precipitates.

〔平坦性〕
加圧焼鈍後のブランクを赤外線加熱装置により600℃/分で昇温し、600℃、10secの条件で加熱し、30枚の平坦度を平坦度測定器により測定し、平坦性の評価を行った。平坦度の最大値が5μm未満のものを優良(◎印)とし、平坦度の最大値が5μm以上のものを不良(×印)とした。なお、この平坦度はZyGO非接触フラットネス測定機で測定した値である。
[Flatness]
The blank after pressure annealing is heated at 600 ° C./min with an infrared heating device, heated at 600 ° C. for 10 seconds, and the flatness of 30 sheets is measured with a flatness measuring instrument to evaluate the flatness. It was. A sample having a maximum flatness value of less than 5 μm was evaluated as excellent (◎), and a sample having a maximum flatness value of 5 μm or more was evaluated as defective (×). The flatness is a value measured with a ZyGO non-contact flatness measuring machine.

〔平滑性〕
加圧焼鈍後のブランクを赤外線加熱装置により600℃/分で昇温し、600℃、10secの条件で加熱し、研削加工を行った後、アルミニウム合金基板表面の粗さ(算術平均粗さ、Ra)を10枚測定し、その平均値で平滑性の評価を行った。測定は、測定長さ=8.00mmとし圧延直角方向に走査することで行った。表面粗さRaが0.020μm未満の場合を優良(◎印)とし、Raが0.020μm以上0.025μm未満のものを良好(○印)とし、Raが0.025μm以上の場合を不良(×印)とした。以上の評価結果を表3に示す。
[Smoothness]
The blank after pressure annealing was heated at 600 ° C./min with an infrared heating device, heated at 600 ° C. for 10 sec, and ground, and then the roughness of the aluminum alloy substrate surface (arithmetic average roughness, Ten Ra) were measured, and the smoothness was evaluated by the average value. The measurement was performed by setting the measurement length to 8.00 mm and scanning in the direction perpendicular to the rolling. The case where the surface roughness Ra is less than 0.020 μm is determined to be excellent (◎), the case where Ra is 0.020 μm or more and less than 0.025 μm is determined to be good (◯ mark), and the case where Ra is 0.025 μm or more is defective ( X). The above evaluation results are shown in Table 3.

Figure 0006169950
Figure 0006169950

表3に示すように、実施例のNo.1〜No.15では、耐熱性、平滑性、平坦性に優れ、高温加熱後も十分な強度を有する磁気ディスク用アルミニウム合金基板が得られた。   As shown in Table 3, the example No. 1-No. In No. 15, an aluminum alloy substrate for a magnetic disk having excellent heat resistance, smoothness and flatness and sufficient strength even after high-temperature heating was obtained.

一方比較例No.16〜25は何れも本発明の規定から外れる要素を含んでいたため、耐熱性や平滑性、平坦性、強度のいずれかにおいて劣っていた。   On the other hand, Comparative Example No. Since 16 to 25 all contained elements that were not within the scope of the present invention, they were inferior in any of heat resistance, smoothness, flatness, and strength.

即ち、比較例No.16はCuの含有量が少ないために耐力が低くなった。
比較例No.17はCuの含有量が多いために粗大な化合物が形成され、研削加工時にこの化合物が脱落して平滑性が低下した。
比較例No.18はMgの含有量が少ないために耐力が低くなった。
比較例No.19、20はMgの含有量が多いために固相線温度が低下し、耐熱性が悪くなった。また、耐熱性が悪いことで平滑性及び平坦性が低下した。
比較例No.21はMnの含有量が多いために粗大な晶出物が形成され、研削加工時にこの晶出物が脱落して平滑性が低下した。比較例No.22はZnの含有量が多いために固相線温度が低下し、耐熱性が悪くなった。また、耐熱性が悪いことで平滑性及び平坦性が低下した。
比較例No.23はCrの含有量が多いために粗大な化合物が形成され、研削加工時にこの化合物が脱落して平滑性が低下した。
比較例No.24はZrの含有量が多いために粗大な化合物が形成され、研削加工時にこの化合物が脱落して平滑性が低下した。
比較例No.25はMgの含有量が多いために固相線温度が低下し、耐熱性が悪くなった。また、耐熱性が悪いことで平滑性及び平坦性が低下した。
比較例No.26は均質化の保持温度が低いために円相当径0.5μm以上のAl−Cu系析出物が多く形成され、耐力が低くなった。
比較例No.27は均質化処理終了から冷間圧延前までに380℃〜430℃であった時間が長すぎたために円相当径0.5μm以上のAl−Cu系析出物が多く形成され、耐力が低くなった。
上述したように、本発明のアルミニウム合金基板は高温で加熱するにあたり、成分が制御されているため溶融が抑えられ、優れた耐熱性と平滑性、平坦性を有する。また、高温加熱後の室温時効により、磁気ディスク用アルミニウム合金基板として必要な強度を得ることが出来る優れた効果を有するものである。
That is, Comparative Example No. No. 16 had a low yield strength due to a low Cu content.
Comparative Example No. Since No. 17 had a large Cu content, a coarse compound was formed, and this compound dropped off during grinding, resulting in a decrease in smoothness.
Comparative Example No. No. 18 had a low yield strength due to a low Mg content.
Comparative Example No. 19 and 20 had a high Mg content, so the solidus temperature decreased and the heat resistance deteriorated. Moreover, smoothness and flatness fell because heat resistance was bad.
Comparative Example No. Since No. 21 had a large Mn content, a coarse crystallized product was formed, and this crystallized product dropped off during the grinding process, resulting in a decrease in smoothness. Comparative Example No. No. 22 had a high Zn content, so the solidus temperature decreased and the heat resistance deteriorated. Moreover, smoothness and flatness fell because heat resistance was bad.
Comparative Example No. Since No. 23 had a large Cr content, a coarse compound was formed, and this compound dropped off during grinding, resulting in a decrease in smoothness.
Comparative Example No. Since No. 24 had a large Zr content, a coarse compound was formed, and this compound dropped out during the grinding process, resulting in a decrease in smoothness.
Comparative Example No. Since No. 25 had a high Mg content, the solidus temperature decreased and the heat resistance deteriorated. Moreover, smoothness and flatness fell because heat resistance was bad.
Comparative Example No. In No. 26, since the holding temperature for homogenization was low, many Al—Cu-based precipitates having an equivalent circle diameter of 0.5 μm or more were formed, and the yield strength was low.
Comparative Example No. In No. 27, the time from 380 ° C. to 430 ° C. from the end of the homogenization treatment to before cold rolling was too long, so a lot of Al—Cu-based precipitates with an equivalent circle diameter of 0.5 μm or more were formed, and the proof stress was low. It was.
As described above, when the aluminum alloy substrate of the present invention is heated at a high temperature, since the components are controlled, melting is suppressed, and excellent heat resistance, smoothness, and flatness are obtained. Moreover, it has the outstanding effect that the intensity | strength required as an aluminum alloy substrate for magnetic discs can be obtained by room temperature aging after high temperature heating.

Claims (3)

Cu:0.5mass%以上2.0mass%未満(以下、単に%と記す。)、Mg:0.1%以上1.0%未満を含有し、残部Alと不可避的不純物からなり、円相当径0.5μm以上のAl−Cu系析出物の密度が1.0×10個/mm以下であることを特徴とする磁気ディスク用アルミニウム合金基板。 Cu: 0.5 mass% or more and less than 2.0 mass% (hereinafter simply referred to as “%”), Mg: 0.1% or more and less than 1.0%, consisting of the balance Al and unavoidable impurities, equivalent circle diameter An aluminum alloy substrate for a magnetic disk, wherein the density of Al-Cu precipitates of 0.5 µm or more is 1.0 x 10 5 pieces / mm 2 or less. Cu:0.5%以上2.0%未満、Mg:0.1%以上1.0%未満を含有し、さらにMn:0.5〜1.6%、Zn:0.05〜1.0%、Cr:0.03〜0.3%、Zr:0.03〜0.3%のうち1種以上を含有し、残部Alと不可避的不純物からなり、円相当径0.5μm以上のAl−Cu系析出物の密度が1.0×10個/mm以下であることを特徴とする磁気ディスク用アルミニウム合金基板。 Cu: 0.5% or more and less than 2.0%, Mg: 0.1% or more and less than 1.0%, Mn: 0.5 to 1.6%, Zn: 0.05 to 1.0 %, Cr: 0.03 to 0.3%, Zr: 0.03 to 0.3%, one or more of them, the balance being Al and inevitable impurities, Al having an equivalent circle diameter of 0.5 μm or more An aluminum alloy substrate for a magnetic disk, wherein the density of Cu-based precipitates is 1.0 × 10 5 pieces / mm 2 or less. 請求項1又は2に記載の磁気ディスク用アルミニウム合金基板の製造方法であって、鋳塊に均質化処理を施し、熱間圧延、冷間圧延を行うにあたり、前記均質化処理は450℃以上で行ない、さらに均質化処理終了から冷間圧延前までに該アルミニウム合金の温度が380℃〜430℃である時間を15分以下に規定することを特徴とする磁気ディスク用アルミニウム合金基板の製造方法。 The method for producing an aluminum alloy substrate for a magnetic disk according to claim 1 or 2, wherein the homogenization treatment is performed at 450 ° C or higher when the ingot is subjected to homogenization treatment and hot rolling or cold rolling is performed. A method for producing an aluminum alloy substrate for a magnetic disk, characterized in that the time during which the temperature of the aluminum alloy is 380 ° C. to 430 ° C. is defined as 15 minutes or less from the end of homogenization treatment to before cold rolling.
JP2013230429A 2013-11-06 2013-11-06 Aluminum alloy substrate for magnetic disk Active JP6169950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013230429A JP6169950B2 (en) 2013-11-06 2013-11-06 Aluminum alloy substrate for magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013230429A JP6169950B2 (en) 2013-11-06 2013-11-06 Aluminum alloy substrate for magnetic disk

Publications (2)

Publication Number Publication Date
JP2015089956A JP2015089956A (en) 2015-05-11
JP6169950B2 true JP6169950B2 (en) 2017-07-26

Family

ID=53193636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013230429A Active JP6169950B2 (en) 2013-11-06 2013-11-06 Aluminum alloy substrate for magnetic disk

Country Status (1)

Country Link
JP (1) JP6169950B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107982A1 (en) * 2014-01-16 2015-07-23 株式会社Uacj Aluminum alloy material, method for producing same, aluminum alloy clad material, and method for producing same
CN104941999B (en) * 2015-06-30 2017-01-11 辽宁科技大学 Rolling method of high-purity aluminum magnesium alloy substrate for mechanical hard disk
JP6684198B2 (en) * 2016-03-25 2020-04-22 株式会社神戸製鋼所 Aluminum alloy blanks for magnetic disks and aluminum alloy substrates for magnetic disks
JP6389546B1 (en) * 2017-05-12 2018-09-12 株式会社Uacj Aluminum alloy substrate for magnetic disk, manufacturing method thereof, and magnetic disk using the aluminum alloy substrate for magnetic disk
JP6492216B1 (en) * 2018-07-11 2019-03-27 株式会社Uacj Aluminum alloy substrate for magnetic disk, method of manufacturing the same, and magnetic disk using the aluminum alloy substrate for magnetic disk
JP2020114944A (en) * 2020-03-27 2020-07-30 株式会社神戸製鋼所 Aluminum alloy sheet for magnetic disk, aluminum alloy blank for magnetic disk, and aluminum alloy substrate for magnetic disk
CN114790527B (en) * 2022-03-23 2023-05-16 山东博源精密机械有限公司 Al-based ternary motor rotor alloy and preparation method and application thereof
CN115637358B (en) * 2022-11-02 2023-10-03 河北新立中有色金属集团有限公司 Aluminum alloy for replacing copper motor core with aluminum and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193537A (en) * 1983-04-15 1984-11-02 Mitsubishi Alum Co Ltd Al alloy for substrate of magnetic disk
JPS63319142A (en) * 1987-06-24 1988-12-27 Furukawa Alum Co Ltd Aluminum alloy plymetal for magnetic disk base
JP5083802B2 (en) * 2007-03-13 2012-11-28 三菱アルミニウム株式会社 Aluminum alloy plate for secondary battery case and manufacturing method thereof
JP5199714B2 (en) * 2008-03-31 2013-05-15 株式会社神戸製鋼所 Method for manufacturing aluminum alloy substrate for magnetic disk
JP5901168B2 (en) * 2011-07-22 2016-04-06 株式会社Uacj Aluminum alloy substrate for magnetic disk and method for manufacturing the same, and aluminum alloy substrate for base treatment magnetic disk and method for manufacturing the same

Also Published As

Publication number Publication date
JP2015089956A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6169950B2 (en) Aluminum alloy substrate for magnetic disk
US9613648B2 (en) Aluminum alloy plate for magnetic disc substrate, method for manufacturing same, and method for manufacturing magnetic disc
JP6998305B2 (en) Aluminum alloy plate for magnetic disk substrate and its manufacturing method, and magnetic disk
JP6807142B2 (en) Aluminum alloy substrate for magnetic disks and its manufacturing method
JP6131083B2 (en) Aluminum alloy plate for magnetic disk substrate and manufacturing method thereof
JP2008196042A (en) Copper alloy sheet for electrical/electronic component having excellent strength and formability
JP5271094B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
WO2016190277A1 (en) Aluminum alloy substrate for magnetic discs and manufacturing method therefor, as well as magnetic disc using said aluminum alloy substrate for magnetic discs
JP5901168B2 (en) Aluminum alloy substrate for magnetic disk and method for manufacturing the same, and aluminum alloy substrate for base treatment magnetic disk and method for manufacturing the same
JP2013112884A (en) Aluminum alloy substrate and method for producing the same
JPWO2015155911A1 (en) High-strength aluminum alloy plate excellent in bending workability and shape freezing property and method for producing the same
JP2020087485A (en) Aluminum alloy board for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
WO2018092547A1 (en) Aluminum alloy substrate for magnetic disc and method of manufacture therefor
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP6736869B2 (en) Copper alloy material
JP5836352B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
JP2017179590A (en) Aluminum alloy blank for magnetic disc and aluminum alloy substrate for magnetic disc
JP2009287062A (en) Copper alloy for backing plate and method for producing the same
JP6908741B2 (en) Aluminum alloy blanks for magnetic disks and aluminum alloy substrates for magnetic disks
JP6339726B1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JP6339719B1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JP2005194590A (en) Aluminum alloy substrate for magnetic disk, and its production method
WO2016056240A1 (en) Superplastic-forming aluminium alloy plate and production method therefor
JP2020153012A (en) Aluminum alloy blank for magnetic disk, and aluminum alloy substrate for magnetic disk
JP2007186748A (en) Aluminum alloy material to be formed at high temperature and high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170629

R150 Certificate of patent or registration of utility model

Ref document number: 6169950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150