JP6165348B2 - 干渉識別装置、無線通信装置および干渉識別方法 - Google Patents

干渉識別装置、無線通信装置および干渉識別方法 Download PDF

Info

Publication number
JP6165348B2
JP6165348B2 JP2016546369A JP2016546369A JP6165348B2 JP 6165348 B2 JP6165348 B2 JP 6165348B2 JP 2016546369 A JP2016546369 A JP 2016546369A JP 2016546369 A JP2016546369 A JP 2016546369A JP 6165348 B2 JP6165348 B2 JP 6165348B2
Authority
JP
Japan
Prior art keywords
frequency
unit
power value
interference
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016546369A
Other languages
English (en)
Other versions
JPWO2016035439A1 (ja
Inventor
学 高木
学 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016035439A1 publication Critical patent/JPWO2016035439A1/ja
Application granted granted Critical
Publication of JP6165348B2 publication Critical patent/JP6165348B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/26Monitoring; Testing of receivers using historical data, averaging values or statistics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Probability & Statistics with Applications (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Description

本発明は、電波環境を測定して干渉信号を識別する干渉識別装置、無線通信装置および干渉識別方法に関する。
近年の無線通信の急激な発達に伴い、利用可能な周波数の不足が深刻な問題となりつつある。このため、周波数を有効利用することが望まれる。周波数を有効利用する方法として、電波環境に合わせた最適な無線通信方式で伝送を行う方法がある。電波環境に合わせた無線通信方式を選択するにあたり、電波環境における干渉信号の特徴を抽出し、干渉信号を識別する干渉識別装置が重要な役割を果たす。これまで、干渉識別装置に関する各種方式の提案が行われている。
従来の干渉識別装置では、電波環境測定データに対して、干渉信号の波形の特徴量として振幅確率分布等の振幅情報を算出し、振幅情報としきい値とを比較することにより、通信信号に対する干渉の発生の有無を推定していた。例えば、特許文献1を参照されたい。
また、例えば、特許文献2に開示されているように、無線機器が利用する周波数に対して、ノイズのピーク値を取得し、ピーク値が基準値以下なら通信が行えると判断し、通信の品質を確保する方法も提案されている。
特開2012−47724号公報 特開2014−45354号公報
しかしながら、特許文献1に記載された干渉識別装置では、干渉の特徴量として複数の振幅情報を使用して、通信信号に対する干渉の発生の有無を推定している。また、特許文献2に記載された干渉識別装置では、ノイズのピーク値に基づいて干渉の有無を判断している。振幅情報だけまたはノイズのピーク値だけでは、干渉信号の継続時間、特定の周波数を長時間占有する干渉信号が存在しているのか否か、周波数ホッピングをする干渉信号が存在しているか否かといった干渉信号の特徴まで推定することは困難である。一方、取得電波環境に応じた適切な通信方式を選択するには、時間変化を示す時間領域の特徴、周波数領域における特徴等のより詳細な干渉信号の特徴を把握する必要がある。このため、特許文献1および特許文献2に記載の技術では、適切な通信方式を選択することができないという問題がある。
本発明は、上記に鑑みてなされたものであって、干渉信号の時間領域および周波数領域の特徴を識別することが可能な干渉識別装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、電磁波の受信により得られた受信信号を取得する取得部と、前記受信信号を用いて前記受信信号の時間および周波数ごとの複素振幅を示す行列データを算出する周波数変換部と、前記行列データを用いて第1の時刻の周波数分布と第2の時刻の周波数分布との相関値を算出する自己相関値計算部と、前記相関値を用いて干渉信号の特徴を識別する識別部と、を備えることを特徴とする。
本発明にかかる干渉識別装置は、干渉信号の時間領域および周波数領域の特徴を識別することができるという効果を奏する。
実施の形態1にかかる干渉識別装置の構成例を示す図 実施の形態1の干渉識別装置のハードウェア構成例を示す図 制御回路の構成例を示す図 実施の形態1の自己相関値計算部における自己相関値の算出手順の一例を示すフローチャート 実施の形態1の度数カウント部における電力値の計数処理手順の一例を示すフローチャート 干渉信号が特定周波数を占有する場合の自己相関値計算部により算出された相関値の例を示す図 干渉信号が周波数ホッピングする場合の自己相関値計算部により算出された相関値の例を示す図 干渉信号が存在しない場合の自己相関値計算部により算出された相関値の例を示す図 干渉信号が全周波数および全時間に存在する場合の自己相関値計算部により算出された相関値の例を示す図 実施の形態1の識別部における自己相関値に基づく干渉信号の識別処理手順の一例を示すフローチャート 干渉信号が特定周波数を占有する場合の電力値の度数分布および度数カウントを示す図 干渉信号が周波数ホッピングしている場合の電力値の度数分布および度数カウントを示す図 干渉信号が存在しない場合および干渉信号が全周波数および全時間に存在する場合の電力値の度数分布および度数カウントを示す図 実施の形態1の識別部における度数カウントに基づく干渉信号の識別処理手順の一例を示すフローチャート 実施の形態1の干渉識別装置を搭載した無線通信装置の一例を示す図 実施の形態1の無線通信装置における送受信部の構成例を示す図 実施の形態2にかかる干渉識別装置の構成例を示す図 実施の形態2の干渉識別装置を搭載した無線通信装置の一例を示す図 実施の形態2の周波数および時間判断部における受信タイミングの算出処理手順の一例を示すフローチャート 実施の形態2の自己相関値計算部における自己相関値の算出手順の一例を示すフローチャート 実施の形態2の度数カウント部における電力値の計数処理手順の一例を示すフローチャート 実施の形態3にかかる干渉識別装置の構成例を示す図 実施の形態3の周波数自己相関値計算部における周波数自己相関値の算出手順の一例を示すフローチャート 干渉信号が占有する特定周波数の帯域幅ごとの周波数自己相関値の例を示す図 実施の形態3の識別部における干渉信号の帯域幅の算出方法の一例を示すフローチャート 実施の形態4にかかる干渉識別装置の構成例を示す図 希望波の平均電力値を超える電力値を計数した度数分布の例を示す図 識別部における干渉信号が希望波に影響を与える度合の判定方法の一例を示すフローチャート
以下に、本発明の実施の形態にかかる干渉識別装置、無線通信装置および干渉識別方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1にかかる干渉識別装置の構成例を示す図である。図1に示すように、本実施の形態の干渉識別装置1は、電磁波を受信し、受信信号である時間波形データを取得する取得部11と、時間波形データをSTFT(Short-Time Fourier Transform:短時間フーリエ変換)することにより、時間、周波数、複素振幅の行列データに変換する周波数変換部12と、行列データの複素振幅から電力値を算出する電力値算出部13と、行列データを用いて自己相関値を計算する自己相関値計算部14と、行列データを用いて、平均電力値を算出する平均電力算出部15と、平均電力値を用いて、平均電力値を超える各周波数および時間の電力値を計数する度数カウント部16と、自己相関値と、度数カウントと、平均電力値とから干渉信号の特徴を識別する識別部17と、干渉信号の識別結果を出力する出力部18とを備える。
干渉識別装置1が単独の装置として構成される場合、または無線通信機能を有しない装置内に実装される場合、取得部11は受信アンテナなどの電磁波を受信可能な機能部を備え、受信アンテナなどにより電磁波を受信する。
次に動作について説明する。まず、取得部11は、受信アンテナなどを用いて電磁波を受信し、受信信号を一定時間ごとにサンプリングしてデジタル信号である時間波形データを周波数変換部12へ入力する。周波数変換部12は、取得部11から入力された時間波形データをSTFTし、STFTの結果である行列データを電力値算出部13へ入力する。STFTは、一定期間のデータをフーリエ変換することを、時間をずらしながら繰り返し実施する処理であり、STFTにより、スペクトルの時間変化を求めることができる。STFTにより得られる行列データの各要素は複素振幅を表している。したがって、STFTにより得られる行列データは、受信信号の時間および周波数ごとの複素振幅である。
具体的には、STFTは、以下の式(1)に示す処理である。なお、時刻をtとし、離散化した周波数をfとし、x(t)を入力である受信信号とし、h(t)を窓関数とする。また、πを円周率とするとき、ω=2πfである。
Figure 0006165348
上記式(1)は、t,fを連続とした場合の式であるが、tを離散化した時刻の番号を示す値とし、fを離散化した周波数の番号を示す値としたとき、t=1からt=Nまでの有限区間、すなわち1番目のサンプリング点からN番目のサンプリング点までの有限区間におけるSTFTは、以下の式(2)で示すことができる。Nは、2以上の整数である
Figure 0006165348
STFTにより、以下の式(3)に示すように、X(t,f)を、t=1からt=ntまで縦方向に並べ、f=1からf=nfまで横方向に並べた行列データが得られる。ntは、行列データの行数、nfは行列データの列数である。
Figure 0006165348
次に、電力値算出部13は、周波数変換部12から入力された行列データの各要素である複素振幅をそれぞれ電力値へ変換する。具体的には、上記式(3)で示す行列データのt列f行目の要素である複素振幅X(t,f)を二乗することにより電力値に変換する。電力値に変換された後の行列データPは以下の式(4)で表すことができる。行列データPの行方向は周波数を表し、列方向は時間を表す。行列データの要素Pt,fは、サンプリング番号で示した時刻である時刻t、フーリエ変換後のデータの番号で示した周波数である周波数fの電力値を示す。
Figure 0006165348
電力値算出部13は、電力値に変換された後の行列データを自己相関値計算部14と、平均電力算出部15と、度数カウント部16とへ入力する。自己相関値計算部14は、電力値算出部13から入力された行列データを用いて、自己相関値を算出し、算出した自己相関値を識別部17へ入力する。平均電力算出部15は、電力値算出部13から入力された行列データを用いて、平均電力値を算出し、算出した平均電力値を度数カウント部16へ入力する。平均電力算出部15は、具体的には、式(4)に示した行列データの各要素Pt,fの総和を計算し、計算した総和を行列データの要素の個数すなわちnf×ntで割ることにより平均電力値を算出する。度数カウント部16は、電力値算出部13から入力された行列データと、平均電力算出部15から入力された平均電力値とを用いて、平均電力値を超える電力値を計数し、計数結果である度数カウントと平均電力値とを識別部17へ入力する。識別部17は、自己相関値計算部14から入力された自己相関値と度数カウント部16から入力された度数カウントおよび平均電力値とを用いて干渉信号の特徴を識別し、識別結果を出力部18へ入力する。出力部18は、識別部17から入力された識別結果を出力する。
図2は、本実施の形態の干渉識別装置1のハードウェア構成例を示す図である。図2に示すように干渉識別装置1は、図1の取得部11に対応する取得部101と、処理回路102とで構成される。取得部101は、例えば、アンテナなど電磁波を受信する装置と、受信した電磁波に増幅およびノイズ除去などの処理を行い、受信した電磁波の電力を一定時間ごとにサンプリングされたデジタル信号として出力する電子回路とで構成される。図1の周波数変換部12、電力値算出部13、自己相関値計算部14、平均電力算出部15、度数カウント部16および識別部17は、処理回路102により実現される。
処理回路102は、専用のハードウェアであっても、メモリとメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)とを備える制御回路であってもよい。ここで、メモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)等が該当する。
上記の処理回路102が、専用のハードウェアで実現される場合、これらは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。
上記の処理回路102が、CPUを備える制御回路で実現される場合、この制御回路は例えば図3に示す構成の制御回路200である。図3は、制御回路200の構成例を示す図である。図3に示すように制御回路200は、外部から入力されたデータを受信する受信部であり入力ポートおよびインタフェース回路である入力部201と、CPUであるプロセッサ202と、メモリ203と、データを外部へ送信する送信部である出力部204とを備える。入力部201は、制御回路200の外部から入力されたデータを受信してプロセッサ202に与えるインタフェース回路であり、出力部204は、データを外部へ送信するインタフェース回路である。処理回路102が図3に示す制御回路200により実現される場合、プロセッサ202がメモリ203に記憶された、周波数変換部12、電力値算出部13、自己相関値計算部14、平均電力算出部15、度数カウント部16および識別部17の各々の処理に対応するプログラムを読み出して実行することにより実現される。また、メモリ203は、プロセッサ202が実施する各処理における一時メモリとしても使用される。
なお、図2では、周波数変換部12、電力値算出部13、自己相関値計算部14、平均電力算出部15、度数カウント部16および識別部17を1つの処理回路102により実現しているが、周波数変換部12、電力値算出部13、自己相関値計算部14、平均電力算出部15、度数カウント部16および識別部17を個別に処理回路として構成してもよい。この場合、これらの処理回路は、専用のハードウェアであってもよいし、図3に示したような制御回路200により実現されてもよい。また、周波数変換部12、電力値算出部13、自己相関値計算部14、平均電力算出部15、度数カウント部16および識別部17のうち2つ以上を1つの制御回路200で実現してもよい。
図4は、本実施の形態の自己相関値計算部14における自己相関値の算出手順の一例を示すフローチャートである。図4に示すように、まず、自己相関値計算部14は、行列データから、第1の時刻である時刻t1における電力値の周波数分布であるベクトルvt1=(Pt1,1,Pt1,1,Pt1,nf)を抽出する(ステップS1)。次に、自己相関値計算部14は、時刻t1における電力値の平均値mPt1を算出し、周波数分布から平均値を減算する(ステップS2)。具体的には、自己相関値計算部14は、ベクトルvt1の各要素の平均値mPt1を求め、ベクトルvt1と平均値mPt1を用いてベクトルv=(Pt1,1−mPt1,Pt1,1−mPt1,Pt1,nf−mPt1)を求める。
同様に、自己相関値計算部14は、行列データから、第2の時刻である時刻t2における電力値の周波数分布であるベクトルvt2=(Pt2,1,Pt2,1,Pt2,nf)を抽出する(ステップS3)。次に、自己相関値計算部14は、時刻t2における電力値の平均値mPt2を算出し、周波数分布から平均値を減算する(ステップS4)。具体的には、自己相関値計算部14は、ベクトルvt2と平均値mPt2を用いてベクトルw=(Pt2,1−mPt2,Pt2,1−mPt2,Pt2,nf−mPt2)を求める。
次に、自己相関値計算部14は、時刻t1と時刻t2の相関値を算出する(ステップS5)。具体的には、自己相関値計算部14は、ベクトルvおよびwを用いて以下の式(5)により、相関値Rを計算する。なお、・は内積を表し、*は乗算を表す。
Figure 0006165348
次に、自己相関値計算部14は、相関値を累積加算する(ステップS6)。具体的には、累積加算値Rsum=R+Rsumを計算する。なお、Rsumは初期状態では0が設定される。例えば、ステップS1の前にRsum=0と設定される。
次に、自己相関値計算部14は、t2=ntであるか否かを判断し(ステップS7)、t2=ntでないと判断した場合(ステップS7 No)、t2=t2+1とし(ステップS8)、ステップS3へ戻る。ntは、式(1)で示したように、行列データにおける時刻の最大値すなわち離散化された時刻の数である。ステップS7でt2=ntであると判断した場合(ステップS7 Yes)、t1=ntであるか否かを判断する(ステップS9)。ステップS9で、t1=ntでないと判断した場合(ステップS9 No)、自己相関値計算部14は、t1=t1+1,t2=t1+2とし(ステップS10)、ステップS1へ戻る。ステップS9で、t1=ntであると判断した場合(ステップS9 Yes)、処理を終了する。
以上の処理により、行列データ内の全ての時刻の組み合わせの相関値を算出して、相関値の累積加算値を算出する。時刻の組み合わせの数ncは、時刻の数をntとするとき、nc=nt2となる。なお、xyはx個から異なるy個を選ぶ組み合わせの数を示す。自己相関値計算部14は、以上の処理で得られた累積加算値を自己相関値として識別部17へ入力する。
図5は、本実施の形態の度数カウント部16における電力値の計数処理手順の一例を示すフローチャートである。まず、度数カウント部16は、時刻を示す変数であるtをt=0に設定し、周波数を示す変数であるfを0に設定し、度数カウントを0に設定する(ステップS11)。次に、度数カウント部16は、t=t+1とし(ステップS12)、f=f+1とする(ステップS13)。
度数カウント部16は、行列データの電力値Pt,fがしきい値より大きいか否かを判断する(ステップS14)。ここでは、しきい値に平均電力算出部15から入力される平均電力値を用いる。行列データの電力値Pt,fがしきい値より大きいと判断した場合(ステップS14 Yes)、度数カウント部16は、度数カウントを1増加させる(ステップS15)。次に、度数カウント部16は、f=nfであるか否かを判断する(ステップS16)。nfは、式(1)で示したように、行列データにおける周波数の最大値すなわち離散化された周波数の数である。f=nfであると判断した場合(ステップS16 Yes)、度数カウント部16は、t=ntであるか否かを判断する(ステップS17)。t=ntでないと判断した場合(ステップS17 No)、度数カウント部16は、f=0と設定し(ステップS18)、ステップS12へ戻る。
ステップS14で、行列データの電力値Pt,fがしきい値以下であると判断した場合(ステップS14 No)、ステップS16へ進む。ステップS16で、f=nfでないと判断した場合(ステップS16 No)、ステップS13へ戻る。ステップS17で、t=ntであると判断した場合(ステップS17 Yes)、度数カウントを総カウント数すなわち行列データの要素数で割ることにより正規化を行い(ステップS19)、処理を終了する。
次に、識別部17が行う干渉信号の特徴の識別方法について説明する。図6〜図9は、自己相関値計算部14により算出された相関値の例を示す図である。図6は、干渉信号が特定周波数を占有する場合の相関値を示し、図7は、干渉信号が周波数ホッピングしている場合の相関値を示し、図8は干渉信号が存在しない場合の相関値を示し、図9は干渉信号が全周波数および全時間に存在する場合の相関値を示す。
図6〜図9において、縦軸は時間を示し、横軸は周波数を示す。また、図6〜図9において、角をとった矩形で囲まれた領域は干渉信号が存在する部分を示す。図6〜図9では、行列データの1番目の周波数をF0、2番目の周波数をF1、…、nf番目の周波数をFnとしている。時刻t1と時刻t2の部分に横方向に広がる太い破線で囲った部分は、1回の相関値の計算対象となる2つのベクトルv、wに相当する部分を示している。
図6の例では、F1,F2の周波数の干渉信号が時刻1および時刻t2で存在し、F2より高い周波数領域においても干渉信号が時刻1および時刻t2で存在する。このように、特定の周波数の干渉信号が存在する場合、時刻t1と時刻t2のベクトルv、wを用いて計算した相関値は1に近くなる。時刻t1と時刻t2のベクトルv、wを用いて計算した相関値は干渉信号の電力値の周波数および時間の類似性を示しており、干渉信号が特定周波数を占有する場合は類似性すなわち相関が高い。
図7の例では、干渉信号は周波数ホッピングしているため、時間により干渉信号の周波数が異なっており、時刻t1と時刻t2のベクトルv、wを用いて計算した相関値は0に近くなる。図8の例では、干渉信号が存在しないため、時刻t1と時刻t2のベクトルv、wを用いて計算した相関値は0に近くなる。図9の例では、干渉信号が全周波数および全時間に存在するため、時刻t1と時刻t2のベクトルv、wを用いて計算した相関値は0に近くなる。したがって、識別部17は、相関値の累積加算である自己相関値を相関値の総数で割った結果が一定値に近いか否かを判断することにより、干渉信号が特定の周波数を占有するものであるか否かを判断することができる。具体的には、例えば、識別部17は、相関値の累積加算である自己相関値を相関値の総数で割った結果Rdと上記の一定値であるRcとの差の絶対値がしきい値以下であるか否かに基づいて干渉信号が特定の周波数を占有するものであるか否かを判断する。しきい値は、例えば、0.1等の値を設定することができる。また、識別部17は、RdがRc以上であるか否かに基づいて干渉信号が特定の周波数を占有するものであるか否かを判断してもよい。なお、一定値は0以上1以下の値であり、例えば、0.8等、0.5より大きく1未満の数値に設定する。
図10は、本実施の形態の識別部17における自己相関値に基づく干渉信号の識別処理手順の一例を示すフローチャートである。図10に示すように、識別部17は、まず、自己相関値計算部14により算出された相関値の累積加算である自己相関値を用いて、自己相関値を相関値の総数すなわち累積加算において加算された相関値の数で割った結果Rdを算出する(ステップS101)。次に、RdとRcとの差の絶対値がしきい値Dth以下であるか否かを判断する(ステップS102)。RdとRcとの差の絶対値がDth以下である場合(ステップS102 Yes)、識別部17は、干渉信号は特定の周波数を占有するものであると識別し(ステップS103)、処理を終了する。RdとRcとの差の絶対値がDthより大きい場合(ステップS102 No)、識別部17は、干渉信号は特定の周波数を占有するものではないと識別し(ステップS103)、処理を終了する。
次に、度数カウントによる干渉信号の識別方法について説明する。図11〜図13は、電力値の度数分布と度数カウント部16により算出された正規化された度数カウントの例を示す図である。図11は、干渉信号が特定周波数を占有する場合の度数分布および度数カウントを示し、図12は、干渉信号が周波数ホッピングしている場合の度数分布および度数カウントを示し、図13は干渉信号が存在しない場合および干渉信号が全周波数および全時間に存在する場合の度数分布および度数カウントを示す。
図11の例では、度数カウントは0.3になり、図12の例では、0.7になり、図13の例では、度数カウントは0.5になる。したがって、識別部17は、度数カウントの値に基づいて、干渉信号の特徴を識別することができる。例えば、度数カウントが0以上0.4未満の範囲の場合は、干渉信号は特定周波数を占有しており、度数カウントが0.4以上0.7未満の範囲の場合、干渉信号が存在しないまたは干渉信号が全周波数および全時間に存在し、度数カウントが0.7以上の場合に干渉信号は周波数ホッピングしていると識別することができる。なお、図11〜図13に示した具体的な度数カウントの数値は例示であり、これらの数値に限定されるものではない。また、干渉信号が存在していれば平均電力値は高くなるため、平均電力値をしきい値と比較することで、干渉信号が存在しない場合と、全周波数および全時間に干渉信号が存在する場合と、を識別することができる。この場合、平均電力算出部15により算出された平均電力値は、度数カウント部16を介して識別部17に入力されるとする。
図14は、本実施の形態の識別部17における度数カウントに基づく干渉信号の識別処理手順の一例を示すフローチャートである。なお、ここでは、干渉信号を、種別A,B,C,Dの4種類の種別を含む複数の種別に分けて識別するとする。種別Aは、特定周波数を占有する干渉信号であることを示し、種別Bは、干渉信号が全周波数および全時間に存在することを示し、種別Cは、干渉信号が存在しないことを示し、種別Dは、干渉信号が周波数ホッピングしていることを示す。図14に示すように、識別部17は、まず、度数カウント部16により算出された度数カウントが0.4未満であるか否かを判断する(ステップS110)。度数カウント部16により算出された度数カウントが0.4未満である場合(ステップS110 Yes)、識別部17は、干渉信号は種別Aであると識別し(ステップS111)、処理を終了する。度数カウント部16により算出された度数カウントが0.4以上である場合(ステップS110 No)、識別部17は、度数カウント部16により算出された度数カウントが0.7未満であるか否かを判断する(ステップS112)。度数カウント部16により算出された度数カウントが0.7未満である場合(ステップS112 Yes)、識別部17は、平均電力算出部15により算出された平均電力値がしきい値Pth以上であるか否かを判断する(ステップS113)。平均電力算出部15により算出された平均電力値がしきい値Pth以上である場合(ステップS113 Yes)、識別部17は、干渉信号は種別Bであると識別し(ステップS114)、処理を終了する。平均電力算出部15により算出された平均電力値がしきい値Pth未満である場合(ステップS113 No)、識別部17は、干渉信号は種別Cであると識別し(ステップS115)、処理を終了する。また、度数カウント部16により算出された度数カウントが0.7以上である場合(ステップS112 No)、識別部17は、干渉信号は種別Dであると識別し(ステップS116)、処理を終了する。
相関値、度数カウント、平均電力値を用いた干渉信号の特徴を識別する際には、相関値、度数カウント、平均電力値を単独で用いて干渉信号の特徴を識別してもよいし、相関値、度数カウント、平均電力値を組み合わせて干渉信号の特徴を識別してもよい。例えば、度数カウントが0以上0.4未満の範囲であり、かつ相関値の累積加算が一定値以上である場合に、干渉信号が特定周波数を占有していると判断する等としてもよい。また、上記の例では、自己相関値の累積加算結果を用いて干渉信号を識別したが、累積加算結果ではなく、自己相関値の平均値等を用いてもよい。自己相関値に基づいて干渉信号を識別する方法は、上記の例に限定されない。
複数の無線通信方式に対応した無線通信装置が、本実施の形態の干渉識別装置1により識別された結果を用いると、無線通信装置が、干渉信号の特徴すなわち電波環境に応じた適切な無線通信方式を選択することができる。干渉識別装置1は無線通信装置とは別に設けられ、干渉識別装置1から無線通信装置へ、無線または有線の通信、あるいはその他の手段により、電波環境を分類した結果を通知するようにしてもよいし、無線通信装置が干渉識別装置1を備えていてもよい。また、干渉識別装置1が、取得部11を備えずに、外部の無線通信装置を取得部11として用い、外部の通信装置から電波環境測定データを取得するようにしてもよい。
上述したように、本実施の形態の干渉識別装置は、無線通信装置に搭載することができる。図15は、本実施の形態の干渉識別装置1を搭載した無線通信装置2の一例を示す図である。無線通信装置2は、本実施の形態の干渉識別装置1と、送受信アンテナを有し送受信アンテナにより電磁波を受信し送受信アンテナから電磁波を送出する送受信部3と、複数の通信方式に対応した通信処理を実施可能な通信処理部4と、通信処理部4が実施する通信処理の通信方式を選択する通信方式選択部5と、を備える。なお、干渉識別装置1が無線通信装置2に搭載される場合、干渉識別装置1は取得部11を備えずに、送受信部3を取得部11として用いてもよい。
通信方式選択部5は、干渉識別装置1から出力される干渉信号の識別結果に基づいて、通信処理部4が対応可能な複数の通信方式のうちの1つを選択し、通信処理部4へ選択した通信方式を指示する。通信処理部4は、通信方式選択部5により指示された通信方式の通信処理を実施する。具体的には、通信処理部4は、通信方式選択部5により指示された通信方式に従って送信信号を生成して、送受信部3へ出力する。送受信部3は、通信処理部4から出力された送信信号を電磁波として送出する。また、送受信部3は、受信信号を通信処理部4へ出力する。通信処理部4は、送受信部3から出力された受信信号に対して、通信方式選択部5により指示された通信方式の通信処理を実施する。
送受信部3は、例えば、図16に示すように、送受信アンテナ31と処理回路32とで構成される。図16は、本実施の形態の無線通信装置2における送受信部3の構成例を示す図である。処理回路32は、受信した電磁波の電力を一定時間ごとにサンプリングされたデジタル信号として出力する電子回路である。処理回路32は、増幅器、アナログデジタルコンバータ等を含む。
通信処理部4は、複数の無線通信方式に対応した送受信処理を行う電子回路である。通信方式選択部5は、専用のハードウェアであってもよいし、図3に示したような制御回路200により実現されてもよい。通信方式選択部5は、干渉信号を識別したすなわち分類した結果と通信処理部4における無線通信方式との対応をあらかじめ保持しておき、通信処理部4は、この対応に従って干渉識別装置1による識別結果に応じて無線通信方式を選択し、選択結果を通信処理部4へ通知する。例えば、通信方式選択部5は、この対応をテーブルとして保持して、干渉識別装置1による識別結果に応じた無線通信方式をこのテーブルに従って選択する。この場合、通信方式選択部5は、このテーブルを保持する回路と干渉識別装置1から受け取った識別結果およびテーブルに基づいて通信方式を選択し、通信処理部4に選択結果を通知する回路とで構成することができる。このテーブルは、例えば、干渉信号の識別結果ごとに対応する無線通信方式が格納されたテーブルである。通信処理部4は、通信方式選択部5により通知された無線通信方式により送受信処理を行う。
例えば、通信処理部4は、16QAM変調(Quadrature Amplitude Modulation)と16QAM変調に対応した復調とを行う第1の無線通信方式と、QPSK(Quadrature Phase Shift Keying)変調とQPSK変調に対応した復調を行う第2の無線通信方式との送受信処理を実施可能であるとする。16QAM変調は、直角位相の関係にある2つの搬送波の振幅をそれぞれ4段階に変更することにより4×4の16の状態に16値を対応させる変調であり、QPSK変調は搬送波の4種類の位相に4値を対応させる変調である。そして、干渉識別装置1により識別結果として、干渉波が存在しない環境と干渉波が存在する環境とのうちのいずれであるかを示す情報が得られるとする。通信方式選択部5は、上述したテーブルにおいて、干渉波が存在しない環境に第1の無線通信方式を対応させ、干渉波が存在する環境に第2の無線通信方式を対応させることを示す情報を保持しておく。16QAM変調を用いた通信では、伝送速度はQPSK変調による通信より高くなるが、干渉波が存在する環境では干渉波による誤りがQPSK変調による通信より発生しやすい。本実施の形態では、通信方式選択部5が、干渉識別装置1により識別結果と上述のテーブルとを用いて、干渉波が存在しない環境では16QAM変調に対応する第2の無線通信方式を選択し、干渉波が存在する環境ではQPSK変調に対応する第1の無線通信方式を選択することができる。これにより、干渉波が少ない環境では、伝送速度を高めることができ、一方で、干渉波が存在する環境では、伝送速度は低下するものの誤りの発生しにくいQPSK変調を用いることで信号の信頼度を高めることができ、データの再送回数等を減らしてシステム全体としてスループットを向上させることができる。
なお、本実施の形態では、受信信号である時間波形データをSTFTすることにより受信信号の時間および周波数ごとの複素振幅を求めたが、受信信号の時間および周波数ごとの複素振幅を求める方法はSTFTに限定されない。例えば、他のスペクトル解析法として、ウェーブレット変換により、時間および周波数ごとの複素振幅を求めてもよい。
以上のように、本実施の形態の干渉識別装置1は、受信信号の時間および周波数ごとの電力値を算出し、算出した電力値の自己相関値を求め、自己相関値に基づいて、干渉信号の特徴を識別するようにした。または、受信信号の時間および周波数ごとの電力値がしきい値を超える数を計数した値である度数カウントに基づいて干渉信号の特徴を識別するようにした。このため、干渉信号の時間領域および周波数領域の特徴を識別することができ、従来に比べより干渉信号の特徴を詳細に識別することが可能になる。干渉信号の特徴を詳細に識別することにより、無線通信装置2が識別結果を用いて通信方式を選択する際に、周波数を有効利用できる適切な通信方式を選択することができる。なお、上述したように、自己相関値と度数カウントの両方を用いて干渉信号の時間領域および周波数領域の特徴を識別するようにしてもよい。
実施の形態2.
図17は、本発明の実施の形態2にかかる干渉識別装置1aの構成例を示す図である。本実施の形態の干渉識別装置1aは、無線通信装置に搭載されることを前提としている。図17に示すように、本実施の形態の干渉識別装置1aは、実施の形態1と同様の取得部11、周波数変換部12、電力値算出部13、識別部17および出力部18を備える。本実施の形態の干渉識別装置1aは、さらに、自装置が搭載される無線通信装置の使用周波数と、送信間隔等の送信時間に関する情報とである通信情報を取得する送信周波数情報取得部19と、無線通信装置の通信情報に基づいて、希望波の受信周波数と受信タイミングすなわち受信時間帯とを算出する周波数および時間判断部20と、希望波の成分を除いた行列データを用いて自己相関値を計算する自己相関値計算部14aと、希望波の成分を除いた行列データを用いて平均電力値を算出する平均電力算出部15aと、平均電力値を用いて、平均電力値を超える希望波の成分を除いた各周波数および時間の電力値を計数する度数カウント部16aと、を備える。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。以下、実施の形態1と異なる部分について説明する。
図18は、本実施の形態の干渉識別装置1aが搭載される無線通信装置2aの構成例を示す図である。無線通信装置2aは、干渉識別装置1aと、実施の形態1の図11の無線通信装置2と同様の送受信部3と、通信処理部4および通信方式選択部5を備える。無線通信装置2aでは、干渉識別装置1aは、通信処理部4から無線通信装置2aの使用周波数、送信間隔等の通信情報を取得する。
次に動作について説明する。送信周波数情報取得部19は、無線通信装置2aの使用送信周波数と送信間隔等の通信情報を通信処理部4から取得し、周波数および時間判断部20へ入力する。周波数および時間判断部20は、送信周波数情報取得部19から入力された通信情報に基づき、希望波の受信周波数および受信タイミングを求め、自己相関値計算部14a、平均電力算出部15aおよび度数カウント部16aへ入力する。例えば、無線通信装置2aが、通信相手のとの間で送受信で同じ周波数を用い、無線通信装置2aから通信相手への送信と通信相手からの受信とで同じ送信間隔を用いるとする。この場合、通信処理部4から取得した送信周波数が希望波の受信周波数である。また、さらに通信処理部4から基準となる受信時刻、すなわち過去に実際に希望波を受信した時刻を取得すれば、基準となる受信時刻と送信間隔とに基づいて、受信タイミングすなわち受信時間帯を求めることができる。また、無線通信装置2aが、無線通信装置2aから通信相手装置への送信と、通信相手からの受信とで異なる周波数を用いる場合には、通信相手装置から通知された通信相手装置における送信周波数を通信処理部4から取得して、受信周波数として用いればよい。なお、通信処理部4は、通信相手装置からの受信のために、通信相手装置から通知された送信周波数および送信間隔等の通信情報を抽出して保持している。このため、送信周波数情報取得部19は、通信処理部4により抽出された通信情報を通信処理部4から取得すればよい。また、受信タイミングについても同様に、通信相手から通知された通信相手装置における送信間隔を通信処理部4から取得して、過去に実際に希望波を受信した時刻と通信相手装置における送信間隔とに基づいて受信タイミングを算出してもよい。
送信周波数情報取得部19および周波数および時間判断部20は、専用のハードウェアであってもよいし、図3に示したような制御回路200により実現されてもよい。
図19は、周波数および時間判断部20における受信タイミングの算出処理手順の一例を示すフローチャートである。周波数および時間判断部20は、受信基準時刻に送信間隔Tiを加算して受信タイミングTrを算出する(ステップS121)。ステップS121で算出する受信タイミングTrは行列データに対応する最初の受信タイミングである。受信基準時刻は、例えば、過去に希望波を実際に受信した時刻であり、受信基準時刻に送信間隔Tiを加算した値が行列データに対応する時刻より前である場合には、受信タイミングに送信間隔Tiの整数倍を加算して行列データに対応する最初の受信タイミングを求める。次に、周波数および時間判断部20は、Trを自己相関値計算部14aへ出力する(ステップS122)。次に、周波数および時間判断部20は、1つの行列データの期間に対応するTrを全て出力済みであるか否かを判断する(ステップS123)。1つの行列データの期間に対応するTrを全て出力済みである場合(ステップS123 Yes)、処理を終了する。例えば、周波数および時間判断部20は、1つの行列データの期間の最後の時刻と、受信タイミングとの差が送信間隔Ti未満である場合、1つの行列データの期間に対応するTrを全て出力済みであると判断する。1つの行列データの期間に対応するTrのうち出力済みでないものがある場合(ステップS123 No)、Tr=Tr+Tiとし(ステップS124)、ステップS122へ戻る。なお、周波数および時間判断部20は、受信周波数については、上述した通り、送信周波数情報取得部19から入力される周波数、すなわち通信処理部4が送信に用いる送信周波数または通信処理部4が取得した通信相手装置から通知された送信周波数をそのまま受信周波数として自己相関値計算部14aへ入力する。
自己相関値計算部14aは、周波数および時間判断部20から入力された希望波の受信周波数および受信タイミングに基づき、電力値算出部13から入力された行列データから希望波の受信周波数および受信タイミングに対応する要素を除いた行列データを用いて、自己相関値を計算する。平均電力算出部15aは、周波数および時間判断部20から入力された希望波の受信周波数および受信タイミングに基づき、電力値算出部13から入力された行列データのうち希望波の受信周波数および受信タイミングに対応する要素を除いて平均電力値を算出し、度数カウント部16aへ入力する。度数カウント部16aは、周波数および時間判断部20から入力された希望波の受信周波数および受信タイミングに基づき、電力値算出部13から入力された行列データから希望波の受信周波数および受信タイミングに対応する要素を除いた行列データを用いて、平均電力値を超える希望波を除いた各周波数および時間の電力値をカウントする。
図20は、本実施の形態の自己相関値計算部14aにおける自己相関値の算出手順の一例を示すフローチャートである。ステップS1は実施の形態1と同様である。ステップS1の後、行列データの時刻t1の要素すなわち時刻t1における電力の周波数分布に、希望波に対応する周波数および時間の要素が含まれているか否かを判断する(ステップS21)。行列データの時刻t1の要素に、希望波に対応する周波数および時間の要素が含まれている場合(ステップS21 Yes)、希望波に対応する周波数および時間の要素を除いた時刻t1における電力値の平均値を算出し、時刻t1における電力の周波数分布から平均値を減算する(ステップS22)。具体的には、実施の形態1で説明したベクトルvt1のうち希望波に対応する周波数および時間の要素を除いた要素の数をfcとするとき、希望波に対応する周波数および時間の要素を除いたfc個の要素すなわち電力値の平均値mPt1を求める。そして、ベクトルv=(Pt1,1−mPt1,Pt1,1−mPt1,Pt1,nf−mPt1)を求める。
次に、自己相関値計算部14aは、希望波部分すなわち希望波に対応する周波数および時間の要素を、希望波−平均値=0とする(ステップS23)。具体的には、希望波に対応する周波数および時間に対応する行列データの要素をPt1,kとするとき、ベクトルvの要素のうち、Pt1,k−mPt1の要素を0にする。
次に、実施の形態1と同様にステップS3を実施する。そして、自己相関値計算部14aは、行列データの時刻t2の要素すなわち時刻t2における電力の周波数分布に、希望波に対応する周波数および時間の要素が含まれているか否かを判断する(ステップS24)。行列データの時刻t2の要素に、希望波に対応する周波数および時間の要素が含まれている場合(ステップS24 Yes)。希望波に対応する周波数および時間の要素を除いたt2における電力値の平均値を算出し、時刻t2における電力の周波数分布から平均値を減算する(ステップS25)。具体的には、実施の形態1で説明したベクトルvt2のうち希望波に対応する周波数および時間の要素を除いた要素の数をfdとするとき、希望波に対応する周波数および時間の要素を除いたfd個の要素すなわち電力値の平均値mPt2を求める。そして、ベクトルw=(Pt2,1−mPt2,Pt2,1−mPt2,Pt2,nf−mPt2)を求める。
次に、自己相関値計算部14aは、希望波部分すなわち希望波に対応する周波数および時間の要素を、希望波−平均値=0とする(ステップS26)。具体的には、希望波に対応する周波数および時間に対応する行列データの要素をPt2,kとするとき、ベクトルwの要素のうち、Pt2,k−mPt2の要素を0にする。
以降、実施の形態1と同様に、ステップS5〜S10を実施する。ステップS21で、行列データの時刻t1の要素に、希望波に対応する周波数および時間の要素が含まれていない場合(ステップS21 No)、実施の形態1と同様のステップS2を実施し、ステップS24へ進む。ステップS24で、行列データの時刻t2の要素に、希望波に対応する周波数および時間の要素が含まれていない場合(ステップS24 No)、実施の形態1と同様のステップS4を実施し、ステップS26へ進む。
図21は、本実施の形態の度数カウント部16aにおける電力値の計数処理手順の一例を示すフローチャートである。まず、実施の形態1と同様にステップS11〜ステップS13を実施する。ステップS13の後、度数カウント部16aは、行列データの電力値Pt,fは希望波であるか否か、すなわちt、fは希望波に対応する受信周波数および受信タイミングであるか否かを判断する(ステップS31)。行列データの電力値Pt,fは希望波であると判断した場合(ステップS31 Yes)、度数カウント部16aは実施の形態1と同様のステップS16へ進む。ステップS14〜ステップS18は実施の形態1と同様である。ただし、ステップS17で、t=ntであると判断した場合(ステップS17 Yes)は、後述のステップS32へ進む。ステップS31で、行列データの電力値Pt,fは希望波でないと判断した場合(ステップS31 No)、ステップS14へ進む。
ステップS32では、度数カウント部16aは、度数カウントを総カウント数で割ることにより正規化を行うが、このときの総カウント数は、行列データの要素数から希望波に対応する要素の数を除いた数である。
以上述べた本実施の形態の動作以外の動作は、実施の形態1と同様である。ただし、本実施の形態では、識別部17は、希望波の成分を除いて計算した自己相関値、希望波の成分を除いて計算した度数カウント、希望波の成分を除いて計算した平均電力値に基づいて干渉信号の識別を行うことになる。
以上のように、本実施の形態の干渉識別装置1aは、受信信号の時間および周波数ごとの電力値を算出し、算出した電力値のうち希望波に対応する部分を除いて自己相関値を求め、自己相関値に基づいて、干渉信号の特徴を識別するようにした。または、受信信号の時間および周波数ごとの電力値のうち希望波に対応する部分を除いた電力値がしきい値を超える数を計数した値である度数カウントに基づいて干渉信号の特徴を識別するようにした。このため、干渉信号の時間領域および周波数領域の特徴を識別することができ、さらに希望波を除いて干渉信号を識別するための計算を行うことで、より的確な電波環境中の干渉信号の識別が可能になる。なお、実施の形態1で述べたように、自己相関値と度数カウントの両方を用いて干渉信号の時間領域および周波数領域の特徴を識別するようにしてもよい。
実施の形態3.
図22は、本発明の実施の形態3にかかる干渉識別装置1bの構成例を示す図である。図22に示すように、本実施の形態の干渉識別装置1bは、実施の形態1の干渉識別装置1に、周波数自己相関値を算出する周波数自己相関値計算部21を追加し、識別部17の替わりに識別部17aを備える以外は実施の形態1の干渉識別装置1と同様である。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。以下、実施の形態1と異なる部分について説明する。
周波数自己相関値計算部21および識別部17aは、専用のハードウェアであってもよいし、図3に示したような制御回路200により実現されてもよい。
実施の形態1、2において、自己相関値計算部14が、異なる時間の周波数分布すなわちスペクトル間の自己相関値すなわち時間方向の自己相関値を求めることを説明した。本実施の形態では、時間方向の自己相関値だけでなく、周波数方向の自己相関値である周波数自己相関値を算出することにより、より詳細な干渉信号の識別を可能とする。本実施の形態は、特に、特定周波数を占有するような場合の干渉信号の帯域幅を識別するために有効である。
次に動作について説明する。周波数自己相関値計算部21は、電力値算出部13から入力された行列データを用いて、周波数自己相関値を算出し、周波数自己相関値を識別部17aへ入力する。識別部17aは、自己相関値計算部14から入力される自己相関値と、周波数自己相関値計算部21から入力される周波数自己相関値と、度数カウント部16から入力される度数カウントと、平均電力値とを用いて干渉信号の特徴を識別する。
図23は、本実施の形態の周波数自己相関値計算部21における周波数自己相関値の算出手順の一例を示すフローチャートである。図23に示すように、まず、周波数自己相関値計算部21は、行列データから、第1の周波数である周波数f1における電力値の時間分布であるベクトルvf1=(P1,f1,P2,f1,Pnt,f1)を抽出する(ステップS41)。次に、周波数自己相関値計算部21は、周波数f1における電力値の平均値mPf1を算出し、時間分布から平均値を減算する(ステップS42)。具体的には、周波数自己相関値計算部21は、ベクトルvf1の各要素の平均値mPf1を求め、ベクトルvf1と平均値mPf1を用いてベクトルv=(P1,f1−mPf1,P2,f1−mPf1,Pnt,f1−mPf1)を求める。
同様に、周波数自己相関値計算部21は、行列データから、第2の周波数である周波数f2における電力値の時間分布であるベクトルvf2=(P1,f2,P2,f2,Pnt,f2)を抽出する(ステップS43)。周波数自己相関値計算部21は、周波数f2における電力値の平均値mPf2を算出し、時間分布から平均値を減算する(ステップS44)。具体的には、周波数自己相関値計算部21は、ベクトルvf2と平均値mPf2を用いてベクトルw=(P1,f2−mPf2,P1,f2−mPf2,P1,f2−mPf2)を求める。
次に、周波数自己相関値計算部21は、周波数f1と周波数f2の相関値を算出する(ステップS45)。具体的には、周波数自己相関値計算部21は、ベクトルvおよびwを用いて実施の形態1で述べた式(5)により、相関値Rすなわち周波数相関値を計算する。
次に、周波数自己相関値計算部21は、相関値を累積加算する(ステップS46)。具体的には、累積加算値Rsum=R+Rsumを計算する。なお、Rsumは初期状態では0が設定される。例えば、ステップS41の前にRsum=0と設定される。
次に、周波数自己相関値計算部21は、f2=nfであるか否かを判断し(ステップS47)、f2=nfでないと判断した場合(ステップS47 No)、f2=f2+1とし(ステップS48)、ステップS43へ戻る。ステップS47でf2=nfであると判断した場合(ステップS47 Yes)、f1=nfであるか否かを判断する(ステップS49)。ステップS49で、f1=nfでないと判断した場合(ステップS49 No)、周波数自己相関値計算部21は、f1=f1+1,f2=f1+2とし(ステップS50)、ステップS41へ戻る。ステップS49で、f1=nfであると判断した場合(ステップS49 Yes)、処理を終了する。
以上の処理により、行列データ内の全ての周波数の組み合わせの相関値を算出して、相関値の累積加算値を算出する。周波数自己相関値計算部21は、以上の処理で得られた累積加算値を周波数自己相関値として識別部17aへ入力する。
次に、本実施の形態の識別部17aにおける干渉信号の帯域幅の算出方法について説明する。図24は、干渉信号が占有する特定周波数の帯域幅ごとの周波数自己相関値の例を示す図である。図24の上側には、干渉信号が狭い帯域例えば第1の帯域幅以下の帯域で周波数を占有している場合を示し、図24の下側には、干渉信号が広い帯域で周波数を占有している場合を示している。干渉信号が狭い帯域で周波数を占有している場合、周波数自己相関値は0.3となり、干渉信号が広い帯域例えば第1の帯域幅より広い帯域で周波数を占有している場合、周波数自己相関値は0.7となる。なお、図24の周波数自己相関値は一例であり、周波数自己相関値の値は図24の例に限定されない。
干渉信号が特定周波数を占有するような場合、周波数自己相関値は干渉信号の電力値の周波数方向の連続性を示している。このため、干渉信号が特定周波数を占有するような場合、周波数自己相関値は干渉信号が占有している帯域幅を示す情報になる。したがって、例えば、実施の形態1または実施の形態2の干渉識別方法により、時間方向の自己相関値を用いて干渉信号が特定周波数を占有していると識別された場合に、周波数自己相関値に基づいて干渉信号が占有している帯域幅を算出することができる。以上述べた以外の本実施の形態の動作は、実施の形態1と同様である。
図25は、本実施の形態の識別部17aにおける干渉信号の帯域幅の算出方法の一例を示すフローチャートである。識別部17aは、周波数自己相関値が0.6より大きいか否かを判断する(ステップS131)。周波数自己相関値が0.6より大きい場合(ステップS131 Yes)、識別部17aは、干渉信号の帯域幅は第1の帯域幅より広いと判定し(ステップS132)、処理を終了する。周波数自己相関値が0.6以下の場合(ステップS131 No)、識別部17aは、干渉信号の帯域幅は第1の帯域幅以下である判定し(ステップS133)、処理を終了する。なお、図25に示したステップS131における判定のためのしきい値は一例であり、しきい値の値はこの例に限定されない。また、図25の例では、帯域幅が第1の帯域幅以下であるか否かの2段階に判別する例を示したが、複数の帯域幅に対応する複数のしきい値を設定して、帯域幅を3段階以上に分類してもよい。
なお、ここでは、実施の形態1の干渉識別装置1に周波数自己相関値計算部21を追加し、識別部17の替わりに識別部17aを備えるようにしたが、実施の形態2の干渉識別装置1aに周波数自己相関値計算部21を追加し、識別部17の替わりに識別部17aを備えてもよい。実施の形態2に周波数自己相関値計算部21を追加する場合にも、同様にさらに、周波数自己相関値を用いることにより、干渉信号が占有する帯域幅を求めることができる。また、実施の形態1、実施の形態2で述べたように、本実施の形態の干渉識別装置1bを無線通信装置に搭載することができる。
以上のように、本実施の形態では、周波数自己相関値を用いることにより、時間・周波数の情報を用いて、自己相関値、平均電力、度数カウントに加え、周波数自己相関値で、電波環境測定データ中の干渉の特徴のより的確な識別が可能となる。
実施の形態4.
図26は、本発明の実施の形態4にかかる干渉識別装置1cの構成例を示す図である。図26に示すように、本実施の形態の干渉識別装置1cは、実施の形態2の干渉識別装置1aの平均電力算出部15a,識別部17の替わりに、平均電力算出部15b,識別部17bを備える以外は、実施の形態2の干渉識別装置1aと同様である。実施の形態2と同様の機能を有する構成要素は、実施の形態2と同一の符号を付して重複する説明を省略する。以下、実施の形態2と異なる部分について説明する。
平均電力算出部15bは、希望波の平均電力値を算出する。識別部17bは、自己相関値と度数カウントと希望波の平均電力値とに基づいて、希望波に影響を与える干渉信号を識別する。
平均電力算出部15bおよび識別部17bは、専用のハードウェアであってもよいし、図3に示したような制御回路200により実現されてもよい。
次に動作について説明する。平均電力算出部15bは、周波数および時間判断部20から入力された希望波の受信周波数および受信タイミングに基づき、行列データのうち、希望波に対応する要素を用いて平均電力値を算出する。具体的には、平均電力算出部15bは、式(4)に示した行列データの各要素Pt,fのうち希望波の受信周波数および受信タイミングに対応する要素を抽出し、抽出した要素の総和を計算し、計算した総和を希望波の受信周波数および受信タイミングに対応する要素の個数で割ることにより平均電力値を算出する。これにより希望波の平均電力値を求めることができる。度数カウント部16aは、実施の形態2と同様に、入力される平均電力値をしきい値として用いてしきい値を超える電力値を計数する。これにより、希望波の平均電力値を超える電力値の度数カウントが算出される。
次に、識別部17bにおける干渉信号の識別方法について説明する。識別部17bは、実施の形態2と同様に干渉信号を識別する。また、上述したように、本実施の形態では、度数カウント部16aは、希望波の平均電力値を超える電力値の度数カウントを算出する。すなわち、度数カウント部16aにより算出された度数カウントは、干渉信号のうちの希望波の平均電力値を超える干渉信号の度数を示すことになる。干渉信号が希望波に比べて小さい場合には、希望波に与える影響は小さい。本実施の形態では、実施の形態2と同様に干渉信号を識別するとともに、希望波の平均電力値を超える電力値を計数した度数カウントを、希望波に影響を与える度合を示す指標に用いる。
図27は、希望波の平均電力値を超える電力値を計数した度数分布の例を示す図である。図27において、横軸は電力すなわち電力値を示し、縦軸は度数を示す。図27の上側の電波環境#1と記載した例では、図27の下側の電波環境#2と記載した例に比べ電力値の高い度数が多い。本実施の形態の度数カウント部16aが算出する度数カウントは、左側の例では0.45となり、右側の例では0.30となる。したがって、度数カウントを参照することで、図27の下側に示した電波環境#2より上側に示した電波環境#1の方が、希望波に影響を与える干渉信号が多いことがわかる。
図28は、識別部17bにおける干渉信号が希望波に影響を与える度合の判定方法の一例を示すフローチャートである。識別部17bは、度数カウント部16aにより算出された度数カウントが0.4より小さいか否かを判断する(ステップS141)。度数カウント部16aにより算出された度数カウントが0.4より小さい場合(ステップS141 Yes)、干渉信号が希望波に与える影響は少ないと判定し(ステップS142)、処理を終了する。干渉信号が希望波に与える影響は少ないとは、例えば、干渉信号の希望波に対する比率が予め定めた値以下となる状態である。この予め定めた値は、設計値またはシミュレーション等により定めておく。そして、ステップS141の判定で用いるしきい値は、実測またはシミュレーション等により求めた、干渉信号の希望波に対する比率が予め定めた値となる状態における度数カウントを用いることができる。
度数カウント部16aにより算出された度数カウントが0.4以上である場合(ステップS141 No)、干渉信号が希望波に与える影響は少なくないと判定し(ステップS143)、処理を終了する。
なお、本実施の形態の干渉識別装置1cに、実施の形態3の周波数自己相関値計算部21を追加し、識別部17bが実施の形態3の識別部17aと同様に、周波数自己相関値を用いた干渉信号の識別も行うようにしてもよい。
以上のように、本実施の形態の干渉識別装置によれば、希望波の平均電力値を超える干渉信号の割合を評価しているため、実施の形態2と同様の効果が得られるとともに、電波環境中の希望波に影響を与える干渉信号の識別が可能になる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1,1a,1b,1c 干渉識別装置、2,2a 無線通信装置、3 送受信部、4 通信処理部、5 通信方式選択部、11 取得部、12 周波数変換部、13 電力値算出部、14,14a 自己相関値計算部、15,15a,15b 平均電力算出部、16,16a 度数カウント部、17,17a,17b 識別部、18 出力部、19 送信周波数情報取得部、20 周波数および時間判断部、21 周波数自己相関値計算部。

Claims (12)

  1. 電磁波の受信により得られた受信信号を取得する取得部と、
    前記受信信号を用いて前記受信信号の時間および周波数ごとの複素振幅を示す行列データを算出する周波数変換部と、
    前記行列データを用いて第1の時刻の周波数分布と第2の時刻の周波数分布との相関値を算出する自己相関値計算部と、
    前記相関値を用いて干渉信号の特徴を識別する識別部と、
    を備えることを特徴とする干渉識別装置。
  2. 前記行列データの要素である複素振幅から電力値を算出する電力値算出部と、
    前記電力値算出部から出力される電力値に基づいて平均電力値を算出する平均電力算出部と、
    前記電力値算出部から出力される電力値が前記平均電力値を超えた度数を計数する度数カウント部と、
    を備え、
    前記識別部は、さらに前記度数カウント部により計数された度数に基づいて干渉信号の特徴を識別することを特徴とする請求項1に記載の干渉識別装置。
  3. 前記識別部は、前記平均電力値に基づいて干渉信号の有無を識別することを特徴とする請求項2に記載の干渉識別装置。
  4. 前記干渉識別装置は、無線通信装置内に設置され、
    前記無線通信装置が使用する送信周波数および送信時間に関する情報である通信情報を取得する送信周波数情報取得部と、
    前記通信情報に基づいて希望波を受信する受信周波数および受信時間帯を算出する周波数および時間判断部と、
    を備え、
    前記自己相関値計算部は、前記受信周波数および前記受信時間帯に対応する要素を除いた前記行列データを用いて前記相関値を算出することを特徴とする請求項1に記載の干渉識別装置。
  5. 前記行列データの要素である複素振幅から電力値を算出する電力値算出部と、
    前記電力値算出部から出力される電力値のうち前記受信周波数および前記受信時間帯に対応する電力値を除いた電力値に基づいて平均電力値を算出する平均電力算出部と、
    前記電力値算出部から出力される電力値のうち前記受信周波数および前記受信時間帯に対応する電力値を除いた電力値が前記平均電力値を超えた度数を計数する度数カウント部と、
    を備え、
    前記識別部は、さらに前記度数カウント部により計数された度数に基づいて干渉信号の特徴を識別することを特徴とする請求項4に記載の干渉識別装置。
  6. 前記識別部は、前記平均電力値に基づいて干渉信号の有無を識別することを特徴とする請求項5に記載の干渉識別装置。
  7. 前記行列データの要素である複素振幅から電力値を算出する電力値算出部と、
    前記電力値算出部から出力される電力値のうち前記受信周波数および前記受信時間帯に対応する電力値に基づいて平均電力値を算出する平均電力算出部と、
    前記電力値算出部から出力される電力値のうち前記受信周波数および前記受信時間帯に対応する電力値を除いた電力値が前記平均電力値を超えた度数を計数する度数カウント部と、
    を備え、
    前記識別部は、さらに前記度数カウント部により計数された度数に基づいて希望波に影響を与える干渉信号の割合を算出することを特徴とする請求項4に記載の干渉識別装置。
  8. 前記行列データを用いて第1の周波数の時間分布と第2の周波数の時間分布との相関値である周波数相関値を算出する周波数自己相関値計算部、
    をさらに備え、
    前記識別部は、さらに前記周波数自己相関値計算部により算出された前記周波数相関値に基づいて干渉信号の特徴を識別することを特徴とする請求項1から7のいずれか1つに記載の干渉識別装置。
  9. 前記周波数変換部は、前記受信信号を短時間フーリエ変換することにより前記行列データを算出することを特徴とする請求項1から8のいずれか1つに記載の干渉識別装置。
  10. 前記自己相関値計算部は、前記行列データに対応する全ての時刻の組み合わせについて、前記相関値を算出し、算出した前記相関値の累積加算結果を算出し、
    前記識別部は、前記累積加算結果に基づいて干渉信号の特徴を識別することを特徴とする請求項1から9のいずれか1つに記載の干渉識別装置。
  11. 請求項1から10のいずれか1つに記載の干渉識別装置を備えることを特徴とする無線通信装置。
  12. 電磁波の受信により得られた受信信号を取得する第1のステップと、
    前記受信信号を用いて前記受信信号の時間および周波数ごとの複素振幅を示す行列データを算出する第2のステップと、
    前記行列データを用いて第1の時刻の周波数分布と第2の時刻の周波数分布との相関値を算出する第3のステップと、
    前記相関値を用いて干渉信号の特徴を識別する第4のステップと、
    を含むことを特徴とする干渉識別方法。
JP2016546369A 2014-09-05 2015-07-03 干渉識別装置、無線通信装置および干渉識別方法 Expired - Fee Related JP6165348B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014181391 2014-09-05
JP2014181391 2014-09-05
PCT/JP2015/069329 WO2016035439A1 (ja) 2014-09-05 2015-07-03 干渉識別装置、無線通信装置および干渉識別方法

Publications (2)

Publication Number Publication Date
JPWO2016035439A1 JPWO2016035439A1 (ja) 2017-04-27
JP6165348B2 true JP6165348B2 (ja) 2017-07-19

Family

ID=55439510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016546369A Expired - Fee Related JP6165348B2 (ja) 2014-09-05 2015-07-03 干渉識別装置、無線通信装置および干渉識別方法

Country Status (5)

Country Link
US (1) US9930680B2 (ja)
EP (1) EP3176967B1 (ja)
JP (1) JP6165348B2 (ja)
CN (1) CN106716884B (ja)
WO (1) WO2016035439A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654158B2 (en) 2015-10-20 2017-05-16 The Aerospace Corporation Circuits and methods for reducing an interference signal that spectrally overlaps a desired signal
US10340962B2 (en) 2016-05-06 2019-07-02 The Aerospace Corporation Amplitude domain circuits and methods for reducing an interference signal that spectrally overlaps a desired signal
WO2018055673A1 (ja) 2016-09-20 2018-03-29 三菱電機株式会社 干渉識別装置および干渉識別方法
WO2019225539A1 (ja) * 2018-05-23 2019-11-28 日本電気株式会社 無線通信識別装置および無線通信識別方法
CN111246508B (zh) * 2018-11-28 2022-05-13 华为技术有限公司 干扰源识别方法、相关设备及计算机存储介质
US11212015B2 (en) 2020-05-19 2021-12-28 The Aerospace Corporation Interference suppression using machine learning
CN113242103B (zh) * 2021-05-10 2022-08-23 成都华日通讯技术股份有限公司 一种干扰信号源自动监测方法
GB2608651B (en) * 2021-07-09 2023-11-29 Vodafone Group Services Ltd Methods, apparatuses and computer program products for locating sources of potential interference in a cellular radio communication system
CN114598038A (zh) * 2022-05-10 2022-06-07 青岛鼎信通讯股份有限公司 一种适用于低压台区的特征电流识别方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1250368A (en) * 1985-05-28 1989-02-21 Tetsu Taguchi Formant extractor
US5144642A (en) * 1990-06-07 1992-09-01 Stanford Telecommunications, Inc Interference detection and characterization method and apparatus
KR100803115B1 (ko) * 2001-06-07 2008-02-14 엘지전자 주식회사 적응 안테나 어레이가 구비된 wcdma 시스템에서의 신호 처리 방법 이를 위한 시스템
KR100663525B1 (ko) * 2004-06-10 2007-02-28 삼성전자주식회사 공간-시간 빔 형성을 위한 간섭전력 측정 장치 및 방법
US7676046B1 (en) * 2005-06-09 2010-03-09 The United States Of America As Represented By The Director Of The National Security Agency Method of removing noise and interference from signal
KR100809020B1 (ko) * 2006-12-08 2008-03-03 한국전자통신연구원 이동 통신 시스템에서의 단말기의 초기 동기 획득 장치 및그 방법
US8374229B2 (en) * 2008-02-26 2013-02-12 Siemens Aktiengesellschaft Method for the detection and generation of a useful signal and associated devices and communications system
CN101631102B (zh) * 2009-04-10 2011-09-21 北京理工大学 一种跳频系统干扰样式识别方法
JPWO2011105516A1 (ja) * 2010-02-24 2013-06-20 京セラ株式会社 携帯端末装置、基地局および干渉回避方法
US8971911B2 (en) * 2010-04-27 2015-03-03 King Abdulaziz University Cognitive radio sensing method and system
JP5793961B2 (ja) * 2010-07-26 2015-10-14 日本電気株式会社 電磁波識別装置、電磁波識別方法及びプログラム
JP2012118017A (ja) 2010-12-03 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> 妨害波分類判定装置およびこの妨害波分類判定装置を用いたシステム
JP5667497B2 (ja) * 2011-03-31 2015-02-12 パナソニック株式会社 信号検出装置及び信号検出方法
JP2014045354A (ja) * 2012-08-27 2014-03-13 Nippon Telegr & Teleph Corp <Ntt> 無線機器利用可否判別装置及びその方法

Also Published As

Publication number Publication date
US20170295581A1 (en) 2017-10-12
CN106716884B (zh) 2018-02-16
US9930680B2 (en) 2018-03-27
EP3176967B1 (en) 2018-09-26
CN106716884A (zh) 2017-05-24
JPWO2016035439A1 (ja) 2017-04-27
EP3176967A1 (en) 2017-06-07
WO2016035439A1 (ja) 2016-03-10
EP3176967A4 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6165348B2 (ja) 干渉識別装置、無線通信装置および干渉識別方法
EP3259613B1 (en) System and method for estimating time of arrival (toa)
JP6415288B2 (ja) レーダ装置
JP6815569B2 (ja) 信号検出装置、信号検出方法、制御回路およびプログラム
US9306722B2 (en) Tracking radar frequency enabling more channels
JP2016225981A (ja) マルチパスの時間遅延の推定装置、推定方法及び受信機
KR101009827B1 (ko) 이동통신 시스템에서 이동단말의 속도 추정 장치 및 방법
JP5918351B2 (ja) 信号サーチ方法、信号サーチプログラム、信号サーチ装置、gnss信号受信装置、および情報機器端末
US9244156B1 (en) Orthogonal polarization signal agnostic matched filter
JP5115938B2 (ja) 混信判定回路及び混信判定方法
KR20150035819A (ko) 멀티플렉스 대역에서 유용한 신호를 검색하는 방법
US8532207B2 (en) Methods and systems for distinguishing a signal of interest from interference signals
US10348361B2 (en) Measuring device and method for phase-coherent analysis of frequency-hopping signals
US11804947B2 (en) Radio receiver synchronization
CN107843885B (zh) 多径时延估计的方法、装置、计算机设备和可读存储介质
JP6373809B2 (ja) 信号情報取得システムおよび信号情報取得方法
KR101154166B1 (ko) 인지 무선 시스템을 위한 스펙트럼 검출 기법 성능 분석 방법
US9287923B2 (en) Method of detecting interference in a satellite radio-navigation signal based on the monitoring of a temporal correlation coefficient
US8514985B2 (en) Synchronising a receiver to a signal having known structure
JP6532976B2 (ja) 信号中の同期点を検出する信号送受信装置と方法
US9112593B1 (en) Apparatus and method for compensating for timing offset in spread spectrum system
JP6597505B2 (ja) 電波源の識別装置および識別システム
US20210041532A1 (en) Object identification apparatus, object identification method, and object identification program
JP3925691B2 (ja) 先頭波位置検出装置、先頭波受信装置、先頭波位置検出方法および先頭波位置検出プログラム
JP5274353B2 (ja) 変調諸元推定回路、変調方式識別装置および変調諸元推定方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170620

R150 Certificate of patent or registration of utility model

Ref document number: 6165348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees