JP6161483B2 - Power generation planning system for collective housing - Google Patents

Power generation planning system for collective housing Download PDF

Info

Publication number
JP6161483B2
JP6161483B2 JP2013194466A JP2013194466A JP6161483B2 JP 6161483 B2 JP6161483 B2 JP 6161483B2 JP 2013194466 A JP2013194466 A JP 2013194466A JP 2013194466 A JP2013194466 A JP 2013194466A JP 6161483 B2 JP6161483 B2 JP 6161483B2
Authority
JP
Japan
Prior art keywords
power
storage battery
operation mode
shared storage
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013194466A
Other languages
Japanese (ja)
Other versions
JP2015061437A (en
Inventor
尚克 秋岡
尚克 秋岡
岳明 松尾
岳明 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2013194466A priority Critical patent/JP6161483B2/en
Publication of JP2015061437A publication Critical patent/JP2015061437A/en
Application granted granted Critical
Publication of JP6161483B2 publication Critical patent/JP6161483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、商用電力系統から共用の内部電力線を介して供給される受電電力に連系して発電を行う発電装置が設置された住戸が複数存在する集合住宅において、
夫々の発電装置の発電計画を行う集合住宅用発電計画システムに関する。
The present invention is a collective housing in which there are a plurality of dwelling units in which power generation devices that perform power generation linked to received power supplied from a commercial power system via a shared internal power line exist.
The present invention relates to a power generation planning system for an apartment house that performs power generation planning for each power generation device.

商用電力系統からの受電電力に連系して発電を行う発電装置を住戸に設置した場合、その発電装置の発電電力を商用電力系統に逆潮流させる所謂系統逆潮流が禁止される場合がある。
このような系統逆潮流を防止するためには、発電装置の発電電力を常に電力負荷よりも小さいものにコントロールして余剰電力を発生させないのが望ましいが、発電装置を発電効率が低い部分負荷で運転することで、省エネ性の低下等が懸念される。
そこで、その住戸に蓄電池を設置し、その蓄電池に発電装置の余剰電力を充電し、その充電した電力を電力不足時に放電すれば、系統逆潮流の防止に加えて、住戸における省エネ性の向上を実現することができる(例えば特許文献1を参照。)。
When a power generation device that generates power linked to received power from a commercial power system is installed in a dwelling unit, a so-called reverse power flow that reversely flows the generated power of the power generation device to the commercial power system may be prohibited.
In order to prevent such reverse power flow, it is desirable that the generated power of the power generator is always controlled to be smaller than the power load so as not to generate surplus power. There is a concern about the reduction of energy saving performance by driving.
Therefore, if a storage battery is installed in the dwelling unit, the surplus power of the power generator is charged to the storage battery, and the charged power is discharged when there is a shortage of power, in addition to preventing reverse power flow, the energy saving performance in the dwelling unit is improved. This can be realized (see, for example, Patent Document 1).

集合住宅における複数の住戸の夫々に発電装置を設置する場合にも、集合住宅全体で生じた総余剰電力を共用の内部電力線から商用電力系統へ逆潮流させる系統逆潮流は禁止される場合があるが、夫々の住戸で生じた個別余剰電力を夫々の住戸から内部電力線へ逆潮流させる内部逆潮流については事実上許される。
そこで、集合住宅の共用部に共用蓄電池を設置し、その共用蓄電池に内部電力線に対して内部逆潮流された集合住宅全体の総余剰電力を充電し、その充電した電力を集合住宅全体における電力不足時に放電すれば、系統逆潮流の防止に加えて、集合住宅における省エネ性の向上を実現することができる。
また、集合住宅において複数の住戸の夫々に設置された発電装置について、内部逆潮流を行うか否かの判断を、集合住宅におけるエネルギ調達のための一次エネルギ消費量が削減されるように決定して、集合住宅における省エネ性の向上を実現する発電計画方法が知られている(例えば特許文献2を参照。)。
Even when a power generator is installed in each of a plurality of dwelling units in an apartment house, reverse power flow that reverses the total surplus power generated in the entire apartment house from the shared internal power line to the commercial power system may be prohibited. However, internal reverse power flow that reversely flows individual surplus power generated in each dwelling unit from each dwelling unit to the internal power line is practically permitted.
Therefore, a shared storage battery is installed in the common area of the apartment house, and the shared battery is charged with the total surplus power of the entire apartment house that has been internally reverse-flowed to the internal power line, and the charged power is insufficient for the entire apartment house. If discharged occasionally, in addition to preventing the reverse power flow of the system, it is possible to improve the energy saving performance in the apartment house.
In addition, regarding the power generators installed in each of the plurality of dwelling units in the apartment house, the decision as to whether or not to perform internal reverse power flow is determined so that the primary energy consumption for energy procurement in the apartment house is reduced. Thus, a power generation planning method that realizes improvement in energy saving performance in an apartment house is known (see, for example, Patent Document 2).

特開2010−273407号公報JP 2010-273407 A 特開2010−226850号公報JP 2010-226850 A

複数の住戸の夫々に発電装置が設置され、共用部に共用蓄電池が設置された集合住宅において、夫々の発電装置が内部逆潮流を行うか否かの判断を、集合住宅におけるエネルギ調達のための一次エネルギ消費量のみで行うと、共用蓄電池の充電のための一次エネルギの消費が後の放電時に反映されないなどの理由で共用蓄電池が無用に放充電されてしまい、充分に省エネ性を向上することができない場合があった。
本発明は、かかる点に着目してなされたものであり、その目的は、複数の発電装置及び共用蓄電池を設置した集合住宅において、夫々の発電装置の発電計画を適切に行って、充分に省エネ性を図ることができる集合住宅用発電計画システムを提供する点にある。
In an apartment house where a power generation device is installed in each of a plurality of dwelling units and a shared storage battery is installed in a common area, whether or not each power generation device performs internal reverse power flow is determined for energy procurement in the apartment house If only the primary energy consumption is used, the primary energy consumption for charging the shared storage battery will not be reflected at the time of subsequent discharge, etc., and the shared storage battery will be discharged unnecessarily. There was a case that could not be.
The present invention has been made paying attention to such a point, and its purpose is to sufficiently save energy by appropriately performing a power generation plan of each power generator in an apartment house in which a plurality of power generators and a shared storage battery are installed. It is in the point which provides the power generation planning system for collective housing which can aim at property.

この目的を達成するための本発明に係る集合住宅用発電計画システムは、
商用電力系統から共用の内部電力線を介して供給される受電電力に連系して発電を行う発電装置が設置された住戸が複数存在する集合住宅において、
制御システムが、夫々の発電装置の発電計画を行う集合住宅用発電計画システムであって、
前記内部電力線に対して充放電可能に接続され、集合住宅全体の総余剰電力を充電する共用蓄電池を備えると共に、
夫々の発電装置が、前記内部電力線に対して電力を逆潮流させる内部逆潮流を禁止した状態で住戸における消費電力又は消費熱量に応じて出力を制御する通常運転モードと、前記内部逆潮流を許容した状態で出力を最大出力に設定する最大出力運転モードとの間で、運転モードを切り換え可能に構成され、
前記制御システムは、
前記共用蓄電池の蓄電残量が第1所定値以上の場合は、変数Hを第1変数値に設定し、前記集合住宅に存在する全ての住戸の発電装置を前記通常運転モードに設定し、
前記共用蓄電池の蓄電残量が第2所定値未満の場合は、変数Hを第2変数値に設定し、前記集合住宅に存在する全ての住戸の発電装置を前記最大出力運転モードに設定し、
前記蓄電残量が前記第1所定値未満で前記第2所定値以上、かつ前記変数Hが前記第1変数値の場合は、前記集合住宅に存在する全ての住戸の発電装置を前記通常運転モードに設定し、
前記蓄電残量が第3所定値未満、かつ前記変数Hが前記第2変数値の場合は、前記集合住宅に存在する全ての住戸の発電装置を前記最大出力運転モードに設定し、
前記蓄電残量が前記第1所定値未満で前記第3所定値以上、かつ前記変数Hが前記第2変数値の場合は、前記集合住宅に存在する各住戸の発電装置を前記通常運転モードまたは前記最大出力運転モードに設定した場合において、前記集合住宅全体のエネルギ消費量を示す評価指標Pが最小となる最適運転モードに設定し、
前記第1〜第3所定値は、前記第1所定値>前記第3所定値>前記第2所定値の関係にあり、
前記評価指標Pは、前記共用蓄電池への充電時に対しては、当該共用蓄電池への充電電力を発電装置で発電するとした場合のエネルギ消費量を減算し、一方、前記共用蓄電池からの放電時に対しては、当該共用蓄電池からの放電電力を発電装置で発電するとした場合のエネルギ消費量を加算して算出される点にある。
In order to achieve this object, the power generation planning system for collective housing according to the present invention,
In an apartment house where there are multiple dwelling units installed with power generators that generate power linked to received power supplied from a commercial power system via a shared internal power line,
The control system is a power generation planning system for an apartment house that performs power generation planning for each power generation device,
The battery is connected to the internal power line so as to be chargeable / dischargeable, and includes a shared storage battery that charges the total surplus power of the entire apartment house,
Each power generation device allows normal operation mode in which output is controlled according to power consumption or heat consumption in the dwelling unit in a state in which internal reverse power flow that causes reverse power flow to the internal power line is prohibited, and the internal reverse power flow is allowed. In this state, the operation mode can be switched between the maximum output operation mode that sets the output to the maximum output.
The control system includes:
When the remaining amount of electricity stored in the shared storage battery is greater than or equal to a first predetermined value, the variable H is set to the first variable value, the power generators of all the dwelling units existing in the apartment house are set to the normal operation mode,
When the remaining amount of electricity stored in the shared storage battery is less than a second predetermined value, the variable H is set to a second variable value, the power generators of all the dwelling units existing in the apartment house are set to the maximum output operation mode,
When the remaining amount of power storage is less than the first predetermined value and greater than or equal to the second predetermined value, and the variable H is the first variable value, the power generators of all the dwelling units existing in the apartment house are in the normal operation mode. Set to
When the remaining amount of power storage is less than a third predetermined value and the variable H is the second variable value, the power generators of all the dwelling units existing in the apartment house are set to the maximum output operation mode,
When the remaining amount of power storage is less than the first predetermined value and greater than or equal to the third predetermined value, and the variable H is the second variable value, the power generator of each dwelling unit existing in the apartment house is set in the normal operation mode or When the maximum output operation mode is set, the optimal operation mode is set such that the evaluation index P indicating the energy consumption of the entire apartment house is minimum,
The first to third predetermined values have a relationship of the first predetermined value> the third predetermined value> the second predetermined value,
The evaluation index P, relative to the time of charging of the shared storage battery, and subtracting the energy consumption in the case of that power charging power to the shared storage battery by the power generation device, on the other hand, against the time of discharge from the shared storage battery In other words, it is calculated by adding the amount of energy consumed when the electric power generated from the discharge power from the shared storage battery is generated by the power generation device.

本特徴構成によれば、夫々の発電装置の運転モードが、内部逆潮流が抑制される上記通常運転モードと内部逆潮流が積極的に行われる上記最大出力運転モードとの間で切り換え可能に構成されている。よって、最大出力運転モードで発電装置の運転が行われる住戸において、当該発電装置の発電出力のうちその住戸での電力負荷分を差し引いた余剰電力が内部電力線へ内部逆潮流されることになる。更に、集合住宅の夫々の住戸から内部電力線へ内部逆潮流された各住戸の余剰電力(以下「個別余剰電力」という。)の合計が、内部電力線から夫々の住戸に供給される各住戸の不足電力(以下「個別不足電力」という。)と共用部の消費電力との合計を上回る場合に、その差分が集合住宅の総余剰電力として生じることになり、その総余剰電力が共用蓄電池に充電されることになる。よって、内部電力線から外部の商用電力系統への系統逆潮流を防止することができる。
逆に、個別不足電力と共用部の消費電力との合計が、個別余剰電力の合計を上回る場合には、その差分が集合住宅の総不足電力として生じることになり、その総不足電力が、商用電力系統からの受電電力よりも優先して共用蓄電池からの放電電力により補われることになる。よって、商用電力系統からの受電電力を少なくして、集合住宅における省エネ性を向上することができる。
According to this characteristic configuration, the operation mode of each power generator can be switched between the normal operation mode in which the internal reverse power flow is suppressed and the maximum output operation mode in which the internal reverse power flow is actively performed. Has been. Therefore, in the dwelling unit in which the power generation apparatus is operated in the maximum output operation mode, surplus power obtained by subtracting the power load at the dwelling unit from the power generation output of the power generation apparatus is internally reversely flowed to the internal power line. Furthermore, the deficit of each dwelling unit where the total surplus power (hereinafter referred to as “individual surplus power”) of each dwelling unit internally flowed back from each dwelling unit to the internal power line is supplied to each dwelling unit from the internal power line. When the sum of the power (hereinafter referred to as “individual power shortage”) and the power consumption of the common area is exceeded, the difference is generated as the total surplus power of the apartment house, and the total surplus power is charged to the shared storage battery. Will be. Therefore, the reverse power flow from the internal power line to the external commercial power system can be prevented.
Conversely, if the total of the individual shortage power and the power consumption in the common area exceeds the total of the individual surplus power, the difference will be generated as the total shortage power of the apartment house. It is supplemented by the discharge power from the shared storage battery in preference to the received power from the power system. Therefore, the received power from the commercial power system can be reduced and the energy saving performance in the apartment can be improved.

また、このように共用部に設置した共用蓄電池の充放電により系統逆潮流の防止と省エネ性の向上を図ることができる集合住宅において、複数の住戸の夫々に設置された発電装置に対して、上記評価指標が最小化されるときの最適運転モードパターンにおける運転モードでの運転を指令することができる。この評価指標は、集合住宅全体のエネルギ調達負荷、即ち、集合住宅全体におけるエネルギ調達のための一次エネルギ消費量等に相当するエネルギ負荷や、集合住宅全体における二酸化炭素排出量等に相当する環境負荷の少なくとも一方を示すものとされる。よって、その集合住宅全体の評価指標が最小化されるときの最適運転モードパターンを用いて夫々の発電装置の運転指令を行えば、集合住宅全体の省エネ性を一層向上することができる。   In addition, in the apartment house that can prevent system reverse power flow and improve energy savings by charging and discharging the shared storage battery installed in the common part in this way, for the power generator installed in each of the plurality of dwelling units, The operation in the operation mode in the optimum operation mode pattern when the evaluation index is minimized can be commanded. This evaluation index indicates the energy procurement load of the entire apartment house, that is, the energy load corresponding to the primary energy consumption for energy procurement in the entire apartment house, the environmental load equivalent to the carbon dioxide emission amount of the entire apartment house, etc. At least one of them. Therefore, if the operation command of each power generator is issued using the optimum operation mode pattern when the evaluation index of the entire apartment house is minimized, the energy saving performance of the entire apartment house can be further improved.

更に、共用蓄電池に充電された電力は後の総不足電力を補うために利用できることから、最適運転モードパターンを導出する際に、上記評価指標に対して、共用蓄電池への充電電力を発電装置で発電するとした場合のエネルギ調達負荷である充電電力調達負荷や、共用蓄電池からの放電電力を発電装置で発電するとした場合のエネルギ調達負荷である放電電力調達負荷を反映させて、共用蓄電池の放充電による省エネ効果をより確実に享受することができる。
即ち、共用蓄電池への充電時の評価指標に対しては、上記充電電力調達負荷を減算すれば、後の総不足電力の補充として利用価値のある充電電力の調達のための評価指標の無用な悪化(上昇)を抑制し、当該評価指標の悪化による共用蓄電池の充電抑制を回避することができる。
一方、共用蓄電池からの放電時の評価指標に対しては、上記放電電力調達負荷を加算すれば、充電時における評価指標の低下抑制分を放電時の評価指標の低下として反映させて、放電電力の利用による評価指標の無用な改善(低下)を抑制し、当該評価指標の無用な改善による共用蓄電池の過剰放電を回避することができる。
従って、本発明により、複数の発電装置及び共用蓄電池を設置した集合住宅において、夫々の発電装置の発電計画を適切に行って、充分な省エネ性を図ることができる集合住宅用発電計画システムを提供することができる。
また、本特徴構成によれば、共用蓄電池の蓄電残量が所定値以下の場合には、全ての発電装置が内部逆潮流を積極的に行う最大出力運転モードで運転が行われる。よって、多くの住戸から内部電力線に対して個別余剰電力が内部逆潮流されることになり、共用蓄電池へ充電される総余剰電力が増加して、共用蓄電池の蓄電残量が増加することになる。従って、共用蓄電池の蓄電残量を所定値以上に維持し、例えば停電時などにおける不足電力の補充に好適に利用することができる。
また、本特徴構成によれば、共用蓄電池が満充電となり、当該共用蓄電池にこれ以上充電できない状態であっても、全ての発電装置が内部逆潮流を禁止する通常運転モードで運転が行われる。よって、全ての住戸から内部電力線に対して内部逆潮流されなくなり、総余剰電力の発生による商用電力系統への系統逆潮流を確実に防止することができる。
Furthermore, since the electric power charged in the shared storage battery can be used to make up for the total power shortage later, when deriving the optimum operation mode pattern, the charging power for the shared storage battery is calculated by the power generator with respect to the evaluation index. Charging power procurement load, which is the energy procurement load when generating electricity, and discharge power procurement load, which is the energy procurement load when generating power from the shared storage battery, when generating power from the shared storage battery The energy-saving effect by can be enjoyed more reliably.
That is, if the charging power procurement load is subtracted from the evaluation index at the time of charging the shared storage battery, the evaluation index for procuring charging power having utility value can be used as a supplement for the total shortage power later. Deterioration (rise) can be suppressed, and charging suppression of the shared storage battery due to deterioration of the evaluation index can be avoided.
On the other hand, for the evaluation index at the time of discharging from the shared storage battery, if the above-mentioned discharge power procurement load is added, the decrease in the evaluation index at the time of charging is reflected as a decrease in the evaluation index at the time of discharge, and the discharge power Unnecessary improvement (decrease) in the evaluation index due to use of the battery can be suppressed, and excessive discharge of the shared storage battery due to unnecessary improvement in the evaluation index can be avoided.
Therefore, according to the present invention, a collective housing power generation planning system capable of achieving sufficient energy saving by appropriately performing a power generation plan of each power generating device in an apartment house provided with a plurality of power generators and shared storage batteries is provided. can do.
Moreover, according to this characteristic configuration, when the remaining power of the shared storage battery is equal to or less than a predetermined value, the operation is performed in the maximum output operation mode in which all the power generation devices actively perform the internal reverse power flow. Therefore, the individual surplus power from many dwelling units is internally reversed to the internal power line, the total surplus power charged to the shared storage battery is increased, and the remaining amount of power stored in the shared storage battery is increased. . Accordingly, the remaining amount of electricity stored in the shared storage battery can be maintained at a predetermined value or more, and can be suitably used for replenishment of insufficient power, for example, during a power failure.
Moreover, according to this characteristic structure, even if the shared storage battery is fully charged and the shared storage battery cannot be charged any more, the operation is performed in the normal operation mode in which all the power generation devices prohibit internal reverse power flow. Therefore, no internal reverse power flow is generated from all the dwelling units to the internal power line, and system reverse power flow to the commercial power system due to generation of total surplus power can be reliably prevented.

本発明に係る集合住宅用発電計画システムの更なる特徴構成は、
夫々の発電装置が、前記通常運転モードにおいて、発電電力を対応する住戸の個別消費電力に追従させるように出力を制御する電主運転を行う点にある。
A further characteristic configuration of the power generation planning system for an apartment house according to the present invention is as follows:
Each power generator is in a main operation for controlling the output so that the generated power follows the individual power consumption of the corresponding dwelling unit in the normal operation mode.

本特徴構成によれば、発電装置が、固体酸化物形燃料電池(SOFC)などのように高い発電効率を維持したまま出力を調整可能なものである場合において、通常運転モードでは、発電電力をその発電装置が設置された住戸における個別消費電力に追従させるように、発電装置の出力を制御する所謂電主運転を行うことができる。
また、最大出力運転モードでは、住戸における消費電力に関係なく、発電装置の出力を最大出力に設定するので、個別消費電力に対する発電電力の余剰分である個別余剰電力を内部電力線に対して内部逆潮流させて、共用蓄電池の充電に利用することができる。
According to this characteristic configuration, when the power generator can adjust the output while maintaining high power generation efficiency, such as a solid oxide fuel cell (SOFC), the generated power is reduced in the normal operation mode. A so-called main operation for controlling the output of the power generation device can be performed so as to follow the individual power consumption in the dwelling unit where the power generation device is installed.
In the maximum output operation mode, the output of the power generator is set to the maximum output regardless of the power consumption in the dwelling unit. Therefore, the individual surplus power, which is the surplus of the generated power relative to the individual power consumption, is inverted to the internal power line. It can be used to charge the shared storage battery.

本発明に係る集合住宅用発電計画システムの更なる特徴構成は、
前記共用蓄電池への充電時のエネルギ消費量を算出するにあたり、前記共用蓄電池における充電電力に対して当該共用蓄電池の充電ロス分を減算し、一方、前記共用蓄電池からの放電時のエネルギ消費量を算出するにあたり、前記共用蓄電池における放電電力に対して当該共用蓄電池の放電ロス分を加算する点にある。
A further characteristic configuration of the power generation planning system for an apartment house according to the present invention is as follows:
In calculating the energy consumption at the time of charging the shared storage battery, the charge loss of the shared storage battery is subtracted from the charging power in the shared storage battery, while the energy consumption at the time of discharging from the shared storage battery is In the calculation, the discharge loss of the shared storage battery is added to the discharge power of the shared storage battery.

本特徴構成によれば、充電時及び放電時の評価指標に対して加減算される前記共用蓄電池への充電時のエネルギ消費量及び前記共用蓄電池からの放電時のエネルギ消費量を算出するにあたり、共用蓄電池の充電ロス及び放電ロス分を反映させて、当該評価指標を一層正確なものとすることができる。 According to this characteristic configuration, in calculating the energy consumption at the time of charging to the shared storage battery and the energy consumption at the time of discharging from the shared storage battery, which are added to or subtracted from the evaluation index at the time of charging and discharging, it is shared. The evaluation index can be made more accurate by reflecting the charge loss and discharge loss of the storage battery.

本発明に係る集合住宅用発電計画システムの更なる特徴構成は、
前記発電装置の夫々が、発電に伴って熱を発生する熱電併給装置であり、
発生熱が対応する住戸の個別消費熱量に対して余剰する熱余剰状態の熱電併給装置については、前記最大出力運転モードでの運転を禁止して、前記通常運転モードでの運転を指令する点にある。
A further characteristic configuration of the power generation planning system for an apartment house according to the present invention is as follows:
Each of the power generation devices is a cogeneration device that generates heat with power generation,
For the heat and power cogeneration device in which the generated heat is surplus with respect to the individual heat consumption corresponding to the dwelling unit, the operation in the maximum output operation mode is prohibited and the operation in the normal operation mode is commanded. is there.

本特徴構成によれば、夫々の住戸に発電装置として熱電併給装置が設置されている場合には、熱余剰状態の熱電併給装置については、最大出力で運転されることで多くの排熱が発生する最大出力運転モードでの運転を禁止することで、その熱電併給装置が設置された住戸における熱電併給装置の排熱利用率の低下による省エネ性悪化を抑制することができる。   According to this feature configuration, when a combined heat and power unit is installed as a power generator in each dwelling unit, a large amount of exhaust heat is generated by operating the maximum power output of the combined heat and power unit. By prohibiting the operation in the maximum output operation mode to be performed, it is possible to suppress deterioration in energy saving due to a decrease in the exhaust heat utilization rate of the combined heat and power unit in the dwelling unit where the combined heat and power unit is installed.

本発明に係る集合住宅用発電計画システムの更なる特徴構成は、A further characteristic configuration of the power generation planning system for an apartment house according to the present invention is as follows:
前記評価指標Pは、前記集合住宅に存在する全ての住戸の各発電装置のエネルギ消費量の合計であるP1と、前記商用電力系統からの受電電力を発電するのに要するエネルギ消費量であるP2との合計に対して、前記共用蓄電池への充電時のエネルギ消費量を減算、又は前記共用蓄電池からの放電時のエネルギ消費量を加算することによって算出される点にある。  The evaluation index P is P1 which is the total energy consumption of each power generation device of all the dwelling units existing in the apartment house, and P2 which is the energy consumption required to generate the received power from the commercial power system. Is calculated by subtracting the energy consumption at the time of charging the shared storage battery or adding the energy consumption at the time of discharging from the shared storage battery.

本発明に係る集合住宅用発電計画システムの更なる特徴構成は、A further characteristic configuration of the power generation planning system for an apartment house according to the present invention is as follows:
前記最適運転モードは、前記集合住宅に存在する全ての住戸の発電装置を前記通常運転モード又は前記最大出力運転モードに設定した全ての運転モードの組み合わせに対して算出された複数の評価指標Pのうち、評価指標Pが最小値となる時の運転モードである点にある。  The optimum operation mode includes a plurality of evaluation indices P calculated for combinations of all operation modes in which the power generation devices of all dwelling units existing in the apartment are set to the normal operation mode or the maximum output operation mode. Of these, the operation mode is when the evaluation index P is the minimum value.

集合住宅用発電計画システムが設置された集合住宅の状態を示す図The figure which shows the state of apartment house where power generation planning system for apartment house was installed 集合住宅用発電計画システムにより実行される発電計画の処理フローを示す図The figure which shows the processing flow of the power generation plan executed by the power generation planning system for apartment buildings 各運転モードパターンでの評価指標を説明する図The figure explaining the evaluation index in each operation mode pattern

本発明に係る集合住宅用発電計画システム(以下「発電計画システム」と呼ぶ。)の実施形態について、図面を参照して説明する。
図1に示す発電計画システムXは、住戸A、B、C、Dが複数存在する集合住宅Mの共用部に設置されたコンピュータで構成された制御システム100で構成され、夫々の住戸A、B、C、Dに設置された夫々の熱電併給装置20等との間で通信を行って当該夫々の熱電併給装置20の発電計画を行うように構成されている。
尚、本実施形態では、集合住宅Mに4つの住戸A、B、C、Dが存在するものとして説明する。また、本願において集合住宅Mは、マンションやアパートのみならず、共有の内部電力線4を介した一括受電を行う区域を含む広義の集合住宅を示す。
An embodiment of a power generation planning system for an apartment house (hereinafter referred to as “power generation planning system”) according to the present invention will be described with reference to the drawings.
The power generation planning system X shown in FIG. 1 is composed of a control system 100 composed of a computer installed in a common part of an apartment house M in which a plurality of dwelling units A, B, C, and D exist, and each dwelling unit A, B , C, and D are configured to communicate with each of the combined heat and power devices 20 and the like and perform a power generation plan for each of the combined heat and power devices 20.
In the present embodiment, the description will be made on the assumption that four dwelling units A, B, C, and D exist in the apartment house M. Further, in the present application, the apartment house M indicates an apartment house in a broad sense including not only an apartment or an apartment, but also an area where collective power reception is performed via the shared internal power line 4.

先ず、夫々の住戸A、B、C、Dに設置された熱電併給装置20等の機器の詳細構成について説明する。
熱電併給装置20は、商用電力系統1から共用の内部電力線4を介して供給される受電電力に連系して発電を行う発電装置として機能すると共に、当該発電に伴って熱を発生する所謂コージェネレーションシステムとして構成されている。具体的に、熱電併給装置20は、電力と熱とを発生する燃料電池21と、当該燃料電池21の発生熱で加熱した温水を、温度成層を形成する状態で貯留する成層貯湯槽22と、消費熱量の不足分を補う形態で熱を発生する補助熱源機23とを備えて構成されている。
First, a detailed configuration of devices such as the combined heat and power unit 20 installed in each of the dwelling units A, B, C, and D will be described.
The combined heat and power device 20 functions as a power generator that generates power in conjunction with the received power supplied from the commercial power system 1 through the shared internal power line 4, and also generates so-called code that generates heat along with the power generation. It is configured as a generation system. Specifically, the combined heat and power device 20 includes a fuel cell 21 that generates electric power and heat, a stratified hot water tank 22 that stores hot water heated by heat generated by the fuel cell 21 in a state of forming a temperature stratification, And an auxiliary heat source unit 23 that generates heat in a form that compensates for the shortage of the consumed heat amount.

燃料電池21は、電解質としてZr系やCe系等のセラミックを利用して、空気中の酸素と都市ガス13Aであるガス燃料から生成した水素や一酸化炭素との電気化学反応により発電を行う固体酸化物形燃料電池として構成されており、その発電に伴って発生する熱により、成層貯湯槽22との間で循環する湯水を加熱するように構成されている。
熱電併給装置20の発電電力の出力側、即ち燃料電池21の発電電力の出力側には、系統連係用のインバータ(図示省略)が設けられており、そのインバータは、燃料電池21の発電電力を、内部電力線4を介して受電する受電電力と同じ電圧及び同じ周波数に調整し、商用電力系統1及び対応する電力負荷25に電気的に接続されている。尚、商用電力系統1は、例えば、単相3線式100/200Vであり、電灯やエアコンなどの電力負荷25に電気的に接続されている。
そして、電力負荷25に対しては、燃料電池21の発電電力と内部電力線4からの受電電力とが供給可能となり、詳しくは、電力負荷25の消費電力から燃料電池21の発電電力を差し引いた住戸個別の不足分の電力(以下「個別不足電力」と呼ぶ。)が、内部電力線4から電力負荷25に供給される。
一方、燃料電池21の発電電力が、電力負荷25の消費電力よりも大きい場合には、燃料電池21の発電電力から電力負荷25の消費電力を差し引いた住戸個別の余剰分の電力(以下「個別余剰電力」と呼ぶ。)が発生する。この個別余剰電力は、内部電力線4に対して内部逆潮流される。
The fuel cell 21 uses a Zr-based or Ce-based ceramic as an electrolyte, and generates electric power through an electrochemical reaction between oxygen in the air and hydrogen or carbon monoxide generated from the gas fuel that is the city gas 13A. The fuel cell is configured as an oxide fuel cell, and is configured to heat hot water circulated with the stratified hot water tank 22 by heat generated with the power generation.
An inverter (not shown) for system linkage is provided on the output side of the generated power of the cogeneration apparatus 20, that is, the output side of the generated power of the fuel cell 21, and the inverter uses the generated power of the fuel cell 21. The power is adjusted to the same voltage and the same frequency as the received power received via the internal power line 4, and is electrically connected to the commercial power system 1 and the corresponding power load 25. The commercial power system 1 is, for example, a single-phase three-wire 100 / 200V, and is electrically connected to a power load 25 such as an electric lamp or an air conditioner.
The power load 25 can be supplied with the power generated by the fuel cell 21 and the power received from the internal power line 4. Specifically, the dwelling unit is obtained by subtracting the power generated by the fuel cell 21 from the power consumed by the power load 25. Individual insufficient power (hereinafter referred to as “individual insufficient power”) is supplied from the internal power line 4 to the power load 25.
On the other hand, if the power generated by the fuel cell 21 is greater than the power consumed by the power load 25, the surplus power for each individual unit (hereinafter referred to as "individual") obtained by subtracting the power consumed by the power load 25 from the power generated by the fuel cell 21. This is called “surplus power”. This individual surplus power is internally reverse-flowed with respect to the internal power line 4.

成層貯湯槽22において、燃料電池21による発電時には、底部から湯水が取り出され、その取り出された湯水が燃料電池21の排熱との熱交換により加熱されて温水となり、その温水が天井部から流入する。このことにより、成層貯湯槽22の湯水の状態は、上層から下層に亘って、上層に高温の温水が存在し下層に低温の冷水が存在する形態の所謂温度成層が形成された成層貯湯状態となる。
そして、この成層貯湯槽22の天井部から取り出された温水が、給湯栓や温水暖房機器などの熱負荷26に供給される。
In the stratified hot water tank 22, when power is generated by the fuel cell 21, hot water is extracted from the bottom, and the extracted hot water is heated by heat exchange with the exhaust heat of the fuel cell 21, and the hot water flows from the ceiling. To do. Thereby, the hot water state of the stratified hot water tank 22 is a stratified hot water state in which a so-called temperature stratification in which high temperature hot water exists in the upper layer and low temperature cold water exists in the lower layer is formed from the upper layer to the lower layer. Become.
And the warm water taken out from the ceiling part of this stratified hot water tank 22 is supplied to thermal loads 26, such as a hot-water tap and a warm water heater.

補助熱源機23は、詳細な図示は省略するが、バーナによりガス燃料を燃焼させて湯水を加熱する一般的な給湯装置として構成されている。また、この補助熱源機23は、バーナへのガス燃料の供給量を調整することにより、湯水に対する加熱量を調整可能に構成されている。
そして、成層貯湯槽22の天井部から取り出される温水の温度が、熱負荷26にて必要とされる所定の目標温度未満であるとき、即ち、燃料電池21の発生熱が対応する住戸A、B、C、Dの個別消費熱量に対して不足する熱不足状態であるときには、補助熱源機23により目標温度に加熱した温水が熱負荷26に供給されることになる。
Although the detailed illustration is omitted, the auxiliary heat source unit 23 is configured as a general hot water supply device that heats hot water by burning gas fuel with a burner. Further, the auxiliary heat source unit 23 is configured to be able to adjust the amount of heating with respect to hot water by adjusting the amount of gas fuel supplied to the burner.
And when the temperature of the hot water taken out from the ceiling part of the stratified hot water tank 22 is lower than a predetermined target temperature required by the heat load 26, that is, the dwelling units A and B to which the generated heat of the fuel cell 21 corresponds. When the heat consumption is insufficient with respect to the individual heat consumptions C, D, the hot water heated to the target temperature by the auxiliary heat source unit 23 is supplied to the heat load 26.

以上が、夫々の住戸A、B、C、Dに設置された熱電併給装置20等の機器の詳細構成の説明であるが、以下に、これら住戸A、B、C、Dが含まれる集合住宅Mの共用部に設けられる電力機器等の詳細構成について説明する。
集合住宅Mの共用部には、発電計画システムXとして機能する制御システム100が設けられていると共に、内部電力線4に対して、逆電力継電器3、共用蓄電池10、及び、共用部の外灯やエレベータなどの共用電力負荷11が接続されている。
The above is a description of the detailed configuration of the equipment such as the combined heat and power supply device 20 installed in each of the dwelling units A, B, C, and D. The following is a housing complex including these dwelling units A, B, C, and D. A detailed configuration of a power device or the like provided in the shared part of M will be described.
In the common part of the apartment house M, a control system 100 that functions as the power generation planning system X is provided, and the reverse power relay 3, the common storage battery 10, and the outdoor lights and elevators of the common part are connected to the internal power line 4. A shared power load 11 such as is connected.

逆電力継電器3は、商用電力系統1に対する内部電力線4の接続部に設けられており、内部電力線4から商用電力系統1へ電力が流れる所謂系統逆潮流の発生を検知すると、その検知信号を制御システム100に出力する。
そして、制御システム100は、逆電力継電器3から検知信号が入力されると、各住戸A,B,C,Dに設置されている夫々の熱電併給装置20に対して解列信号を出力し、その解列信号が入力された夫々の熱電併給装置20は、内部電力線4から燃料電池21を解列する。すると、夫々の燃料電池21から内部電力線4への内部逆潮流が禁止され、これにより、内部電力線4から商用電力系統1への系統逆潮流が防止される。
The reverse power relay 3 is provided at a connection portion of the internal power line 4 with respect to the commercial power system 1. When the occurrence of a so-called reverse power flow in which power flows from the internal power line 4 to the commercial power system 1 is detected, the detection signal is controlled. Output to the system 100.
And when the detection signal is input from the reverse power relay 3, the control system 100 outputs a disconnection signal to each of the combined heat and power devices 20 installed in each dwelling unit A, B, C, D, Each cogeneration device 20 to which the disconnection signal is input disconnects the fuel cell 21 from the internal power line 4. Then, the internal reverse power flow from each fuel cell 21 to the internal power line 4 is prohibited, thereby preventing the reverse power flow from the internal power line 4 to the commercial power system 1.

共用蓄電池10は、内部電力線4に対して充放電可能に接続され、集合住宅M全体の総余剰電力を充電すると共に、集合住宅M全体の総不足電力を補充する形態で放電する。
具体的には、内部電力線4における共用蓄電池10の接続部と各住戸A,B,C,Dの接続部との間に、その箇所を通流する電力を計測する電力計測器5が設けられている。そして、この電力計測器5において、各住戸A,B,C,Dから共用蓄電池10に向かう電力が計測された場合には、共用蓄電池10はその電力に相当する分の電力を共用蓄電池10が充電し、一方、共用蓄電池10から各住戸A,B,C,Dに向かう電力が計測された場合には、その電力を賄う分の電力を共用蓄電池10が放電するように、共用蓄電池10の放充電制御が行われる。尚、図1では、電力計測器5が制御システム100と直接繋がる構成を示したが、これに限定されるものではなく、たとえば、共用蓄電池10が電力計測器5を取り込み、共用蓄電池10が自ら判断して充電または放電することを決定する構成としてもよい。
ここで、総余剰電力とは、各住戸A、B、C、Dの個別余剰電力の合計から、各住戸A、B、C、Dの個別不足電力と共用電力負荷11の消費電力とを差し引いた分で、集合住宅M全体で余剰となる電力を示す。一方、総不足電力とは、各住戸A、B、C、Dの個別不足電力と共用電力負荷11の消費電力との合計から、各住戸A、B、C、Dの個別余剰電力の合計を差し引いた分で、集合住宅M全体で不足となる電力を示す。
更に、各住戸A、B、C、Dに設置されている夫々の熱電併給装置20は、後述する通常運転モードと最大出力運転モードとの間で、運転モードを切り換え可能に構成されている。
この通常運転モードでは、内部電力線4に対して電力を逆潮流させる内部逆潮流を禁止した状態で、対応する電力負荷25の消費電力又は熱負荷26の消費熱量に応じて熱電併給装置20の出力が制御される。詳しくは、通常運転モードで熱電併給装置20の運転を行うと、熱電併給装置20の発電電力が電力負荷25の消費電力に追従するように熱電併給装置20の出力が制御される所謂電主運転が行われる。尚、この電主運転では、電力負荷25の消費電力が定格出力以下の範囲内にある場合には、熱電併給装置20の出力がその消費電力に相当する部分出力に設定され、一方、電力負荷25の消費電力が定格出力を超える場合には、熱電併給装置20の出力が定格出力に設定される。
一方、最大出力運転モードでは、内部電力線4に対して電力を逆潮流させる内部逆潮流を許容した状態で、熱電併給装置20が最大出力である定格出力で運転される。詳しくは、最大出力運転モードで熱電併給装置20の運転を行うと、熱電併給装置20の発電電力が電力負荷25の消費電力に関係なく、定格出力に設定される。そして、この発電電力のうち対応する電力負荷25の消費電力を差し引いた分の余剰電力が個別余剰電力となって、内部電力線4に逆潮流されることになる。
The shared storage battery 10 is connected to the internal power line 4 so as to be chargeable / dischargeable, and charges the total surplus power of the entire apartment house M and discharges it in a form of replenishing the total insufficient power of the entire apartment house M.
Specifically, a power meter 5 for measuring the power flowing through the location is provided between the connection portion of the shared storage battery 10 in the internal power line 4 and the connection portion of each dwelling unit A, B, C, D. ing. And in this electric power meter 5, when the electric power which goes to each common storage battery 10 from each dwelling unit A, B, C, D is measured, the common storage battery 10 uses the electric power equivalent to the electric power for the common storage battery 10. On the other hand, when the power from the shared storage battery 10 to each of the dwelling units A, B, C, D is measured, the shared storage battery 10 is discharged so that the power for the power is discharged. Discharge control is performed. 1 shows a configuration in which the power meter 5 is directly connected to the control system 100. However, the configuration is not limited to this. For example, the shared storage battery 10 takes in the power meter 5, and the shared storage battery 10 itself It is good also as a structure which determines and determines charging or discharging.
Here, the total surplus power subtracts the individual shortage power of each dwelling unit A, B, C, D and the power consumption of the shared power load 11 from the total of the individual surplus power of each dwelling unit A, B, C, D. The electric power which becomes surplus in the whole housing complex M is shown. On the other hand, the total shortage power is the sum of the individual surplus power of each dwelling unit A, B, C, D from the total of the individual shortage power of each dwelling unit A, B, C, D and the power consumption of the shared power load 11. The subtracted amount indicates the power shortage in the entire apartment house M.
Further, each of the combined heat and power supply devices 20 installed in each of the dwelling units A, B, C, and D is configured to be able to switch the operation mode between a normal operation mode and a maximum output operation mode described later.
In this normal operation mode, the output of the cogeneration device 20 is output according to the power consumption of the corresponding power load 25 or the heat consumption of the heat load 26 in a state in which the internal reverse power flow that reversely flows power to the internal power line 4 is prohibited. Is controlled. Specifically, when the cogeneration device 20 is operated in the normal operation mode, so-called main operation in which the output of the cogeneration device 20 is controlled so that the generated power of the cogeneration device 20 follows the power consumption of the power load 25. Is done. In this main operation, when the power consumption of the power load 25 is within the range of the rated output or less, the output of the cogeneration apparatus 20 is set to a partial output corresponding to the power consumption, while the power load When the power consumption of 25 exceeds the rated output, the output of the cogeneration apparatus 20 is set to the rated output.
On the other hand, in the maximum output operation mode, the combined heat and power supply device 20 is operated at the rated output that is the maximum output in a state in which the internal reverse power flow that reversely flows power to the internal power line 4 is allowed. Specifically, when the cogeneration apparatus 20 is operated in the maximum output operation mode, the generated power of the cogeneration apparatus 20 is set to the rated output regardless of the power consumption of the power load 25. Then, surplus power obtained by subtracting the power consumption of the corresponding power load 25 from the generated power becomes individual surplus power and is reversely flowed to the internal power line 4.

制御システム100は、発電計画システムXとして機能して、集合住宅Mに設けられた複数の熱電併給装置20の発電計画、即ち、上記通常運転モードでの運転を行うか、又は、上記最大出力運転モードでの運転を行うかについての計画を適切に行って、充分な省エネ性を図るように構成されており、この発電計画の処理フローの詳細について、図2及び図3に基づいて、以下に説明を加える。   The control system 100 functions as the power generation planning system X and performs the power generation plan of the plurality of cogeneration devices 20 provided in the apartment house M, that is, the operation in the normal operation mode, or the maximum output operation. The plan for whether to operate in the mode is appropriately performed to achieve sufficient energy saving, and the details of the processing flow of this power generation plan will be described below based on FIG. 2 and FIG. Add a description.

発電計画システムXが実行する発電計画では、図2に示すように、共用蓄電池10の蓄電残量Lを計測した上で、その計測した蓄電残量Lに基づいて、夫々の熱電併給装置20に対する運転計画方法を判断する。   In the power generation plan executed by the power generation planning system X, as shown in FIG. 2, after measuring the remaining power L of the shared storage battery 10, based on the measured remaining power L, for each of the combined heat and power supply devices 20. Determine the operation planning method.

具体的に、共用蓄電池10の蓄電残量が99%以上である所謂満充電の場合(ステップ#02のYES側)には、満充電識別変数Hを1にセットした上で(ステップ#03)、全ての住戸A、B、C、Dにおける夫々の熱電併給装置20の運転モードを全て通常運転モードに設定し(ステップ#04)、全ての熱電併給装置20に対して通常運転モードでの運転を指令する(ステップ#11)。
すると、共用蓄電池10にこれ以上充電できない状態であっても、全ての住戸A、B、C、Dから内部電力線4へ内部逆潮流がされなくなり、総余剰電力の発生による商用電力系統1への系統逆潮流が確実に防止される。
また、このように一旦共用蓄電池10が満充電となって、満充電識別変数Hが1にセットされると、共用蓄電池10の蓄電残量が90%未満になって(ステップ#05のNO側)、満充電識別変数Hが0にリセットされる(ステップ#10)までの間は、常に上記ステップ#04の処理が実行されて、全ての住戸A、B、C、Dにおける夫々の熱電併給装置20の運転モードが全て通常運転モードに設定して、共用蓄電池10へ充電される総余剰電力の発生を防止することで、共用蓄電池10において10%以上の蓄電余裕が確保されることになる。
Specifically, in the case of the so-called full charge in which the remaining storage amount of the shared storage battery 10 is 99% or more (YES in step # 02), the full charge identification variable H is set to 1 (step # 03). The operation mode of each of the combined heat and power devices 20 in all the dwelling units A, B, C and D is set to the normal operation mode (step # 04), and the operation in the normal operation mode is performed for all the combined heat and power devices 20. Is commanded (step # 11).
Then, even if the shared storage battery 10 cannot be charged any more, the internal reverse power flow from all the dwelling units A, B, C, D to the internal power line 4 is not generated, and the total surplus power is generated to the commercial power grid 1. System reverse power flow is reliably prevented.
In addition, once the shared storage battery 10 is fully charged and the full charge identification variable H is set to 1 in this way, the remaining charge of the shared storage battery 10 becomes less than 90% (NO side of step # 05). ), Until the full charge identification variable H is reset to 0 (step # 10), the process of step # 04 is always executed, and the combined heat and power supply in all the dwelling units A, B, C, and D is performed. By setting all the operation modes of the device 20 to the normal operation mode and preventing the generation of the total surplus power charged in the shared storage battery 10, a storage margin of 10% or more is secured in the shared storage battery 10. .

一方、共用蓄電池10の蓄電残量が90%未満である場合(ステップ#05のNO側)、又は、満充電識別変数Hが0である場合(ステップ#06のNO側)において共用蓄電池10の蓄電残量が95%未満である場合(ステップ#07のNO側)には、全ての住戸A、B、C、Dにおける夫々の熱電併給装置20の運転モードを全て最大出力運転モードに設定し(ステップ#09)、全ての熱電併給装置20に対して最大出力運転モードでの運転を指令する(ステップ#11)。
すると、多くの住戸A、B、C、Dにおいて個別余剰電力が発生し、その個別余剰電力が内部電力線4に内部逆潮流されるので、共用蓄電池10へ充電される総余剰電力が増加し、共用蓄電池10の蓄電残量が増加する。よって、共用蓄電池10の蓄電残量を常に90%以上に維持して、その充電電力を例えば停電時などにおける不足電力の補充に好適に利用することができる。
On the other hand, when the remaining amount of electricity stored in the shared storage battery 10 is less than 90% (NO side of step # 05) or when the full charge identification variable H is 0 (NO side of step # 06), the shared storage battery 10 When the remaining amount of power storage is less than 95% (NO side of step # 07), all the operation modes of the combined heat and power unit 20 in all the dwelling units A, B, C, and D are set to the maximum output operation mode. (Step # 09), the operation in the maximum output operation mode is commanded to all the combined heat and power supply devices 20 (step # 11).
Then, individual surplus power is generated in many dwelling units A, B, C, and D, and the individual surplus power is internally reverse-flowed to the internal power line 4, so that the total surplus power charged to the shared storage battery 10 increases. The remaining amount of electricity stored in the shared storage battery 10 increases. Therefore, it is possible to always maintain the remaining amount of electricity stored in the shared storage battery 10 at 90% or more, and to use the charged power for replenishment of insufficient power at the time of a power failure, for example.

更に、満充電識別変数Hが0である場合(ステップ#06のNO側)において、共用蓄電池10の蓄電残量が95%以上である場合(ステップ#07のYES側)には、集合住宅M全体の所定の評価指標が最小化されるときの夫々の熱電併給装置20の運転モードのパターンを最適運転モードパターンとして導出し(ステップ#08)、夫々の熱電併給装置20に対して当該導出した最適運転モードパターンにおける運転モードでの運転を指令する(ステップ#11)。
例えば、図3に示すように、4つの住戸A、B、C、Dの夫々について、熱電併給装置20の運転モードを通常運転モードとして内部逆潮流を禁止した場合(図3の「×」)と、熱電併給装置20の運転モードを最大出力運転モードとして内部逆潮流を許容した場合(図3の「○」)との全ての16通りの運転モードパターンについて、集合住宅M全体の評価指標Pを導出する。
そして、この集合住宅M全体の評価指標Pが最小化されるときの夫々の熱電併給装置20の運転モードのパターンを最適運転モードパターン(図3No.14)として導出する。
Furthermore, when the full charge identification variable H is 0 (NO side of step # 06), when the remaining charge of the shared storage battery 10 is 95% or more (YES side of step # 07), the housing complex M The operation mode pattern of each of the combined heat and power devices 20 when the entire predetermined evaluation index is minimized is derived as the optimum operation mode pattern (step # 08), and the derived operation is derived for each of the combined heat and power devices 20. Command operation in the operation mode in the optimum operation mode pattern (step # 11).
For example, as shown in FIG. 3, for each of the four dwelling units A, B, C, and D, the operation mode of the combined heat and power unit 20 is set to the normal operation mode and internal reverse power flow is prohibited (“×” in FIG. 3). And the evaluation index P of the entire apartment house M for all 16 types of operation mode patterns when the internal reverse power flow is permitted (“◯” in FIG. 3) with the operation mode of the combined heat and power unit 20 as the maximum output operation mode. Is derived.
And the pattern of the operation mode of each cogeneration apparatus 20 when the evaluation index P of the entire apartment house M is minimized is derived as the optimum operation mode pattern (No. 14 in FIG. 3).

上記集合住宅M全体の評価指標Pは、現時点から1日分の将来の夫々の熱電併給装置20の運転状態を予測し、その予測した1日の運転状態におけるエネルギ調達のためのエネルギ負荷である一次エネルギ消費量の合計として算出され、具体的には、下記[数1]により求められる。   The evaluation index P of the entire apartment house M is an energy load for predicting the operation state of each future heat and power cogeneration device 20 for one day from the present time and for energy procurement in the predicted operation state of the day. It is calculated as the sum of primary energy consumption, and is specifically obtained by the following [Equation 1].

[数1]
評価指標P=P1+P2+P3
P1:発電電力関連一次エネルギ消費量
P2:受電電力関連一次エネルギ消費量
P3:充放電電力関連一次エネルギ消費量
[Equation 1]
Evaluation index P = P1 + P2 + P3
P1: Primary energy consumption related to generated power P2: Primary energy consumption related to received power P3: Primary energy consumption related to charge / discharge power

上記発電電力関連一次エネルギ消費量P1は、全ての燃料電池21の夫々の燃料消費量の合計として求められる。また、予測した現時点から1日分の夫々の熱電併給装置20の運転状態を参照して、熱電併給装置20の発電に伴って発生する排熱が温水として熱負荷26で利用できると判断した場合には、この全ての燃料電池21の夫々の燃料消費量の合計から、当該排熱の利用による全ての補助熱源機23の燃料消費量の夫々の削減分の合計を控除した値が、上記発電電力関連一次エネルギ消費量P1として求められる。   The generated power-related primary energy consumption amount P1 is obtained as the sum of the fuel consumption amounts of all the fuel cells 21. In addition, when it is determined that the exhaust heat generated by the power generation of the combined heat and power unit 20 can be used as hot water by the heat load 26 with reference to the operation state of the combined heat and power unit 20 for one day from the predicted current time The value obtained by subtracting the total reduction of the fuel consumption of all the auxiliary heat source units 23 by the use of the exhaust heat from the total fuel consumption of all of the fuel cells 21 is the power generation. It is calculated | required as electric power related primary energy consumption P1.

上記受電電力関連一次エネルギ消費量P2は、商用電力系統1からの受電電力を発電するのに必要な一次エネルギ消費量を示し、その受電電力を商用電力系統1側で発電するのに消費された燃料消費量として求められる。具体的には、受電電力と一次エネルギ消費量の変換係数を予め設定しておき、その係数と受電電力との積が上記受電電力関連一次エネルギ消費量P2として求められる。   The received power-related primary energy consumption P2 indicates the primary energy consumption necessary for generating the received power from the commercial power grid 1, and consumed to generate the received power on the commercial power grid 1 side. It is calculated as fuel consumption. Specifically, a conversion coefficient between the received power and the primary energy consumption is set in advance, and a product of the coefficient and the received power is obtained as the received power-related primary energy consumption P2.

上記充放電電力関連一次エネルギ消費量P3は、共用蓄電池10の充放電電力に対応する一次エネルギ消費量であり、共用蓄電池10の充電時及び放電時の夫々の評価指標Pに対して求められる。
具体的に、共用蓄電池10の充電時には、共用蓄電池10への充電電力を、燃料電池21と同じ発電効率の発電装置で発電すると仮定して、その場合の発電装置での燃料消費量である充電電力一次エネルギ消費量(充電電力調達負荷)の負の値が上記充放電電力関連一次エネルギ消費量P3とされる。
一方、共用蓄電池10の放電時には、共用蓄電池10からの放電電力を、燃料電池21と同じ発電効率の発電装置で発電すると仮定して、その場合の発電装置での燃料消費量である放電電力一次エネルギ消費量(放電電力調達負荷)の正の値が上記充放電電力関連一次エネルギ消費量P3とされる。
The charge / discharge power related primary energy consumption P3 is a primary energy consumption corresponding to the charge / discharge power of the shared storage battery 10 and is obtained for each evaluation index P when the shared storage battery 10 is charged and discharged.
Specifically, when the shared storage battery 10 is charged, it is assumed that the charging power to the shared storage battery 10 is generated by a power generation device having the same power generation efficiency as that of the fuel cell 21, and charging that is fuel consumption in the power generation device in that case A negative value of power primary energy consumption (charging power procurement load) is set as the charge / discharge power related primary energy consumption P3.
On the other hand, when the shared storage battery 10 is discharged, it is assumed that the discharge power from the shared storage battery 10 is generated by a power generation device having the same power generation efficiency as that of the fuel cell 21, and the discharge power primary that is the fuel consumption in the power generation device in that case A positive value of the energy consumption (discharge power procurement load) is set as the charge / discharge power related primary energy consumption P3.

即ち、共用蓄電池10への充電時の評価指標Pに対しては、上記充電電力一次エネルギ消費量が減算されて、後の総不足電力の補充として利用価値のある共用蓄電池10の充電電力の調達のための評価指標Pの無用な悪化(上昇)が抑制される。よって、この評価指標Pの無用な悪化により共用蓄電池10の充電が無用に抑制されることが回避される。
一方、共用蓄電池10からの放電時の評価指標Pに対しては、上記放電電力一次エネルギ消費量が加算されて、充電時における評価指標Pの低下抑制分を放電時の評価指標Pの低下として反映させて、放電電力の利用による評価指標Pの無用な改善(低下)が抑制される。よって、この評価指標Pの無用な改善により共用蓄電池10が無用に放電されることが回避される。
That is, the charging power primary energy consumption is subtracted from the evaluation index P at the time of charging the shared storage battery 10 to procure the charging power of the shared storage battery 10 that has utility value as a supplement for the subsequent total shortage power. Unnecessary deterioration (increase) of the evaluation index P is suppressed. Therefore, unnecessary charging of the shared storage battery 10 due to unnecessary deterioration of the evaluation index P is avoided.
On the other hand, for the evaluation index P at the time of discharging from the shared storage battery 10, the primary energy consumption of the discharge power is added, and the reduction suppression of the evaluation index P at the time of charging is regarded as the decrease of the evaluation index P at the time of discharging. Reflecting this, unnecessary improvement (decrease) in the evaluation index P due to the use of discharge power is suppressed. Therefore, useless improvement of the evaluation index P avoids unnecessary discharge of the shared storage battery 10.

尚、発生した総余剰電力のうち例えば10%程度の充電ロス分を差し引いた電力が共用蓄電池10に充電されることから、共用蓄電池10における充電電力に対して例えば10%程度の充電ロス分を減算した上で、上記充電電力一次エネルギ消費量を算出する。
一方、必要となる放電電力のうち例えば10%程度の放電ロスを加算した電力を共用蓄電池10から放電させることから、共用蓄電池10における放電電力に対して例えば10%程度の放電ロス分を加算して、上記放電電力一次エネルギ消費量を算出する。
このことで、[数1]の評価指標Pを一層正確なものとすることができる。
In addition, since the electric power which deducted the charge loss of about 10%, for example from the generated surplus electric power is charged to the shared storage battery 10, the charge loss of about 10% is charged to the charge power in the shared storage battery 10, for example. After the subtraction, the charge energy primary energy consumption is calculated.
On the other hand, for example, about 10% of the discharge loss is added to the discharge power of the shared storage battery 10 because the power obtained by adding about 10% of the discharge loss is discharged from the shared storage battery 10. Thus, the discharge energy primary energy consumption is calculated.
Thus, the evaluation index P of [Equation 1] can be made more accurate.

また、現時点から1日分の将来の熱電併給装置20の運転状態の予測は、以下のように行われる。
即ち、電力負荷25及び熱負荷26の過去の一時間毎の消費電力及び消費熱量を予め過去データとして学習しておき、その過去データの傾向から将来の一時間毎の消費電力及び消費熱量を予測する。
そして、その予測した将来の一時間毎の消費電力及び消費熱量に対して、熱電併給装置20の一時間毎の出力変化をシミュレーションし、そのシミュレーション結果を将来の熱電併給装置20の運転状態とする。
更に、現時点での成層貯湯槽22での貯湯量が、上記のように学習した将来の消費熱量に相当する貯湯量を下回る状態、即ち熱電併給装置20の発生熱が対応する住戸の個別消費熱量に対して不足する熱不足状態である場合には、現時点の熱電併給装置20の発電に伴って発生する排熱は温水として熱負荷26で利用できる判断できるので、上述したように、熱電併給装置20の一次エネルギ消費量から熱電併給装置20の排熱の利用による補助熱源機23の燃料消費量の削減分が控除されて、上記[数1]の発電電力関連一次エネルギ消費量P1が求められる。
一方、現時点での成層貯湯槽22での貯湯量が、上記のように学習した将来の消費熱量に相当する貯湯量以上である状態、即ち熱電併給装置20の発生熱が対応する住戸の個別消費熱量に対して余剰する熱余剰状態である場合には、現時点の熱電併給装置20の発電に伴って発生する排熱は利用されず、熱電併給装置20の排熱の利用による補助熱源機23の燃料消費量の削減分が無いものと判断できるので、熱電併給装置20の一次エネルギ消費量が、上記[数1]の発電電力関連一次エネルギ消費量P1とされる。
In addition, the prediction of the operation state of the future combined heat and power unit 20 for one day from the present time is performed as follows.
That is, the past hourly power consumption and heat consumption of the power load 25 and the heat load 26 are previously learned as past data, and the future hourly power consumption and heat consumption are predicted from the past data trends. To do.
Then, an hourly output change is simulated with respect to the predicted future hourly power consumption and heat consumption, and the simulation result is set as a future operation state of the heat / electricity supply device 20. .
Furthermore, the amount of hot water stored in the stratified hot water tank 22 at the present time is lower than the amount of hot water stored corresponding to the future heat consumption learned as described above, that is, the individual heat consumption of the dwelling unit to which the heat generated by the combined heat and power supply device 20 corresponds. In this case, it is possible to determine that the exhaust heat generated with the current power generation of the combined heat and power supply device 20 can be used as the hot water by the heat load 26. Therefore, as described above, the combined heat and power supply device 20 is subtracted from the reduction in fuel consumption of the auxiliary heat source unit 23 due to the use of exhaust heat from the combined heat and power supply device 20, and the generated energy-related primary energy consumption P1 of [Equation 1] is obtained. .
On the other hand, the amount of hot water stored in the stratified hot water tank 22 at the present time is not less than the amount of hot water stored corresponding to the future heat consumption learned as described above, that is, the individual consumption of the dwelling unit corresponding to the heat generated by the combined heat and power supply device 20. When the heat surplus state is surplus with respect to the amount of heat, the exhaust heat generated with the current power generation of the combined heat and power supply device 20 is not used, and the auxiliary heat source machine 23 of the auxiliary heat source device 23 by using the exhaust heat of the combined heat and power supply device 20 is not used. Since it can be determined that there is no reduction in the fuel consumption, the primary energy consumption P1 of the combined heat and power supply apparatus 20 is set to the generated energy-related primary energy consumption P1 of [Equation 1].

更に、上記ステップ#11において、夫々の熱電併給装置20に対して所定の運転モードでの運転を指令するにあたり、熱余剰状態の熱電併給装置20に対しては、住戸における熱電併給装置20の排熱利用率の低下による省エネ性悪化を抑制するために、共用蓄電池10の蓄電残量や評価指標Pに関係なく、最大出力運転モードでの運転を禁止して、
通常運転モードでの運転を指令する。
Further, in the above step # 11, when commanding the operation in the predetermined operation mode to each of the combined heat and power devices 20, the combined heat and power device 20 in the heat surplus state is discharged from the combined heat and power device 20 in the dwelling unit. In order to suppress the energy saving deterioration due to the decrease in the heat utilization rate, regardless of the remaining power of the shared storage battery 10 and the evaluation index P, the operation in the maximum output operation mode is prohibited,
Command the operation in the normal operation mode.

〔その他の実施形態〕
最後に、本発明のその他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、夫々単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
[Other Embodiments]
Finally, other embodiments of the present invention will be described. Note that the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of other embodiments as long as no contradiction occurs.

(1)上記実施形態では、発電装置を熱電併給装置20として構成したが、熱を発生しない単なる発電装置として構成しても構わない。 (1) In the above embodiment, the power generation device is configured as the combined heat and power supply device 20, but may be configured as a simple power generation device that does not generate heat.

(2)上記実施形態では、最適運転モードパターンを導出するための評価指標Pを、エネルギ調達のためのエネルギ負荷である一次エネルギ消費量として求めたが、例えば、一次エネルギ消費量をコスト換算した一次エネルギコストや、二酸化炭素排出量などの環境負荷などの別のエネルギ調達負荷を評価指標として利用しても構わない。 (2) In the above embodiment, the evaluation index P for deriving the optimum operation mode pattern is obtained as the primary energy consumption which is the energy load for energy procurement. For example, the primary energy consumption is converted into cost. Other energy procurement loads such as primary energy costs and environmental loads such as carbon dioxide emissions may be used as an evaluation index.

(3)上記実施形態では、熱電併給装置20が、個別余剰電力の内部逆潮流を禁止する通常運転モードにおいて、発電電力を対応する住戸A、B、C、Dの個別消費電力に追従させるように出力を制御する電主運転を行うように構成したが、例えば、通常運転モードにおいて、定格出力で運転し、個別余剰電力を別途設けた電気ヒータによる温水生成に利用するように構成しても構わない。 (3) In the above embodiment, the combined heat and power unit 20 causes the generated power to follow the individual power consumption of the corresponding dwelling units A, B, C, and D in the normal operation mode in which the internal reverse flow of the individual surplus power is prohibited. In the normal operation mode, for example, it is configured to operate at the rated output and use the individual surplus power to generate hot water by an electric heater provided separately. I do not care.

本発明は、商用電力系統から共用の内部電力線を介して供給される受電電力に連系して発電を行う発電装置が設置された住戸が複数存在する集合住宅において、夫々の発電装置の発電計画を行う集合住宅用発電計画システムとして好適に利用可能である。   The present invention relates to a power generation plan for each power generator in an apartment house where there are a plurality of dwelling units installed with power generators that generate power linked to received power supplied from a commercial power system via a shared internal power line. It can be suitably used as a power generation planning system for collective housing.

1 :商用電力系統
4 :内部電力線
10 :共用蓄電池
20 :熱電併給装置
25 :電力負荷
26 :熱負荷
A、B、C、D:住戸
L :蓄電残量
M :集合住宅
P :評価指標
X :集合住宅用発電計画システム
1: Commercial power system 4: Internal power line 10: Shared storage battery 20: Combined heat and power supply device 25: Power load 26: Thermal load A, B, C, D: Dwelling unit L: Remaining power storage M: Apartment house P: Evaluation index X: Power generation planning system for collective housing

Claims (6)

商用電力系統から共用の内部電力線を介して供給される受電電力に連系して発電を行う発電装置が設置された住戸が複数存在する集合住宅において、
制御システムが、夫々の発電装置の発電計画を行う集合住宅用発電計画システムであって、
前記内部電力線に対して充放電可能に接続され、集合住宅全体の総余剰電力を充電する共用蓄電池を備えると共に、
夫々の発電装置が、前記内部電力線に対して電力を逆潮流させる内部逆潮流を禁止した状態で住戸における消費電力又は消費熱量に応じて出力を制御する通常運転モードと、前記内部逆潮流を許容した状態で出力を最大出力に設定する最大出力運転モードとの間で、運転モードを切り換え可能に構成され、
前記制御システムは、
前記共用蓄電池の蓄電残量が第1所定値以上の場合は、変数Hを第1変数値に設定し、前記集合住宅に存在する全ての住戸の発電装置を前記通常運転モードに設定し、
前記共用蓄電池の蓄電残量が第2所定値未満の場合は、変数Hを第2変数値に設定し、前記集合住宅に存在する全ての住戸の発電装置を前記最大出力運転モードに設定し、
前記蓄電残量が前記第1所定値未満で前記第2所定値以上、かつ前記変数Hが前記第1変数値の場合は、前記集合住宅に存在する全ての住戸の発電装置を前記通常運転モードに設定し、
前記蓄電残量が第3所定値未満、かつ前記変数Hが前記第2変数値の場合は、前記集合住宅に存在する全ての住戸の発電装置を前記最大出力運転モードに設定し、
前記蓄電残量が前記第1所定値未満で前記第3所定値以上、かつ前記変数Hが前記第2変数値の場合は、前記集合住宅に存在する各住戸の発電装置を前記通常運転モードまたは前記最大出力運転モードに設定した場合において、前記集合住宅全体のエネルギ消費量を示す評価指標Pが最小となる最適運転モードに設定し、
前記第1〜第3所定値は、前記第1所定値>前記第3所定値>前記第2所定値の関係にあり、
前記評価指標Pは、前記共用蓄電池への充電時に対しては、当該共用蓄電池への充電電力を発電装置で発電するとした場合のエネルギ消費量を減算し、一方、前記共用蓄電池からの放電時に対しては、当該共用蓄電池からの放電電力を発電装置で発電するとした場合のエネルギ消費量を加算して算出される、集合住宅用発電計画システム。
In an apartment house where there are multiple dwelling units installed with power generators that generate power linked to received power supplied from a commercial power system via a shared internal power line,
The control system is a power generation planning system for an apartment house that performs power generation planning for each power generation device,
The battery is connected to the internal power line so as to be chargeable / dischargeable, and includes a shared storage battery that charges the total surplus power of the entire apartment house,
Each power generation device allows normal operation mode in which output is controlled according to power consumption or heat consumption in the dwelling unit in a state in which internal reverse power flow that causes reverse power flow to the internal power line is prohibited, and the internal reverse power flow is allowed. In this state, the operation mode can be switched between the maximum output operation mode that sets the output to the maximum output.
The control system includes:
When the remaining amount of electricity stored in the shared storage battery is greater than or equal to a first predetermined value, the variable H is set to the first variable value, the power generators of all the dwelling units existing in the apartment house are set to the normal operation mode,
When the remaining amount of electricity stored in the shared storage battery is less than a second predetermined value, the variable H is set to a second variable value, the power generators of all the dwelling units existing in the apartment house are set to the maximum output operation mode,
When the remaining amount of power storage is less than the first predetermined value and greater than or equal to the second predetermined value, and the variable H is the first variable value, the power generators of all the dwelling units existing in the apartment house are in the normal operation mode. Set to
When the remaining amount of power storage is less than a third predetermined value and the variable H is the second variable value, the power generators of all the dwelling units existing in the apartment house are set to the maximum output operation mode,
When the remaining amount of power storage is less than the first predetermined value and greater than or equal to the third predetermined value, and the variable H is the second variable value, the power generator of each dwelling unit existing in the apartment house is set in the normal operation mode or When the maximum output operation mode is set, the optimal operation mode is set such that the evaluation index P indicating the energy consumption of the entire apartment house is minimum,
The first to third predetermined values have a relationship of the first predetermined value> the third predetermined value> the second predetermined value,
The evaluation index P, relative to the time of charging of the shared storage battery, and subtracting the energy consumption in the case of that power charging power to the shared storage battery by the power generation device, on the other hand, against the time of discharge from the shared storage battery In this case, the power generation planning system for an apartment house is calculated by adding the energy consumption when the power generated from the discharge power from the shared storage battery is generated.
夫々の発電装置が、前記通常運転モードにおいて、発電電力を対応する住戸の個別消費電力に追従させるように出力を制御する電主運転を行う請求項1に記載の集合住宅用発電計画システム。   2. The collective housing power generation planning system according to claim 1, wherein each power generation device performs a main operation for controlling an output so that the generated power follows the individual power consumption of the corresponding dwelling unit in the normal operation mode. 前記共用蓄電池への充電時のエネルギ消費量を算出するにあたり、前記共用蓄電池における充電電力に対して当該共用蓄電池の充電ロス分を減算し、一方、前記共用蓄電池からの放電時のエネルギ消費量を算出するにあたり、前記共用蓄電池における放電電力に対して当該共用蓄電池の放電ロス分を加算する請求項1又は2に記載の集合住宅用発電計画システム。 In calculating the energy consumption at the time of charging the shared storage battery, the charge loss of the shared storage battery is subtracted from the charging power in the shared storage battery, while the energy consumption at the time of discharging from the shared storage battery is The power generation planning system for an apartment house according to claim 1 or 2, wherein, for the calculation, the discharge loss of the shared storage battery is added to the discharge power of the shared storage battery. 前記発電装置の夫々が、発電に伴って熱を発生する熱電併給装置であり、
発生熱が対応する住戸の個別消費熱量に対して余剰する熱余剰状態の熱電併給装置については、前記最大出力運転モードでの運転を禁止して、前記通常運転モードでの運転を指令する請求項1〜3の何れか1項に記載の集合住宅用発電計画システム。
Each of the power generation devices is a cogeneration device that generates heat with power generation,
About the cogeneration apparatus in a heat surplus state in which the generated heat is excessive with respect to the individual heat consumption corresponding to the dwelling unit, the operation in the maximum output operation mode is prohibited and the operation in the normal operation mode is commanded. The power generation planning system for collective housing according to any one of 1 to 3.
前記評価指標Pは、前記集合住宅に存在する全ての住戸の各発電装置のエネルギ消費量の合計であるP1と、前記商用電力系統からの受電電力を発電するのに要するエネルギ消費量であるP2との合計に対して、前記共用蓄電池への充電時のエネルギ消費量を減算、又は前記共用蓄電池からの放電時のエネルギ消費量を加算することによって算出される、請求項1〜4の何れか1項に記載の集合住宅用発電計画システム。  The evaluation index P is P1 which is the total energy consumption of each power generation device of all the dwelling units existing in the apartment house, and P2 which is the energy consumption required to generate the received power from the commercial power system. Is calculated by subtracting the energy consumption at the time of charging the shared storage battery or adding the energy consumption at the time of discharging from the shared storage battery to the total of The power generation planning system for collective housing according to item 1. 前記最適運転モードは、前記集合住宅に存在する全ての住戸の発電装置を前記通常運転モード又は前記最大出力運転モードに設定した全ての運転モードの組み合わせに対して算出された複数の評価指標Pのうち、評価指標Pが最小値となる時の運転モードである、請求項1〜5の何れか1項に記載の集合住宅用発電計画システム。  The optimum operation mode includes a plurality of evaluation indices P calculated for combinations of all operation modes in which the power generation devices of all dwelling units existing in the apartment are set to the normal operation mode or the maximum output operation mode. Among them, the power generation planning system for collective housing according to any one of claims 1 to 5, which is an operation mode when the evaluation index P is a minimum value.
JP2013194466A 2013-09-19 2013-09-19 Power generation planning system for collective housing Expired - Fee Related JP6161483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013194466A JP6161483B2 (en) 2013-09-19 2013-09-19 Power generation planning system for collective housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194466A JP6161483B2 (en) 2013-09-19 2013-09-19 Power generation planning system for collective housing

Publications (2)

Publication Number Publication Date
JP2015061437A JP2015061437A (en) 2015-03-30
JP6161483B2 true JP6161483B2 (en) 2017-07-12

Family

ID=52818573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194466A Expired - Fee Related JP6161483B2 (en) 2013-09-19 2013-09-19 Power generation planning system for collective housing

Country Status (1)

Country Link
JP (1) JP6161483B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017002408T5 (en) * 2016-05-12 2019-01-24 Panasonic Intellectual Property Management Co., Ltd. LOADING AND UNLOADING PLANNING SYSTEM, PLANNING METHOD AND PROGRAM
JP2018046662A (en) * 2016-09-14 2018-03-22 大阪瓦斯株式会社 Collective power reception/transformation system
JP6971642B2 (en) * 2017-03-10 2021-11-24 大和ハウス工業株式会社 Power supply system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324566A (en) * 2001-04-25 2002-11-08 Sanyo Electric Co Ltd Distributed power-generating system, and maintenance system and method utilizing it
JP4889167B2 (en) * 2001-08-09 2012-03-07 大阪瓦斯株式会社 Cogeneration system operation planning method
JP2005009780A (en) * 2003-06-19 2005-01-13 Chofu Seisakusho Co Ltd Output control device and output control method for cogeneration system
JP3980541B2 (en) * 2003-09-22 2007-09-26 日本電信電話株式会社 Distributed energy community control system, central controller, distributed controller, and control method thereof
JP4799026B2 (en) * 2004-08-06 2011-10-19 三洋電機株式会社 Fuel cell system
JP4286236B2 (en) * 2005-04-28 2009-06-24 三洋電機株式会社 Natural energy power generation system
JP4780148B2 (en) * 2008-06-18 2011-09-28 三菱電機株式会社 Cogeneration system operation method
JP5342289B2 (en) * 2009-03-23 2013-11-13 大阪瓦斯株式会社 Cogeneration system
JP5444020B2 (en) * 2010-01-26 2014-03-19 大阪瓦斯株式会社 Cogeneration system
JP2013156937A (en) * 2012-01-31 2013-08-15 Hitachi Ltd Optimal operation control device of energy network

Also Published As

Publication number Publication date
JP2015061437A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
CN108496288B (en) Household energy device and operation method for operating household energy device
Nazari et al. A new method for energy management of residential microgrid for sizing electrical and thermal storage systems
JP4660422B2 (en) Energy supply system
JP6166512B2 (en) Control device, power system, and control method
JP2013038838A (en) Collective housing power system
JPWO2018003890A1 (en) Cogeneration system, control device and control method
JP6161483B2 (en) Power generation planning system for collective housing
JP6146624B1 (en) Energy management system
JP7312661B2 (en) Power interchange system
JP5995804B2 (en) Storage system management device and control target value determination method
JP7386028B2 (en) power supply system
JP7349840B2 (en) power supply system
JP5940263B2 (en) Power control apparatus and power control method
JP2021162255A (en) Thermal accommodation system
JP2005248820A (en) Operation control system for cogeneration device
JP5953519B2 (en) Power supply system
JP7386029B2 (en) power supply system
JP6085785B2 (en) Power supply system
JP6280741B2 (en) Power supply system
JP6523120B2 (en) Power supply system
JP6587465B2 (en) Power supply system
JP7303717B2 (en) Power interchange system
JP2016073073A (en) Power supply system
EP4037129A1 (en) Power management system, server, and power supply and demand adjustment method
JP5745986B2 (en) Power supply system, control device, and discharge control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170613

R150 Certificate of patent or registration of utility model

Ref document number: 6161483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees