JP2018046662A - Collective power reception/transformation system - Google Patents

Collective power reception/transformation system Download PDF

Info

Publication number
JP2018046662A
JP2018046662A JP2016179799A JP2016179799A JP2018046662A JP 2018046662 A JP2018046662 A JP 2018046662A JP 2016179799 A JP2016179799 A JP 2016179799A JP 2016179799 A JP2016179799 A JP 2016179799A JP 2018046662 A JP2018046662 A JP 2018046662A
Authority
JP
Japan
Prior art keywords
power
voltage
distributed
transforming
dwelling units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016179799A
Other languages
Japanese (ja)
Inventor
光崇 岡本
Mitsutaka Okamoto
光崇 岡本
建 小野
Ken Ono
建 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016179799A priority Critical patent/JP2018046662A/en
Publication of JP2018046662A publication Critical patent/JP2018046662A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Landscapes

  • Fuel Cell (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operation form in which fuel battery power generation devices are installed in specific dwelling units, some of a plurality of dwelling units, and effects of the power generation devices can be effectively caused and economical merit of a business operator supplying low-voltage power to each dwelling unit can be held, in a collective power reception/transformation system that collectively receives high-voltage power, steps down the power into low-voltage power and then supplies the power to the plurality of dwelling units.SOLUTION: The operation form is configured so that the power generation device regularly performs rated operation and surplus power which has not been used by electric loads of specific dwelling units, of generated power during rated operation is interchanged through a first distribution network with the other dwelling units. The number of the specific dwelling units and rated output are set so that the total of the generated power during rated operation of the power generation device does not surpass a predicted minimum value of total consumed power by the plurality of dwelling units.SELECTED DRAWING: Figure 1

Description

受変電設備を用いて商用系統電源から供給される高圧電力を一括で受電して低圧電力に降圧した後、集合住宅等の複数の住戸の電力負荷に各別に供給する一括受変電システムに関する。   The present invention relates to a collective power receiving and transforming system that collectively receives high voltage power supplied from a commercial power supply using a power receiving / transforming facility, steps down the voltage to low voltage power, and then separately supplies the power load to a plurality of dwelling units such as an apartment house.

近年、需要家の電力需要を束ねて効果的にエネルギーマネジメントサービスを提供する電力アグリゲータ等の事業者が、集合住宅等の複数の住戸において、電力会社と高圧受電契約を締結し、電力会社の商用系統電源から供給される高圧電力(例えば6600V)を当該事業者の受変電設備で低圧電力(例えば200V)に降圧し、当該事業者と低圧契約した各住戸に供給する一括高圧受電方式の電力供給形態が普及しつつある(例えば、下記の特許文献1参照)。   In recent years, businesses such as power aggregators that effectively bundle energy demands of consumers and effectively provide energy management services have signed high-voltage power receiving contracts with power companies at multiple dwelling units such as apartment buildings, Power supply of the collective high-voltage power receiving system that lowers the high-voltage power (for example, 6600V) supplied from the system power source to low-voltage power (for example, 200V) at the power receiving / transforming facility of the operator and supplies it to each dwelling unit contracted with the operator The form is spreading (see, for example, Patent Document 1 below).

ここで、電力会社との間の高圧契約と低圧契約では、高圧契約の方が低圧契約より電気料金の単価が低く設定されているため、仮に、当該事業者と各住戸の需要家との間の低圧契約の電気料金の単価を、電力会社との間の低圧契約の電気料金の単価より低く、但し、電力会社との間の高圧契約の電気料金の単価より高く設定することで、当該事業者と各住戸の需要家の双方において、経済的メリットが生じる。   Here, in the high-voltage contract and low-voltage contract with the electric power company, the unit price of electricity charges is set lower in the high-voltage contract than in the low-voltage contract. By setting the unit price of the electricity charge for the low-voltage contract of the company to be lower than the unit price of the electricity charge for the low-voltage contract with the power company, but higher than the unit price of the electricity charge for the high-voltage contract with the power company Economic benefits for both consumers and consumers of each unit.

一方、集合住宅等の複数の住戸において、各住戸に燃料電池発電装置を夫々設置し、各発電装置の発電電力と商用系統電源からの電力を各住戸の電力負荷に供給可能に構成した発電システムにおいて、該発電装置を備えた各住戸を電力線網で相互に連結し、各住戸において該発電装置の発電電力が個々の電力負荷を超える余剰電力を、各住戸を連結する電力線網に逆潮流させて、他の住戸の電力負荷に融通することで、複数の住戸内での電力自給率を高める試みがなされている(例えば、下記の特許文献2,3参照)。   On the other hand, in a plurality of dwelling units such as apartment buildings, a power generation system configured to install a fuel cell power generation device in each dwelling unit, and to supply the power generated by each power generation device and the power from the commercial power supply to the power load of each dwelling The dwelling units equipped with the power generation devices are interconnected by a power line network, and the surplus power exceeding the individual power load of the power generation devices in each dwelling unit is caused to flow backward to the power line network connecting the dwelling units. Thus, attempts have been made to increase the power self-sufficiency rate in a plurality of dwelling units by accommodating the power load of other dwelling units (see, for example, Patent Documents 2 and 3 below).

但し、特許文献2,3に開示の発電システムまたは発電制御システムでは、燃料電池からの廃熱を利用した熱電併給システムとして機能することから、燃料電池の発電出力は、各住戸の電力需要または熱需要に追従させる電主運転または熱主運転を基本として、複数の住戸内での電力自給率が高くなるように更に制御されている。   However, since the power generation system or power generation control system disclosed in Patent Literatures 2 and 3 functions as a combined heat and power system using waste heat from the fuel cell, the power generation output of the fuel cell is the power demand or heat of each dwelling unit. Based on the electric main operation or the heat main operation to follow the demand, the electric power self-sufficiency rate in the plurality of dwelling units is further controlled.

特開2013−117484号公報JP 2013-117484 A 特開2007−128785号公報JP 2007-128785 A 特許第5842069号公報Japanese Patent No. 5842069

都市ガス(天然ガス)を燃料として用い、当該燃料を改質して水素を生成して、当該水素を燃料電池の燃料極に供給して発電する燃料電池発電装置は、環境負荷の低い天然ガスを使用する分散型発電装置であるため、送配電ロスがなく、発電効率が高く、省エネ効果及び省CO効果の大きいことが知られている。従って、斯かる分散型発電装置の余剰電力を有効に活用することができれば、社会全体における省エネ効果及び省CO効果の増大が見込まれ、更には、電力需要ピークを余剰電力で補完することでピークカット効果も見込まれる。 A fuel cell power generator that uses city gas (natural gas) as fuel, reforms the fuel to produce hydrogen, and supplies the hydrogen to the fuel electrode of the fuel cell to generate power. It is known that there is no transmission / distribution loss, high power generation efficiency, and large energy saving effect and CO 2 saving effect. Therefore, if the surplus power of such a distributed generator can be effectively used, the energy saving effect and CO 2 saving effect in society as a whole are expected to increase, and furthermore, the power demand peak can be supplemented with surplus power. Peak cut effect is also expected.

従って、燃料電池発電装置の上記効果を最大限に生かすには、最も発電効率の良い定格運転を行うのが好ましい。しかしながら、例えば、定格出力が700Wの家庭用燃料電池発電装置を常時定格運転させた場合、家族数3〜4人の一般家庭の平均電力負荷は、1日の間で約200Wから約800Wの間で推移するため、確実に余剰電力が発生する。このため、特許文献2,3に開示の発電システム等では、全戸において燃料電池発電装置を常時定格運転させると、複数の住戸の域外に、つまり商用系統電源の送配電網に当該余剰電力を逆潮流させ、商用系統の送配電事業者に買い取って貰う必要が生じる。しかし、当該送配電事業者において、燃料電池発電装置の余剰電力の買い取りによって損失が生じないように、燃料電池発電装置のユーザからの買い取り価格は、低く抑えられることになる。このため、燃料電池発電装置のユーザには、域外に逆潮流させる余剰電力に対してはコストメリットが生じない。従って、特許文献2,3に開示の発電システム等では、域外に逆潮流させる余剰電力が発生しないように、定格運転せずに、発電出力が制御されることになる。   Therefore, in order to make the best use of the above-described effects of the fuel cell power generator, it is preferable to perform rated operation with the highest power generation efficiency. However, for example, when a household fuel cell power generator with a rated output of 700 W is constantly operated at rated power, the average power load of a general household of 3 to 4 family members is between about 200 W and about 800 W per day. Therefore, surplus power is generated reliably. For this reason, in the power generation systems disclosed in Patent Documents 2 and 3, when the fuel cell power generator is always rated at all units, the surplus power is reversed outside the area of the plurality of dwelling units, that is, to the power distribution network of the commercial power supply. It will be necessary to make it flow and buy it from commercial power transmission and distribution companies. However, the purchase price from the user of the fuel cell power generation device is kept low so that the power transmission / distribution company does not cause a loss due to the purchase of surplus power of the fuel cell power generation device. For this reason, the user of the fuel cell power generator does not have a cost merit for the surplus power that flows backward out of the area. Therefore, in the power generation systems disclosed in Patent Documents 2 and 3, the power generation output is controlled without performing rated operation so as not to generate surplus power that causes reverse power flow outside the region.

一方、上述の一括高圧受電方式の電力供給形態を採用する複数の住戸の各戸に、特許文献2,3に開示されているように、燃料電池発電装置を設置して、複数の住戸内での電力自給率を高めるように運転制御を行うと、当該電力供給を行う事業者における事業メリットが著しく阻害される。つまり、当該事業者は、各住戸に対して、電力需要が燃料電池発電装置の定格出力を超える期間のみ、当該不足する電力を、受変電設備で降圧した低圧電力で賄うだけになり、受変電設備等を設置して運用する経済的メリットが損なわれる。   On the other hand, as disclosed in Patent Documents 2 and 3, a fuel cell power generator is installed in each of a plurality of dwelling units adopting the above-described collective high-voltage power receiving power supply mode, When operation control is performed so as to increase the power self-sufficiency rate, the business merits of the business operator that supplies the power are significantly hindered. In other words, the operator only supplies the deficient power to each dwelling unit with the low-voltage power that has been stepped down by the power receiving / transforming equipment only during the period when the power demand exceeds the rated output of the fuel cell power generator. The economic merit of installing and operating the facilities is impaired.

本発明は、上述の問題点に鑑みてなされたものであり、その目的は、受変電設備を用いて商用系統電源から供給される高圧電力を一括で受電して低圧電力に降圧した後、集合住宅等の複数の住戸の電力負荷に各別に供給する一括受変電システムにおいて、複数の住戸の一部に燃料電池発電装置を導入し、低圧電力を各住戸に供給する事業者に対する経済的メリットがあり、且つ、燃料電池発電装置の効果を有効に奏し得る燃料電池発電装置の運用形態を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its purpose is to collect high-voltage power supplied from a commercial power supply using a power receiving / transforming facility, and reduce the voltage to low-voltage power. In a collective power receiving and transformation system that supplies power to each unit's power load separately, such as a house, there is an economic merit for businesses that install fuel cell power generators in some of the units and supply low-voltage power to each unit. In addition, it is an object of the present invention to provide an operation mode of a fuel cell power generator that can effectively exhibit the effects of the fuel cell power generator.

本発明に係る一括受変電システムは、第1受変電設備を備え、電力管理事業者が、前記第1受変電設備を用いて商用系統電源から供給される高圧電力を一括で受電して第1低圧電力に降圧した後、前記第1低圧電力を前記電力管理事業者の管理対象の域内に存在する複数の住戸の電力負荷に、前記域内に敷設された第1配電網を介して各別に供給する一括受変電システムであって、
前記域内に存在する複数の住戸の内の一部である1以上の特定住戸が、外部から供給される燃料を消費して、前記第1低圧電力と同じ電圧、周波数、及び、電気方式の電力を発電する分散型発電装置を各別に有し、
前記分散型発電装置の夫々は、燃料電池を備えて構成され、外部からの燃料供給が停止する所定の場合を除き、常時定格運転するように設定され、且つ、前記分散型発電装置の発電電力は、前記第1低圧電力と連系して、前記特定住戸の電力負荷に対して電力供給可能に構成され、更に、前記分散型発電装置の定格運転時の発電電力の内、前記特定住戸の電力負荷で消費されなかった余剰電力の夫々が、前記第1配電網に向けて逆潮流して前記域内の他の前記住戸の電力負荷に融通されるように構成されており、
前記特定住戸に設置される前記分散型発電装置の定格運転時の発電電力の合計が、前記域内に存在する複数の住戸の総消費電力の予測最低値を超えないように、前記特定住戸の戸数と前記定格運転時の発電電力が設定されていることを第1の特徴とする。
The collective power receiving / transforming system according to the present invention includes a first power receiving / transforming facility, and a power management company receives the high-voltage power supplied from a commercial power supply in a lump using the first power receiving / transforming facility. After stepping down to low-voltage power, the first low-voltage power is supplied separately to the power loads of a plurality of dwelling units existing in the area managed by the power management company via the first distribution network laid in the area. A collective power receiving / transforming system
One or more specific dwelling units that are a part of the plurality of dwelling units in the area consume fuel supplied from the outside, and have the same voltage, frequency, and electric power as the first low-voltage power. Each has a distributed generator to generate electricity,
Each of the distributed power generators is configured to include a fuel cell, and is set to always operate at a rated value except for a predetermined case in which fuel supply from the outside stops, and the generated power of the distributed power generator Is configured to be able to supply power to the power load of the specific dwelling unit in conjunction with the first low-voltage power, and further, out of the generated power during rated operation of the distributed power generator, of the specific dwelling unit Each of the surplus power that was not consumed by the power load is configured to flow backward to the first distribution network and be accommodated in the power load of the other dwelling units in the area,
The number of units of the specific unit so that the total generated power at the rated operation of the distributed generator installed in the specific unit does not exceed the predicted minimum value of the total power consumption of a plurality of units existing in the area. The first characteristic is that the generated power at the rated operation is set.

上記第1の特徴の一括受変電システムによれば、特定住戸に設置した分散型発電装置(燃料電池発電装置)が常時定格運転するので、当該発電装置の有する省エネ効果、省CO効果、及び、ピークカット効果を最大限に生かすことができ、燃料電池発電装置の1台当たりの社会的貢献度を最大化できる。更に、分散型発電装置の発電電力の合計が、複数の住戸の総消費電力の予測最低値を超えないため、余剰電力の融通を受ける住戸の全ての電力負荷で余剰電力の全てを消費しきれない事態を回避できる。また、複数の住戸の1戸当たりで消費される分散型発電装置の発電電力の平均値は、1戸当たりの平均電力負荷の最低値以下になると予測されるので、当該平均値を超える部分は、必ず第1受変電設備で降圧された第1低圧電力により賄われる。従って、電力管理事業者に対して、複数の住戸に一括受変電システムによる電力供給を行う経済的メリットも確保される。また、第1受変電設備の変圧器容量は、分散型発電装置を設けない場合に比べて、分散型発電装置の発電電力の合計分を縮小することが可能であり、第1受変電設備の導入及び運用に掛るコスト等を削減できるメリットもある。 According to the collective power receiving and transforming system of the first feature described above, since the distributed power generation device (fuel cell power generation device) installed in the specific dwelling unit is always rated and operated, the power generation device has the energy saving effect, the CO 2 effect, and Thus, the peak cut effect can be utilized to the maximum, and the social contribution per unit of the fuel cell power generator can be maximized. Furthermore, since the total power generated by the distributed generator does not exceed the predicted minimum power consumption of multiple units, all of the surplus power can be consumed by all the power loads of the units that receive the surplus power. You can avoid the situation. In addition, since the average value of the power generated by the distributed generators consumed per unit of a plurality of dwelling units is predicted to be less than the minimum value of the average power load per unit, It is always covered by the first low-voltage power that has been stepped down by the first power receiving / transforming facility. Therefore, the economic merit of supplying electric power to a plurality of dwelling units using a collective power receiving / transforming system is also ensured for the power management company. In addition, the transformer capacity of the first power receiving / transforming equipment can reduce the total amount of power generated by the distributed power generating equipment as compared to the case where no distributed power generating equipment is provided. There is also a merit that costs for introduction and operation can be reduced.

更に、上記第1の特徴の一括受変電システムは、前記分散型発電装置が備える前記燃料電池が、固体酸化物形燃料電池であることが好ましい。   Furthermore, in the collective power receiving and transforming system according to the first feature, it is preferable that the fuel cell included in the distributed power generation device is a solid oxide fuel cell.

住戸に設置する家庭用の燃料電池発電装置としては、固体高分子形燃料電池(PEFC)を使用したものと、固体酸化物形燃料電池(SOFC)を使用したものが、一般に普及している。PEFCは、動作温度が約80℃と低温であるため、起動及び停止が容易で、操作にあまり手間が掛らない等の理由で、家庭用燃料電池としてSOFCより早く開発され商品化されている。SOFCは、PEFCより発電効率が高いため、上述の省エネ効果、省CO効果、及び、ピークカット効果等が更に向上する。また、SOFCは、セラミックスが電解質として使用されるため、動作温度が約700℃以上と高温であり、起動及び停止が容易ではない。しかし、この短所は、上記第1の特徴における常時定格運転では、全く問題とならず、上記発電効率の高さを最大限に活用できる。つまり、SOFCは、PEFCより、上記第1の特徴の一括受変電システムにより適した燃料電池の方式と言える。尚、PEFCは、一般的にSOFCに比べて発電効率が低いとされているが、上記第1の特徴の一括受変電システムの分散型発電装置として使用することは当然に可能であり、分散型発電装置で使用する燃料電池が特定の方式のものに限定されものではない。 As a fuel cell power generator for home use installed in a dwelling unit, one using a polymer electrolyte fuel cell (PEFC) and one using a solid oxide fuel cell (SOFC) are in widespread use. PEFC has been developed and commercialized as a home fuel cell earlier than SOFC because it has a low operating temperature of about 80 ° C, so it is easy to start and stop and takes less time to operate. . Since SOFC has higher power generation efficiency than PEFC, the above-mentioned energy saving effect, CO 2 saving effect, peak cut effect and the like are further improved. Moreover, since SOFC uses ceramics as an electrolyte, SOFC has an operating temperature as high as about 700 ° C. or higher, and is not easily started and stopped. However, this disadvantage does not pose any problem in the always rated operation in the first feature, and the power generation efficiency can be maximized. That is, SOFC can be said to be a fuel cell system more suitable than the PEFC for the collective power receiving and transforming system of the first feature. Although PEFC is generally considered to have lower power generation efficiency than SOFC, it can naturally be used as a distributed power generator for the collective power receiving and transforming system of the first feature. The fuel cell used in the power generation apparatus is not limited to a specific type.

更に、上記第1の特徴の一括受変電システムは、前記予測最低値が、200Wに前記複数の住戸の総数を乗じた値であることが好ましい。   Furthermore, in the collective power receiving and transforming system according to the first feature, it is preferable that the predicted minimum value is a value obtained by multiplying 200 W by the total number of the plurality of dwelling units.

上記域内の複数の住戸として、例えば、家族数3〜4人程度のファミリー向けマンションを想定した場合、家族数3〜4人の一般家庭の平均電力負荷の最低値は約200Wであるので、前記予測最低値を200Wに前記複数の住戸の総数を乗じた値とすると、上記第1の特徴における「分散型発電装置の定格運転時の発電電力の合計が、前記域内に存在する複数の住戸の総消費電力の予測最低値を超えない」という条件が満足される。   As a plurality of dwelling units in the above area, for example, assuming a family apartment with about 3 to 4 family members, the minimum value of the average power load of a general household with 3 to 4 family members is about 200 W. Assuming that the predicted minimum value is 200 W multiplied by the total number of the plurality of dwelling units, the “total power generated during rated operation of the distributed generator is the sum of the plurality of dwelling units present in the region” in the first feature. The condition that the predicted minimum value of total power consumption is not exceeded is satisfied.

更に、本発明に係る一括受変電システムは、上記第1の特徴に加えて、第2受変電設備を更に備え、前記第2受変電設備を用いて前記商用系統電源から供給される高圧電力を受電して第2低圧電力に降圧した後、前記第2低圧電力を、前記複数の住戸の住人が共用する共用設備の電力負荷に対して、第2配電網を介して供給することを第2の特徴とする。   Furthermore, the collective power receiving / transforming system according to the present invention further includes a second power receiving / transforming facility in addition to the first feature, and uses the second power receiving / transforming facility to receive high-voltage power supplied from the commercial power supply. After receiving power and stepping down to a second low-voltage power, supplying the second low-voltage power to a power load of a shared facility shared by residents of the plurality of dwelling units via a second distribution network is second. It is characterized by.

上記第2の特徴の一括受変電システムによれば、共用設備の電力負荷への第2低圧電力の供給が可能になるとともに、第1受変電設備とは別に、第2受変電設備を更に備えることで、当該第2低圧電力の供給が、第1低圧電力の供給を行う電力管理事業者に限らず、他の電力管理事業者も、第2低圧電力の供給を行うことが可能になる。   According to the collective power receiving / transforming system of the second feature, it is possible to supply the second low-voltage power to the power load of the shared facility, and further includes the second power receiving / transforming facility separately from the first power receiving / transforming facility. Thus, the supply of the second low-voltage power is not limited to the power management company that supplies the first low-voltage power, and other power management companies can also supply the second low-voltage power.

更に、本発明に係る一括受変電システムは、上記何れかの特徴に加えて、前記第1配電網の前記第1受変電設備側の端部に、前記第1受変電設備から前記第1配電網に向けて供給される前記第1低圧電力の電流、電力、または、所定の単位期間毎の電力量を計測し、計測値を示す出力信号、または、前記計測値に基づいて前記分散型発電装置の運転を制御する制御信号を出力する計測器を備え、前記計測器と前記分散型発電装置の少なくとも1台の間が、前記出力信号または前記制御信号を伝送可能な信号線で接続され、前記分散型発電装置の少なくとも1台が、前記出力信号または前記制御信号に応じて、前記定格運転を停止して出力電力を定格出力から低下させる処理と、前記第1低圧電力との連系を遮断する処理の少なくとも何れか一方の処理を行うことで、前記余剰電力を低減させる制御を行うことを第3の特徴とする。   Furthermore, in addition to any of the above-described features, the collective power receiving / transforming system according to the present invention has an end portion on the first power receiving / transforming equipment side of the first power distribution network from the first power receiving / transforming equipment to the first power distribution. The distributed power generation is performed based on an output signal indicating a measured value or the measured value, by measuring the current, power, or the electric energy of the first low-voltage power supplied to the network for each predetermined unit period. A measuring instrument that outputs a control signal for controlling the operation of the apparatus, and at least one of the measuring instrument and the distributed generator is connected by a signal line capable of transmitting the output signal or the control signal; In accordance with the output signal or the control signal, at least one of the distributed generators is configured to stop the rated operation and reduce the output power from the rated output, and to connect the first low-voltage power. At least one of the blocking processes By performing the processing, to perform the control for reducing the surplus power and the third feature.

上記第3の特徴の一括受変電システムによれば、当初満足されていた上記第1の特徴における「分散型発電装置の定格運転時の発電電力の合計が、前記域内に存在する複数の住戸の総消費電力の予測最低値を超えない」という条件が、事後的に満足されない状況が生じても、余剰電力の融通を受ける住戸の全ての電力負荷で余剰電力の全てを消費しきれない事態を回避できる。   According to the collective power receiving and transforming system according to the third feature, the “total power generated during rated operation of the distributed power generator is the sum of the plurality of dwelling units existing in the region” Even if the situation that the predicted total value of total power consumption does not exceed the predicted minimum value is not satisfied afterwards, it is not possible to consume all of the surplus power with all the power loads of the dwelling units receiving surplus power interchange. Can be avoided.

本発明に係る一括受変電システムによれば、複数の住戸の一部に設置した分散型発電装置(燃料電池発電装置)が常時定格運転するので、当該発電装置の有する省エネ効果、省CO効果、及び、ピークカット効果を最大限に生かすことができ、燃料電池発電装置の1台当たりの社会的貢献度を最大化できる。更に、第1低圧電力を各住戸に供給する電力管理事業者に対して、一括受変電システムによる電力供給を行う経済的メリットが担保される。この結果、同様の電力管理事業者が、本発明に係る一括受変電システムを、多くの集合住宅等に適用することが促進され、燃料電池発電装置の常時定格運転が普及し、上述の省エネ効果、省CO効果、及び、ピークカット効果等による社会的貢献の拡大が期待される。 According to the collective power receiving and transforming system according to the present invention, since the distributed power generation device (fuel cell power generation device) installed in a part of the plurality of dwelling units is always rated, the energy saving effect and CO 2 saving effect of the power generation device. Further, the peak cut effect can be utilized to the maximum, and the social contribution per unit of the fuel cell power generator can be maximized. Furthermore, the economic merit of supplying power by the collective power receiving and transforming system is secured for the power management company that supplies the first low-voltage power to each dwelling unit. As a result, it is promoted that the same power management company applies the collective power receiving / transforming system according to the present invention to many apartment houses, etc., and the constant rated operation of the fuel cell power generation device has spread, and the above-mentioned energy saving effect saving CO 2 effects, and expansion of social contributions by peak cut effect, etc. can be expected.

本発明に係る一括受変電システムの第1実施形態における一構成例を模式的に示すブロック図。The block diagram which shows typically the example of 1 structure in 1st Embodiment of the package receiving / transforming system which concerns on this invention. 分散型発電装置の一構成例と、特定住戸における分散型発電装置とその周辺装置との接続関係を模式的に示すブロック図。The block diagram which shows typically the connection example of one structural example of a distributed generator, and the distributed generator in a specific dwelling unit, and its peripheral device. ファミリー向け分譲マンションの月別の1時間毎の1戸当たりの平均消費電力量(単位:kWh)を示すグラフ。The graph which shows the average power consumption (unit: kWh) per one hour for every hour of the condominium for families. 本発明に係る一括受変電システムの第2実施形態における一構成例を模式的に示すブロック図。The block diagram which shows typically the example of 1 structure in 2nd Embodiment of the package receiving / transforming system which concerns on this invention. 本発明に係る一括受変電システムの第3実施形態における一構成例を模式的に示すブロック図。The block diagram which shows typically the example of 1 structure in 3rd Embodiment of the package receiving / transforming system which concerns on this invention. 本発明に係る一括受変電システムの第3実施形態における別の一構成例を模式的に示すブロック図。The block diagram which shows typically another structural example in 3rd Embodiment of the package receiving / transforming system which concerns on this invention.

以下、本発明に係る一括受変電システム(以下、適宜「本システム」と略称する)の実施形態を図面に基づいて詳細に説明する。   Embodiments of a collective power receiving and transforming system according to the present invention (hereinafter abbreviated as “the present system” where appropriate) will be described in detail with reference to the drawings.

[第1実施形態]
図1に示すように、第1実施形態に係る本システム1は、電力管理事業者(以下、「第1事業者」と称する)が管理操作する第1受変電設備10と、第1事業者の管理対象の域内Aに敷設された第1配電網11を備えて構成される。
[First Embodiment]
As shown in FIG. 1, the present system 1 according to the first embodiment includes a first power receiving / transforming facility 10 managed by a power management company (hereinafter referred to as “first company”), and a first company. The first distribution network 11 is laid in the area A to be managed.

第1受変電設備10は、商用系統電源Sから供給される高圧電力を受電して第1低圧電力に降圧する変圧器を備えて構成される。第1受変電設備10は、一般的な受変電設備と同様、変圧器以外に、各種計器類、開閉器、遮断機、変流器、コンデンサ、継電器等を備えて構成されているが、具体的な機器構成は、本発明の本旨ではないので、説明は割愛する。該第1低圧電力は、第1事業者の管理対象の域内Aに存在する複数の住戸Hi(i=1〜n、nは総住戸数)の各電力負荷ELi(i=1〜n)に、第1配電網11を介して各別に供給される。商用系統電源Sから第1受変電設備10に供給される高圧電力の所定の単位積算期間(例えば、1ヶ月)毎の積算電力量は、高圧用の第1電力量計M1で計量される。また、本実施形態では、高圧電力としては、600V超7000V以下の交流電力を想定し、一例として6600Vの交流電力を想定する。また、第1低圧電力としては、600V以下の交流電力を想定し、一例として単相3線式200Vの交流電力を想定する。尚、第1電力量計M1は、商用系統電源Sの電力会社が管理及び運用する電力量計であり、本システム1には含まれない。   The first power receiving / transforming facility 10 is configured to include a transformer that receives high voltage power supplied from the commercial grid power source S and steps down the voltage to first low voltage power. The first power receiving / transforming equipment 10 is configured to include various instruments, switches, circuit breakers, current transformers, capacitors, relays, etc. in addition to the transformer, as in general power receiving / transforming equipment. Since the specific device configuration is not the gist of the present invention, the description is omitted. The first low-voltage power is applied to each power load ELi (i = 1 to n) of a plurality of dwelling units Hi (i = 1 to n, where n is the total number of dwelling units) existing in the area A managed by the first operator. And supplied separately via the first distribution network 11. The integrated electric energy for each predetermined unit integration period (for example, one month) of the high-voltage power supplied from the commercial power supply S to the first power receiving / transforming facility 10 is measured by the high-voltage first watt-hour meter M1. In the present embodiment, as the high-voltage power, AC power of more than 600 V and 7000 V or less is assumed, and as an example, AC power of 6600 V is assumed. As the first low-voltage power, an AC power of 600 V or less is assumed, and a single-phase three-wire 200 V AC power is assumed as an example. The first watt-hour meter M1 is a watt-hour meter managed and operated by the power company of the commercial power supply S, and is not included in the system 1.

各住戸Hiには、分電盤12と、第1配電網11から分電盤12を介して各電力負荷ELiに供給される第1低圧電力と後述する余剰電力の合計電力の所定の単位積算期間(例えば、1ヶ月)毎の積算電力量を計量する低圧用の第2電力量計M2が設置されている。第2電力量計M2は、第1配電網11と分電盤12と間の引込点に介装されている。第2電力量計M2の検針等の管理は、第1事業者が行う。当該検針は、第2電力量計M2が、検針値を含む所定の情報を有線または無線の通信経路を介して所定のサーバ等に送信するように構成されたスマートメータ、或いは、一定の電力量(例えば、1kWh)を積算する毎にパルス信号を1回発信するパルス発信付き電力量計の場合は、遠隔で自動検針が可能であるが、そうでない場合は、検針員の目視による検針であってもよい。   In each dwelling unit Hi, a predetermined unit integration of the total power of the distribution board 12 and the first low-voltage power supplied from the first distribution network 11 via the distribution board 12 to each power load ELi and surplus power described later. A low-voltage second watt-hour meter M <b> 2 that measures the integrated electric energy for each period (for example, one month) is installed. The second watt-hour meter M <b> 2 is interposed at a pull-in point between the first distribution network 11 and the distribution board 12. The first operator manages the meter reading of the second watt-hour meter M2. The meter reading is a smart meter configured such that the second watt-hour meter M2 transmits predetermined information including the meter reading value to a predetermined server or the like via a wired or wireless communication path, or a constant electric energy In the case of a watt-hour meter with a pulse transmission that transmits a pulse signal once every time (for example, 1 kWh) is integrated, automatic automatic meter reading is possible remotely. May be.

更に、本システム1では、複数の住戸Hi(i=1〜n)の内の一部である1以上の特定住戸HEj(j=1〜m、mは特定住戸の戸数、m<n)には、外部から供給される燃料(都市ガス、LPガス等)を消費して、第1低圧電力と同じ電圧、周波数、及び、電気方式(相数と線数)の電力を発電する分散型発電装置20が各別に設置されている。本実施形態では、分散型発電装置20は、燃料電池発電装置であって、図2に簡略的に示すように、脱硫器21、改質器22、燃料電池のセルスタック23、インバータ装置24、熱交換器25、及び、これらの動作を制御する運転制御装置26を備えて構成される。また、燃料である都市ガス(天然ガス)は、外部のガス供給源G(域外のガスホルダー等)から域外に敷設されたガス管(本支管、供給管等)及び域内Aに敷設されたガス配管13を通して、各特定住戸HEjの分散型発電装置20に供給される。分散型発電装置20に供給された都市ガスは、脱硫器21で脱硫された後、改質器22で改質され、水素が生成される。当該水素は、セルスタック23の燃料極に供給され、セルスタック23で直流電力が発電される。セルスタック23で発電された直流電力は、インバータ装置24で、第1低圧電力と同じ単相三線式200Vの交流電力に変換される。インバータ装置24から出力された交流電力は、分電盤12の内部で、第1配電網11から供給される第1低圧電力と連系して、各住戸HEjの電力負荷ELjに供給可能に構成されている。本実施形態では、分散型発電装置20は、燃料電池が固体酸化物形燃料電池(SOFC)のセルスタックで構成され、インバータ装置24から出力される交流電力の定格出力Pfが700Wである場合を想定する。   Furthermore, in this system 1, one or more specific dwelling units HEj (j = 1 to m, m is the number of specific dwelling units, m <n), which are a part of the plurality of dwelling units Hi (i = 1 to n). Is a distributed generator that consumes fuel (city gas, LP gas, etc.) supplied from the outside and generates power of the same voltage, frequency, and electrical method (number of phases and lines) as the first low-voltage power The apparatus 20 is installed separately. In the present embodiment, the distributed power generator 20 is a fuel cell power generator, and as schematically shown in FIG. 2, a desulfurizer 21, a reformer 22, a fuel cell stack 23, an inverter device 24, A heat exchanger 25 and an operation control device 26 that controls these operations are provided. In addition, city gas (natural gas), which is a fuel, is a gas pipe (main branch pipe, supply pipe, etc.) laid outside the area from an external gas supply source G (outside area gas holder, etc.) and a gas laid inside the area A. It is supplied to the distributed power generator 20 of each specific dwelling unit HEj through the pipe 13. The city gas supplied to the distributed generator 20 is desulfurized by the desulfurizer 21 and then reformed by the reformer 22 to generate hydrogen. The hydrogen is supplied to the fuel electrode of the cell stack 23, and DC power is generated in the cell stack 23. The DC power generated by the cell stack 23 is converted by the inverter device 24 into single-phase three-wire 200V AC power that is the same as the first low-voltage power. The AC power output from the inverter device 24 is configured to be able to be supplied to the power load ELj of each dwelling unit HEj in the distribution board 12 in conjunction with the first low-voltage power supplied from the first distribution network 11. Has been. In the present embodiment, the distributed power generator 20 includes a case where the fuel cell is formed of a solid oxide fuel cell (SOFC) cell stack and the rated output Pf of AC power output from the inverter device 24 is 700 W. Suppose.

熱交換器25で回収された廃熱の熱エネルギは、一部は、改質器22の熱源として利用され、他の一部は、上水道からの水を加熱するのに利用される。熱交換器25で加熱された高温水は、分散型発電装置20に併設された貯湯タンクTに貯湯され、浴槽、温水シャワー、温水栓、温水式暖房機等の給湯負荷HLjに供給される。当該構成により、本実施形態の分散型発電装置20は熱電併給装置として機能する。   A part of the heat energy of the waste heat recovered by the heat exchanger 25 is used as a heat source for the reformer 22, and the other part is used to heat water from the water supply. The high-temperature water heated by the heat exchanger 25 is stored in a hot water storage tank T provided in the distributed power generator 20 and supplied to a hot water supply load HLj such as a bathtub, a hot water shower, a hot water tap, and a hot water heater. With this configuration, the distributed power generation apparatus 20 of the present embodiment functions as a combined heat and power supply apparatus.

尚、特定住戸HEj以外の住戸Hiでは、給湯負荷HLiの高温水の供給は、各住戸Hiに設置されたガス給湯器14等で行うことを想定するが、当該高温水の供給は、ガス給湯器14に限定されるものではない。   In addition, in the dwelling units Hi other than the specific dwelling unit HEj, it is assumed that the hot water supply of the hot water supply load HLi is performed by the gas water heater 14 or the like installed in each dwelling unit Hi. It is not limited to the container 14.

更に、本システム1では、分散型発電装置20は、地震や、ガス漏れ有無の確認等の安全上の理由で都市ガスの供給がガスメータ等において一時的に遮断される等の所定の場合を除き、常時定格運転するように設定されている。このため、本システム1では、特定住戸HEjの電力負荷ELjにおける消費電力が分散型発電装置20の定格出力700Wを下回る場合に発生する余剰電力は、第1配電網11側に逆潮流して、他の住戸Hiの電力負荷ELiに融通される。尚、他の住戸Hiには、分散型発電装置20で余剰電力の発生していない特定住戸HEjも含まれる。従って、各特定住戸HEjから第1配電網11側に逆潮流する余剰電力の所定の単位積算期間(例えば、1ヶ月)毎の積算電力量を計量する低圧用の第3電力量計M3が、各特定住戸HEjの第1配電網11と分電盤12と間の引込点に、各別に介装されている。   Further, in the present system 1, the distributed power generation apparatus 20 is not limited to a predetermined case such as an earthquake or a temporary stop of the city gas supply in a gas meter or the like for safety reasons such as confirmation of gas leakage. It is set to always operate at rated power. For this reason, in the present system 1, surplus power generated when the power consumption in the power load ELj of the specific dwelling unit HEj is lower than the rated output 700 W of the distributed power generation device 20 flows backward to the first distribution network 11 side, The electric power load ELi of another dwelling unit Hi can be accommodated. The other dwelling unit Hi includes a specific dwelling unit HEj that does not generate surplus power in the distributed power generation device 20. Accordingly, the third low-voltage watt-hour meter M3 that measures the integrated power amount for each predetermined unit integration period (for example, one month) of the surplus power that flows backward from each specific unit HEj to the first distribution network 11 side, Each specific dwelling unit HEj is interposed at a pull-in point between the first distribution network 11 and the distribution board 12 of each specific unit HEj.

従って、各特定住戸HEjでは、第1配電網11と分電盤12と間に、第2電力量計M2と第3電力量計M3の2台の電力量計が直列して設置されている。但し、第2電力量計M2は、第1配電網11側から分電盤12に向けて供給される第1低圧電力と余剰電力(他の特定住戸HEjから融通される場合)の合計電力の電力量だけを積算し、分電盤12から第1配電網11側に向けて流れる余剰電力は計量しない、つまり、負の電力量として積算されないように構成されている。逆に、第3電力量計M3は、分電盤12から第1配電網11側に向けて流れる余剰電力の電力量だけを積算し、第1配電網11側から分電盤12に向けて供給される第1低圧電力と余剰電力の合計電力は計量しないように構成されている。第3電力量計M3の検針等の管理は、第1事業者が行う場合もあり得るが、第1事業者とは別の電力管理事業者(以下、「第2事業者」と称する)が行う場合を想定する。第3電力量計M3の検針等の管理を行う電力管理事業は、第3電力量計M3の検針値に基づいて各特定住戸HEjから余剰電力の買取または管理を行う電力管理事業である。当該検針は、第3電力量計M3が、検針値を含む所定の情報を有線または無線の通信経路を介して所定のサーバ等に送信するように構成されたスマートメータ、或いは、一定の電力量(例えば、1kWh)を積算する毎にパルス信号を1回発信するパルス発信付き電力量計の場合は、遠隔で自動検針が可能であるが、そうでない場合は、検針員の目視による検針であってもよい。   Therefore, in each specific dwelling unit HEj, two watt-hour meters, a second watt-hour meter M2 and a third watt-hour meter M3, are installed in series between the first distribution network 11 and the distribution board 12. . However, the second watt-hour meter M2 is configured to calculate the total power of the first low-voltage power supplied from the first distribution network 11 side to the distribution board 12 and surplus power (when it is interchanged from other specific dwelling units HEj). Only the amount of electric power is integrated, and the surplus electric power flowing from the distribution board 12 toward the first distribution network 11 is not measured, that is, is not integrated as a negative electric energy. Conversely, the third watt-hour meter M3 integrates only the amount of surplus power flowing from the distribution board 12 toward the first distribution network 11 side, toward the distribution board 12 from the first distribution network 11 side. The total power of the supplied first low-voltage power and surplus power is not measured. The first business operator may manage the meter reading of the third watt-hour meter M3, but a power management business operator (hereinafter referred to as "second business operator") different from the first business operator. Assume the case to do. The power management business that manages meter reading of the third watt-hour meter M3 is a power management business that purchases or manages surplus power from each specific dwelling unit HEj based on the meter-reading value of the third watt-hour meter M3. The meter reading is a smart meter configured such that the third watt-hour meter M3 transmits predetermined information including the meter reading value to a predetermined server or the like via a wired or wireless communication path, or a constant electric energy In the case of a watt-hour meter with a pulse transmission that transmits a pulse signal once every time (for example, 1 kWh) is integrated, automatic automatic meter reading is possible remotely. May be.

更に、本システム1では、分散型発電装置20の定格運転時の発電電力(定格出力Pf)の合計Pftが、域内Aに存在する複数の住戸Hi(i=1〜n)の総消費電力の予測最低値Dminを超えないように、特定住戸HEjの戸数mと定格出力Pfが設定されている。本実施形態では、定格出力Pfは700Wに固定されているので、定格出力Pfの合計Pftは、700Wの戸数m倍となるため、予測最低値Dmin(単位:W)と戸数mの関係は、以下の数1に示す不等式で表される。   Further, in the present system 1, the total Pft of the generated power (rated output Pf) at the rated operation of the distributed generator 20 is the total power consumption of the plurality of dwelling units Hi (i = 1 to n) existing in the area A. The number m and the rated output Pf of the specific dwelling unit HEj are set so as not to exceed the predicted minimum value Dmin. In this embodiment, since the rated output Pf is fixed at 700 W, the total Pft of the rated outputs Pf is m times the number of houses of 700 W, and therefore the relationship between the predicted minimum value Dmin (unit: W) and the number of houses m is It is represented by the inequality shown in Equation 1 below.

[数1]
700×m<Dmin
[Equation 1]
700 × m <Dmin

ここで、域内Aに存在する複数の住戸Hi(i=1〜n)として、例えば、家族数3〜4人程度のファミリー向けマンションを想定する。図3は、家族数3〜4人程度、住戸の専有面積が80m程度の関西地域のファミリー向け分譲マンションの19物件、7133戸における月別の1時間毎の1戸当たりの平均電力負荷(1時間当たりの平均消費電力量/単位:kW)を示すグラフである。図3より、家族数3〜4人の一般家庭の平均電力負荷の最低値は約200Wであることが分かる。これより、上記想定では、予測最低値Dminは、200Wに、複数の住戸Hiの総数nを乗じた(200W×n)で与えられる。そして、上記数1は、以下の数2に示すように変形され、特定住戸HEjの戸数mは、複数の住戸Hiの総数nの3.5分の1未満に制限する必要がある。ここで、複数の住戸Hi(i=1〜n)の一部が、空き家となったり、家族数の減少により消費電力が低下したり、特定住戸HEj以外の住戸で特定住戸HEjで分散型発電装置が導入されて、電力負荷追従運転で使用されている場合等の事態が、事後的に発生する可能性や、予測最低値Dminの誤差等を想定すると、現実的には、特定住戸HEjの戸数mは、複数の住戸Hiの総数nの3.5分の1未満より、更に少なく、複数の住戸Hiの総数nの4分の1以下に設定してもよい。 Here, as a plurality of dwelling units Hi (i = 1 to n) existing in the area A, for example, a family apartment with about 3 to 4 family members is assumed. FIG. 3 is a family number three or four people about, the occupied area of the dwelling unit is 80m 2 about Kansai 19 properties in the region of family-friendly condominium, the average power load of 1 units per every hour of the month in 7133 units (1 It is a graph which shows the average power consumption per unit / unit: kW). From FIG. 3, it can be seen that the minimum value of the average power load of a general household of 3 to 4 family members is about 200 W. Thus, in the above assumption, the predicted minimum value Dmin is given by (200W × n) obtained by multiplying 200W by the total number n of the plurality of dwelling units Hi. And the said number 1 is deform | transformed as shown in the following number 2, and the number m of the specific dwelling units HEj needs to be limited to less than 1 / 3.5 of the total number n of the plurality of dwelling units Hi. Here, some of the plurality of dwelling units Hi (i = 1 to n) become vacant houses, power consumption decreases due to a decrease in the number of families, or distributed power generation in the specific dwelling units HEj in dwelling units other than the specific dwelling units HEj Assuming the possibility that the device is introduced and used in power load following operation, etc., the error of the predicted minimum value Dmin, etc. The number m of houses may be set to be less than less than one-third of the total number n of the plurality of dwelling units Hi, and may be set to one quarter or less of the total number n of the plurality of dwelling units Hi.

[数2]
m<n/3.5
[Equation 2]
m <n / 3.5

尚、各特定住戸HEjの分散型発電装置20の定格出力Pfjが、特定住戸HEjによって異なる場合は、定格出力Pfの合計Pftは、定格出力Pfjをj=1〜mに対して個別に合計した値となり、上記数1は、以下の数3で表される。   In addition, when the rated output Pfj of the distributed generator 20 of each specific unit HEj is different depending on the specific unit HEj, the total Pft of the rated output Pf is the sum of the rated output Pfj individually for j = 1 to m. The above formula 1 is expressed by the following formula 3.

[数3]
Σj=1〜m(Pfj)<Dmin
[Equation 3]
Σ j = 1 to m (Pfj) <Dmin

本システム1では、上述のように、各特定住戸HEjの分散型発電装置20が常時定格運転するように設定されているため、分散型発電装置20の運転状態を、定常的に監視し、複数の住戸Hi(i=1〜n)の電力負荷ELiの総電力需要の大きさに応じて定常的に制御する必要がない。更に、分散型発電装置20の定格出力Pfの合計Pftが、予測最低値Dminを超えないように、特定住戸HEjの戸数mと定格出力Pfが設定されているため、余剰電力の融通を受ける住戸Hiの全ての電力負荷ELiで余剰電力の全てを消費しきれない事態を回避でき、全ての余剰電力を域内Aの複数の住戸Hiの各電力負荷ELiで無駄無く有効に使い切ることができる。   In the present system 1, as described above, since the distributed power generator 20 of each specific dwelling unit HEj is set to always perform rated operation, the operation state of the distributed power generator 20 is constantly monitored, and a plurality of There is no need to constantly control the dwelling unit Hi (i = 1 to n) according to the total power demand of the power load ELi. Furthermore, since the number of houses m and the rated output Pf of the specific dwelling unit HEj are set so that the total Pft of the rated output Pf of the distributed power generator 20 does not exceed the predicted minimum value Dmin, the dwelling unit receiving the surplus power accommodation It is possible to avoid the situation where all the surplus power cannot be consumed by all the power loads ELi of Hi, and it is possible to effectively use all the surplus power without waste in each power load ELi of the plurality of dwelling units Hi in the area A.

尚、本システム1では、余剰電力は、第1配電網11から第2電力量計M2と分電盤12を介して住戸Hiの電力負荷ELiに、第1低圧電力とともに供給されるため、或る単位積算期間における第2電力量計M2で計量された全ての住戸Hiの積算電力量の合計値には、同単位積算期間における第3電力量計M3で計量された余剰電力の積算電力量の合計値が含まれている。つまり、第1受変電設備10が、第1低圧電力を供給するために受電した高圧電力の受電量は、余剰電力の積算電力量の合計値に相当分だけ低減している。このため、余剰電力の授受が、第1事業者と各特定住戸HEj(j=1〜m)の間で発生しており、同単位積算期間における第3電力量計M3で計量された余剰電力の積算電力量に係る電力料金の精算を、第1事業者と各特定住戸HEjの間で直接または間接的に行う必要がある。本実施形態では、第3電力量計M3の検針等の管理は、第2事業者が行う場合を想定しているので、第2事業者は、各特定住戸HEjに対して、第3電力量計M3の検針値に基づいて算出される余剰電力の積算電力量の買取料金を支払い、第1事業者に対して、第3電力量計M3の検針値の合計値に基づいて算出される余剰電力に相当する電力使用量を請求することになる。尚、第1事業者が、第3電力量計M3の検針等の管理を行う場合は、第1事業者が、各特定住戸HEjに対して、第3電力量計M3の検針値に基づいて算出される余剰電力の積算電力量の買取料金を直接支払うことになる。   In the present system 1, surplus power is supplied together with the first low-voltage power from the first distribution network 11 to the power load ELi of the dwelling unit Hi via the second wattmeter M2 and the distribution board 12. In the total value of the integrated electric energy of all the dwelling units Hi measured by the second watt-hour meter M2 during the unit integration period, the integrated electric energy of surplus power measured by the third watt-hour meter M3 during the unit integration period The total value of is included. That is, the amount of received high-voltage power received by the first power receiving / transformation facility 10 to supply the first low-voltage power is reduced by a considerable amount to the total value of the accumulated amount of surplus power. Therefore, surplus power is exchanged between the first operator and each specific dwelling unit HEj (j = 1 to m), and surplus power measured by the third watt-hour meter M3 in the same unit integration period. It is necessary to pay directly or indirectly between the first business operator and each specific dwelling unit HEj for the settlement of the power charge related to the accumulated power amount. In the present embodiment, it is assumed that the management of the meter reading of the third watt-hour meter M3 and the like is performed by the second operator, and therefore the second operator has the third electric energy for each specific dwelling unit HEj. The surplus power calculated based on the total value of the meter reading value of the third electricity meter M3 is paid to the first operator by paying a purchase fee of the accumulated amount of surplus power calculated based on the meter reading value of the meter M3. You will be billed for the amount of power you use. In addition, when the 1st provider manages the meter reading of the 3rd electricity meter M3, etc., the 1st operator is based on the meter reading value of the 3rd electricity meter M3 with respect to each specific dwelling unit HEj. The purchase fee of the calculated cumulative amount of surplus power is paid directly.

[第2実施形態]
図4に示すように、第2実施形態に係る本システム2は、上記第1実施形態の本システム1に対して、第2事業者が管理操作する第2受変電設備30と、第2配電網31,32を更に備えて構成される。
[Second Embodiment]
As shown in FIG. 4, the system 2 according to the second embodiment includes a second power receiving / transformation facility 30 managed by a second operator and a second power distribution with respect to the system 1 of the first embodiment. It further comprises nets 31 and 32.

第2受変電設備30は、商用系統電源Sから供給される高圧電力を受電して第2低圧電力に降圧する変圧器を備えて構成される。第2受変電設備30は、一般的な受変電設備と同様、変圧器以外に、各種計器類、開閉器、遮断機、変流器、コンデンサ、継電器等を備えて構成されているが、具体的な機器構成は、本発明の本旨ではないので、説明は割愛する。該第2低圧電力は、域内Aに存在する複数の住戸Hi(i=1〜n)の住人が共用する共用設備33,34の電力負荷CEL1,CEL2に、第2配電網31,32を介して各別に供給される。共用設備33としては、共用施設の照明及びコンセント等を想定し、共用設備34としては、エレベータまたはエスカレータ等の動力設備を想定する。   The second power receiving / transforming facility 30 includes a transformer that receives high voltage power supplied from the commercial power supply S and steps down the voltage to second low voltage power. The second power receiving / transforming equipment 30 is configured to include various instruments, switches, circuit breakers, current transformers, capacitors, relays, etc. in addition to the transformer, as in general power receiving / transforming equipment. Since the specific device configuration is not the gist of the present invention, the description is omitted. The second low-voltage power is supplied to the power loads CEL1, CEL2 of the shared facilities 33, 34 shared by the residents of the plurality of dwelling units Hi (i = 1 to n) existing in the area A via the second distribution networks 31, 32. Supplied separately. As the shared equipment 33, lighting and outlets of the shared facility are assumed, and as the shared equipment 34, power equipment such as an elevator or an escalator is assumed.

本実施形態では、上記第1実施形態と同様、高圧電力としては、600V超7000V以下の交流電力を想定し、一例として6600Vの交流電力を想定する。また、第2低圧電力としては、600V以下の交流電力を想定し、一例として、共用設備33用に単相3線式200Vの交流電力と、共用設備34用の動力電源に三相3線式200Vの交流電力を想定する。よって、本実施形態では、第2受変電設備30は、単相3線式200Vと三相3線式200Vの2種類の第2低圧電力を出力するように構成されている。   In the present embodiment, as in the first embodiment, the high voltage power is assumed to be 600V to 7000V AC power, and as an example, 6600V AC power is assumed. As the second low-voltage power, an AC power of 600 V or less is assumed. As an example, a single-phase three-wire 200 V AC power for the common facility 33 and a three-phase three-wire power source for the common facility 34 are used. Assume 200V AC power. Therefore, in the present embodiment, the second power receiving / transforming equipment 30 is configured to output two types of second low-voltage power, a single-phase three-wire system 200V and a three-phase three-wire system 200V.

高圧用の第4電力量計M4が、第1電力量計M1の2次側と第2受変電設備30の1次側の間に介装されている。また、低圧(単相3線式200V)用の第5電力量計M5が、第2受変電設備30の単相3線式200Vの出力端子と第2配電網31の間に介装され、低圧(三相3線式200V)用の第6電力量計M6が、第2受変電設備30の単相3線式200Vの出力端子と第2配電網31の間に介装されている。   A high-voltage fourth watt-hour meter M4 is interposed between the secondary side of the first watt-hour meter M1 and the primary side of the second power receiving / transforming facility 30. Further, a fifth watt-hour meter M5 for low voltage (single-phase three-wire system 200V) is interposed between the output terminal of the single-phase three-wire system 200V of the second power receiving / transforming equipment 30 and the second distribution network 31, A sixth watt-hour meter M6 for low voltage (three-phase three-wire system 200V) is interposed between the output terminal of the single-phase three-wire system 200V of the second power receiving / transforming facility 30 and the second distribution network 31.

商用系統電源Sから第2受変電設備30に供給される高圧電力の所定の単位積算期間(例えば、1ヶ月)毎の積算電力量は、第4電力量計M4で計量される。また、所定の単位積算期間(例えば、1ヶ月)毎の、第2受変電設備30から共用設備33に供給される第2低圧電力(単相3線式200V)の積算電力量は第5電力量計M5で計量され、第2受変電設備30から共用設備34に供給される第2低圧電力(三相3線式200V)の積算電力量は第6電力量計M6で計量される。   The integrated electric energy for each predetermined unit integration period (for example, one month) of the high-voltage power supplied from the commercial power supply S to the second power receiving / transforming facility 30 is measured by the fourth watt-hour meter M4. Further, the integrated power amount of the second low-voltage power (single-phase three-wire system 200V) supplied from the second power receiving / transforming facility 30 to the shared facility 33 every predetermined unit integration period (for example, one month) is the fifth power. The integrated electric energy of the second low-voltage power (three-phase three-wire system 200V) measured by the meter M5 and supplied from the second power receiving / transforming facility 30 to the shared facility 34 is measured by the sixth watt-hour meter M6.

尚、本システム2では、商用系統電源Sから供給される高圧電力は、第1電力量計M1の2次側で分岐して、第1受変電設備10と第2受変電設備30に供給されるため、或る単位積算期間における第1電力量計M1で計量された高圧電力の積算電力量には、第2受変電設備30に供給され第4電力量計M4で計量された高圧電力の積算電力量が含まれている。従って、第2事業者は、第1事業者に対して、第4電力量計M4で計量された高圧電力の積算電力量に対する電力料金を精算する必要がある。   In the present system 2, the high-voltage power supplied from the commercial power supply S branches off on the secondary side of the first watt-hour meter M <b> 1 and is supplied to the first power receiving / transforming equipment 10 and the second power receiving / transforming equipment 30. Therefore, the integrated electric energy of the high-voltage power measured by the first watt-hour meter M1 during a certain unit integration period includes the high-voltage power supplied to the second power receiving / transforming facility 30 and measured by the fourth watt-hour meter M4. The accumulated power is included. Therefore, it is necessary for the second business operator to pay the power fee for the integrated power amount of the high-voltage power measured by the fourth power meter M4 to the first business operator.

また、本実施形態では、或る単位積算期間における第5電力量計M5及び第6電力量計M6で計量された2種類の第2低圧電力の各積算電力量に対する電力料金は、第2事業者から、共用設備33,34の管理を行っている事業者(例えば、マンションの管理組合等)に対して請求する。   Moreover, in this embodiment, the electric power charge with respect to each integrated electric energy of 2 types of 2nd low voltage electric power measured by the 5th watt-hour meter M5 and the 6th watt-hour meter M6 in a certain unit integration period is 2nd business. The operator makes a charge to a business operator that manages the shared facilities 33 and 34 (for example, an apartment management association).

[第3実施形態]
第3実施形態に係る本システム3,4は、図5及び図6に示すように、上記第1実施形態の本システム1及び上記第2実施形態の本システム2に対して、夫々、第1配電網11の第1受変電設備10側の端部に介装された電流計M7と、電流計M7と各分散型発電装置20の間を接続する信号線35を、更に備えて構成される。
[Third Embodiment]
As shown in FIGS. 5 and 6, the systems 3 and 4 according to the third embodiment are different from the system 1 according to the first embodiment and the system 2 according to the second embodiment, respectively. An ammeter M7 interposed at the end of the distribution network 11 on the first power receiving / transforming facility 10 side, and a signal line 35 connecting the ammeter M7 and each distributed power generator 20 are further provided. .

本実施形態では、分散型発電装置20が、分散型発電装置20内に備える運転制御装置26内に、外部から入力される制御信号等の信号値に応じて発電出力を調整する制御機能を備えている場合を想定する。電流計M7は、変流器(カレントトランス)を備えて構成され、第1配電網11の第1受変電設備10側の端部を流れる第1低圧電力の電流値を計測し、当該1次電流値に対して一定の変流比で低減した2次電流値を示す出力信号(電流信号)を、分散型発電装置20の個数m分を生成して出力する。   In the present embodiment, the distributed power generation device 20 includes a control function for adjusting the power generation output in accordance with a signal value such as a control signal input from the outside in the operation control device 26 provided in the distributed power generation device 20. Assuming that The ammeter M7 is configured to include a current transformer (current transformer), and measures the current value of the first low-voltage power flowing through the end of the first distribution network 11 on the first power receiving / transforming equipment 10 side. An output signal (current signal) indicating a secondary current value reduced at a constant current ratio with respect to the current value is generated for the number m of the distributed power generators 20 and output.

分散型発電装置20は、夫々、運転制御装置26に設けられた信号入力端子から前記2次電流値を示す出力信号を受信する。運転制御装置26は、受信した出力信号の2次電流値を、リアルタイムで、或いは、一定のサンプリング周期で読み込み、読み込んだ2次電流値が、所定の基準値I2r以下の場合に、動作中の定格運転から、定格出力から当該2次電流値に応じて減少した一定の中間出力での運転に移行する。   Each of the distributed power generation devices 20 receives an output signal indicating the secondary current value from a signal input terminal provided in the operation control device 26. The operation control device 26 reads the secondary current value of the received output signal in real time or at a constant sampling period, and is operating when the read secondary current value is equal to or less than a predetermined reference value I2r. The operation shifts from the rated operation to the operation at a constant intermediate output that is decreased in accordance with the secondary current value from the rated output.

第1受変電設備10の2次側から出力される第1低圧電力の電流値は、各分散型発電装置20から第1配電網11に逆潮流した余剰電力の合計が増加するに従い低下するので、第1低圧電力の電流値(電流計M7の1次側電流値)がゼロに低下する手前の基準下限値I1rまで低下した時点で、電流計M7が、当該1次側電流値の低下を基準値I2rの2次電流値として検出することで、その後、更に余剰電力が増加して1次側電流値が低下すると、分散型発電装置20が、定格運転から上記中間出力運転に移行するため、増加した余剰電流は減少する。当該中間出力運転への移行による余剰電流の減少、または、電力負荷ELiの合計電力(総消費電力)の増加による余剰電流の減少によって、第1低圧電力の電流値が増加して、電流計M7の2次側電流値が基準値I2rを上回ると、運転制御装置26は、動作中の中間出力運転から定格運転に復帰する。尚、電流計M7の2次側電流値が基準値I2r以下の場合は、その時の2次側電流値に応じた中間出力で、中間出力運転が維持される。仮に、当該定格運転への復帰によって、余剰電力が増加して電流計M7の2次側電流値が基準値I2r以下になると、再度、動作中の定格運転から中間出力運転に移行して余剰電力を減少させる。斯かる定格運転と中間出力運転の間を遷移している間に、電力負荷ELiの合計電力(総消費電力)が最低レベルとなっている期間が経過すると、分散型発電装置20は、安定的に定格運転に復帰する。   Since the current value of the first low-voltage power output from the secondary side of the first power receiving / transforming facility 10 decreases as the total amount of surplus power flowing backward from each distributed power generator 20 to the first distribution network 11 increases. When the current value of the first low-voltage power (primary current value of the ammeter M7) decreases to the reference lower limit value I1r before it decreases to zero, the ammeter M7 reduces the primary current value. By detecting as the secondary current value of the reference value I2r, when the surplus power further increases and the primary current value decreases, the distributed power generator 20 shifts from the rated operation to the intermediate output operation. The increased surplus current decreases. The current value of the first low-voltage power increases due to a decrease in surplus current due to the shift to the intermediate output operation or a decrease in surplus current due to an increase in the total power (total power consumption) of the power load ELi, and the ammeter M7 When the secondary side current value exceeds the reference value I2r, the operation control device 26 returns to the rated operation from the intermediate output operation in operation. When the secondary current value of the ammeter M7 is equal to or less than the reference value I2r, the intermediate output operation is maintained with an intermediate output corresponding to the secondary current value at that time. If the surplus power increases due to the return to the rated operation and the secondary current value of the ammeter M7 becomes the reference value I2r or less, the surplus power is transferred again from the rated operation during operation to the intermediate output operation. Decrease. When the period during which the total power (total power consumption) of the power load ELi is at the lowest level has elapsed during the transition between the rated operation and the intermediate output operation, the distributed power generator 20 is stable. Return to rated operation.

本システム1〜4では、基本的に、各分散型発電装置20は、複数の住戸Hi(i=1〜n)の電力負荷ELiの合計電力(総消費電力)が最低レベルまで低下しても、定格運転が可能なように、特定住戸HEjの戸数mが予め制限されているため、上記中間出力運転に移行することは通常起こらない。しかしながら、複数の住戸Hiの一部が、空き家或いは長期の留守状態となったり、家族数の減少により消費電力が低下したり、特定住戸HEj以外の住戸で特定住戸HEjで分散型発電装置が導入されて、電力負荷追従運転で使用されている場合等の事態が、事後的に発生する可能性がある。仮に、複数の住戸Hiの当初の総数nに対して、特定住戸HEjの戸数mが、上記数1或いは数2で示される上限値付近に設定されていると、斯かる事態が生じた場合、電力負荷ELiの合計電力(総消費電力)が最低レベルとなる一定時期において、上述の中間出力運転に移行する制御を行うことで、余剰電力の融通を受ける住戸の全ての電力負荷で余剰電力の全てを消費しきれない事態、即ち、分散型発電装置20の定格運転時の発電電力の合計が、電力負荷ELiの合計電力(総消費電力)を超える事態を回避できる。   In the present systems 1 to 4, basically, each of the distributed power generation devices 20 is capable of reducing the total power (total power consumption) of the power loads ELi of the plurality of dwelling units Hi (i = 1 to n) to the lowest level. Since the number m of the specific dwelling units HEj is limited in advance so that rated operation is possible, the transition to the intermediate output operation does not normally occur. However, some of the multiple units Hi become vacant houses or long-term absences, power consumption decreases due to a decrease in the number of families, and distributed power generators are introduced in the specific units HEj in units other than the specific units HEj Then, there is a possibility that a situation such as a case where it is used in the power load following operation will occur after the fact. If the number m of the specific dwelling units HEj is set near the upper limit indicated by the above formula 1 or the formula 2 with respect to the initial total number n of the plurality of dwelling units Hi, when such a situation occurs, At a certain time when the total power (total power consumption) of the power load ELi is at the lowest level, by performing control to shift to the above-mentioned intermediate output operation, the surplus power at all power loads of the dwelling unit receiving surplus power accommodation It is possible to avoid a situation where all of the power is not consumed, that is, a situation where the total generated power during the rated operation of the distributed generator 20 exceeds the total power (total power consumption) of the power load ELi.

尚、上記説明では、運転制御装置26は、読み込んだ2次電流値が所定の基準値I2r以下の場合に、動作中の定格運転から、定格出力から当該2次電流値に応じて減少した一定の中間出力での運転に移行する場合を想定したが、当該中間出力運転への移行の別態様として、定格運転から電力負荷追従運転に移行してもよい。   In the above description, when the read secondary current value is equal to or less than the predetermined reference value I2r, the operation control device 26 is a constant value that is decreased from the rated output during operation according to the secondary current value. However, as another mode of the transition to the intermediate output operation, the operation may be shifted from the rated operation to the power load following operation.

更に、基準値I2rは、各分散型発電装置20で同じ値に設定したが、分散型発電装置20間で異なる基準値を使用してもよい。この場合、各分散型発電装置20は同時に定格運転から中間出力運転等に移行せず、段階的に移行することになる。これにより、余剰電力の急激な変動を抑制できる。   Furthermore, although the reference value I2r is set to the same value in each distributed power generation device 20, a different reference value may be used between the distributed power generation devices 20. In this case, each distributed power generator 20 does not shift from the rated operation to the intermediate output operation or the like at the same time, but shifts in stages. Thereby, the rapid fluctuation | variation of surplus electric power can be suppressed.

尚、電流計M7が、信号線35を介して、2次電流値を示す出力信号(電流信号)を出力する構成について説明したが、電流計M7が、当該2次電流値を電圧振幅に変換したアナログ信号またはディジタル値に変換したディジタル信号を出力信号として出力する構成としてもよい。更に、運転制御装置26が、外部からの制御信号を受け付ける制御入力端子を備え、当該制御信号の入力に応じて、定格運転、中間出力運転等の運転モードを切り替える機能を備えている場合は、当該2次電流値を示す出力信号を当該制御信号に変換して、各分散型発電装置20に向けて出力する構成としてもよい。これらの構成では、2次電流値を示す出力信号を上記アナログ信号またはディジタル信号または制御信号に変換する変換装置が、電流計M7の内部または外部に設けられている。また、これらの構成では、各信号は必ずしも分散型発電装置20の個数m分を生成する必要はないが、分散型発電装置20間で異なる基準値を使用する場合には、その異なり方に応じた個数分を生成すればよい。また、上記ディジタル信号或いは上記制御信号を出力する場合、当該出力信号の伝送媒体として、信号線35を無線の通信経路を用いて構成しても構わない。例えば、特定住戸HEjが、広範な域内Aに分散している場合には、無線の通信経路の使用が好ましい。   The configuration in which the ammeter M7 outputs an output signal (current signal) indicating the secondary current value via the signal line 35 has been described. However, the ammeter M7 converts the secondary current value into a voltage amplitude. A configuration may be adopted in which an analog signal or a digital signal converted into a digital value is output as an output signal. Furthermore, when the operation control device 26 has a control input terminal for receiving a control signal from the outside and has a function of switching operation modes such as rated operation and intermediate output operation in accordance with the input of the control signal, It is good also as a structure which converts the output signal which shows the said secondary current value into the said control signal, and outputs it toward each distributed power generator 20. FIG. In these configurations, a conversion device that converts the output signal indicating the secondary current value into the analog signal, the digital signal, or the control signal is provided inside or outside the ammeter M7. In these configurations, each signal does not necessarily generate the number m of distributed generators 20, but when different reference values are used among the distributed generators 20, depending on how they differ. It suffices to generate the same number. When outputting the digital signal or the control signal, the signal line 35 may be configured using a wireless communication path as a transmission medium for the output signal. For example, when the specific dwelling units HEj are dispersed in a wide area A, it is preferable to use a wireless communication path.

また、上記説明では、電流計M7または変換装置から出力される出力信号または制御信号に応じて、運転制御装置26が、定格運転から中間出力運転に移行する場合を説明したが、定格運転から中間出力運転に移行するのに代えて、或いは、追加して、インバータ装置24の出力端に設けられた開閉器を開放して、分電盤12との接続(つまり、第1低圧電力との連系)を遮断することにより、分散型発電装置20から第1配電網11への余剰電力の逆潮流を停止させてもよい。   In the above description, the case where the operation control device 26 shifts from the rated operation to the intermediate output operation in accordance with the output signal or control signal output from the ammeter M7 or the conversion device has been described. Instead of, or in addition to, shifting to the output operation, the switch provided at the output end of the inverter device 24 is opened and connected to the distribution board 12 (that is, connected to the first low-voltage power). The reverse flow of surplus power from the distributed generator 20 to the first distribution network 11 may be stopped by shutting off the system.

尚、分散型発電装置20では、分電盤12に変流器(カレントトランス)を備え、運転制御装置26が当該変流器の2次電流を監視することで、第1配電網11から特定住戸HEjの電力負荷LEj側に供給される電力(本実施形態では、第1低圧電力と余剰電力の合計電力)の電流をモニター可能に構成されている場合がある。更に、斯かる構成において、上述のように、開閉器を開放して分散型発電装置20から第1配電網11への余剰電力の逆潮流を停止させる制御を行った場合、分散型発電装置20の出力が停止しているにも拘わらず、モニターしている電流が流れているため、運転制御装置26がエラー状態と判断して、所定の緊急処置(分散型発電装置20の運転停止等)を行うように設定されている場合がある。そこで、斯かるケースでは、運転制御装置26が当該緊急処置を行うのを回避するため、開閉器を開放するのと同時に、変流器の2次側の端子間を短絡させ、仮想的にモニターしている電流が流れていない状態とするのが好ましい。ここで、仮に、変流器と運転制御装置26間を接続する信号線に設けられた開閉器を開放すると、変流器の2次側の端子間が開放されて高電圧が発生して、絶縁破壊等の故障の発生する虞があるため、変流器の2次側の端子間を短絡させる必要がある。更に、開閉器を開放するのと同時に、分散型発電装置20の運転を、定格運転からアイドリング運転に移行する制御を行うのも好ましい。   In the distributed generator 20, the distribution board 12 is provided with a current transformer (current transformer), and the operation control device 26 monitors the secondary current of the current transformer to identify the current from the first distribution network 11. There is a case where the current of the power supplied to the power load LEj side of the dwelling unit HEj (in this embodiment, the total power of the first low-voltage power and the surplus power) can be monitored. Furthermore, in such a configuration, as described above, when the control is performed to open the switch and stop the reverse power flow of the surplus power from the distributed power generator 20 to the first distribution network 11, the distributed power generator 20 Since the monitored current is flowing even though the output of the power is stopped, the operation control device 26 determines that it is in an error state and performs a predetermined emergency treatment (such as operation stop of the distributed generator 20). May be set to do. Therefore, in such a case, in order to avoid that the operation control device 26 performs the emergency treatment, at the same time when the switch is opened, the secondary side terminals of the current transformer are short-circuited to virtually monitor. It is preferable that no current is flowing. Here, if the switch provided on the signal line connecting the current transformer and the operation control device 26 is opened, the secondary terminal of the current transformer is opened and a high voltage is generated. Since there is a risk of breakdown such as insulation breakdown, it is necessary to short-circuit between the terminals on the secondary side of the current transformer. Furthermore, it is also preferable to perform a control for shifting the operation of the distributed generator 20 from the rated operation to the idling operation simultaneously with opening the switch.

更に、電流計M7に代えて、電力計、または、所定の比較的短い単位期間(例えば、1〜10分間等)毎の電力量を計測する電力量計を用いてよい。   Furthermore, instead of the ammeter M7, a wattmeter or a watthour meter that measures the amount of power every predetermined relatively short unit period (for example, 1 to 10 minutes) may be used.

[別実施形態]
次に、上記各実施形態の変形例について説明する。
[Another embodiment]
Next, modified examples of the above embodiments will be described.

〈1〉上記各実施形態において、各分散型発電装置20は、何れも、固体酸化物形燃料電池(SOFC)のセルスタックを備えて構成される燃料電池発電装置を想定したが、当該燃料電池発電装置は、SOFCに限定されるものではなく、例えば、固体高分子形燃料電池(PEFC)であってもよい。また、分散型発電装置20の台数mが複数の場合、燃料電池の種類の異なる分散型発電装置20、例えば、SOFCの分散型発電装置20とPEFCの分散型発電装置20が、混在していてもよい。   <1> In each of the above embodiments, each of the distributed power generation devices 20 is assumed to be a fuel cell power generation device including a cell stack of a solid oxide fuel cell (SOFC). The power generation device is not limited to the SOFC, and may be, for example, a polymer electrolyte fuel cell (PEFC). Further, when the number m of the distributed power generators 20 is plural, the distributed power generators 20 of different types of fuel cells, for example, the SOFC distributed power generator 20 and the PEFC distributed power generator 20 are mixed. Also good.

更に、分散型発電装置20の定格出力Pfが700Wである場合を想定したが、当該定格出力Pfは700Wに限定されるものではなく、また、複数の分散型発電装置20間で、定格出力Pfが共通である必要はない。   Furthermore, although the case where the rated output Pf of the distributed generator 20 is 700 W is assumed, the rated output Pf is not limited to 700 W, and the rated output Pf is distributed among the plurality of distributed generators 20. Need not be common.

〈2〉上記各実施形態において、1台のスマートメータが、第1配電網11から分電盤12に向けて供給される第1低圧電力の例えば30分毎の積算電力量と、分電盤12から第1配電網11に向けて逆潮流する余剰電力の例えば30分毎の積算電力量を、夫々個別に計量して、1ヶ月以上の所定の保存期間分を保存し、一定間隔(例えば、1日毎、1ヶ月毎)でまとめて送信可能に構成されている場合は、第2電力量計M2と第3電力量計M3を当該1台のスマートメータで構成してもよい。   <2> In each of the above-described embodiments, one smart meter, for example, the integrated power amount every 30 minutes of the first low-voltage power supplied from the first distribution network 11 toward the distribution board 12, and the distribution board For example, the accumulated power amount of every 30 minutes of surplus power that flows backward from 12 to the first distribution network 11 is individually measured and stored for a predetermined storage period of one month or longer, for example, at regular intervals (for example, 2), the second watt-hour meter M2 and the third watt-hour meter M3 may be configured by the one smart meter.

更に、上記各実施形態では、第3電力量計M3は、分電盤12から第1配電網11側に向けて流れる余剰電力の電力量だけを積算し、第1配電網11側から分電盤12に向けて供給される第1低圧電力と余剰電力の合計電力は計量しないように構成されている場合を想定したが、第3電力量計M3の検針等の管理を行う事業者が、第2電力量計M2の管理を行う第1事業者と異なる第2事業者である場合には、第3電力量計M3を、第1配電網11側から分電盤12に向けて供給される第1低圧電力と余剰電力の合計電力の電力量も、逆潮流する余剰電力の電力量と分離して個別に計量できるように構成するのも好ましい。これにより、第3電力量計M3に、第2電力量計M2と同様の計量機能を付加することができ、第2事業者も、第1配電網11から各特定住戸HEjに供給された電力量をモニターすることができる。   Furthermore, in each said embodiment, the 3rd electricity meter M3 accumulate | stores only the electric energy of the surplus electric power which flows toward the 1st distribution network 11 side from the distribution board 12, and distributes electricity from the 1st distribution network 11 side. Although the case where it was comprised so that the total electric power of the 1st low voltage electric power and surplus electric power supplied toward the board | substrate 12 might not be measured, the provider who manages meter-reading etc. of the 3rd electricity meter M3, When the second operator is different from the first operator who manages the second electricity meter M2, the third electricity meter M3 is supplied from the first distribution network 11 side to the distribution board 12. It is also preferable that the total power amount of the first low-voltage power and surplus power can be separately measured separately from the surplus power amount that flows backward. Thereby, the measurement function similar to the 2nd watt-hour meter M2 can be added to the 3rd watt-hour meter M3, and the 2nd provider also has the electric power supplied to each specific dwelling unit HEj from the 1st power distribution network 11. The amount can be monitored.

〈3〉上記第2実施形態の一括受電住居システム4では、共用設備43として、共用施設の照明及びコンセント等を想定し、共用設備44として、エレベータまたはエスカレータ等の動力設備を想定したが、必ずしも、共用設備43,44の両方を備えていなくても、何れか一方の共用設備だけの場合でもよい。   <3> In the collective power receiving dwelling system 4 of the second embodiment, the shared facility 43 is assumed to be lighting and outlets of the shared facility, and the shared facility 44 is assumed to be a power facility such as an elevator or an escalator. Even if both of the shared facilities 43 and 44 are not provided, only one of the shared facilities may be provided.

尚、上記第1実施形態の一括受電住居システム2は、共用設備43,44の両方を備えていないケースに相当する。例えば、複数の住戸Hi(i=1〜n)の夫々が、戸建て住宅の場合等が想定される。   In addition, the collective power receiving dwelling system 2 of the first embodiment corresponds to a case where both the shared facilities 43 and 44 are not provided. For example, the case where each of the plurality of dwelling units Hi (i = 1 to n) is a detached house is assumed.

〈4〉上記各実施形態において、特定住戸HEjの少なくとも一部において、蓄電池を設置し、当該蓄電池が満充電状態でない場合に、発生した余剰電力の一部を、当該蓄電池に充電し、電力負荷ELjが、分散型発電装置20の定格出力(700W)を超過する時に、当該超過分の電力を、当該蓄電池の放電で賄うようにしてもよい。これにより、第1配電網11に逆潮流する余剰電力の総電力量は低下するが、当該特定住戸HEjに供給される第1低圧電力の積算電力量も同様に低下するので、第1配電網11から各住戸Hiに供給される第1低圧電力の積算電力量の合計に変化はない。   <4> In each of the above embodiments, in at least a part of the specific dwelling unit HEj, a storage battery is installed, and when the storage battery is not fully charged, a part of the generated surplus power is charged to the storage battery, and the power load When ELj exceeds the rated output (700 W) of the distributed power generator 20, the excess power may be covered by the discharge of the storage battery. As a result, the total amount of surplus power flowing backward to the first distribution network 11 is reduced, but the cumulative amount of first low-voltage power supplied to the specific dwelling unit HEj is also reduced, so the first distribution network There is no change in the total integrated electric energy of the first low-voltage power supplied from 11 to each dwelling unit Hi.

〈5〉上記各実施形態において、第1配電網11に接続して蓄電池を設置してもよい。ここで、当該蓄電池を、図3に示す平均消費電力量が最小となる3〜5時の第1期間までに完全放電状態として、平均消費電力量が最大となる20〜22時の第2期間までに満充電状態となるように充放電制御を行う。当該充放電制御によれば、仮に、複数の住戸Hiの一部が空き家或いは留守になった、或いは、家族数の減少等の理由で、複数の住戸Hi(i=1〜n)の総消費電力の予測最低値Dminが、当初の予測より低下した場合においても、余剰電力の合計値が最大となる当該第1期間において、仮に、定格運転時の発電電力の合計値が、当初の予測最低値Dminより低下した総消費電力の最低値を超過しても、当該超過分を完全放電状態の蓄電池に充電することができる。また、複数の住戸Hi(i=1〜n)の総消費電力が最大となる可能性の高い第2期間に、満充電状態の蓄電池の放電により、ピーク時の電力需要の一部を賄うことで、第1低圧電力のピーク時の出力を抑制することができる。   <5> In each of the above embodiments, a storage battery may be installed by connecting to the first distribution network 11. Here, the storage battery is completely discharged by the first period of 3 to 5 o'clock when the average power consumption shown in Fig. 3 is minimized, and the second period of 20 to 22:00 when the average power consumption is maximized. Charge / discharge control is performed so that the battery is fully charged by the time. According to the charge / discharge control, the total consumption of the plurality of dwelling units Hi (i = 1 to n) is assumed if some of the plurality of dwelling units Hi are vacant or absent, or the number of families is reduced. Even in the case where the predicted minimum electric power value Dmin is lower than the initial prediction, in the first period in which the total value of surplus power is maximum, the total value of the generated power during rated operation is temporarily Even if it exceeds the minimum value of the total power consumption that has fallen below the value Dmin, the excess can be charged into a fully discharged storage battery. In addition, during the second period when the total power consumption of a plurality of dwelling units Hi (i = 1 to n) is likely to be maximized, a part of the peak power demand is covered by the discharge of the fully charged storage battery. Thus, the peak output of the first low-voltage power can be suppressed.

更に、特定住戸HEjの分散型発電装置20を定格運転させることで、第1受変電設備10の変圧器の容量を、700W×m分だけ低下させることが可能となる。仮に、第1受変電設備10の変圧器の容量を700W×m分全て低下させた場合、m台の分散型発電装置20の内の1台が、メンテナンス等の理由で24時間運転を停止したとすると、第1低圧電力の供給量が、当該24時間の間、700×24(Wh)分の電力量が不足する。よって、上記蓄電池の容量を16.8kWh以上に設定すると、当該不足分を賄うことができる。   Furthermore, it becomes possible to reduce the capacity | capacitance of the transformer of the 1st receiving / transforming equipment 10 only 700Wxm by carrying out rated operation of the distributed generator 20 of the specific residence HEj. If the capacity of the transformer of the first power receiving / transforming facility 10 is reduced by 700 W × m, one of the m distributed generators 20 has stopped operation for 24 hours due to maintenance or the like. Then, the supply amount of the first low-voltage power is insufficient for 700 × 24 (Wh) during the 24 hours. Therefore, when the capacity of the storage battery is set to 16.8 kWh or more, the shortage can be covered.

〈6〉上記各実施形態において、分散型発電装置20は、特定住戸HEjにだけ設置されている場合を想定したが、特定住戸HEj以外の住戸Hiに、分散型発電装置が設置されていてもよい。但し、特定住戸HEj以外の住戸Hiの分散型発電装置は、負荷追従運転を行い、余剰電力を発生させないか、発生しても蓄電池等に充電して、第1配電網11側に逆潮流させないことが条件となる。この場合、複数の住戸Hi(i=1〜n)の総消費電力の予測最低値Dmin(=200W×n)を、分散型発電装置を備える住戸Hiを住戸Hiの総数nから除外して、予測する必要がある。   <6> In each of the above embodiments, it is assumed that the distributed power generator 20 is installed only in the specific dwelling unit HEj, but even if the distributed power generation device is installed in a dwelling unit Hi other than the specific dwelling unit HEj. Good. However, the distributed power generators of the dwelling units Hi other than the specific dwelling unit HEj perform load following operation and do not generate surplus power, or even if generated, charge the storage battery or the like and do not reversely flow to the first distribution network 11 side. It is a condition. In this case, the predicted minimum value Dmin (= 200 W × n) of the total power consumption of the plurality of dwelling units Hi (i = 1 to n) is excluded from the total number n of dwelling units Hi, including the distributed power generators. Need to predict.

〈7〉上記各実施形態において、複数の住戸Hiが戸建て住宅である場合、複数の住戸Hi(特定住戸HEjを含む)の一部において、太陽光発電装置が設置され、太陽光発電装置から出力された交流電力は、分電盤12の内部で、第1配電網11から供給される第1低圧電力と連系して、当該住戸Hiの電力負荷ELiに供給可能に構成されてもよい。更に、当該太陽光発電装置が発生した余剰電力を、第1配電網11側に逆潮流させ、他の住戸Hiの電力負荷ELiに融通するようにしても良い。この場合、当該太陽光発電装置が発生した余剰電力は、分散型発電装置20の余剰電力と同様に、当該住戸Hiの第1配電網11と分電盤12と間の引込点に、第3電力量計M3を介装して、当該住戸Hiが、特定住戸HEjでない場合は、当該太陽光発電装置の余剰電力の積算電力量を計量し、当該住戸Hiが、特定住戸HEjである場合は、分散型発電装置20の余剰電力と当該太陽光発電装置の余剰電力の合計積算電力量を計量するようにしてもよい。尚、太陽光発電装置は、複数の住戸Hi(i=1〜n)の総消費電力が最低となる時間帯は、日射がないため発電しないので、予測最低値Dminの予測には影響しない。   <7> In each of the above embodiments, when the plurality of dwelling units Hi are detached houses, a solar power generation device is installed in a part of the plurality of dwelling units Hi (including the specific dwelling unit HEj), and output from the solar power generation device The AC power thus generated may be configured to be able to be supplied to the power load ELi of the dwelling unit Hi in connection with the first low-voltage power supplied from the first distribution network 11 inside the distribution board 12. Furthermore, the surplus power generated by the solar power generation device may be reversely flowed to the first distribution network 11 side to be accommodated in the power load ELi of another dwelling unit Hi. In this case, the surplus power generated by the solar power generation device is similar to the surplus power of the distributed power generation device 20, at the pull-in point between the first distribution network 11 and the distribution board 12 of the dwelling unit Hi. When the dwelling unit Hi is not the specific dwelling unit HEj through the electricity meter M3, the accumulated power amount of the surplus power of the solar power generation device is measured, and the dwelling unit Hi is the specific dwelling unit HEj. The total integrated power amount of the surplus power of the distributed power generation apparatus 20 and the surplus power of the solar power generation apparatus may be measured. Note that the solar power generation apparatus does not generate power because there is no solar radiation in the time zone in which the total power consumption of the plurality of dwelling units Hi (i = 1 to n) is the lowest, and thus does not affect the prediction of the predicted minimum value Dmin.

本システムは、一括高圧受電方式で電力供給を受ける複数の住戸に利用することができる。   This system can be used for a plurality of dwelling units that receive power supply by the collective high-voltage power receiving method.

1〜4 : 一括受変電システム
10 : 第1受変電設備
11 : 第1配電網
12 : 分電盤
13 : ガス配管
14 : ガス給湯器
20 : 分散型発電装置
21 : 脱硫器
22 : 改質器
23 : 燃料電池のセルスタック
24 : インバータ装置
25 : 熱交換器
26 : 運転制御装置
30 : 第2受変電設備
31,32: 第2配電網
33,34: 共用設備
35 : 信号線
A : 域内
CEL1,CEL2: 共用設備の電力負荷
EL : 電力負荷
G : ガス供給源
H : 住戸
HE : 特定住戸
HL : 給湯負荷
M1 : 第1電力量計
M2 : 第2電力量計
M3 : 第3電力量計
M4 : 第4電力量計
M5 : 第5電力量計
M6 : 第6電力量計
M7 : 電流計
S : 商用系統電源
T : 貯湯タンク
1-4: Collective power receiving / transforming system 10: 1st power receiving / transforming equipment 11: 1st power distribution network 12: Distribution board 13: Gas piping 14: Gas water heater 20: Distributed generator 21: Desulfurizer 22: Reformer 23: Cell stack of fuel cell 24: Inverter device 25: Heat exchanger 26: Operation control device 30: Second substation equipment 31, 32: Second distribution network 33, 34: Shared equipment 35: Signal line A: In-area CEL1 , CEL2: Power load of shared equipment EL: Power load G: Gas supply source H: Dwelling unit HE: Specific dwelling unit HL: Hot water supply load M1: First electricity meter M2: Second electricity meter M3: Third electricity meter M4 : 4th electricity meter M5: 5th electricity meter M6: 6th electricity meter M7: Ammeter S: Commercial system power supply T: Hot water storage tank

Claims (5)

第1受変電設備を備え、電力管理事業者が、前記第1受変電設備を用いて商用系統電源から供給される高圧電力を一括で受電して第1低圧電力に降圧した後、前記第1低圧電力を前記電力管理事業者の管理対象の域内に存在する複数の住戸の電力負荷に、前記域内に敷設された第1配電網を介して各別に供給する一括受変電システムであって、
前記域内に存在する複数の住戸の内の一部である1以上の特定住戸が、外部から供給される燃料を消費して、前記第1低圧電力と同じ電圧、周波数、及び、電気方式の電力を発電する分散型発電装置を各別に有し、
前記分散型発電装置の夫々は、燃料電池を備えて構成され、外部からの燃料供給が停止する所定の場合を除き、常時定格運転するように設定され、且つ、前記分散型発電装置の発電電力は、前記第1低圧電力と連系して、前記特定住戸の電力負荷に対して電力供給可能に構成され、更に、前記分散型発電装置の定格運転時の発電電力の内、前記特定住戸の電力負荷で消費されなかった余剰電力の夫々が、前記第1配電網に向けて逆潮流して前記域内の他の前記住戸の電力負荷に融通されるように構成されており、
前記特定住戸に設置される前記分散型発電装置の定格運転時の発電電力の合計が、前記域内に存在する複数の住戸の総消費電力の予測最低値を超えないように、前記特定住戸の戸数と前記定格運転時の発電電力が設定されていることを特徴とする一括受変電システム。
The first power receiving / transforming equipment is provided, and the power management company receives the high-voltage power supplied from the commercial power supply using the first power receiving / transforming equipment in a lump and steps down the voltage to the first low-voltage power. A collective power receiving and transforming system that supplies low-voltage power to each of the power loads of a plurality of dwelling units existing in the area to be managed by the power management company through a first distribution network laid in the area,
One or more specific dwelling units that are a part of the plurality of dwelling units in the area consume fuel supplied from the outside, and have the same voltage, frequency, and electric power as the first low-voltage power. Each has a distributed generator to generate electricity,
Each of the distributed power generators is configured to include a fuel cell, and is set to always operate at a rated value except for a predetermined case in which fuel supply from the outside stops, and the generated power of the distributed power generator Is configured to be able to supply power to the power load of the specific dwelling unit in conjunction with the first low-voltage power, and further, out of the generated power during rated operation of the distributed power generator, of the specific dwelling unit Each of the surplus power that was not consumed by the power load is configured to flow backward to the first distribution network and be accommodated in the power load of the other dwelling units in the area,
The number of units of the specific unit so that the total generated power at the rated operation of the distributed generator installed in the specific unit does not exceed the predicted minimum value of the total power consumption of a plurality of units existing in the area. And a power receiving / transforming system characterized in that the generated power during the rated operation is set.
前記分散型発電装置が備える前記燃料電池が、固体酸化物形燃料電池であることを特徴とする請求項1に記載の一括受変電システム。   The collective power receiving / transforming system according to claim 1, wherein the fuel cell included in the distributed power generation device is a solid oxide fuel cell. 前記予測最低値が、200Wに前記複数の住戸の総数を乗じた値であることを特徴とする請求項1または2に記載の一括受変電システム。   The collective power receiving / transforming system according to claim 1 or 2, wherein the predicted minimum value is a value obtained by multiplying 200W by the total number of the plurality of dwelling units. 第2受変電設備を更に備え、前記第2受変電設備を用いて前記商用系統電源から供給される高圧電力を受電して第2低圧電力に降圧した後、前記第2低圧電力を、前記複数の住戸の住人が共用する共用設備の電力負荷に対して、第2配電網を介して供給することを特徴とする請求項1〜3の何れか1項に記載の一括受変電システム。   A second power receiving / transforming facility, the second power receiving / transforming facility is used to receive the high-voltage power supplied from the commercial power supply and step down to the second low-voltage power; The collective power receiving / transforming system according to any one of claims 1 to 3, wherein the collective power receiving system is supplied via a second distribution network to a power load of a common facility shared by residents of the dwelling unit. 前記第1配電網の前記第1受変電設備側の端部に、前記第1受変電設備から前記第1配電網に向けて供給される前記第1低圧電力の電流、電力、または、所定の単位期間毎の電力量を計測し、計測値を示す出力信号、または、前記計測値に基づいて前記分散型発電装置の運転を制御する制御信号を出力する計測器を備え、
前記計測器と前記分散型発電装置の少なくとも1台の間が、前記出力信号または前記制御信号を伝送可能な信号線で接続され、
前記分散型発電装置の少なくとも1台が、前記出力信号または前記制御信号に応じて、前記定格運転を停止して出力電力を定格出力から低下させる処理と、前記第1低圧電力との連系を遮断する処理の少なくとも何れか一方の処理を行うことで、前記余剰電力を低減させる制御を行うことを特徴とする請求項1〜4の何れか1項に記載の一括受変電システム。
The current of the first low-voltage power supplied from the first power receiving / transforming facility toward the first power distribution network at the end of the first power distribution network on the first power receiving / transforming facility side, or a predetermined power It includes a measuring device that measures the amount of power per unit period, and outputs an output signal indicating the measured value, or a control signal that controls the operation of the distributed power generation device based on the measured value,
Between at least one of the measuring instrument and the distributed power generator is connected by a signal line capable of transmitting the output signal or the control signal,
In accordance with the output signal or the control signal, at least one of the distributed generators is configured to stop the rated operation and reduce the output power from the rated output, and to connect the first low-voltage power. The collective power receiving / transforming system according to any one of claims 1 to 4, wherein control for reducing the surplus power is performed by performing at least one of the processes to be cut off.
JP2016179799A 2016-09-14 2016-09-14 Collective power reception/transformation system Pending JP2018046662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016179799A JP2018046662A (en) 2016-09-14 2016-09-14 Collective power reception/transformation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016179799A JP2018046662A (en) 2016-09-14 2016-09-14 Collective power reception/transformation system

Publications (1)

Publication Number Publication Date
JP2018046662A true JP2018046662A (en) 2018-03-22

Family

ID=61696134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016179799A Pending JP2018046662A (en) 2016-09-14 2016-09-14 Collective power reception/transformation system

Country Status (1)

Country Link
JP (1) JP2018046662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220135288A (en) * 2021-03-29 2022-10-07 주식회사 남전사 High Voltage Powr Receiving Unit
JP7406436B2 (en) 2020-03-31 2023-12-27 大和ハウス工業株式会社 Power interchange system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189779A (en) * 2000-12-22 2002-07-05 Tokyo Energy Research:Kk System and device for processing energy information, server and recording medium
JP2003061245A (en) * 2001-08-09 2003-02-28 Osaka Gas Co Ltd Operation planning method for cogeneration apparatus
JP2003092833A (en) * 2001-09-18 2003-03-28 Osaka Gas Co Ltd System for controlling output of fuel cell for home
JP2013038838A (en) * 2011-08-03 2013-02-21 Kyocera Corp Collective housing power system
JP2013099140A (en) * 2011-11-01 2013-05-20 Shimizu Corp Power management system, power management method, and program
US20140021721A1 (en) * 2012-07-19 2014-01-23 Charles D. Barton Method and apparatus for efficient balancing baseload power generation production deficiencies against power demand transients
JP2015061437A (en) * 2013-09-19 2015-03-30 大阪瓦斯株式会社 Power generation planning system for collective housing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189779A (en) * 2000-12-22 2002-07-05 Tokyo Energy Research:Kk System and device for processing energy information, server and recording medium
JP2003061245A (en) * 2001-08-09 2003-02-28 Osaka Gas Co Ltd Operation planning method for cogeneration apparatus
JP2003092833A (en) * 2001-09-18 2003-03-28 Osaka Gas Co Ltd System for controlling output of fuel cell for home
JP2013038838A (en) * 2011-08-03 2013-02-21 Kyocera Corp Collective housing power system
JP2013099140A (en) * 2011-11-01 2013-05-20 Shimizu Corp Power management system, power management method, and program
US20140021721A1 (en) * 2012-07-19 2014-01-23 Charles D. Barton Method and apparatus for efficient balancing baseload power generation production deficiencies against power demand transients
JP2015061437A (en) * 2013-09-19 2015-03-30 大阪瓦斯株式会社 Power generation planning system for collective housing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406436B2 (en) 2020-03-31 2023-12-27 大和ハウス工業株式会社 Power interchange system
KR20220135288A (en) * 2021-03-29 2022-10-07 주식회사 남전사 High Voltage Powr Receiving Unit
KR102525798B1 (en) * 2021-03-29 2023-04-27 주식회사 남전사 High Voltage Powr Receiving Unit

Similar Documents

Publication Publication Date Title
Emmanuel et al. Evolution of dispatchable photovoltaic system integration with the electric power network for smart grid applications: A review
Vandoorn et al. Active load control in islanded microgrids based on the grid voltage
CN105556831B8 (en) System, method and apparatus for energy production load compensation
JP6761313B2 (en) Electricity charge settlement system
RU2340992C2 (en) Device for peak load coverage
Telaretti et al. Economic feasibility of stationary electrochemical storages for electric bill management applications: The Italian scenario
JP6418239B2 (en) Power supply apparatus and power supply method
Rodriguez-Diaz et al. Real-time Energy Management System for a hybrid AC/DC residential microgrid
JP5118244B1 (en) Power control apparatus, power supply system, power control method and program
WO2017122243A1 (en) Power supply system and control device
KR101109187B1 (en) Operation method for power system using real-time power information
CN102130464A (en) Power storage apparatus, method of operating the same, and power storage system
WO2011077221A2 (en) Electric power supply system
KR101396094B1 (en) Intelligent energy storing system for communal house
JP2011050131A (en) Residential power supply system, and power supply controller therefor
KR101727356B1 (en) Energy management system
JP2018046662A (en) Collective power reception/transformation system
di Piazza et al. Electrical storage integration into a DC nanogrid testbed for smart home applications
Hashmi et al. Towards phase balancing using energy storage
Kester et al. A smart MV/LV-station that improves power quality, reliability and substation load profile
US6636784B1 (en) Electricity transfer station
JP2015015802A (en) Power management system and control device
CN114784785A (en) Energy storage and high-voltage direct-current coupling power supply and control system for data center
KR101674941B1 (en) Power supply network using dc power supply and electric apparatus based on the power supply network
JP2013212038A (en) Natural energy power generation system and power distribution method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210203