JP6146102B2 - Charging method for control valve type lead acid battery - Google Patents

Charging method for control valve type lead acid battery Download PDF

Info

Publication number
JP6146102B2
JP6146102B2 JP2013084966A JP2013084966A JP6146102B2 JP 6146102 B2 JP6146102 B2 JP 6146102B2 JP 2013084966 A JP2013084966 A JP 2013084966A JP 2013084966 A JP2013084966 A JP 2013084966A JP 6146102 B2 JP6146102 B2 JP 6146102B2
Authority
JP
Japan
Prior art keywords
charging
charge
control valve
valve type
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013084966A
Other languages
Japanese (ja)
Other versions
JP2014207806A (en
JP2014207806A5 (en
Inventor
基司 桐林
基司 桐林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2013084966A priority Critical patent/JP6146102B2/en
Publication of JP2014207806A publication Critical patent/JP2014207806A/en
Publication of JP2014207806A5 publication Critical patent/JP2014207806A5/ja
Application granted granted Critical
Publication of JP6146102B2 publication Critical patent/JP6146102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

この発明は、部分充電状態に制御して使用される制御弁式鉛蓄電池の充電方法に関するものである。   The present invention relates to a charging method for a control valve type lead-acid battery that is used while being controlled in a partially charged state.

鉛蓄電池を部分充電状態(PSOC(Partial State of Charge))に制御して使用すると、硫酸鉛の蓄積による寿命低下(サルフェーション)が起こりやすいことが知られている。従前は負極において硫酸鉛の蓄積が顕著であったが、活物質へのカーボン添加等の改善策が講じられることにより負極の寿命性能は向上した。このため、夜間電力を使って充電し、これを昼間のピークカット等に使うような用途であれば、鉛蓄電池の寿命性能はあまり低下しない。しかし、PSOC制御でほぼ一日中充放電を行う風力発電等と系統連係して負荷平準化するために用いると、鉛蓄電池が早期にサルフェーションを起こして短寿命になることがある。なお、このように風力発電等と系統連係して負荷平準化する用途には一般的に制御弁式鉛蓄電池が用いられる。   It is known that when a lead-acid battery is used in a partially charged state (PSOC (Partial State of Charge)), life reduction (sulfation) due to accumulation of lead sulfate is likely to occur. Previously, accumulation of lead sulfate was remarkable in the negative electrode, but the life performance of the negative electrode was improved by taking measures such as adding carbon to the active material. For this reason, if it is a use which charges using night electric power and uses this for the peak cut of the daytime etc., the lifetime performance of a lead storage battery does not deteriorate so much. However, when used for leveling the load in conjunction with wind power generation or the like that charges and discharges almost all day under PSOC control, the lead storage battery may cause sulfation early and have a short life. In addition, a control valve type lead-acid battery is generally used for such an application for leveling the load in cooperation with wind power generation or the like.

このため、PSOCに制御して使用される鉛蓄電池に対しては、定期的に均等充電を行い電池の状態をリフレッシュする対策がとられている(特許文献1)。当該均等充電の方法としては種々の方法が知られており、定電圧で行われることが多いが、定電流で行われる場合もある。   For this reason, for lead storage batteries used under the control of PSOC, measures are taken to periodically charge the batteries and refresh the state of the batteries (Patent Document 1). Various methods are known as the equal charge method, and the method is often performed at a constant voltage, but may be performed at a constant current.

定電圧充電による均等充電のメリットは、過充電量を抑えつつ、充電中の電圧を低く保ちながら充電するため、正極格子の腐食や電解液の電気分解を抑制することで寿命性能を延伸することができることである。しかし、成層化やサルフェーションといった劣化因子に関しては、充分な効果を発揮できないことがある。   The advantage of uniform charging by constant voltage charging is to extend the life performance by suppressing the corrosion of the positive grid and electrolysis of the electrolyte because the charging is performed while keeping the voltage during charging low while suppressing the overcharge amount. It is possible to do. However, sufficient effects may not be achieved with respect to deterioration factors such as stratification and sulfation.

一方、定電流充電による均等充電は、定電圧充電よりは効率は低いが、充電電流が流れにくい部位にも電流を流すことができるため、成層化やサルフェーションといった劣化因子の解消には効果を発揮する。しかし、過剰に行うと正極格子腐食や電解液の分解量が定電圧充電よりも多くなるため、寿命性能が短くなることがある。   On the other hand, even charging by constant current charging is less efficient than constant voltage charging, but it can also flow current to parts where charging current does not flow easily, so it is effective in eliminating deterioration factors such as stratification and sulfation. To do. However, if it is carried out excessively, the life performance may be shortened because the amount of positive electrode grid corrosion and the amount of decomposition of the electrolytic solution becomes larger than those of constant voltage charging.

また、いずれの充電方法を用いて均等充電を行っても、電池のサイズが大きくなると、極板内での充電状態にばらつきが生じやすくなり、均等充電によるリフレッシュ効果が充分に得られにくくなる。   In addition, even if charge is performed using any of the charging methods, if the size of the battery increases, the state of charge in the electrode plate tends to vary, making it difficult to sufficiently obtain the refresh effect by the uniform charge.

特開2003−163034号公報JP 2003-163034 A

そこで本発明は、上記現状に鑑み、サイズの大きな電池をPSOC制御下で使用する場合でも、充分なリフレッシュ効果を奏し、寿命性能を向上させることができる制御弁式鉛蓄電池の充電方法を提供すべく図ったものである。   Therefore, in view of the above situation, the present invention provides a charging method for a control valve type lead-acid battery capable of providing a sufficient refreshing effect and improving life performance even when a large battery is used under PSOC control. This is what I wanted.

すなわち本発明に係る制御弁式鉛蓄電池の充電方法は、極板集電部の下端中央の点と当該点から最も離れた極板本体周縁上の点との間の距離が20cm以上である正極板を備えた制御弁式鉛蓄電池を充電対象とし、前回の均等充電からの累積放電電気量に関連する値である累積放電電気量関連値が予め設定した上限値を超えた場合には、次回の均等充電では、定電圧充電を行った後に、更に定電流充電を行う均等充電工程を有することを特徴とする。ここで、「累積放電電気量関連値」とは、前記累積放電電気量に関係する値であれば特に限定されず、例えば、累積放電電気量に加えて、前回の均等充電からの累積充電電気量や、前回の均等充電からの累積放電電気量及び累積充電電気量の絶対値の和等が挙げられる。   That is, in the charging method for the control valve type lead storage battery according to the present invention, the distance between the center point at the lower end of the electrode plate current collector and the point on the periphery of the electrode plate body farthest from the point is 20 cm or more. When the control valve type lead-acid battery with a plate is to be charged and the cumulative discharge electricity related value, which is the value related to the cumulative discharge electricity from the previous equal charge, exceeds the preset upper limit value, the next time In the uniform charge, after the constant voltage charge is performed, a uniform charge step of performing constant current charge is further provided. Here, the “cumulative discharge electric quantity related value” is not particularly limited as long as it is a value related to the cumulative discharge electric quantity. For example, in addition to the cumulative discharge electric quantity, the cumulative charge electric quantity from the previous equal charge is added. And the sum of the absolute value of the accumulated discharge electricity amount and the accumulated charge electricity amount from the previous equal charge.

なお、「定電圧充電」とは、一般的には予め定めた電圧を上回らないように電流を制御しながら行う充電方法をいう。通常、充電状態が低いと充電中の電圧は低く、充電が進むにつれ電圧が上昇する。ある電圧まで達すると、活物質の充電反応以外の反応(例えば水の電気分解等)が発生するため、予め定めた電圧に達しないようにするために行われる充電方法である。   “Constant voltage charging” generally refers to a charging method performed while controlling the current so as not to exceed a predetermined voltage. Normally, when the state of charge is low, the voltage during charging is low, and the voltage increases as charging proceeds. When a certain voltage is reached, a reaction other than the charging reaction of the active material (for example, electrolysis of water) occurs, so that the charging method is performed so as not to reach a predetermined voltage.

また、どんな充電装置にも最大出力が定まっており、電流値で制限される場合もあれば電力値で制限されるときもある。従って、予め定めた電圧に達しないくらいに充電状態が低いと、その電圧に達するまでは最大出力の電流なり電力で充電され続ける。   Moreover, the maximum output is determined for any charging device, and may be limited by the current value or the power value. Therefore, if the state of charge is so low that it does not reach a predetermined voltage, it will continue to be charged with the maximum output current or power until the voltage is reached.

本発明においては、予め定めた電圧に達するまでの詳細な充電方法までは規定しないが、例えば電池容量に対して、あまりに最大電流が小さいと実用的でなく、また、最大電流が大きくともすぐに充電中の電圧が上昇してしまうため、電池と充電装置とのスペックが釣り合わない状態となることがある。   In the present invention, a detailed charging method until reaching a predetermined voltage is not stipulated, but for example, it is not practical if the maximum current is too small for the battery capacity, and immediately even if the maximum current is large. Since the voltage during charging increases, the specifications of the battery and the charging device may not be balanced.

電池容量に対して充電装置の最大電流は、電流値で制限されるものでも電力値で制限されるものでも0.1CA〜3CAの電流値となる範囲に収まっていることが、鉛蓄電池には好ましい。   The maximum current of the charging device with respect to the battery capacity is within the range of current values of 0.1 CA to 3 CA regardless of whether it is limited by the current value or the power value. preferable.

本発明において、前記累積放電電気量関連値が累積放電電気量値である場合、前記予め設定した上限値は5CAhである。   In the present invention, when the cumulative discharge electricity quantity related value is a cumulative discharge electricity quantity value, the preset upper limit value is 5 CAh.

また、前記定電流充電による充電電気量は、例えば、前記累積放電電気量関連値に基づいて決定すればよい。   Moreover, what is necessary is just to determine the charge electricity amount by the said constant current charge based on the said cumulative discharge electricity amount related value, for example.

更に、前記定電流充電時の充電電流は、0.05CA以下であることが好ましい。   Furthermore, the charging current during the constant current charging is preferably 0.05 CA or less.

このような構成を有する本発明によれば、サイズの大きな電池をPSOC制御下で使用する場合でも、充分なリフレッシュ効果を得ることができ、延いては寿命性能を向上することができる。   According to the present invention having such a configuration, even when a large-sized battery is used under PSOC control, a sufficient refresh effect can be obtained, and the life performance can be improved.

正極板を示す模式図である。It is a schematic diagram which shows a positive electrode plate. 電池の種類による寿命サイクル数及び正極板のサイズ(最長距離)の相違を表すグラフである。It is a graph showing the difference in the life cycle number by the kind of battery, and the size (longest distance) of a positive electrode plate. 正極板のサイズ(最長距離)と寿命サイクル数との関係を表すグラフである。It is a graph showing the relationship between the size (longest distance) of a positive electrode plate, and the number of life cycles. 累積放電電気量と寿命サイクル数との関係を表すグラフである。It is a graph showing the relationship between the amount of accumulated discharge electricity and the number of life cycles. 累積放電電気量ごとの、定電流での充電電気量と寿命サイクル数との関係を表すグラフである。It is a graph showing the relationship between the amount of charge electricity at a constant current and the number of life cycles for each cumulative discharge amount of electricity. 累積放電電気量と定電流での充電電気量との関係を表すグラフである。It is a graph showing the relationship between the amount of accumulated discharge electricity and the amount of charge charged at a constant current. 定電流充電時の充電電流と端子電圧及び密閉反応効率との関係を表すグラフである。It is a graph showing the relationship between the charging current at the time of constant current charge, terminal voltage, and sealing reaction efficiency.

以下に、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明に係る充電方法は、極板集電部(耳部)の下端中央の点と当該点から最も離れた極板本体周縁上の点との間の距離が20cm以上である正極板を備えた制御弁式鉛蓄電池を対象とするものである。制御弁式鉛蓄電池では、電解液が微細ガラス等からなるセパレータに保持されたりゲル化されたりして非流動化されているので、成層化が起こりにくい。このため、制御弁式鉛蓄電池は風力発電等と系統連係して負荷平準化する用途に好適に用いられる。   The charging method according to the present invention includes a positive electrode plate having a distance between a point at the center of the lower end of the electrode plate current collector (ear part) and a point on the periphery of the electrode plate body that is farthest from the point is 20 cm or more. The control valve type lead-acid battery is intended. In the valve-regulated lead-acid battery, the electrolyte is held in a separator made of fine glass or the like, or gelled, and is not fluidized, so that stratification hardly occurs. For this reason, the control valve type lead storage battery is suitably used for a load leveling in cooperation with wind power generation or the like.

本発明における「極板集電部の下端中央の点と当該点から最も離れた極板本体周縁上の点との間の距離が20cm以上である」とは、例えば、図1に示す態様の正極板1では、平面視において、集電部2と本体3との境界線Lと集電部2の縦中心線C1との交点Pと、本体3の縦中心線C2を挟んで交点Pとは反対側に位置する本体3の下方頂点Qとの間の距離が20cm以上であることをいう。極板集電部の下端中央の点と当該点から最も離れた極板本体周縁上の点との間の距離が20cm以上であるような大型の極板では、極板内での充電状態にばらつきが生じやすくなるので、定電圧充電のみによる均等充電ではリフレッシュ効果が得られにくくなる。   In the present invention, “the distance between the central point at the lower end of the electrode plate current collector and the point on the periphery of the electrode plate body farthest from the point is 20 cm or more” means, for example, in the form shown in FIG. In the positive electrode plate 1, the intersection P between the boundary line L between the current collector 2 and the main body 3 and the vertical center line C 1 of the current collector 2 and the intersection P across the vertical center line C 2 of the main body 3 in plan view. Means that the distance from the lower vertex Q of the main body 3 located on the opposite side is 20 cm or more. In a large electrode plate where the distance between the center of the lower end of the electrode current collector and the point on the periphery of the electrode plate body farthest from the point is 20 cm or more, the charged state in the electrode plate Since variations are likely to occur, it is difficult to obtain a refresh effect with uniform charging only by constant voltage charging.

本発明では、均等充電時に、定電圧充電を行った後に、更に定電流充電を行うかどうかを決定するために、前回の均等充電からの累積放電電気量に関連する値である累積放電電気量関連値について、予め設定した上限値を設定しておく。   In the present invention, at the time of equal charge, after performing constant voltage charge, in order to determine whether or not to perform constant current charge, the accumulated discharge electricity amount is a value related to the accumulated discharge electricity amount from the previous equal charge. For the related value, a preset upper limit value is set.

前記予め設定した上限値は、例えば、前記累積放電電気量関連値が累積放電電気量値である場合は5CAhである。累積放電電気量が5CAhを超えると、定電圧充電のみにより均等充電を行っても、電池の寿命性能が著しく低下する。なお、5CAhの累積放電電気量には調整放電での放電電気量は含まれない。   The preset upper limit value is, for example, 5 CAh when the cumulative discharge electricity quantity related value is a cumulative discharge electricity quantity value. When the cumulative amount of electricity discharged exceeds 5 CAh, the battery life performance is significantly reduced even when the uniform charge is performed only by constant voltage charging. The accumulated discharge electricity amount of 5 CAh does not include the discharge electricity amount in the regulated discharge.

本発明では、前記累積放電電気量関連値が予め設定した上限値を超えた場合には、次回の均等充電では、定電圧充電を行った後に、更に押込み充電として定電流充電を行う。例えば、自動車用12Vの電池を定電圧で充電する場合、通常、13.8〜14.7V(2.3〜2.45V/セル)の電圧を適用するが、充電が進行するにつれて電池の電圧が上昇していくので、充電器側の電圧を上記電圧に設定していると充電対象である鉛蓄電池との電圧差がなくなり、充電電流が低下していく。このような電流の低下は鉛蓄電池の充電状態が100%に近づいていることを示す。   In the present invention, when the cumulative discharge electricity quantity related value exceeds a preset upper limit value, in the next equal charge, after performing constant voltage charge, constant current charge is further performed as push charge. For example, when charging a 12V battery for automobiles at a constant voltage, a voltage of 13.8 to 14.7V (2.3 to 2.45V / cell) is usually applied, but the voltage of the battery as charging progresses. Therefore, when the voltage on the charger side is set to the above voltage, there is no voltage difference from the lead storage battery to be charged, and the charging current decreases. Such a decrease in current indicates that the state of charge of the lead-acid battery is approaching 100%.

しかし、累積放電電気量が5CAhを超えるPSOCでの使用後に、定電圧充電のみによる均等充電を行っても鉛蓄電池が短寿命であるのは、正極活物質と負極活物質との充電効率に差があるためと考えられる。特に、活物質にカーボンが添加してある場合は、負極活物質の充電効率より正極活物質の充電効率のほうが低い。また、定電圧充電においては、負極の分極のほうが充電時の受入れ電気量への影響が大きいため、正極のリフレッシュが不充分なまま、負極の分極によって充電電気量が制限されてしまっていると考えられる。これに対して、定電圧充電の後に定電流充電を追加して行うことにより、正極もリフレッシュすることができると推測される。   However, the lead-acid battery has a short life even if it is charged evenly by only constant voltage charging after use in PSOC with a cumulative discharge electricity amount exceeding 5 CAh, because of the difference in charging efficiency between the positive and negative active materials It is thought that there is. In particular, when carbon is added to the active material, the charging efficiency of the positive electrode active material is lower than the charging efficiency of the negative electrode active material. Also, in constant voltage charging, the polarization of the negative electrode has a greater effect on the amount of electricity received during charging, so that the amount of charge electricity is limited by the polarization of the negative electrode while the positive electrode is not sufficiently refreshed. Conceivable. On the other hand, it is estimated that the positive electrode can also be refreshed by performing constant current charging after constant voltage charging.

前記定電流充電による充電電気量は、前記累積放電電気量関連値に基づいて決定すればよい。ここで、前記定電流充電による充電電気量を「前記累積放電電気量関連値に基づいて決定」するとは、予め作成しておいた前記累積放電電気量関連値と前記定電流充電による充電電気量との対応関係を表す、関数、マップ、テーブル等から、前記累積放電電気量関連値に応じて前記定電流充電による充電電気量を決定することをいう。なお、前記定電流充電による充電電気量を調整するためには、例えば、充電時間を変えればよい。   The amount of electricity charged by the constant current charging may be determined based on the cumulative discharge electricity amount related value. Here, “determining based on the accumulated discharge electricity amount related value” as to the charge electricity amount by the constant current charging means that the accumulated discharge electricity amount related value prepared in advance and the charge electricity amount by the constant current charging are used. Is determined from the function, map, table, etc. representing the corresponding relationship with the constant current charging in accordance with the cumulative discharge electricity amount related value. In addition, what is necessary is just to change charge time, for example, in order to adjust the amount of charge electricity by the said constant current charge.

前記定電流充電は、0.05CA以下の電流で行うことが好ましい。定電流充電時の充電電流が大きすぎると、電解液中の水の電気分解速度が大きくなり、負極での酸素吸収が追いつかなかったり、充電時の電池温度が上昇したりするので、早期に液枯れする原因となりやすい。このため、密閉反応効率が50%以上となる大きさの電流を選択するのが適当であり、0.05CAは大きすぎない適当な電流である。一方、定電流充電時の充電電流が小さすぎると、活物質を充分にリフレッシュすることが困難になるので好ましくない。このため、例えば、端子電圧が2.5Vを超えるような大きさの電流を選択するのが適当であり、定電流充電時の充電電流の下限としては、0.03CA程度であるのが好ましい。   The constant current charging is preferably performed at a current of 0.05 CA or less. If the charging current during constant current charging is too large, the rate of electrolysis of the water in the electrolyte will increase, and oxygen absorption at the negative electrode will not catch up, and the battery temperature during charging will rise. It tends to cause withering. For this reason, it is appropriate to select a current with such a magnitude that the sealing reaction efficiency is 50% or more, and 0.05 CA is a suitable current that is not too large. On the other hand, if the charging current during constant current charging is too small, it is difficult to sufficiently refresh the active material, which is not preferable. For this reason, for example, it is appropriate to select a current having such a magnitude that the terminal voltage exceeds 2.5 V, and the lower limit of the charging current during constant current charging is preferably about 0.03 CA.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

<供試電池の作製>
下記表1に示す仕様の制御弁式鉛蓄電池を作製し、試験に供した。なお、下記表1において、「最長距離」とは、正極板の集電部の下端中央の点と当該点から最も離れた本体周縁上の点との間の距離を意味し、本試験においては、図1に示すように、平面視において、集電部2と本体3との境界線Lと集電部2の縦中心線C1との交点Pと、本体3の縦中心線C2を挟んで交点Pとは反対側に位置する本体3の下方頂点Qとの間の距離を意味する。
<Production of test battery>
Control valve type lead acid batteries having the specifications shown in Table 1 below were prepared and used for the test. In Table 1 below, “longest distance” means the distance between the point at the center of the lower end of the current collector of the positive electrode plate and the point on the periphery of the main body that is farthest from the point. As shown in FIG. 1, in plan view, the intersection P between the boundary line L between the current collector 2 and the main body 3 and the vertical center line C1 of the current collector 2 and the vertical center line C2 of the main body 3 are sandwiched. It means the distance between the lower vertex Q of the main body 3 located on the opposite side of the intersection P.

<サイクル寿命試験(1)>
作製した供試電池に対し、下記表2に示す条件に従いサイクル寿命試験(1)を行った。具体的には、まず、調整放電を行い、次いで、放電及び充電を繰り返し、10サイクル毎(累積放電電気量2CAh毎)に定電圧で均等充電を行った。
<Cycle life test (1)>
A cycle life test (1) was performed on the produced test battery according to the conditions shown in Table 2 below. Specifically, first, adjusted discharge was performed, and then discharging and charging were repeated, and uniform charging was performed at a constant voltage every 10 cycles (accumulated electric discharge amount 2 CAh).

そして、500サイクル毎に、以下の条件に従い容量試験を行い、終止電圧に達するまでの時間が7時間(定格容量の70%に相当)を下回った場合に、その際のサイクル数を寿命サイクル数とした。結果は図2及び3に示す。
(1)放電;0.1CA、終止電圧1.8V
(2)充電;均等充電に準拠
Then, a capacity test is performed every 500 cycles according to the following conditions, and when the time to reach the final voltage falls below 7 hours (corresponding to 70% of the rated capacity), the number of cycles at that time is the number of life cycles. It was. The results are shown in FIGS.
(1) Discharge: 0.1 CA, final voltage 1.8V
(2) Charging; conforms to uniform charging

<サイクル寿命試験(2)>
Dタイプの供試電池を用い、均等充電の条件を変えてサイクル寿命試験(2)を行った。当該サイクル寿命試験(2)では、調整放電、放電及び充電は上記サイクル寿命試験(1)と同様に行い、一方、均等充電は、下記表3に示す条件に従い行った。そして、500サイクル毎にサイクル寿命試験(1)と同様に容量試験を行い、電池寿命を判定した。結果は表3及び図4〜6に示す。このうち、図4は、電池No.1〜3を比較対象とする定電圧充電のみにより均等充電を行った場合の累積放電電気量と寿命サイクル数との関係を表すグラフであり、図5は、電池No.3〜20を比較対象とする累積放電電気量(10、20、30CAh)ごとの定電流での充電電気量と寿命サイクル数との関係を表すグラフであり、図6は、累積放電電気量と、各累積放電電気量において長寿命となった場合の定電流での充電電気量との関係を表すグラフである。
<Cycle life test (2)>
A cycle life test (2) was performed using a D-type test battery and changing the conditions for equal charge. In the cycle life test (2), adjusted discharge, discharge and charge were performed in the same manner as the cycle life test (1), while equal charge was performed according to the conditions shown in Table 3 below. Then, a capacity test was performed in the same manner as the cycle life test (1) every 500 cycles to determine the battery life. The results are shown in Table 3 and FIGS. Among these, FIG. 1 to 3 are graphs showing the relationship between the cumulative amount of discharged electricity and the number of life cycles when uniform charging is performed only by constant voltage charging for comparison, and FIG. FIG. 6 is a graph showing the relationship between the amount of charge electricity at a constant current and the number of life cycles for each cumulative discharge electricity amount (10, 20, 30 CAh) for comparison with 3 to 20, and FIG. FIG. 5 is a graph showing the relationship between the amount of charge electricity at a constant current when the accumulated discharge electricity amount has a long life.

なお、図6において、長寿命となった場合とは、各累積放電電気量で寿命サイクル数が最高となった場合を意味し、累積放電電気量が10CAhのときは寿命サイクル数が11000となった場合(電池No.5及び6)で、累積放電電気量が20CAhのときは寿命サイクル数が10000となった場合(電池No.11〜13)で、累積放電電気量が30CAhのときは寿命サイクル数が9500となった場合(電池No.18及び19)である。   In FIG. 6, the case where the life is long means the case where the number of life cycles is the highest for each cumulative discharge electricity amount, and the life cycle number is 11000 when the amount of accumulated discharge electricity is 10 CAh. In the case (Battery No. 5 and 6), when the cumulative discharge electricity amount is 20 CAh, the life cycle number is 10,000 (Battery No. 11 to 13), and when the cumulative discharge electricity amount is 30 CAh, the life is reached. This is the case where the number of cycles is 9500 (batteries No. 18 and 19).

<定電流充電時の充電電流の評価>
完全充電状態の電池に対し、下記表4に示す条件で、電流の小さい方から定電流充電を行い、通電終了直前の端子電圧と密閉反応効率を測定した。
<Evaluation of charging current during constant current charging>
The batteries in a fully charged state were subjected to constant current charging from the smaller current under the conditions shown in Table 4 below, and the terminal voltage and the sealed reaction efficiency immediately before the end of energization were measured.

なお、密閉反応効率の測定は、表4に示す通電電流、通電時間及びガス採取時間を除きJIS C 8972の方法に準拠して行ったが、密閉反応効率の算出式としては下記のとおり若干修正を施した式を使用した。
密閉反応効率η=(1−ν/684)×ガス採取持続時間(分)/60
端子電圧と密閉反応効率の測定結果は下記表5及び図7に示す。
The measurement of the sealing reaction efficiency was performed according to the method of JIS C 8972 except for the energizing current, energizing time and gas sampling time shown in Table 4, but the calculation formula for the sealing reaction efficiency was slightly modified as follows. The formula with was used.
Sealing reaction efficiency η = (1−ν / 684) × gas sampling duration (min) / 60
The measurement results of terminal voltage and sealing reaction efficiency are shown in Table 5 and FIG.

<結果>
図2及び3のグラフに示すように、上記最長距離が長いほど寿命サイクル数が小さくなった。また、図2のグラフから分かるように、この傾向は極板の枚数に影響されなかった。
<Result>
As shown in the graphs of FIGS. 2 and 3, the longer the maximum distance, the smaller the number of life cycles. Further, as can be seen from the graph of FIG. 2, this tendency was not affected by the number of electrode plates.

また、図4のグラフに示すように、累積放電電気量が5CAhを超えると、均等充電時に定電圧充電だけを行うとサイクル寿命性能が低下することが判明した。更に、図5及び6のグラフから分かるように、定電流での充電電気量の好適な範囲は累積放電電気量により異なっていた。図6の実線で表されたグラフは、累積放電電気量ごとの長寿命となった充電電気量の範囲の中心を結んだグラフであるが、累積放電電気量に基づいて定電流充電時の充電電気量を決定するときは、例えば、図6の実線で表されたグラフに従って充電電気量を決定すればよい。   Further, as shown in the graph of FIG. 4, it has been found that when the cumulative amount of discharged electricity exceeds 5 CAh, the cycle life performance deteriorates if only constant voltage charging is performed during equal charge. Furthermore, as can be seen from the graphs of FIGS. 5 and 6, the preferred range of charge electricity at a constant current differs depending on the accumulated discharge electricity. The graph represented by the solid line in FIG. 6 is a graph that connects the centers of the range of charge electricity with a long life for each accumulated discharge electricity, and charging at constant current charging based on the accumulated discharge electricity. When determining the amount of electricity, for example, the amount of charge may be determined according to a graph represented by a solid line in FIG.

また、図7のグラフに示すように、定電流充電時の充電電流が0.05CAであると、端子電圧が活物質を充分にリフレッシュすることが可能となる2.5Vを上回るとともに、高い密閉反応効率が示された。これに対して、定電流充電時の充電電流が小さすぎると、端子電圧が2.4Vを下回る場合がある一方、充電電流が大きすぎると、密閉反応効率が急激に低下し、早期の液枯れにつながりやすいので、0.05CA程度が好適である。   Further, as shown in the graph of FIG. 7, when the charging current during constant current charging is 0.05 CA, the terminal voltage exceeds 2.5 V at which the active material can be sufficiently refreshed, and a high hermeticity is achieved. The reaction efficiency was shown. On the other hand, if the charging current during constant current charging is too small, the terminal voltage may be less than 2.4V. On the other hand, if the charging current is too large, the hermetic reaction efficiency is drastically reduced, resulting in early liquid drainage. Therefore, about 0.05 CA is preferable.

1・・・正極板
2・・・集電部
3・・・本体
DESCRIPTION OF SYMBOLS 1 ... Positive electrode plate 2 ... Current collection part 3 ... Main body

Claims (4)

極板集電部の下端中央の点と当該点から最も離れた極板本体周縁上の点との間の距離が20cm以上である正極板を備え、部分充電状態で制御されている制御弁式鉛蓄電池に対して前記部分充電状態での制御における充電とは別に均等充電を行うものであり、
前回の均等充電からの累積放電電気量に関連する値である累積放電電気量関連値が予め設定した上限値以下の場合には、次回の均等充電では、定電圧充電のみを行い、前記累積放電電気量関連値が前記上限値を超えた場合には、次回の均等充電では、定電圧充電その後に更に定電流充電を行うことを特徴とする制御弁式鉛蓄電池の充電方法。
A control valve type that includes a positive electrode plate having a distance between a point at the center of the lower end of the electrode plate current collector and a point on the periphery of the electrode plate body that is farthest from the point, and is controlled in a partially charged state Apart from charging in the control in the partially charged state for the lead storage battery , it performs equal charging,
If the cumulative discharge electricity quantity related value, which is a value related to the cumulative discharge electricity quantity from the previous equal charge, is less than or equal to the preset upper limit value, only the constant voltage charge is performed in the next equal charge, and the cumulative discharge is performed. When the electric quantity related value exceeds the upper limit value, in the next equal charge, the constant voltage charge is performed after the constant voltage charge, and the charging method for the control valve type lead storage battery is characterized by the following.
前記累積放電電気量関連値は、累積放電電気量値であり、
前記予め設定した上限値は、5CAhである請求項1記載の制御弁式鉛蓄電池の充電方法。
The cumulative discharge electricity quantity related value is a cumulative discharge electricity quantity value,
The method for charging a control valve type lead storage battery according to claim 1, wherein the preset upper limit value is 5 CAh.
前記定電流充電による充電電気量は、前記累積放電電気量関連値に基づいて決定される請求項1又は2記載の制御弁式鉛蓄電池の充電方法。   The charging method for a control valve type lead storage battery according to claim 1 or 2, wherein the charge electricity amount by the constant current charge is determined based on the cumulative discharge electricity amount related value. 前記定電流充電時の充電電流は、0.05CA以下である請求項1、2又は3記載の制御弁式鉛蓄電池の充電方法。
The charging method for the control valve type lead-acid battery according to claim 1, 2 or 3, wherein a charging current during the constant current charging is 0.05 CA or less.
JP2013084966A 2013-04-15 2013-04-15 Charging method for control valve type lead acid battery Active JP6146102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013084966A JP6146102B2 (en) 2013-04-15 2013-04-15 Charging method for control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013084966A JP6146102B2 (en) 2013-04-15 2013-04-15 Charging method for control valve type lead acid battery

Publications (3)

Publication Number Publication Date
JP2014207806A JP2014207806A (en) 2014-10-30
JP2014207806A5 JP2014207806A5 (en) 2015-11-05
JP6146102B2 true JP6146102B2 (en) 2017-06-14

Family

ID=52120948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013084966A Active JP6146102B2 (en) 2013-04-15 2013-04-15 Charging method for control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP6146102B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233054A (en) * 2001-02-05 2002-08-16 Japan Storage Battery Co Ltd Power storage device and charge control method
EP2437343A4 (en) * 2009-05-28 2013-07-17 Panasonic Corp Lead storage battery charging control method, charging control circuit, power source device and lead storage battery

Also Published As

Publication number Publication date
JP2014207806A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
KR101704067B1 (en) Lead storage battery operating method and capacitor with lead storage battery operated by the method
JP6168138B2 (en) Liquid lead-acid battery
JP2014157703A (en) Lead accumulator
JP5748091B2 (en) Lead acid battery
JP2008130516A (en) Liquid lead-acid storage battery
JP6043734B2 (en) Lead acid battery
JP5790975B2 (en) Lead acid battery
JP5720947B2 (en) Lead acid battery
JP6146102B2 (en) Charging method for control valve type lead acid battery
CN105161781A (en) Control method for charge and discharge management of lead-acid storage battery
JP2014164993A (en) Control valve type lead-acid storage battery and using method thereof
JP5879888B2 (en) Control valve type lead acid battery
JP2015022923A (en) Method for charging lead-acid storage battery
JP6115841B2 (en) Lead acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
CN203351706U (en) Accumulator with balanced charging and discharging
JP6041186B2 (en) Lead acid battery
JP5277885B2 (en) Method for producing lead-acid battery
JP2013145664A (en) Control valve type lead storage battery
JP2009252606A (en) Manufacturing method of lead acid storage battery
JP4411729B2 (en) Lead-acid battery charging method
JP4827452B2 (en) Method for producing lead-acid battery
JP6519793B2 (en) Method of charging control valve type lead storage battery
JP2000299134A (en) Lead-acid battery charging method
JP5754607B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6146102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150