JP6144814B1 - メタンハイドレート採掘システム - Google Patents

メタンハイドレート採掘システム Download PDF

Info

Publication number
JP6144814B1
JP6144814B1 JP2016222059A JP2016222059A JP6144814B1 JP 6144814 B1 JP6144814 B1 JP 6144814B1 JP 2016222059 A JP2016222059 A JP 2016222059A JP 2016222059 A JP2016222059 A JP 2016222059A JP 6144814 B1 JP6144814 B1 JP 6144814B1
Authority
JP
Japan
Prior art keywords
methane
methane hydrate
platform
mining
gas storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016222059A
Other languages
English (en)
Other versions
JP2018080477A (ja
Inventor
清 菊川
清 菊川
康介 菊川
康介 菊川
Original Assignee
清 菊川
清 菊川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清 菊川, 清 菊川 filed Critical 清 菊川
Priority to JP2016222059A priority Critical patent/JP6144814B1/ja
Application granted granted Critical
Publication of JP6144814B1 publication Critical patent/JP6144814B1/ja
Publication of JP2018080477A publication Critical patent/JP2018080477A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

【課題】海底の表層及び堆積物中に存在するメタンハイドレートを効率よく採掘し海上へ輸送する方法を提供する。【解決手段】自走式採掘装置により採掘した固形物を、洋上のメタンガス貯蔵積出しプラットフォームへ移送するに於いて、自走式採掘装置からメタンハイドレートが溶解する圧力・温度の限界領域直前までの海中に設けた海中プラットフォームまで移送する移送チューブと、前記海中プラットフォームから洋上の前記メタンガス貯蔵積出しプラットフォームまで移送する連続式バケットコンベア装置とからなる。【選択図】図1

Description

本発明は、海底の表層及び堆積物中に存在するメタンハイドレート資源を効率よく採掘し海上へ移送するメタンハイドレート採掘システムに関する。
日本近海に莫大な埋蔵量の表層型メタンハイドレートが存在することが確認されており、これを効率的に採掘すれば、エネルギーの心配を無くすることができる。
現在考案されているメタンハイドレートの回収方法には、海底炭鉱手法・自噴回収手法・土木的手法・加熱法・減圧法・化学的手法がある。
日本海側に存在するメタンハイドレートの回収方法として次のような海底資源採掘装置が開発されており、採掘中のメタンハイドレートは、一部ガス化して海中に放出するので、ガス化したものを捕集する装置を組み合わせている。
先端がカッターのドリルの付いた心棒を、採掘フレームの一端に取付け、他端には採掘駆動車を連結し、心棒を中心に採掘駆動車を前進させて採掘フレームで土砂を掬い、採掘フレームの中のコンベアで、海底資源や混在する土砂を船上または沿岸に運び、海底資源からガス化したガスは、ガス収集シートで収集する
としている。(例えば、特許文献1参照。)。
特開2014−122531
以上に述べた前記先行事例(特許文献1)においては、
1.メタンハイドレート塊の密度は0.91g/cm3と軽く、皿形の外形は丸形となっているバケットでは海中では不安定であり、採掘〜バケットアーム〜受け皿の移送中にメタンハイドレートが浮遊や、溶解してガス化し、移送に問題がないか疑問である。
2.海底から海上への直接移送は一見効率的に思えるが、長尺のコンベアでは海流の影響や海上の荒天に影響を受け、ついては、操業に支障をきたすことで効率的な採掘がでず、設備の稼働率を落とす。
3.採掘駆動車は海底中央の採掘位置に穴を開けて固定されているときは安定した稼働は可能と思われるが、採掘駆動車が採掘フレームに合わせて動くときや採掘場所の移動時にはコンベア装置の移動は大がかりとなる。
などの問題が考えられる。
本発明は、このような従来の構成が有していた問題を解決しようとするものであり、回収のためのエネルギー効率を極力落とすことなく、採掘時の環境に配慮した構造とし、配転・移送を安定させるために可撓性のあるチューブを使用するなどで、荒海に於いても回収効率や機動性が高く低価格のメタンハイドレート採掘システムを実現することを目的とするものである。
上記目的を達成するために、本発明の第1の態様のメタンハイドレート採掘システムは、海底に存在するメタンハイドレートを掘削するにおいて、採掘機と破砕機と送圧機を備えた自走式採掘装置と、
該自走式採掘装置から送り出された固形物を、洋上に設けたメタンガス貯蔵積出しプラットフォームへ移送する場合、
メタンハイドレートが溶解する圧力・温度の限界領域直前までの海中に前記メタンガス貯蔵積出しプラットフォームから垂下して係留する海中プラットフォームを設け、該海中プラットフォームまで移送する移送チューブと、
前記海中プラットフォームから前記メタンガス貯蔵積出しプラットフォームまで移送する連続式バケットコンベア装置と、
からなることを特徴とする。
本発明の第2の態様のメタンハイドレート採掘システムは、前記連続式バケットコンベア装置には、前記固形物を移送中に前記固形物中のメタンハイドレートが溶解して生じたメタンガスを収集して、洋上のメタンガス貯蔵積出しプラットフォームへ移送するガス収集移送ダクトを設けたことを特徴とする。
本発明の第3の態様のメタンハイドレート採掘システムは、前記移送チューブ及びガス収集移送ダクトは、流体導入式中空孔形成チューブを使用し、該流体導入式中空孔形成チューブを構成する複数本の小径ホースには海水を圧入して展張し、前記小径ホースの一部は海面下の温海水を海底方向へ連続して流すことを特徴とする。
本発明の第4の態様のメタンハイドレート採掘システムは、前記自走式採掘装置と前記海中プラットフォームの間に、該海中プラットフォームから垂下した海中、または海底に固定した中間ステージを設けたことを特徴とする。
本発明の第5の態様のメタンハイドレート採掘システムは、前記海中プラットフォームには、前記固形物を保管する保管設備を設けたことを特徴とする。
本発明の第6の態様のメタンハイドレート採掘システムは、前記メタンガス貯蔵積出しプラットフォームには、該メタンガス貯蔵積出しプラットフォームから垂下する円筒状の構造物を設け、該構造物中に前記ガス収集移送ダクトおよび前記連続式バケットコンベア装置の一部を内蔵させたことを特徴とする。
上述したように本発明はメタンハイドレートが溶解する特質に合わせた移送方法に特徴があり、メタンハイドレートが結晶状の海底で採掘し、結晶が溶解する圧力・温度の限界領域直前まではチューブを用いて移送、前記限界領域直前からメタンガス貯蔵積出しプラットフォームまでは結晶およびガス状態の両面で対処する方法としている。
また、メタンガス貯蔵積出しプラットフォームには半潜式プラットフォームのスパー型の特徴である垂直な円筒状の構造物を設けることで荒海での安定を図り、採掘や移送への影響を小さくし、移送途上の漏れガスを完全回収するなど環境面にも優れる。
また、海中プラットフォームから垂下した箇所に中間ステージを設けることで、自走式採掘装置の稼働が海上等の影響を極力受けず効率的に行えるようにした。
また、海中プラットフォームに固形物保管設備を設けることで、自走式採掘装置、連続式バケットコンベア装置、海上のメタンガス貯蔵積出しプラットフォームの稼働に合わせて固形物在庫の調整を行い、全体設備の効率的な稼働を可能としている。
更には、メタンハイドレートのガス溶解時の吸熱対策として、移送チューブ及びガス収集移送ダクトに流体導入式中空孔形成チューブを使用することで、チューブを構成するホースの一部に海面付近の温海水を導入し、海底から移送されるチューブ内の低温海水や固形物と熱交換することで固形物を移送途中に再結晶等によりチューブ内に詰まる等のリスクを低くすることができる。
更にまた、洋上の回収船に回収されたメタンハイドレートは、自己保存性の特質を生かし塊状のままで高圧保管庫へ収納するなどにより、エネルギー投資・回収効率を高くできる。
図1はメタンハイドレート採掘システムの概略図である。 図2は自走式採掘装置の概略図である。 図3は海中プラットフォームの概略図である。 図4はメタンガス貯蔵積出しプラットフォームの概略図である。 図5は流体導入式中空孔形成チューブの概略図である。 図6は図4のA−A'の断面図である。
以下、本発明の実施の形態を図1〜図6に基づいて説明する。
以下に示す実施形態は本発明の技術思想を具体化するためのメタンハイドレート採掘システム1を例示するものであって、本発明をこれらに特定することを意図するものではなく、特許請求の範囲に含まれるその他の実施形態のものにも等しく適応し得るものである。
なお、メタンハイドレートは HYPERLINK "https://ja.wikipedia.org/wiki/%E5%88%86%E8%A7%A3" \o "分解" 分解し HYPERLINK "https://ja.wikipedia.org/wiki/%E5%90%B8%E7%86%B1%E5%8F%8D%E5%BF%9C" \o "吸熱反応" 吸熱反応を起こした時に生成される水によって HYPERLINK "https://ja.wikipedia.org/wiki/%E6%B0%B7" \o "氷" 氷の薄膜を形成するため、常圧下−20度程度でも長く保存できる自己保存性があることが分かっているが、本実施例では考慮していない。
図1は、全体構成を示しており、海底の表層型メタンハイドレート911を採掘する自走式採掘装置2、中間ステージ3、海中プラットフォーム5及び保管設備51、連続式バケットコンベア装置6、自走式採掘装置2と海中プラットフォーム5を繋ぐ移送チューブ4、連続式バケットコンベア装置6を内蔵するガス収集移送ダクト7、および洋上のメタンガス貯蔵積み出しプラットフォーム8、と同設備から垂下して設けられた円筒構造物81、プラットフォーム8上にメタンガスフォルダー82、ガス積み出し設備83とで構成している。
システム全体のコントロールは洋上のメタンガス貯蔵積出しプラットフォーム8から遠隔操作により行われており、設備の電源も同設備から送られる。
図2は、自走式採掘装置2で採掘機21と破砕機22と送圧機23とで構成され、採掘された固形物91は移送チューブ4で中間ステージ3経由により海中プラットフォーム5の保管設備51へ移送される。
採掘機21はメタンハイドレート911の存在する状況や特性にもよるが、表層型メタンハイドレート911の採掘は、アスファルト舗装の表層を削るドラム式ロードカッターや木材破砕用のドラムチッパーや除雪機などを応用し、50〜100ミリメートルの深さを表面掘削して走行する機械が良い。
また、掘削された不安定なメタンハイドレート911を含む固形物91を飛散させず次工程に送るためのカバーと次工程への集積・送付口を設ける。
更にまた、移送チューブ4との接続は、ねじれや折れの防止のため、回転旋回を自由にできるホース自在継ぎ手25を取り付けるのが良い。
なお、自走式採掘装置2は既に開発されたものがあり、移送チューブ4へ移送できる装置であれば何れの装置でも良い。
自走式採掘装置2から海中プラットフォーム5へ移送する移送チューブ4は、フレキシブルチューブ又は特に流体導入式中空孔形成チューブ92が良い。
流体導入式中空孔形成チューブ92は構成する複数本の小径ホース923に海水を圧入して展張し、小径ホース圧をコントロールしてチューブの直進性を制御し、また小径ホース923の一部に海面下の温海水を連続的に取り入れる方法により、海底から来る低温海水と熱交換し、移送チューブ4の詰まり等を防ぐことができる。
また、流体導入式中空孔形成チューブ92は必要により、円形力の強いチューブの外側に、前記サイズより大きい直進力の強いもう1つのチューブを設けた2重構造の流体導入式中空孔形成チューブ92とし、チューブにかける圧力を制御してチューブの円形力、直進力をより高度にコントロールする方法もある。
なお、ホース及びチューブの素材・太さや長さ・ホースの使用本数等選択の自由度は高いので、採掘する海洋の状況等により設定すると良い。
中間ステージ3は、海中プラットフォーム5から垂下した海中または海底に固定して設けられているが、これは自走式採掘装置2が採掘で移動するとき、該自走式採掘装置2が移送チューブ4に接続されている他の装置等を牽引するなどで、移動に制限等を受けないようにするためのものである。
また、自走式採掘装置2に設けられている送圧機23の送圧能力が不足するときは中間ステージ3に補強用の送圧機31を設けると良い。
更にまた、海中プラットフォーム5へ送圧する方法ではなく、海中プラットフォーム側から吸引する方法もある。
図3は海中プラットフォーム5で、メタンハイドレートが溶解する圧力・温度の限界領域直前までの海中に、メタンガス貯蔵積出しプラットフォーム8から垂下した箇所に係留して設けている。
海中プラットフォーム5には、海底から移送チューブ4により移送された固形物91を保管する保管設備51および海上のメタンガス貯蔵積出しプラットフォーム8へ移送する連続式バケットコンベア装置6を設けている。
また、連続式バケットコンベア装置8で移送中に前記固形物中91のメタンハイドレート911が溶解してメタンガス化したものは、連続式バケットコンベア装置6を内包するように設けられたガス収集移送ダクト7により収集し、洋上のメタンガス貯蔵積出しプラットフォーム8へ移送する。
また、メタンハイドレート911は密度が0.91g/cm3と軽く不安定なことから、連続式バケットコンベア装置6で移送中に、固形物91が散逸しないようにバケットに蓋61を設けている。
ガス収集移送ダクト7は、フレキシブルチューブ又は特に流体導入式中空孔形成チューブ92が良い。
流体導入式中空孔形成チューブ92は、構成する複数本の小径ホース923に海水を圧入して展張し、小径ホース圧をコントロールしてチューブの直進性を制御し、また一部の小径ホース923に海面下の温海水を連続的に取り入れて送ることにより、海底から来る低温海水と熱交換し、ガス収集移送ダクト7の詰まり等のトラブルを防ぐことができる。
また、流体導入式中空孔形成チューブ92は必要により、円形力の強いチューブの外側に、前記サイズより大きい直進力の強いもう1つのチューブを設けた2重構造の流体導入式中空孔形成チューブ92とし、チューブにかける圧力を制御してチューブの円形力、直進力をより高度にコントロールする方法もある。
なお、ホース及びチューブの素材・太さや長さ・ホースの使用本数等選択の自由度は高いので、採掘する海洋の状況等により設定すると良い。
図4は洋上に設けられたメタンガス貯蔵積出しプラットフォーム8で、海中プラットフォーム5から移送された固形物91や溶解したメタンガスを受け入れる機能を持ち、メタンガスフォルダー82やガス積出設備83を備えている。
また、場合によっては未溶解の状態で移送されたメタンハイドレート911を含む固形物91を塊状で保管するための保管設備を備えることもある。
これは、メタンハイドレート911の特質として、 HYPERLINK "https://ja.wikipedia.org/wiki/%E5%88%86%E8%A7%A3" \o "分解" 分解しときに HYPERLINK "https://ja.wikipedia.org/wiki/%E5%90%B8%E7%86%B1%E5%8F%8D%E5%BF%9C" \o "吸熱反応" 吸熱反応により HYPERLINK "https://ja.wikipedia.org/wiki/%E6%B0%B7" \o "氷" 氷の薄膜を形成し、常圧下−20度程度でも塊状として長く保存できる自己保存性が知れており、洋上へ移送されても全てがガス溶解されない場合は、塊状で海上運搬が可能であれば塊状のままの方がコスト低減を図れ、それに対応するものである。
また、連続式バケットコンベア装置6は、海中プラットフォーム5からメタンガス貯蔵積出しプラットフォーム8までの間に設置されるのであるが、移送途中に固形物中91のメタンハイドレート911が全て溶解するときは当箇所までの搬送し、後はガス収集移送ダクト7による移送だけても可能である。
なお、海中プラットフォーム5の設置場所は、コンベア部が長くなるが、メタンハイドレートが溶解する圧力・温度の限界領域直前までであれば海底に設置することも可能である。
また、海中プラットフォーム5を海底または海底近くに設置できることで、メタンハイドレート採掘システム1は、メタンハイドレートの採掘だけでなく、他の海底資源の採掘にも利用可能である。
メタンガス貯蔵積出しプラットフォーム8には、メタンガス貯蔵積出しプラットフォーム8から垂下する円筒構造物81を設け、連続式バケットコンベア装置6やガス収集移送ダクト7を一部内包することで、メタンハイドレート採掘システム1の荒海での採掘や移送への影響を小さくして稼働の安定を図り、ガス回収が二重になることで事故対応ついては環境面にも対応できる。
1 メタンハイドレート採掘システム
2 自走式採掘装置
21 採掘機
22 破砕機
23 送圧機
25 ホース自在継ぎ手
3 中間ステージ
31 送圧機
4 移送チューブ
5 海中プラットフォーム
51 保管設備
6 連続式バケットコンベア装置
61 蓋付バケット
7 ガス収集移送ダクト
8 メタンガス貯蔵積出しプラットフォーム
81 円筒構造物
82 メタンガスフォルダー
83 ガス積出設備
84 繋留索・チェーン
91 固形物
911 メタンハイドレート
92 流体導入式中空孔形成チューブ
921 チューブ本体
922 大径中空孔
923 小径ホース
9231 小径ホース(展張用海水)
9232 小径ホース(熱交換用海水)
9233 小径ホース(電気通信ケーブル等)
9239 海水およびメタンガス

Claims (6)

  1. 海底に存在するメタンハイドレートを掘削するにおいて、採掘機と破砕機と送圧機を備えた自走式採掘装置と、
    該自走式採掘装置から送り出された固形物を、洋上に設けたメタンガス貯蔵積出しプラットフォームへ移送する場合、
    メタンハイドレートが溶解する圧力・温度の限界領域直前までの海中に前記メタンガス貯蔵積出しプラットフォームから垂下して係留する海中プラットフォームを設け、該海中プラットフォームまで移送する移送チューブと、
    前記海中プラットフォームから前記メタンガス貯蔵積出しプラットフォームまで移送する連続式バケットコンベア装置と、
    からなることを特徴とするメタンハイドレート採掘システム。
  2. 前記連続式バケットコンベア装置には、前記固形物を移送中に前記固形物中のメタンハイドレートが溶解して生じたメタンガスを収集して、洋上のメタンガス貯蔵積出しプラットフォームへ移送するガス収集移送ダクトを設けたことを特徴とする請求項1に記載のメタンハイドレート採掘システム。
  3. 前記移送チューブ及び前記ガス収集移送ダクトは、流体導入式中空孔形成チューブを使用し、該流体導入式中空孔形成チューブを構成する複数本の小径ホースには海水を圧入して展張し、前記小径ホースの一部は海面下の温海水を海底方向へ連続して流すことを特徴とする請求項2に記載のメタンハイドレート採掘システム。
  4. 前記自走式採掘装置と前記海中プラットフォームの間に、該海中プラットフォームから垂下した海中、または海底に固定した中間ステージを設けたことを特徴とする請求項1に記載のメタンハイドレート採掘システム。
  5. 前記海中プラットフォームには、前記固形物を保管する保管設備を設けたことを特徴とする請求項1に記載のメタンハイドレート採掘システム。
  6. 前記メタンガス貯蔵積出しプラットフォームには、該メタンガス貯蔵積出しプラットフォームから垂下する円筒状の構造物を設け、該構造物中に前記ガス収集移送ダクトおよび前記連続式バケットコンベア装置の一部を内蔵させたことを特徴とする請求項に記載のメタンハイドレート採掘システム。
JP2016222059A 2016-11-15 2016-11-15 メタンハイドレート採掘システム Expired - Fee Related JP6144814B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016222059A JP6144814B1 (ja) 2016-11-15 2016-11-15 メタンハイドレート採掘システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016222059A JP6144814B1 (ja) 2016-11-15 2016-11-15 メタンハイドレート採掘システム

Publications (2)

Publication Number Publication Date
JP6144814B1 true JP6144814B1 (ja) 2017-06-07
JP2018080477A JP2018080477A (ja) 2018-05-24

Family

ID=59012072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016222059A Expired - Fee Related JP6144814B1 (ja) 2016-11-15 2016-11-15 メタンハイドレート採掘システム

Country Status (1)

Country Link
JP (1) JP6144814B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109057758A (zh) * 2018-09-03 2018-12-21 岑益南 一种开采海底可燃冰的装置及方法
CN109296345A (zh) * 2018-10-17 2019-02-01 中国石油天然气集团有限公司 一种海底可燃冰气化分离装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7141653B1 (ja) 2022-05-21 2022-09-26 ▲昇▼ 蓮池 ガス採取装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161531A (ja) * 2004-11-15 2006-06-22 Osaka Industrial Promotion Organization メタンハイドレート採鉱用ロボット
JP2012518102A (ja) * 2009-02-13 2012-08-09 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 海底に埋まっているハイドレートを市場価値のある炭化水素組成物に変換する方法
JP2014122531A (ja) * 2012-12-22 2014-07-03 Hiromasa Kitaguchi 海底資源採掘装置。
JP2016166455A (ja) * 2015-03-09 2016-09-15 三井造船株式会社 メタンハイドレートのガス化装置及び水底メタンハイドレートからのメタンガス回収方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161531A (ja) * 2004-11-15 2006-06-22 Osaka Industrial Promotion Organization メタンハイドレート採鉱用ロボット
JP2012518102A (ja) * 2009-02-13 2012-08-09 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 海底に埋まっているハイドレートを市場価値のある炭化水素組成物に変換する方法
JP2014122531A (ja) * 2012-12-22 2014-07-03 Hiromasa Kitaguchi 海底資源採掘装置。
JP2016166455A (ja) * 2015-03-09 2016-09-15 三井造船株式会社 メタンハイドレートのガス化装置及び水底メタンハイドレートからのメタンガス回収方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109057758A (zh) * 2018-09-03 2018-12-21 岑益南 一种开采海底可燃冰的装置及方法
CN109296345A (zh) * 2018-10-17 2019-02-01 中国石油天然气集团有限公司 一种海底可燃冰气化分离装置
CN109296345B (zh) * 2018-10-17 2023-10-31 中国石油天然气集团有限公司 一种海底可燃冰气化分离装置

Also Published As

Publication number Publication date
JP2018080477A (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6144814B1 (ja) メタンハイドレート採掘システム
JP4756315B2 (ja) メタンハイドレート採鉱用ロボット
CA2392331C (en) Subsea well intervention vessel
KR101980221B1 (ko) 해저 채광을 위한 분리 가능한 방법 및 시스템
JP5316878B2 (ja) メタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法
JP2014159710A (ja) メタンハイドレート生産設備
JP2003214082A (ja) ガスハイドレート掘採方法とその装置
WO2009005479A1 (en) Equipment for excavation of deep boreholes in geological formation and the manner of energy and material transport in the boreholes
CN102337895A (zh) 一种开采海洋天然气水合物的方法与装置
CN109944548B (zh) 海底钻机钻井系统及方法
JP2009280960A (ja) 揚水機構および水底資源回収装置
CN102030085B (zh) 一种浮式生产储油平台结构
JP2016204875A (ja) 海底資源採掘システム
CN210067969U (zh) 海底钻机钻井系统
CN209581793U (zh) 一种沉箱式钻井平台
CN108756888A (zh) 一种小直径硬岩竖井掘进机
JP2019002174A (ja) メタンハイドレートの採掘方法
Jukes et al. Arctic and harsh environment pipeline trenching technologies and challenges
CN206552222U (zh) 多用途综合采矿岛船
LU503849B1 (en) Telescopic Buoyancy Compartment and Submarine Mineral Lifting System
CN202202347U (zh) 基槽清淤器
JP7233771B1 (ja) 海底資源掘削船
CN203186554U (zh) 井口平台与单点系泊一体化电动旋转机构
CN109795636A (zh) 一种沉箱式钻井平台
JP2014122531A (ja) 海底資源採掘装置。

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

R150 Certificate of patent or registration of utility model

Ref document number: 6144814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees