JP6133621B2 - Yamadome wall - Google Patents

Yamadome wall Download PDF

Info

Publication number
JP6133621B2
JP6133621B2 JP2013034772A JP2013034772A JP6133621B2 JP 6133621 B2 JP6133621 B2 JP 6133621B2 JP 2013034772 A JP2013034772 A JP 2013034772A JP 2013034772 A JP2013034772 A JP 2013034772A JP 6133621 B2 JP6133621 B2 JP 6133621B2
Authority
JP
Japan
Prior art keywords
pile
existing
wall
underground
existing pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013034772A
Other languages
Japanese (ja)
Other versions
JP2014163107A (en
Inventor
勝士 玉井
勝士 玉井
栄明 安井
栄明 安井
幹彦 岡田
幹彦 岡田
松本 健
健 松本
仁人 茂手木
仁人 茂手木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2013034772A priority Critical patent/JP6133621B2/en
Publication of JP2014163107A publication Critical patent/JP2014163107A/en
Application granted granted Critical
Publication of JP6133621B2 publication Critical patent/JP6133621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

本発明は、山留壁に関する。   The present invention relates to a mountain retaining wall.

都市部で新築建物を構築する場合、更地の状態から始めるケースは非常に少ない。また、更地の状態であっても、地中構造物が残っていると、撤去工事により既存地下外壁を解体して撤去した後、山留壁を敷地境界ライン一杯まで広げて形成し、山留壁の内側に新たに地下外壁を構築していた。
一方、昨今は、工期短縮・コスト削減の見地から、既存建物の地下外壁を山留壁として再利用し、地中構造物の撤去工事を省略するするケースが散見されるようになった。しかし、新築建物の地中構造物を、既存建物の地中構造物より深い位置まで構築する場合には、既存建物の地下外壁のみでは深さが足りず、新たに、既存建物の地下外壁の下方に新たに山留壁を構築する必要がある。
既存建物の地下外壁の下に新たな山留壁を構築する技術には、例えば特許文献1がある。
特許文献1の地中構造物の施工法は、既存建物の地下外壁の下方に、土圧を受ける山留壁を構築する構成である。このとき、山留壁は、地下外壁を支持する既存杭より内側に構築される。
When building a new building in an urban area, there are very few cases that start from the ground. Also, even if the ground structure remains, even if the underground structure remains, after the existing underground outer wall is dismantled and removed by the removal work, the mountain retaining wall is expanded to the full boundary line of the site. A new underground outer wall was constructed inside the retaining wall.
On the other hand, recently, from the standpoint of shortening the construction period and reducing costs, there are some cases where the underground outer wall of an existing building is reused as a mountain retaining wall, and the removal work of underground structures is omitted. However, when the underground structure of a new building is built to a position deeper than the underground structure of an existing building, the depth of the existing building's underground outer wall is not sufficient, and a new It is necessary to construct a new retaining wall below.
For example, Patent Document 1 discloses a technique for constructing a new mountain retaining wall under an underground outer wall of an existing building.
The construction method of the underground structure of patent document 1 is the structure which builds the mountain retaining wall which receives earth pressure under the underground outer wall of the existing building. At this time, the mountain retaining wall is constructed inside the existing pile that supports the underground outer wall.

特開2001−271365号公報JP 2001-271365 A

このため、山留壁の内側に構築される地中構造物、及び地中構造物の上に建てられる地上構造物の床面積が小さくなってしまう。
本発明は、上記事実に鑑み、地中構造物の撤去工事を省略して、かつ、新設地下構造物の外壁を既存杭の位置まで近づけることを目的とする。
For this reason, the floor area of the underground structure built on the inside of the mountain retaining wall and the above-ground structure built on the underground structure is reduced.
In view of the above facts, an object of the present invention is to omit the removal work of the underground structure and bring the outer wall of the newly installed underground structure close to the position of the existing pile.

請求項1に記載の発明に係る山留壁は、既存躯体の地下外壁を支持する既存杭と、前記既存杭の間に構築され前記既存杭の頭部よりも下方の掘削底面まで地盤が掘削された状態で前記地盤からの土圧を受ける壁体と、を有することを特徴としている。 The mountain retaining wall according to the invention of claim 1 is constructed between the existing pile supporting the underground outer wall of the existing frame and the existing pile, and the ground is excavated to the bottom of the excavation below the head of the existing pile. is characterized in that chromatic and wall, the receiving the soil pressure from the ground at state.

請求項1に記載の発明によれば、既存杭と既存杭との間に構築された壁体により、地山側の土圧が受けられる。これにより、既存杭より内側に壁体を構築することなく、山留壁で土圧を受けることができる。この結果、新設地下構造物の外壁を既存杭の位置まで広げて構築することができ、床面積を広く確保することができる。また、地中構造物の撤去工事を省略できるので、新設地下構造物の工期短縮及びコスト削減が達成できる。   According to invention of Claim 1, the earth pressure by the side of a natural ground is received by the wall body constructed | assembled between the existing pile and the existing pile. Thereby, it is possible to receive earth pressure at the mountain retaining wall without building a wall body inside the existing pile. As a result, the outer wall of the newly installed underground structure can be constructed to extend to the position of the existing pile, and a large floor area can be secured. In addition, since the removal work of underground structures can be omitted, the construction period and cost of the newly installed underground structure can be shortened.

請求項2に記載の発明は、請求項1に記載の山留壁において、前記壁体は、前記既存杭と前記既存杭との間に渡された矢板であり、前記既存杭と前記既存杭との間に建て込まれた山留芯材、及び前記山留芯材と前記既存杭との間に渡された矢板であり、又は、前記既存杭と前記既存杭との間に建て込まれた山留芯材、前記山留芯材と前記既存杭との間に渡された矢板、及び前記山留芯材と前記山留芯材との間に渡された矢板であることを特徴としている。   The invention according to claim 2 is the mountain retaining wall according to claim 1, wherein the wall is a sheet pile passed between the existing pile and the existing pile, and the existing pile and the existing pile Yamadori core material built between and the sheet pile passed between the mountain core material and the existing pile, or built between the existing pile and the existing pile. Yamashita core material, a sheet pile passed between the Yamadome core material and the existing pile, and a sheet pile passed between the Yamadome core material and the Yamato core material. Yes.

請求項2に記載の発明によれば、既存杭と既存杭との間に渡された矢板により、地山側の土圧を受ける壁体が構築される。又は、既存杭と既存杭との間に建て込まれた山留芯材と、山留芯材と既存杭との間に渡された矢板により、地山側の土圧を受ける壁体が構築される。又は、既存杭と既存杭との間に建て込まれた山留芯材と、山留芯材と既存杭との間に渡された矢板、及び山留芯材と山留芯材との間に渡された矢板により、地山側の土圧を受ける壁体が構築される。
これにより、既存杭を土留壁として利用することができる。このとき、既存杭のピッチが大きいときは、間に山留芯材を建て込むことで、壁体を構築することができる。
この結果、新設地下構造物の工期短縮及びコスト削減が達成できる。
According to invention of Claim 2, the wall body which receives the earth pressure of the natural ground side is constructed | assembled by the sheet pile passed between the existing pile and the existing pile. Or, the wall body that receives earth pressure on the natural ground side is constructed by the pile core material built between the existing pile and the pile pile, and the sheet pile passed between the pile core material and the existing pile. The Or, the Yamato core material built between the existing pile and the existing pile, the sheet pile passed between the Yamadome core material and the existing pile, and between the Yamadome core material and the Yamadome core material The wall body that receives the earth pressure on the natural mountain side is constructed by the sheet pile passed to.
Thereby, the existing pile can be used as a retaining wall. At this time, when the pitch of the existing pile is large, it is possible to construct the wall body by building the mountain core material in between.
As a result, the construction period and cost of the newly installed underground structure can be shortened.

請求項3に記載の発明は、請求項1に記載の山留壁において、前記壁体は、高圧噴射撹拌工法により前記既存杭の間に構築された地盤改良体であることを特徴としている。   The invention according to claim 3 is the mountain retaining wall according to claim 1, wherein the wall body is a ground improvement body constructed between the existing piles by a high-pressure jet stirring method.

請求項3に記載の発明によれば、高圧噴射撹拌工法により前記既存杭の間に構築された地盤改良体で壁体が構築される。これにより、地山側の土圧を受ける壁体に止水機能を持たせることができる。また、地盤改良体は、既存杭と既存杭との間に構築されるので、新設地下構造物の床面積を広く確保することができる。更に、地中構造物の撤去工事を省略できるので、新設地下構造物の工期短縮及びコスト削減が達成できる。 According to invention of Claim 3, a wall body is constructed | assembled with the ground improvement body constructed | assembled between the said existing piles by the high-pressure jet stirring method. Thereby, the water stop function can be given to the wall body which receives the earth pressure on the natural ground side. Moreover, since the ground improvement body is constructed between the existing pile and the existing pile, the floor area of the newly installed underground structure can be secured widely. Furthermore, since the removal work of the underground structure can be omitted, the construction period and cost of the newly installed underground structure can be shortened.

本発明は、上記構成として地中構造物の撤去工事を省略して、かつ、新設地下構造物の外壁を既存杭の位置まで近づけることができる。   In the present invention, the construction for removing the underground structure can be omitted as described above, and the outer wall of the newly installed underground structure can be brought close to the position of the existing pile.

本発明の第1実施形態に係る山留壁の基本構成を示す斜視図である。It is a perspective view which shows the basic composition of the mountain retaining wall which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る山留壁の基本構成を示す図1のX−X線断面図である。It is XX sectional drawing of FIG. 1 which shows the basic composition of the mountain retaining wall which concerns on 1st Embodiment of this invention. 従来の山留壁の基本構成を示す図1のX−X線に相当する位置における断面図である。It is sectional drawing in the position corresponded to the XX line of FIG. 1 which shows the basic composition of the conventional mountain retaining wall. (A)は従来の山留壁と本発明の第1実施形態に係る山留壁の地下外壁限界ライン位置の比較を示す断面図であり、(B)は従来の山留壁である図4(A)のX−X線断面図であり、(C)は本発明の山留壁である図4(A)のY−Y線断面図である。(A) is sectional drawing which shows the comparison of the underground outer wall limit line position of the conventional mountain retaining wall and the mountain retaining wall which concerns on 1st Embodiment of this invention, (B) is a conventional mountain retaining wall FIG. It is XX sectional drawing of (A), (C) is the YY sectional view taken on the line of FIG. 4 (A) which is the mountain wall of this invention. 本発明の第2実施形態に係る山留壁の基本構成を示す斜視図である。It is a perspective view which shows the basic composition of the mountain retaining wall which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る山留壁の基本構成を示す図5のX−X線断面図である。It is XX sectional drawing of FIG. 5 which shows the basic composition of the mountain retaining wall which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る山留壁のM−N曲線図である。It is a MN curve figure of a mountain retaining wall concerning a 2nd embodiment of the present invention. (A)は本発明の山留壁の変形測定位置を示す側面図であり、(B)は5次掘削完了時の変異量の実測結果であり、(C)は6次掘削完了時の変異量の実測結果である。(A) is a side view showing the deformation measurement position of the retaining wall of the present invention, (B) is an actual measurement result of the amount of mutation at the completion of the fifth excavation, (C) is the mutation at the completion of the sixth excavation It is the actual measurement result of quantity. 本発明の第2実施形態に係る山留壁の展開例を示す地下躯体の斜視図である。It is a perspective view of an underground frame which shows the example of development of the mountain retaining wall concerning a 2nd embodiment of the present invention. (A)は本発明の第3実施形態に係る山留壁の基本構成を示す図1のX−X線に相当する位置における断面図であり、(B)は山留壁の構築方法を示す側面図である。(A) is sectional drawing in the position equivalent to the XX line of FIG. 1 which shows the basic composition of the mountain retaining wall which concerns on 3rd Embodiment of this invention, (B) shows the construction method of a mountain retaining wall. It is a side view.

(第1実施形態)
図1の斜視図、図2の平面図(図1のX−X線断面)に示すように、第1実施形態に係る山留壁10は、既存躯体36の地下外壁26の下に構築されている。地下外壁26は既存杭14で支持され、既存杭14と既存杭14の間には矢板12が差し込まれている。
ここに、既存躯体36は、建て替えのために地上部が解体された建物の、地下部分の外周部であり、地下外壁26は、地盤18からの土圧を受ける山留壁として、解体されずに存置されている。また、既存杭14も存置され、頭部は、地下外壁26の下端に設けられた地下底盤24の底面を支持している。
(First embodiment)
As shown in the perspective view of FIG. 1 and the plan view of FIG. 2 (cross section taken along line XX of FIG. 1), the mountain retaining wall 10 according to the first embodiment is constructed under the underground outer wall 26 of the existing frame 36. ing. The underground outer wall 26 is supported by the existing pile 14, and the sheet pile 12 is inserted between the existing pile 14 and the existing pile 14.
Here, the existing frame 36 is an outer peripheral part of the underground part of the building whose ground part has been demolished for rebuilding, and the underground outer wall 26 is not demolished as a mountain retaining wall that receives earth pressure from the ground 18. It is kept in. Further, the existing pile 14 is also placed, and the head supports the bottom surface of the underground floor board 24 provided at the lower end of the underground outer wall 26.

図1、図2に示す既存杭14は、例えば群杭であり、既存杭14と既存杭14の間隔a寸法が小さい構成である。この場合には、既存杭14と既存杭14の間に、地盤18からの土圧を受ける壁体としての矢板12を、水平方向に直接渡すことが可能であり、矢板12の両端部は、受け部材として既存杭14に取付けられたアングル材50で支持されている。アングル材50は、地盤18からの土圧を受けて矢板12が移動しないように、例えば、既存杭14にボルト接合されている。
ここに、既存杭14は場所打ちコンクリート杭でも鋼管杭でもよく、杭種は選ばない。矢板12は木製や鋼製とされ、水平方向に既存杭14と既存杭14の間に渡されている。
The existing pile 14 shown in FIGS. 1 and 2 is a group pile, for example, and has a configuration in which the distance a between the existing pile 14 and the existing pile 14 is small. In this case, between the existing pile 14 and the existing pile 14, it is possible to pass the sheet pile 12 as a wall body which receives the earth pressure from the ground 18 directly in the horizontal direction, and both ends of the sheet pile 12 are It is supported by an angle member 50 attached to the existing pile 14 as a receiving member. For example, the angle member 50 is bolted to the existing pile 14 so that the sheet pile 12 does not move due to the earth pressure from the ground 18.
Here, the existing pile 14 may be a cast-in-place concrete pile or a steel pipe pile, and the pile type is not selected. The sheet pile 12 is made of wood or steel, and is passed between the existing pile 14 and the existing pile 14 in the horizontal direction.

この構成とすることにより、既存杭14及び矢板12で構築された山留壁10で、地盤18からの土圧を、受け、既存躯体36の地下底盤24の下に、新築建物の地下空間19を掘削底面52まで掘削することができる。
この結果、新築建物の地下外壁16を、既存杭14に接する位置まで極力近づけた状態で構築することができる。即ち、山留壁10を、地下空間19側へせり出さずに構築できるので、地下空間19を広く確保できる。これにより、新築地下面積を確保しながら、地中障害撤去工事を回避した地下工事を実施することが可能となる。
なお、本実施形態では、地盤18からの土圧を受ける壁体として、矢板12を用いる場合について説明したが、これに限定されるものではなく、矢板12に替えて鉄板やH形鋼を横方向に向けて用いてもよい。
With this configuration, the mountain retaining wall 10 constructed with the existing pile 14 and the sheet pile 12 receives the earth pressure from the ground 18, and below the underground floor 24 of the existing frame 36, the underground space 19 of the new building. Can be excavated to the excavation bottom surface 52.
As a result, it is possible to construct the underground outer wall 16 of the new building as close as possible to the position in contact with the existing pile 14. That is, since the mountain retaining wall 10 can be constructed without protruding to the underground space 19 side, the underground space 19 can be secured widely. As a result, it is possible to carry out underground work that avoids underground obstacle removal work while securing a newly built underground area.
In addition, in this embodiment, although the case where the sheet pile 12 was used as a wall body which receives the earth pressure from the ground 18 was demonstrated, it is not limited to this, and it replaces with the sheet pile 12 and an iron plate or H-shaped steel is used. You may use it toward the direction.

次に、従来の方法と比較しながら、本実施形態の効果を具体的に説明する。
市街地狭小敷地のビル建替工事においては、既存地下躯体の外周部の取扱いが重要となる。特に既存地下躯体の最深部である基礎底盤24の下に、新たに地下躯体を構築する場合には、既存躯体36の地下外周部分を地中障害撤去工事により解体し、新たな山留壁を施工して地下躯体を構築する方法と、既存躯体36の地下外周部分を存置させて内側に新たな山留壁を施工して地下躯体を構築するする方法と、がある。前者の場合はコスト・工期の面で問題があり、後者の場合は新築地下面積を十分に確保できない面で問題がある。
Next, the effects of the present embodiment will be specifically described in comparison with a conventional method.
In the rebuilding of buildings in narrow urban areas, it is important to handle the outer peripheries of existing underground structures. In particular, when constructing a new underground structure under the foundation floor 24, which is the deepest part of the existing underground structure, the underground outer periphery of the existing structure 36 is dismantled by ground fault removal work, and a new mountain retaining wall is created. There are a method of constructing an underground frame by construction and a method of constructing an underground frame by constructing a new mountain retaining wall inside by leaving the underground outer peripheral portion of the existing frame 36. In the former case, there is a problem in terms of cost and construction period, and in the latter case, there is a problem in that the newly built underground area cannot be secured sufficiently.

本実施形態は、既存杭14を撤去せず、かつ新築地下面積を十分に確保する新たな方法である。
図3に、従来の山留壁30の平面図(図1のX−X線に相当する位置の断面)を示す。既存杭14の地下空間19側(新たに掘削される側)に、既存杭14と接して山留壁30が形成されている。山留壁30は、地盤改良して構築された柱状改良体28で構築され、柱状改良体28には、必要に応じて所定の間隔で芯材としてのH形鋼32が挿入されている。これにより、山留壁30が地盤18からの土圧を受けることができる。また、地下空間19の掘削底面52(図1参照)までの掘削時に、山留壁30の地下空間19側の一部が、H形鋼32のフランジ面の位置で切り欠かれ、厚さBとされる。切り欠かれて平板状とされた山留壁28の面に接して、新たな地下外壁34が構築される。
The present embodiment is a new method that does not remove the existing pile 14 and sufficiently secures a newly built underground area.
FIG. 3 is a plan view of a conventional mountain retaining wall 30 (a cross section at a position corresponding to the line XX in FIG. 1). The mountain retaining wall 30 is formed in contact with the existing pile 14 on the underground space 19 side (newly excavated side) of the existing pile 14. The mountain retaining wall 30 is constructed by a columnar improvement body 28 constructed by improving the ground, and an H-section steel 32 as a core material is inserted into the columnar improvement body 28 at a predetermined interval as necessary. Thereby, the mountain retaining wall 30 can receive the earth pressure from the ground 18. Further, during excavation to the excavation bottom surface 52 (see FIG. 1) of the underground space 19, a part of the mountain retaining wall 30 on the underground space 19 side is cut out at the position of the flange surface of the H-section steel 32, and the thickness B It is said. A new underground outer wall 34 is constructed in contact with the surface of the mountain retaining wall 28 that has been cut and formed into a flat plate shape.

図4(A)に、従来の山留壁30と本実施形態の山留壁10を、地下外壁限界ラインで対比した結果である。
従来の山留壁30は、図4(A)、(B)に示すように、地中障害撤去工事をせずに、既存杭14の内側に山留壁28を構築する構成である。このため、地下外壁限界ラインP1は、山留壁28の内側に設定していた。この結果、山留壁28の内側に、新たな地下外壁34が構築される。
これに対し、図4(A)、(C)に示すように、本実施形態の山留壁10は、既存杭14と既存杭14の間に矢板12を挿入する構成である。このため、地下外壁限界ラインP2は、既存杭14の地下空間19側の端部とほぼ面一となる。この結果、従来の山留壁30の厚さBとほぼ等しい寸法だけ地下空間19を広くすることができる。
即ち、本実施形態の山留壁10は、新築地下面積を最大限確保するために、掘削工事に伴う既存の地下底盤24より深い位置では、外周部の既存杭14を山留壁10として利用している。既存杭14の曲げ剛性を山留壁10として利用することで、外周部の既存杭14の内側まで地下外壁限界ラインを拡大することができる。また、既存杭14と既存杭14の間には、矢板12を配置することで山留壁の連続性を確保している。
FIG. 4 (A) shows a result of comparing the conventional retaining wall 30 and the retaining wall 10 of the present embodiment on the underground outer wall limit line.
As shown in FIGS. 4 (A) and 4 (B), the conventional mountain retaining wall 30 has a configuration in which the mountain retaining wall 28 is constructed inside the existing pile 14 without the underground obstacle removal work. For this reason, the underground outer wall limit line P <b> 1 is set inside the mountain retaining wall 28. As a result, a new underground outer wall 34 is constructed inside the mountain retaining wall 28.
On the other hand, as shown to FIG. 4 (A) and (C), the mountain retaining wall 10 of this embodiment is the structure which inserts the sheet pile 12 between the existing pile 14 and the existing pile 14. FIG. For this reason, the underground outer wall limit line P2 is substantially flush with the end of the existing pile 14 on the underground space 19 side. As a result, the underground space 19 can be widened by a dimension substantially equal to the thickness B of the conventional mountain retaining wall 30.
That is, the mountain retaining wall 10 of the present embodiment uses the existing pile 14 on the outer peripheral portion as the mountain retaining wall 10 at a position deeper than the existing underground floor 24 due to excavation work in order to secure the maximum newly constructed underground area. doing. By utilizing the bending rigidity of the existing pile 14 as the mountain retaining wall 10, the underground outer wall limit line can be expanded to the inside of the existing pile 14 at the outer peripheral portion. Moreover, the continuity of a mountain retaining wall is ensured by arrange | positioning the sheet pile 12 between the existing pile 14 and the existing pile 14. FIG.

なお、従来の山留壁30の厚さは約500mmである。これにより、地下空間19の対面する壁面の間では、約1000mmだけ地下空間19を広く確保できる。即ち、新築躯体の外壁16を既存杭14の位置まで広げて構築することができ、新築躯体の新たな山留壁位置における床面積を、広く確保することができる。更に、本実施形態では、地中構造物の撤去工事(例えば既存杭14の撤去工事)を省略できるので、新築躯体の地中構造物の工期短縮及びコスト削減が達成できる。   In addition, the thickness of the conventional mountain retaining wall 30 is about 500 mm. Thereby, between the wall surfaces which the underground space 19 faces, the underground space 19 can be widely secured by about 1000 mm. That is, the outer wall 16 of the newly built frame can be constructed to extend to the position of the existing pile 14, and a large floor area can be secured at the new mountain wall position of the newly built frame. Furthermore, in this embodiment, since the removal work of the underground structure (for example, the removal work of the existing pile 14) can be omitted, it is possible to reduce the work period and cost of the underground structure of the newly built frame.

(第2実施形態)
図5の斜視図、図6の平面図(図5のX−X線断面)に示すように、第2実施形態に係る山留壁20は、既存杭14の間に山留芯材としてのH形鋼22が設けられている。即ち、山留壁20が既存杭14、H形鋼22、及び矢板12で構成されている。ここに、H形鋼22の地下空間19側のフランジは、既存杭14の地下空間19側の端部とほぼ同じ面に配置されており、矢板12は、H形鋼22とH形鋼22の間、及びH形鋼22と既存杭14に取り付けられたアングル材50間に差し込まれている。
これにより、既存杭14と既存杭14の間隔bが、矢板12の幅より大きくても(a<b)、H形鋼22で、既存杭14と既存杭14の間の矢板12を支持することができるため、山留壁20が地盤18からの土圧を受けることができる。また、H形鋼22の地下空間19側のフランジは、既存杭14の地下空間19側の端部とほぼ同じ面に配置されており、山留壁20が、既存杭14の地下空間19側へ大きくせり出すことはない。
(Second Embodiment)
As shown in the perspective view of FIG. 5 and the plan view of FIG. 6 (cross-sectional view taken along line XX in FIG. 5), the mountain retaining wall 20 according to the second embodiment is used as a mountain retaining core between existing piles 14. An H-section steel 22 is provided. That is, the mountain retaining wall 20 is composed of the existing pile 14, the H-shaped steel 22, and the sheet pile 12. Here, the flange on the underground space 19 side of the H-section steel 22 is arranged on the same surface as the end portion on the underground space 19 side of the existing pile 14, and the sheet pile 12 includes the H-section steel 22 and the H-section steel 22. And the angle member 50 attached to the H-shaped steel 22 and the existing pile 14.
Thereby, even if the space | interval b of the existing pile 14 and the existing pile 14 is larger than the width | variety of the sheet pile 12 (a <b), the sheet pile 12 between the existing pile 14 and the existing pile 14 is supported with the H-section steel 22. Therefore, the mountain retaining wall 20 can receive the earth pressure from the ground 18. Further, the flange of the H-shaped steel 22 on the underground space 19 side is disposed on the same surface as the end of the existing pile 14 on the underground space 19 side, and the mountain retaining wall 20 is located on the underground space 19 side of the existing pile 14. It does not protrude greatly.

なお、H形鋼22の数は、図6では既存杭14と既存杭14の間に2本が設けられている。しかし、これに限定されることはなく、既存杭14と既存杭14の間の距離bに応じて決定される。例えば、距離bが大きければ増やせばよい。この構成とすることにより、既存地下外壁26(図1参照)だけでなく、既存杭14を山留壁20の一部として利用することができる。
この結果、山留壁20の地下空間19側に、新築躯体の外壁16を既存杭14の端部の位置まで広げて構築することができ、新築躯体の山留壁位置における床面積を、広く確保することができる。
In addition, the number of the H-section steel 22 is provided between the existing pile 14 and the existing pile 14 in FIG. However, it is not limited to this, and is determined according to the distance b between the existing pile 14 and the existing pile 14. For example, if the distance b is large, it may be increased. By setting it as this structure, not only the existing underground outer wall 26 (refer FIG. 1) but the existing pile 14 can be utilized as a part of the mountain retaining wall 20. FIG.
As a result, on the underground space 19 side of the mountain retaining wall 20, the outer wall 16 of the newly constructed frame can be expanded to the position of the end of the existing pile 14, and the floor area at the mountain retaining wall position of the newly constructed frame can be increased. Can be secured.

次に、山留20の曲げ剛性について説明する。
本実施形態における山留壁20の曲げ剛性EIは、既存杭14の曲げ剛性EcIcと、H形鋼22の曲げ剛性EsIsを合算し、それらの合算値を杭間距離aで除して求めた。算出式を下記(1)式に示す。ここに、H形鋼22の曲げ剛性EsIsは、複数本数のH形鋼22が使用された場合には、それぞれの曲げ剛性EsIsを合算する。
EI=(EcIc+ΣEsIs)/a…(1)
ここに、EI:山留壁の曲げ剛性(N・cm
EcIc:既存杭の曲げ剛性(N・cm
EsIs:H形鋼の曲げ剛性(N・cm
a:既存杭の基準スパン(cm)
Next, the bending rigidity of the dome 20 will be described.
The bending rigidity EI of the mountain retaining wall 20 in the present embodiment is obtained by adding the bending rigidity EcIc of the existing pile 14 and the bending rigidity EsIs of the H-shaped steel 22 and dividing the total value by the inter-pile distance a. . The calculation formula is shown in the following formula (1). Here, the bending rigidity EsIs of the H-section steel 22 is summed up when the plurality of H-section steels 22 are used.
EI = (EcIc + ΣEsIs) / a (1)
Here, EI: Bending stiffness of mountain wall (N · cm 2 )
EcIc: Flexural rigidity of existing piles (N · cm 2 )
EsIs: Flexural rigidity of H-section steel (N · cm 2 )
a: Standard span of existing pile (cm)

図7に、山留壁20の応力評価の一例を示す。図7は、残置された既存地下外壁部分の一部を軸力として見込んだM−N曲線であり、日本建築学会「鉄筋コンクリート構造計算規準・同解説」に基づいて算出した。図7の横軸は既存杭14に加えられる軸力N(kN)であり、縦軸は既存杭14に発生する許容曲げモーメントM(kN・m)である。
図7の曲線Gは、既存杭14の許容曲げモーメント(終局)を設定している。検討結果から、図7に示すように、既存杭14は、山留壁20として十分な曲げモーメントを有しており、山留壁20として十分活用可能といえる。
FIG. 7 shows an example of stress evaluation of the retaining wall 20. FIG. 7 is an MN curve in which a part of the remaining existing underground outer wall portion is expected as an axial force, and was calculated based on the “Construction Standards for Reinforced Concrete Structures / Description” of the Architectural Institute of Japan. The horizontal axis in FIG. 7 is the axial force N (kN) applied to the existing pile 14, and the vertical axis is the allowable bending moment M (kN · m) generated in the existing pile 14.
A curve G in FIG. 7 sets an allowable bending moment (final) of the existing pile 14. From the examination results, as shown in FIG. 7, the existing pile 14 has a bending moment sufficient as the mountain retaining wall 20, and can be said to be sufficiently utilized as the mountain retaining wall 20.

次に、山留壁20の変位量について説明する。
図8に計測結果を示す。図8(A)は計測位置を示している。測定点54は既存躯体の
外壁26から新築躯体の外壁16に至る間の既存杭14の位置であり、所定の深さで複数点を計測した。また、測定点56は、同様に山留芯材22の所定の深さの複数の位置である。
図8(B)は、5次掘削完了時の実測結果である。横軸は変位量(cm)であり、縦軸は地盤表面からの深さ(m)である。山留芯材22の実測結果をD1に示し、既存杭14の実測結果をD2に示す。山留芯材22及び既存杭14のいずれの深さにおいても、山留壁の変形は十分に小さな範囲(0.3cm以下)に収まっており、土圧に対し十分な強度を備えているといえる。
図8(C)は、6次掘削完了時の実測結果である。横軸は変位量(cm)であり、縦軸は地盤表面からの深さ(m)である。山留芯材22の実測結果をD1に示し、既存杭14の実測結果をD2に示す。山留芯材22及び既存杭14のいずれの深さにおいても、山留壁の変形は十分に小さな範囲(0.7cm以下)に収まっており、土圧に対し十分な強度を備えているといえる。
本構成とすることにより、地盤18側の土圧を受ける山留壁20の構築が容易となり、新築建物の地中構造物の工期短縮及びコスト削減が達成できる。
Next, the displacement amount of the mountain retaining wall 20 will be described.
FIG. 8 shows the measurement results. FIG. 8A shows the measurement position. The measurement point 54 is the position of the existing pile 14 from the outer wall 26 of the existing frame to the outer wall 16 of the newly built frame, and a plurality of points were measured at a predetermined depth. Similarly, the measurement points 56 are a plurality of positions at a predetermined depth of the mountain core material 22.
FIG. 8B shows an actual measurement result when the fifth excavation is completed. The horizontal axis is the displacement (cm), and the vertical axis is the depth (m) from the ground surface. The actual measurement result of the Yamatome core material 22 is shown in D1, and the actual measurement result of the existing pile 14 is shown in D2. At any depth of the mountain core 22 and the existing pile 14, the deformation of the mountain wall is within a sufficiently small range (0.3 cm or less) and has sufficient strength against earth pressure. I can say that.
FIG. 8C shows an actual measurement result when the sixth excavation is completed. The horizontal axis is the displacement (cm), and the vertical axis is the depth (m) from the ground surface. The actual measurement result of the Yamatome core material 22 is shown in D1, and the actual measurement result of the existing pile 14 is shown in D2. At any depth of the mountain core 22 and the existing pile 14, the deformation of the mountain wall is within a sufficiently small range (0.7 cm or less) and has sufficient strength against earth pressure. I can say that.
By adopting this configuration, it is easy to construct the mountain retaining wall 20 that receives the earth pressure on the ground 18 side, and it is possible to reduce the work period and cost of the underground structure of the new building.

更に、図9の斜視図に示す展開例ように、新築の地下構造物60において、新築の柱部58Uの、梁62より下方の柱58Dの一部を、新築地下外壁16の外側(地盤側)へせり出した(ハンチさせた)構築としてもよい。即ち、地下構造物60の地下空間19を広くするには、柱58Dは極力地盤18側へ設けることが望ましく、かつ、柱58Uからの鉛直荷重を受ける強度を維持するために、梁62の位置から下方へ向けて斜めに形成したハンチ形状としてもよい。これにより、梁62で偏心させて柱58Uからの鉛直荷重を受けて、柱58Dへ伝える必要がなくなり、梁62を小さく形成することが可能となる。
この結果、地下構造物60のコスト削減を図ることができる。他の構成は、第1実施形態と同じであり、説明は省略する。
Further, as in the development example shown in the perspective view of FIG. 9, in the newly built underground structure 60, a part of the column 58D below the beam 62 of the newly built column portion 58U is placed outside the ground wall (the ground side). It is good also as a construction that protrudes (hashed). That is, in order to widen the underground space 19 of the underground structure 60, the column 58D is desirably provided on the ground 18 side as much as possible, and the position of the beam 62 is maintained in order to maintain the strength to receive the vertical load from the column 58U. It is good also as the haunch shape formed diagonally toward the downward direction. Thereby, it is not necessary to decenter the beam 62 and receive the vertical load from the column 58U and transmit it to the column 58D, and the beam 62 can be formed small.
As a result, the cost of the underground structure 60 can be reduced. Other configurations are the same as those of the first embodiment, and a description thereof will be omitted.

(第3実施形態)
図10(A)の平面図、図10(B)の側面図に示すように、第3実施形態に係る山留壁40は、既存杭14と既存杭14の間(距離C)に地盤改良体42が連続して構築されている。地盤改良体42には、所定の間隔で、山留芯材としてのH形鋼32が設けられている。即ち、既存杭14と地盤改良体42で山留壁40が構築されている。
ここに、地盤改良体42は、高圧噴射撹拌工法で構築される。高圧噴射撹拌工法は、径dの小さなケーシング44を地盤に挿入して、地盤改良体42を構築することができる。これにより、ケーシング44を既存躯体外壁26に近接させ、既存躯体外壁26の下部に、地盤改良体42を構築できる。
(Third embodiment)
As shown in the plan view of FIG. 10 (A) and the side view of FIG. 10 (B), the mountain retaining wall 40 according to the third embodiment is improved between the existing pile 14 and the existing pile 14 (distance C). The body 42 is constructed continuously. The ground improvement body 42 is provided with H-section steel 32 as a mountain core material at predetermined intervals. That is, the mountain retaining wall 40 is constructed by the existing pile 14 and the ground improvement body 42.
Here, the ground improvement body 42 is constructed by a high-pressure jet stirring method. In the high-pressure jet agitation method, the ground improvement body 42 can be constructed by inserting a casing 44 having a small diameter d into the ground. Thereby, the casing 44 can be brought close to the existing outer wall 26 and the ground improvement body 42 can be constructed at the lower part of the existing outer wall 26.

地盤改良体20の構築手順は、先ず、地上に設置させた図示しないガイドホール削孔機を用いて、地盤42にガイドホール44を削孔しながら、ケーシング44を、掘削開始面48から所定深さHまで挿入する(矢印R1方向)。ケーシング46の先端には、圧縮空気と固化剤を吐出させる削孔ビット46が取り付けられている。
次に、地上に設置させた図示しないジェットクリート施工機を用いて、削孔ビット46を回転させながら、ケーシング44を通して圧縮空気と固化剤を削孔ビット46まで送り、削孔ビット46の先端から吐出させる。これにより、削孔ビット46の周囲の地盤18が径方向に地盤改良され、径Dの地盤改良体42の構築が開始される。
The construction procedure of the ground improvement body 20 is as follows. First, a guide hole 44 is drilled in the ground 42 using a guide hole drilling machine (not shown) installed on the ground, and the casing 44 is moved from the excavation start surface 48 to a predetermined depth. Is inserted up to H (arrow R1 direction). A drill bit 46 for discharging compressed air and a solidifying agent is attached to the tip of the casing 46.
Next, using a jet cleat construction machine (not shown) installed on the ground, the compressed bit and the solidifying agent are sent to the drill bit 46 through the casing 44 while rotating the drill bit 46, and from the tip of the drill bit 46. Discharge. Thereby, the ground 18 around the drill bit 46 is improved in the radial direction, and the construction of the ground improved body 42 having the diameter D is started.

次に、削孔ビット48を、回転させながら徐々に引き上げる(矢印R2方向)。これにより、地盤改良体42が下から上に向けて、順次構築される。掘削開始面48まで、削孔ビット48から圧縮空気と固化剤を吐出させ、高さH2の地盤改良体42を構築する。続いて、地盤改良体42の構築終了後、ケーシング44を引き抜く。その後、所定の位置の地盤改良体42に、山留芯材としてのH形鋼32を挿入する。これにより、固化剤の硬化を待って地盤改良体42の構築が終了する。地盤改良体42の一部を重複させて連続して構築することにより、山留壁40に遮水機能を持たせることができる。   Next, the drill bit 48 is gradually pulled up while rotating (in the direction of arrow R2). Thereby, the ground improvement body 42 is built sequentially from the bottom to the top. The ground improvement body 42 having a height H2 is constructed by discharging compressed air and a solidifying agent from the drill bit 48 to the excavation start surface 48. Subsequently, after the construction of the ground improvement body 42 is completed, the casing 44 is pulled out. Then, the H-section steel 32 as a mountain core material is inserted into the ground improvement body 42 at a predetermined position. Thereby, construction of the ground improvement body 42 is complete | finished, waiting for hardening of a solidification agent. The mountain retaining wall 40 can be provided with a water shielding function by continuously building a part of the ground improvement body 42 in an overlapping manner.

次に、地盤改良体42の地下空間19側の一部を、地下空間19側のフランジ位置で切り取る(地盤改良体42の幅をBとする)。これにより、山留壁40が構築される。山留壁40は、第1実施形態と同じ効果を得ることができる。
これにより、続いて、地盤改良体42の切り欠かれた面と接して新築躯体の外壁16を構築することができる。他の構成は、第1実施形態と同じであり、説明は省略する。
Next, a part of the ground improvement body 42 on the underground space 19 side is cut out at a flange position on the underground space 19 side (the width of the ground improvement body 42 is set to B). Thereby, the mountain retaining wall 40 is constructed. The mountain wall 40 can obtain the same effect as the first embodiment.
Thereby, the outer wall 16 of a newly built frame can be subsequently constructed in contact with the notched surface of the ground improvement body 42. Other configurations are the same as those of the first embodiment, and a description thereof will be omitted.

10 山留壁
12 矢板(壁体)
14 既存杭
16 地下外壁
22 H形鋼(山留芯材)
26 既存躯体外壁
28 地盤改良体
10 Yamadome wall 12 Sheet pile (wall)
14 Existing pile 16 Underground wall 22 H-section steel (Yamadome core)
26 Existing building outer wall 28 Ground improvement body

Claims (3)

既存躯体の地下外壁を支持する既存杭と、
前記既存杭の間に構築され前記既存杭の頭部よりも下方の掘削底面まで地盤が掘削された状態で前記地盤からの土圧を受ける壁体と、
を有する山留壁。
The existing pile for supporting the underground external wall of an existing building frame,
A wall body that is constructed between the existing piles and receives earth pressure from the ground in a state where the ground is excavated to the bottom of the excavation below the head of the existing pile ,
To have a YamaTomekabe.
前記壁体は、前記既存杭と前記既存杭との間に渡された矢板であり、
前記既存杭と前記既存杭との間に建て込まれた山留芯材、及び前記山留芯材と前記既存杭との間に渡された矢板であり、
又は、前記既存杭と前記既存杭との間に建て込まれた山留芯材、前記山留芯材と前記既存杭との間に渡された矢板、及び前記山留芯材と前記山留芯材との間に渡された矢板である請求項1に記載の山留壁。
The wall body is a sheet pile passed between the existing pile and the existing pile,
A pile core material built between the existing pile and the existing pile, and a sheet pile passed between the pile core material and the existing pile,
Or, a pile core material built between the existing pile and the pile, a sheet pile passed between the pile core material and the existing pile, and the pile core material and the pile The mountain retaining wall according to claim 1, which is a sheet pile passed between the core material.
前記壁体は、高圧噴射撹拌工法により既存杭の間に構築された地盤改良体である請求項1に記載の山留壁。   The mountain retaining wall according to claim 1, wherein the wall body is a ground improvement body constructed between existing piles by a high-pressure jet stirring method.
JP2013034772A 2013-02-25 2013-02-25 Yamadome wall Active JP6133621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013034772A JP6133621B2 (en) 2013-02-25 2013-02-25 Yamadome wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013034772A JP6133621B2 (en) 2013-02-25 2013-02-25 Yamadome wall

Publications (2)

Publication Number Publication Date
JP2014163107A JP2014163107A (en) 2014-09-08
JP6133621B2 true JP6133621B2 (en) 2017-05-24

Family

ID=51613985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013034772A Active JP6133621B2 (en) 2013-02-25 2013-02-25 Yamadome wall

Country Status (1)

Country Link
JP (1) JP6133621B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101809006B1 (en) * 2017-02-10 2017-12-14 진영준 Reformed sheet plate and the method of installation of the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158181A (en) * 1995-12-07 1997-06-17 Nakamura Kureen Kiso Kogyo Kk Excavation and sheathing, and sheathing pile
JP3894519B2 (en) * 1997-10-02 2007-03-22 ケミカルグラウト株式会社 Yamadome wall construction method
JP4485006B2 (en) * 2000-03-24 2010-06-16 鹿島建設株式会社 Construction method for underground structures
JP4378277B2 (en) * 2004-12-24 2009-12-02 株式会社竹中工務店 Vertical loading test method for existing piles below the groundwater level
JP2007085005A (en) * 2005-09-20 2007-04-05 Taisei Corp Basement shaft excavation method
JP5424669B2 (en) * 2009-02-19 2014-02-26 株式会社竹中工務店 Building demolition method
JP5808153B2 (en) * 2011-05-31 2015-11-10 戸田建設株式会社 How to construct a retaining wall

Also Published As

Publication number Publication date
JP2014163107A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
CN103603358B (en) A kind of multi-platform building enclosure and constructional method
KR102195504B1 (en) Construction method for Eearth self-retaining wall using reinforcing member and CIP construction method
KR102218604B1 (en) Earth retaining construction method for using pile and inclined ground anchor
JP2012107479A (en) Method for constructing underground and aboveground structure
JP2013079511A (en) Construction method of earth-retaining timbering, and earth-retaining timbering
CN110761296A (en) Cement-soil enclosure wall-cast-in-place pile cantilever type combined support and construction method thereof
JP5041838B2 (en) Pile foundation structure construction method
CN103603357B (en) A kind of multi-platform without inner support self waterproofing foundation pit enclosure structure and constructional method thereof
JP6126939B2 (en) Reconstruction method for new buildings and new buildings
JP6133621B2 (en) Yamadome wall
JP2000352296A (en) Method o constructing passage just under underground structure
JP4115095B2 (en) Reverse strike method
JP4226954B2 (en) Underpinning method and viaduct
JP2013177741A (en) Earthquake strengthening structure of existent structure foundation employing composite ground pile foundation technique
KR20120122024A (en) Uniting Method of Temporary earth wall with basement exterior Wall using Couplers and Bolts.
JP6768477B2 (en) How to build an underground structure
JP6710999B2 (en) Temporary receiving method for existing structures
JP4407716B2 (en) Construction method of earth retaining wall
KR20190002845U (en) Braced wall
KR20050113450A (en) Downward reinforced-concrete underground structure using temporary assistant columns
JP2003268770A (en) Earth retaining construction method and reinforcing structure of sheet pile used for this construction method
KR102194381B1 (en) Pile for Earth self-retaining wall using double I beam
JP2017197910A (en) Construction method of earth retaining wall structure, and earth retaining wall structure
JP5686414B2 (en) True pillar
JP2009162034A (en) Method of constructing foundation of structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170420

R150 Certificate of patent or registration of utility model

Ref document number: 6133621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150