JP6131831B2 - 光受信器および光受信方法 - Google Patents

光受信器および光受信方法 Download PDF

Info

Publication number
JP6131831B2
JP6131831B2 JP2013230726A JP2013230726A JP6131831B2 JP 6131831 B2 JP6131831 B2 JP 6131831B2 JP 2013230726 A JP2013230726 A JP 2013230726A JP 2013230726 A JP2013230726 A JP 2013230726A JP 6131831 B2 JP6131831 B2 JP 6131831B2
Authority
JP
Japan
Prior art keywords
circuit
frequency offset
polarization
adaptive equalization
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013230726A
Other languages
English (en)
Other versions
JP2015091068A (ja
Inventor
樹一 ▲杉▼谷
樹一 ▲杉▼谷
一成 汐田
一成 汐田
英里 片山
英里 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013230726A priority Critical patent/JP6131831B2/ja
Priority to US14/507,032 priority patent/US9215011B2/en
Publication of JP2015091068A publication Critical patent/JP2015091068A/ja
Application granted granted Critical
Publication of JP6131831B2 publication Critical patent/JP6131831B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6164Estimation or correction of the frequency offset between the received optical signal and the optical local oscillator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6971Arrangements for reducing noise and distortion using equalisation

Description

本発明は、光伝送システムに用いられる光受信器および光受信方法に関する。
近年、デジタル信号処理技術を用いたコヒーレント光通信の導入が進んでいる。コヒーレント光通信では、伝送量を増やすために伝送レートが高速化されているが、高速化に比例して波形歪みが発生し伝送品質を劣化させる。このため、送信器の送信信号(光信号)について、H(Horizontal)偏波と、V(Verticality)偏波の直交する偏波を多重させる技術がある。この偏波多重により、偏波あたりの伝送レートを減らしつつ高速な通信が実現できる。
伝送路を通過した送信信号(偏波多重信号)は、受信器(デジタルコヒーレント受信器)の受信部の入力端に設けられる偏波分離回路によって二つの直交偏波成分に分離される。分離後の受信信号は、I,Q成分の分離、光電気変換、アナログデジタル変換の各部を介した後に、量子化されたデジタル信号として信号処理回路に入力される。
偏波多重信号は、伝送路中において偏波回転、偏波モード分散(PMD)などの影響を受けるため、偏波分離回路だけは偏波を完全に分離することは困難である。一般的には、信号処理回路に内部に設けられる適応等化回路により偏波分離の処理が行われる。
適応等化回路には、例えば、複数のフィルタをたすき形に掛け合わせ接続したバタフライ型FIRフィルタが用いられる。偏波分離だけの補償であれば、バタフライ型FIRフィルタに用いる複数のフィルタは1タップで構成できる。これに対し、偏波モード分散や波長分散などの線形劣化の等化等についても補償する場合には、各フィルタには複数のタップを有する複素デジタルFIRフィルタを用いる必要がある。このタップ数は、補償の範囲により数〜数十タップまでと様々である。各フィルタの係数を最適制御するアルゴリズムとしては、CMA(Constant Modulus Algorithm)法などが提案されている(例えば、下記非特許文献1参照)。
信号処理回路内部の適応等化回路の後段には、受信器の周波数オフセット(光受信周波数と局発光の周波数の差分)を補償する周波数オフセット補償回路が設けられる。この周波数オフセット補償回路としては、例えばm値のPSK信号をm乗することにより、複素電界情報から符号化成分と雑音成分を除去して周波数オフセットの成分を抽出する技術が開示されている(例えば、下記非特許文献2参照)。また、信号の仮判定を行い、仮判定の結果を差し引いて符号化成分を除去し、周波数オフセットの推定範囲を拡大する技術が知られている(例えば、下記非特許文献3参照)。
そして、PSK信号のFIRフィルタの出力について以前の出力との差分を求め、等化係数を更新する技術がある(例えば、下記特許文献1参照。)。また、周波数オフセットをモニタし、周波数オフセットが規定値以下になるまで波長分散補償の等化器の係数演算を行う技術がある(例えば、下記特許文献2参照。)。また、伝送路の波形劣化を受けた信号の周波数データと、波形劣化がない基準波形の周波数データの周波数差が最小となるように補償特性を制御する技術がある(例えば、下記特許文献3参照。)。また、再生した光信号のクロックと予め決められたクロックの周波数差が小さくなるように分散補償量を調整する技術がある(例えば、下記特許文献4参照。)。
特開2011−211706号公報 特開2010−268390号公報 特開2002−261692号公報 特開2008−10971号公報
C. Richard Johnson,外5名,「Blind Equalization Using the Constant Modulus Criterion:A Review」,Proceedings of the IEEE,vol.86,No.10,1998年10月 Andreas Leven,外3名,「Frequency Estimation in Intradyne Reception」,IEEE Photonics Technology Letters,vol.19,No.6,p.366−368,2007年3月 Hisao Nakashima,外10名,「Novel Wide−range Frequency Offset Compensator Demonstrated with Real−time Digital Coherent Receiver」,34th European Conference and Exhibition on Optical Communication(ECOC2008),Mo.3.D.4,2008年9月
しかしながら、適応等化回路のフィルタ係数の最適制御は、適応等化回路への入力信号の電力、調整係数の大きさ、係数の初期値、信号品質等の要因によって誤りが生じると最適制御できない場合が生じた。
従来技術では、受信部の後段に設けられ、デジタル信号の出力を信号処理する受信信号処理回路がパケットを解析して得たデータの誤りに基づき、受信部が正しく機能しているか否かを判断していた。この受信信号処理回路では、受信部の出力を受けてフレームの同期および解析、誤り率の算出等の各種信号処理に所定の処理時間がかかる。このため、受信信号処理回路は、受信部の適応等化回路に対して、正しいフィルタ係数を再計算させるためのトリガを出力するまでに時間がかかる。また、受信信号処理回路は、パケットの誤りの原因が適応等化回路のフィルタ係数の最適制御の誤りに基づくものと特定するまでに時間がかかる。
さらに、受信信号処理回路の一度の計算によって適応等価回路のフィルタ係数が正しい値に収束しない場合には、受信信号処理回路が複数回にわたって再計算を繰り返すこととなり、フィルタ係数が正しい値に収束するまでには再計算分の時間がさらにかかった。
一つの側面では、本発明は、適応等化のフィルタ係数の正誤を迅速に検出できることを目的とする。
一つの案では、偏波多重された受信信号を偏波分離後にデジタル信号処理する信号処理部を有し、前記信号処理部は、フィルタ係数の制御により偏波分離後の前記受信信号を補償する適応等化回路と、前記適応等化回路の前段の受信信号が分岐入力され、偏波別の周波数オフセットを推定する第1の周波数オフセット推定回路と、前記適応等化回路の後段の受信信号が分岐入力され、偏波別の周波数オフセットを推定する第2の周波数オフセット推定回路と、前記第1の周波数オフセット推定回路と前記第2の周波数オフセット推定回路が推定した周波数オフセットの推定値の比較により得られた当該推定値の差分に基づき、前記フィルタ係数の正誤を判定し、誤りとの判定時には前記適応等化回路に前記フィルタ係数の再計算のトリガを出力する判定回路と、を有する。
一つの実施形態によれば、適応等化のフィルタ係数の正誤を迅速に検出できる。
図1は、実施の形態1にかかる光受信器の全体構成を示す図である。 図2は、実施の形態1にかかる信号処理部の内部構成を示すブロック図である。 図3は、判定回路による推定値の差分の判定内容を説明する図表である。 図4は、実施の形態1にかかるフィルタ係数の最適制御の誤り検出処理を示すフローチャートである。 図5は、実施の形態2にかかる信号処理部の内部構成を示すブロック図である。 図6は、周波数オフセット推定回路1,2の動作タイミングを示すタイミングチャートである。 図7は、実施の形態3にかかる信号処理部の内部構成を示すブロック図である。 図8は、判定回路による尤もらしい推定値の判断を説明する図表である。 図9は、実施の形態4にかかる信号処理部の内部構成を示すブロック図である。 図10は、周波数オフセットの変化に基づく推定値1,2の変化状態を示す図表である。 図11は、実施の形態4にかかるフィルタ係数の最適制御の誤り検出処理を示すフローチャートである。
(実施の形態1)
以下に添付図面を参照して、開示技術の好適な実施の形態を詳細に説明する。図1は、実施の形態1にかかる光受信器の全体構成を示す図である。
光受信器は、デジタルコヒーレント受信部(受信部)100と、受信部100の出力データを信号処理する受信信号処理回路110と、を含む。
受信部100は、伝送路から入力される受信信号(偏波多重信号)の偏波を分離する偏波分離器101に入力され、偏波分離器101は、受信信号を二つの直交偏波成分に分離する。分離された直交偏波成分X,Yは、それぞれ光90度ハイブリッド回路103(X偏波成分用の103a、およびY偏波成分用の103b)に入力される。この光90度ハイブリッド回路103(103a,103b)には、局発光源102からの直交信号が入力され、光90度ハイブリッド回路103は、受信信号が局発信号と混合され、I,Q成分が分離される。
光90度ハイブリッド回路103(103a,103b)の出力(I,Q成分)は、バランス型PD等の光電気変換部104(104a〜104d)にそれぞれ入力され、光電変換された後、AD変換器105(105a〜105d)によりアナログ−デジタル変換される。AD変換器105a〜105dは、それぞれ量子化したX偏波のI成分(X_I)、以下同様にX_Q、Y_I、Y_Q成分を信号処理部106に出力する。
この信号処理部106は、偏波回転、偏波モード分散(PMD)などの影響により偏波分離器101だけでは分離できない偏波に対する補償(偏波分離のほかに偏波モード分散、波長分散の補償)をデジタル信号処理により行う。この信号処理部106は、上述した適応等化回路等を含む。
受信部100の信号処理部106から出力される出力データは、受信信号処理回路110に入力される。受信信号処理回路110は、受信部100のデジタルの出力データに対し、フレームの同期および解析、誤り率の算出等の各種信号処理を行う。
信号処理部106は、例えばFPGAにより構成することができ、受信信号処理回路110は、DSP等のプロセッサにより構成することができる。
図2は、実施の形態1にかかる信号処理部の内部構成を示すブロック図である。図1に示した受信部100に設けられる信号処理部106について説明する。信号処理部106は、準静的等化回路201、適応等化回路202、周波数オフセット補償回路203、位相同期回路204、識別回路205を含む。周波数オフセット補償回路203〜識別回路205は、図示のように、二つの直交偏波成分(X,Y)用にそれぞれ周波数オフセット補償回路203a,203b〜識別回路205a,205bを有する。
準静的等化回路201には、X,Y偏波の各IQ成分(X_I,X_Q,Y_I,Y_Q)が入力され、分散補償を行う。適応等化回路202は、上述したバタフライ型FIRフィルタ等からなり、上述したCMA法(上記非特許文献1参照)等を用いて各フィルタのフィルタ係数(coef:coefficient)が最適となるように制御することにより、偏波分離、偏波モード分散、波長分散などを等化補償できるようになる。
適応等化回路202の後段には、受信器の周波数オフセット(光受信周波数と局発光の周波数の差分)を補償する周波数オフセット補償回路203(203a,203b)が設けられる(上記非特許文献2,3参照)。周波数オフセット補償回路203の後段には、X,Y偏波の各IQ成分(X_I,X_Q,Y_I,Y_Q)の位相を同期させる位相同期回路204(204a,204b)が設けられる。位相同期回路204の後段には、各X,Y偏波の各IQ成分(X_I,X_Q,Y_I,Y_Q)のデータ(受信信号)を識別再生する識別回路205(205a,205b)が設けられる。
そして、実施の形態1の信号処理部106は、さらに、周波数オフセット推定回路1,2(第1の周波数オフセット推定回路210,第2の周波数オフセット推定回路211)と、判定回路212と、を含む。周波数オフセット推定回路1(210a)は、適応等化回路202の配置位置よりも前段に設けられ、主信号ライン上のX偏波の各IQ成分(X_I,X_Q)を分岐入力する。また、周波数オフセット推定回路1(210b)は、主信号ライン上のY偏波の各IQ成分(Y_I,Y_Q)を分岐入力する。
また、周波数オフセット推定回路2(211)は、適応等化回路202の後段に設けられ、X偏波の各IQ成分(X_I’,X_Q’)を入力とする周波数オフセット推定回路2(211a)と、Y偏波の各IQ成分(Y_I’,Y_Q’)を入力とする周波数オフセット推定回路2(211b)と、を含む。
これら周波数オフセット推定回路1,2(210,211)は、それぞれ周波数オフセットの推定値1,2(光受信周波数と局発光の周波数の差分を推定した値であり、単位は例えばラジアンや周波数)を判定回路212に出力する。
周波数オフセット推定回路1(210)は、適応等化回路202に入力される受信信号に対する周波数オフセットを推定する一方、周波数オフセット推定回路2(211)は、適応等化回路202から出力される受信信号に基づき周波数オフセットを推定する。したがって、周波数オフセット推定回路1(210)は、周波数オフセット推定回路2(211)に対して基準となる周波数オフセットを推定する回路となる。すなわち、推定値1に対する推定値2の差分(ずれ)に基づき、適応等化回路202のフィルタ係数の正誤を判定できる。
周波数オフセット推定回路1(210)は、例えば、入力信号を微分する微分回路、IQ成分を乗算する乗算回路、乗算回路の出力を加算する加算回路等を有し、周波数オフセットの成分を抽出する。この周波数オフセット推定回路1(210)は、例えば、非特許文献4(Z.Tao,外5名,「Simple,Robust,and Wide−Range Frequency Offset Monitor for Automatic Frequency Control in Digital Coherent Receivers」,2007 33rd European Conference and Exhibition on Optical Communication(ECOC),16−20.2007年9月,p1−2)等に記載された技術を用いることができる。
また、後段の周波数オフセット推定回路2(211)は、例えば、上述した非特許文献2,3等の技術を用いて周波数オフセットを推定できる。
このように、実施の形態1では、適応等化回路202の前段および後段にそれぞれ周波数オフセット推定回路1,2(210,211)を設ける。このような構成によれば、前段の周波数オフセット推定回路1(210)からは正しい周波数オフセットの推定値1が出力される。そして、適応等化回路202のフィルタ係数の最適制御が誤った場合、後段の周波数オフセット推定回路2(211)からは適応等化回路202による誤ったフィルタ係数に基づき推定値1に対して差分が生じた周波数オフセットの推定値2が出力されることになる。
したがって、判定回路212では、これら周波数オフセット推定回路1,2(210,211)から出力される推定値1,2の違い(差分)を検出する。この際、判定回路212は、X偏波の推定値1,2の差分については、周波数オフセット推定回路1,2(210a,211a)が出力する推定値1,2を用いる。同様に、判定回路212は、Y偏波の推定値1,2の差分については、周波数オフセット推定回路1,2(210b,211b)が出力する推定値1,2を用いる。
図3は、判定回路による推定値の差分の判定内容を説明する図表である。判定回路212は、周波数オフセット推定回路1,2(210,211)が出力する推定値1,2の差分Δが所定のしきい値Lを超えているか否かについて、所定の判定タイミングを設けて1回もしくは複数回確認する。複数回の確認を行えば、判定の確からしさを向上でき、判定回路212による誤った判定から保護できるようになる。
図3に示すように、しきい値Lは、正常動作時に生じる推定値の差分Δを所定値以上超えた値に設定する。そして、判定回路212は、周波数オフセットの推定値1,2の差分Δがしきい値Lを超えた場合には、適応等化回路202に対して、正しいフィルタ係数を再計算するトリガを出力する。
図4は、実施の形態1にかかるフィルタ係数の最適制御の誤り検出処理を示すフローチャートである。はじめに、周波数オフセット推定回路1(210)は、適応等化回路202に入力される受信信号に対する周波数オフセットを推定し、推定値1を確定する(ステップS401)。
次に、周波数オフセット推定回路2(211)は、適応等化回路202から出力される受信信号に基づき周波数オフセットを推定し、推定値2を確定する(ステップS402)。
そして、判定回路212は、受信信号の周波数オフセットの推定値1,2を比較する(ステップS403)。この際、判定回路212は、X偏波の推定値の違いについて、周波数オフセット推定回路1,2(210a,211a)が出力する推定値を比較する。同様に、判定回路212は、Y偏波の推定値の違いについて、周波数オフセット推定回路1,2(210b,211b)が出力する推定値を比較する。
そして、判定回路212は、推定値1,2の比較結果に基づき、保護処理を行う(ステップS404)。具体的には、判定回路212は、周波数オフセットの推定値1,2の差分Δがしきい値L以下であれば、適応等化回路202に対してフィルタ係数の再計算のためのトリガを出力しない。
しかし、推定値1,2の差分Δがしきい値Lを超えた場合、判定回路212は、適応等化回路202に対して、正しいフィルタ係数を再計算させるためのトリガを出力する。すなわち、適応等化回路202は、誤ったフィルタ係数を用いた適応等化を行うと、偏波分離等の補償を正確に行えない。この場合、判定回路212は、適応等化回路202に対して正しいフィルタ係数となるための再計算のトリガを出力する。
なお、ステップS404の実行は、ステップS401〜ステップS403を複数回実行後に行う構成としてもよい。この場合、判定回路212は、推定値1,2の差分がしきい値を超えていないかを複数回確認するため、判定の確からしさを向上でき、判定回路212による誤った判定から保護できるようになる。このように、推定値1,2の差分がしきい値を超えていないかを複数回確認する場合であっても、受信部100(信号処理部106)内部での処理で済む。このため、受信部100外部の受信信号処理回路110のトリガ出力タイミングに比してより迅速にトリガ出力が可能である。
実施の形態1によれば、判定回路212は、適応等化回路202の前段および後段の周波数オフセット推定回路1,2(210,211)の推定値1,2の差分を検出して、適応等化回路202のフィルタ係数の最適制御の誤りを検出する。これら周波数オフセット推定回路1,2(210,211)と、判定回路212は、受信部100内部(信号処理部106)に設けられており、適応等化回路202に対し正しいフィルタ係数を再計算するためのトリガを早急に出力できる。
周波数オフセット推定回路1,2(210,211)は、適応等化回路202の前段および後段に設けるだけでよく、簡単な構成で迅速にフィルタ係数の正誤を判定できる。
具体的には、実施の形態1に示したように、受信部100内に判定回路212を設けて判定(正しいフィルタ係数を再計算するための検出)にかかる時間は、例えば、マイクロ秒オーダーである。これに対し、後段の受信信号処理回路110における正しいフィルタ係数を再計算するための検出(フレームの同期および解析、誤り率の算出等の各種信号処理)には、ミリ秒オーダーの時間を要することがある。
したがって、実施の形態1によれば、障害発生時などに経路の切り替えが発生した場合であっても、早急なトリガ出力により適応等化回路202が伝送特性(偏波等)を補償するに適合した正しいフィルタ係数を用いた適応等化を迅速に行えるようになる。そして、正しいフィルタ係数を用いて受信器(受信部100)を迅速に立ち上げて受信信号を正常に受信できるようになる。
一般的に、障害発生時の経路の切り替えは50ms以内に行う要求があるが、早急に受信器(受信部100)を立ち上げることができるため、この経路切り替えの要求を満たして受信信号を正常に受信できるようになる。また、運用時におけるフィルタ係数は、伝送路の動的な変化(上記偏波回転やPMD等)に追従制御する。この際、追従が外れたときにおいても、早急に追従が外れたことを検知でき、経路の切り替えへのトリガを早くかけることができるため、切り替え時間の短縮化を図ることができるようになる。
このように、適応等化回路202のフィルタ係数の再計算は、1.受信器(受信部100)の立ち上げ時、2.伝送路障害等による経路の切り替え時、および3.伝送路の動的な変化に対する追従時、等においても同様に必要となる。上記構成によれば、これら1.〜3.のいずれの事象発生時においても同様に、迅速に正しいフィルタ係数に収束できるようになり、適応制御による偏波分離等を正常に行って、受信信号を迅速かつ正常に受信できるようになる。
(実施の形態2)
図5は、実施の形態2にかかる信号処理部の内部構成を示すブロック図である。図1に示した受信部100に設けられる信号処理部106について説明する。図5において、実施の形態1(図2)と同様の構成部には同一の符号を付してある。
実施の形態2では、判定回路212による複数回の推定値1,2の差分の判定を所定の判定タイミングを有して行う回路構成例について説明する。図5に示す信号処理部106は、図2に示した回路に加えて、比較開始制御回路501と、遅延回路502と、を含む。
比較開始制御回路501は、比較開始制御のトリガ(比較開始トリガ)を所定タイミングで周波数オフセット推定回路1,2(210,211)に出力する。この比較開始制御回路501には、上述した受信器(受信部100)の1.立ち上げ時、2.伝送路障害等による経路の切り替え時、および3.伝送路の動的な変化に対する追従時、等の各事象発生時における比較開始トリガの出力タイミングが設定されている。
遅延回路502は、適応等化回路202の後段に設けられる周波数オフセット推定回路2(211)に対する比較開始トリガを所定の遅延時間を有して遅延させる。
図6は、周波数オフセット推定回路1,2の動作タイミングを示すタイミングチャートである。信号処理部106の内部動作クロックに同期して、周波数オフセット推定回路1,2(210,211)は、入力された受信信号a,b,c,…(X,Y偏波の各IQ成分であるX_I,X_Q,Y_I,Y_Q,X_I’,X_Q’,Y_I’,Y_Q’)に対する推定値を推定する。
そして、比較開始制御回路501は、上記1.〜3.の各事象発生時に比較開始トリガを周波数オフセット推定回路1,2(210,211)に出力する。この比較開始トリガにより、適応等化回路202の前段に設けられる周波数オフセット推定回路1(210)は直ちに時期t1で動作開始する。
ここで、判定回路212による推定値1,2の差分を検出するための比較動作の開始は適応等化回路202の(動作処理時間)フィルタ係数の収束が完了したタイミングで行う。これは、適応等化回路202の後段に設けられる周波数オフセット推定回路2(211)によって正常な推定値を得るためである。
このために、周波数オフセット推定回路1(210)で用いた受信信号a,b,c,…が周波数オフセット推定回路2(211)に到達する回路遅延時間TDを事前に算出しておく。回路遅延時間TDは、信号処理部106の準静的等化回路201および適応等化回路202が受信信号を信号処理するに必要な時間に相当する。
そして、遅延回路502は、回路遅延時間TDだけ比較開始トリガを遅延させる設定、あるいは回路構成としておく。これにより、周波数オフセット推定回路2(211)は、比較開始制御回路501が出力する比較開始トリガが回路遅延時間TDだけ遅延した時期t2に動作開始する。
これにより、周波数オフセット推定回路1,2(210,211)は、同一の受信信号a,b,c,…に対する推定値1,2をそれぞれ計算でき、判定回路212による推定値1,2の比較が行えるようになる。
実施の形態2においても、実施の形態1(図4参照)同様に、判定回路による推定値の差分の判定処理を行う。この際、比較開始制御回路501による比較開始トリガの出力タイミング(時期t1)により、周波数オフセット推定回路1(210)は、受信信号a,b,c,…に対する推定値1を算出する(ステップS401)。この後、比較開始トリガの回路遅延時間TD経過のタイミング(時期t2)経過時に、周波数オフセット推定回路2(211)は、同一の受信信号a,b,c,…に対する推定値2を算出する(ステップS402)。これにより、判定回路212は、同一の受信信号a,b,c,…に基づき推定された周波数オフセットの推定値1,2の比較を行うことができる(ステップS403)。
そして、ステップS401〜ステップS403を複数回実行後に、保護処理(ステップS404)を実行する構成としてもよい。この場合、比較開始制御回路501は、比較開始トリガを複数回出力することとなり、ステップS403では、複数回の推定値の差分を算出する。これにより、判定回路212は、同一の受信信号a,b,c,…に対して、異なるタイミングで算出された推定値1,2の差分がしきい値を超えていないかを複数回確認するため、判定の確からしさを向上でき、判定回路212による誤った判定から保護できるようになる。
また、比較開始トリガを複数回出力する場合であっても、受信部100(信号処理部106)内部での処理で済む。このため、受信部100外部の受信信号処理回路110のトリガ出力タイミングに比してより迅速にトリガ出力が可能である。
実施の形態2によれば、適応等化回路202の前段と後段に設けられる周波数オフセット推定回路1,2(210,211)は、適応等化回路202の動作処理時間を考慮して、同一の受信信号a,b,c,…に対して周波数オフセットの推定値を算出する。実施の形態1の効果に加えて、判定回路212が同一の受信信号a,b,c,…に基づき推定された周波数オフセットの推定値1,2を比較できるため、判定精度をより向上できるようになる。
(実施の形態3)
図7は、実施の形態3にかかる信号処理部の内部構成を示すブロック図である。図1に示した受信部100に設けられる信号処理部106について説明する。図7において、実施の形態1(図2)と同様の構成部には同一の符号を付してある。
実施の形態3では、適応等化回路202のX,Y偏波の出力反転に対応して、推定値を判定する構成例について説明する。適応等化回路202は、実施の形態1(図2)等に示したように、適応等化後の出力について、X偏波はXポートから出力し、Y偏波はYポートから出力する。しかし、図7に示すように、適応等化回路202は、X偏波(X_I’,X_Q’)をYポートから出力し、Y偏波(Y_I’,Y_Q’)をXポートから出力する場合もある。
この出力反転に対応するため、判定回路212は、X偏波の受信信号を用いた周波数オフセット推定回路1の推定値に対して比較対象となる二つの周波数オフセット推定回路2(211a,211b)の推定値2は、尤もらしい推定値を選択する。
この実施の形態3によれば、適応等化回路202の前段には、X偏波用の周波数オフセット推定回路1(210a)、またはY偏波用の周波数オフセット推定回路1(210b)、を設ける構成としてもよい。これにより、周波数オフセット推定回路1(210)の個数を半減して構成をより簡素化できる。
図8は、判定回路による尤もらしい推定値の判断を説明する図表である。尤もらしさは、周波数オフセットの「推定値の差分の絶対値の小ささ」で判断する。図8の例では、X偏波の受信信号の推定値1に対して、差分の絶対値が小さい推定値2は、Y’偏波の周波数オフセット推定回路2(211a)の出力である。このため、判定回路212は、Y’偏波の周波数オフセット推定回路2(211b)が出力する推定値2をX偏波と判断し、選択する。
そして、判定回路212は、Y偏波のデータを用いた周波数オフセット推定回路1(210)の推定値1は、「推定値の差分の絶対値の小ささ」に基づき選択されなかった他方の周波数オフセット推定回路2(211a)が出力する推定値2と比較する。
実施の形態3によれば、適応等化回路202のX,Y偏波の出力反転があっても、周波数オフセット推定回路1,2について互いに同一のX,Y偏波に対する推定値1,2を用いた比較が行えるようになる。これにより、実施の形態1の効果に加えて、判定回路212による判定精度をより向上できるようになる。
(実施の形態4)
図9は、実施の形態4にかかる信号処理部の内部構成を示すブロック図である。図1に示した受信部100に設けられる信号処理部106について説明する。図9において、実施の形態1(図2)と同様の構成部には同一の符号を付してある。
実施の形態4では、信号処理部106の入力段に、周波数オフセット付加回路801を設ける。周波数オフセット付加回路801は、X偏波に対して所定の周波数オフセットを付加する周波数オフセット付加回路1(801a)と、Y偏波に対して所定の周波数オフセットを付加する周波数オフセット付加回路2(801b)と、を含む。
図10は、周波数オフセットの変化に基づく推定値1,2の変化状態を示す図表である。周波数オフセット付加回路801によって受信信号に付加させる周波数オフセットを変化させると、変化量が周波数オフセット推定回路1,2の推定量1,2に同じ変化量として現れると想定できる。
図10には、周波数オフセット推定回路1,2の推定値1,2に対し、周波数オフセット付加回路801により所定の周波数オフセットaを付加した状態を示す。この際、周波数オフセットaを付加した際の周波数オフセット推定回路1,2(210,211)の推定値1,2の変化量が図示実線のように同じであったとする。この場合には、判定回路212は、適応等化回路202のフィルタ係数が正しいものであると判定する。
しかしながら、周波数オフセットaを付加した際に、周波数オフセット推定回路2(2211)の推定値2の変化量がa’(図中点線の如く推定値が増加、あるいは反対に減少)して、推定値1と推定値2の変化量が異なった場合が生じたとする。この場合、判定回路212は、適応等化回路202のフィルタ係数が誤っていると判定する。そして、判定回路212は、適応等化回路202に対し、フィルタ係数を再計算させるトリガを出力する。
また、異なる時期に周波数オフセット付加回路801により所定の周波数オフセットbを付加した場合においても同様に、推定値1と推定値2の変化量が異なった場合、適応等化回路202のフィルタ係数が誤っていると判定する。
図11は、実施の形態4にかかるフィルタ係数の最適制御の誤り検出処理を示すフローチャートである。上述した実施の形態4の説明において、周波数オフセットを変更して複数回にわたる推定値1と推定値2の変化量の検出に基づいて、適応等化回路202のフィルタ係数の正誤を判定する処理例を説明する。
はじめに、周波数オフセット付加回路1,2(801)により、受信信号に対して周波数オフセット(例えば初期値として図10に示すa)を付与する(ステップS1101)。
次に、周波数オフセット推定回路1(210)は、付加された周波数オフセットaを含み、適応等化回路202に入力される受信信号に対する周波数オフセットを推定し、推定値1を確定する(ステップS1102)。
次に、周波数オフセット推定回路2(211)は、付加された周波数オフセットaを含み、適応等化回路202から出力される受信信号に基づき周波数オフセットを推定し、推定値2を確定する(ステップS1103)。
そして、判定回路212は、付加された周波数オフセットaを含む受信信号の周波数オフセットの推定値1,2を比較する(ステップS1104)。
この後、判定回路212は、周波数オフセット付加回路1,2(801)により、受信信号に対して異なる周波数オフセットbが付与されたか判断する(ステップS1105)。この判断にかかる処理は、判定回路212に限らず、周波数オフセット付加回路1,2(801)を含む信号処理部106全体を統括制御する制御部(不図示)、あるいは比較開始制御回路501(図5参照)等が行うこととしてもよい。
例えば、受信信号に付加する周波数オフセットがa,bの二つ場合、ステップS1105では、付加する周波数オフセットaの変更を行うために(ステップS1105:Yes)、ステップS1101に戻る。そして、周波数オフセット付加回路1,2(801)は付加する周波数オフセットをa→bに変更する。以下、ステップS1102〜ステップS1104を実行し、ステップS1105では、付加する周波数オフセットbであるため、付加する周波数オフセットbの変更を行わず(ステップS1105:No)、ステップS1106に移行する。
ステップS1106では、判定回路212が推定値1,2の比較結果に基づき、保護処理を行う(ステップS1106)。この保護処理は、実施の形態1(図4のステップS404)と基本的に同一であり、判定回路212は、周波数オフセットの推定値1,2の差分Δをしきい値Lと比較して、適応等化回路202に対するフィルタ係数の再計算のためのトリガの出力の有無を決定する。
そして、実施の形態4では、上記のように、受信信号に付加する周波数オフセットがa,bの二つである。このため、ステップS1106の処理では、さらに、付加した周波数オフセットがa,bのいずれも、ステップS1104の推定値比較の結果、推定値1と推定値2の変化量が異なった場合に、適応等化回路202のフィルタ係数が誤っていると判定する。
このように、判定回路212による判定は、推定値1,2の差分をしきい値、および受信信号に付加する周波数オフセットを変化させた際の推定値1,2の変化量の差分を用いて確認するため、判定の確からしさをさらに向上でき、判定回路212による誤った判定から保護できるようになる。
上記の処理では説明の簡単化のために、受信信号に付加する周波数オフセットがa,bの二つであるとしたが、この数はn(3以上)に増やしてもよい。また、受信信号に付加する周波数オフセットをn個に増やした場合であっても、受信部100(信号処理部106)内部での処理で済む。このため、受信部100外部の受信信号処理回路110のトリガ出力タイミングに比してより迅速にトリガ出力が可能である。
この実施の形態4によれば、周波数オフセット付加回路801によって受信信号に付加させる周波数オフセットを変化させることにより、判定回路212は、変化量が周波数オフセット推定回路1,2の推定量1,2に同じ変化量として現れるか否かを検出する。このように、受信器(受信部100)内部で周波数オフセットを所定量付加することで、適応等化回路202のフィルタ係数の正誤を簡単に判定することができる。
また、上記実施の形態1〜4で説明した適応等化回路202入力前の主信号を用いてオフセット推定を行う周波数オフセット推定回路1(210)としては、他に非特許文献5(Tadao Nakagawa,外6名,「Wide−Range and Fast−Tracking Frequency Offset Estimator for Optical Coherent Receivers」,European Conference on Optical Communications,We.7.A.2,Trino,2010年)の技術を用いてもよい。この技術による周波数オフセット推定回路1(210)を図2に示した適応等化回路202入力の前段(準静的等化回路201の後段)に分岐接続する。これにより、上記実施の形態1〜4同様に、適応等化回路202の前後段の周波数オフセット推定値を比較することができ、フィルタ係数の最適制御の収束誤りを判断することができる。
以上説明したように、実施の形態によれば、適応等化回路の前後段に設けたオフセット推定回路の推定値を判定回路により単純比較する簡単な構成で、適応等化回路のフィルタ係数の収束の正誤を判定できる。オフセット推定回路と判定回路は、適応等化回路と同じ受信部内に設けた構成であるため、判定回路による誤りとの判定時には、適応等化回路に対し、正しいフィルタ係数を再計算するトリガを早急に与えることができる。
これにより、障害発生時などによって伝送路の経路の切り替えが発生した場合等に、適応等化回路が行う偏波分離等を短時間で行って受信器を立ち上げることができ、早急に受信信号を正常受信できるようになる。また、経路の切り替えの要求時間(例えば50ms以内)で受信器を立ち上げることができるようになり、受信信号を補償し正常に受信することができる。
また、受信器の運用時におけるフィルタ係数は伝送路の動的な変化に追従しているが、追従が外れたときにも同様に偏波分離等を早急に行える。
上述した各実施の形態に関し、さらに以下の付記を開示する。
(付記1)偏波多重された受信信号を偏波分離後にデジタル信号処理する信号処理部を有し、
前記信号処理部は、
フィルタ係数の制御により偏波分離後の前記受信信号を補償する適応等化回路と、
前記適応等化回路の前段の受信信号が分岐入力され、偏波別の周波数オフセットを推定する第1の周波数オフセット推定回路と、
前記適応等化回路の後段の受信信号が分岐入力され、偏波別の周波数オフセットを推定する第2の周波数オフセット推定回路と、
前記第1の周波数オフセット推定回路と前記第2の周波数オフセット推定回路が推定した周波数オフセットの推定値の比較により得られた当該推定値の差分に基づき、前記フィルタ係数の正誤を判定し、誤りとの判定時には前記適応等化回路に前記フィルタ係数の再計算のトリガを出力する判定回路と、
を有することを特徴とする光受信器。
(付記2)前記第1の周波数オフセット推定回路と前記第2の周波数オフセット推定回路に対する動作開始トリガを出力する制御回路と、
前記第2の周波数オフセット推定回路に対する動作開始トリガを前記適応等化回路による信号処理時間分遅延させる遅延回路と、
を有することを特徴とする付記1に記載の光受信器。
(付記3)前記判定回路は、前記適応等化回路の偏波出力の反転に対応し、一方の前記偏波に対する推定値として、前記第1の周波数オフセット推定回路が出力する推定値に対し、前記第2の周波数オフセット推定回路が出力する推定値の差分の絶対値が小さい推定値を選択することを特徴とする付記1または2に記載の光受信器。
(付記4)前記判定回路は、他方の前記偏波に対する推定値として、前記選択されなかった側の推定値を選択することを特徴とする付記3に記載の光受信器。
(付記5)前記第1の周波数オフセット推定回路は、一方の偏波側の受信信号に基づき当該一方の偏波側の推定値を出力することを特徴とする付記3に記載の光受信器。
(付記6)前記第1の周波数オフセット推定回路の分岐入力前段に設けられ、所定の周波数オフセットを付加する周波数オフセット付加回路を有し、
前記判定回路は、前記周波数オフセット付加回路により所定の周波数オフセットを付加した場合における前記第1の周波数オフセット推定回路と前記第2の周波数オフセット推定回路が出力する推定値のうち前記付加した周波数オフセットの差分に基づき、前記フィルタ係数の正誤を判定することを特徴とする付記1〜5のいずれか一つに記載の光受信器。
(付記7)前記周波数オフセット付加回路は、複数のタイミング毎に異なる周波数オフセットを付加し、
前記判定回路は、前記複数のタイミング毎に前記第1の周波数オフセット推定回路と前記第2の周波数オフセット推定回路が出力する推定値のうち前記付加した周波数オフセットの差分を求め、前記複数のタイミングの全てで当該付加した周波数オフセットの差分が生じた場合に、前記フィルタ係数が誤りと判定することを特徴とする付記6に記載の光受信器。
(付記8)前記受信信号は、X偏波とY偏波が偏波多重され、
前記第1の周波数オフセット推定回路および前記第2の周波数オフセット推定回路は、それぞれ前記X偏波用の回路と前記Y偏波用の回路を有し、
前記判定回路は、前記X偏波同士の推定値を比較し、前記Y偏波同士の推定値を比較することを特徴とする付記1〜7のいずれか一つに記載の光受信器。
(付記9)前記判定回路は、前記第1の周波数オフセット推定回路と前記第2の周波数オフセット推定回路が推定した周波数オフセットの推定値の比較により得られた当該推定値の差分を所定のしきい値と比較し、前記差分が前記しきい値を超えたときに前記フィルタ係数が誤りと判定することを特徴とする付記1〜8のいずれか一つに記載の光受信器。
(付記10)偏波多重された受信信号を偏波分離後にデジタル信号処理する信号処理部を有する光受信器の受信方法において、
前記信号処理部は、
フィルタ係数の制御により偏波分離後の前記受信信号を適応等化回路により補償する適応等化処理の工程と、
前記適応等化回路の前段の受信信号の分岐入力により、偏波別の周波数オフセットを推定する第1の周波数オフセット推定工程と、
前記適応等化回路の後段の受信信号の分岐入力により、偏波別の周波数オフセットを推定する第2の周波数オフセット推定工程と、
前記第1の周波数オフセット推定工程と前記第2の周波数オフセット推定工程により推定された周波数オフセットの推定値を比較して得た当該推定値の差分に基づき、前記フィルタ係数の正誤を判定し、誤りとの判定時には前記適応等化回路に前記フィルタ係数の再計算のトリガを出力する判定工程と、
を含むことを特徴とする光受信方法。
100 受信部
101 偏波分離器
102 局発光源
103 光90度ハイブリッド回路
104 光電気変換部
105 AD変換器
106 信号処理部
110 受信信号処理回路
201 準静的等化回路
202 適応等化回路
203 周波数オフセット補償回路
204 位相同期回路
205 識別回路
210,211 周波数オフセット推定回路
212 判定回路
501 比較開始制御回路
502 遅延回路
801 周波数オフセット付加回路

Claims (9)

  1. 偏波多重された受信信号を偏波分離後にデジタル信号処理する信号処理部を有し、
    前記信号処理部は、
    フィルタ係数の制御により偏波分離後の前記受信信号を補償する適応等化回路と、
    前記適応等化回路の前段の受信信号が分岐入力され、偏波別の周波数オフセットを推定する第1の周波数オフセット推定回路と、
    前記適応等化回路の後段の受信信号が分岐入力され、偏波別の周波数オフセットを推定する第2の周波数オフセット推定回路と、
    前記第1の周波数オフセット推定回路と前記第2の周波数オフセット推定回路が推定した周波数オフセットの推定値の比較により得られた当該推定値の差分に基づき、前記フィルタ係数の正誤を判定し、誤りとの判定時には前記適応等化回路に前記フィルタ係数の再計算のトリガを出力する判定回路と、
    を有することを特徴とする光受信器。
  2. 前記第1の周波数オフセット推定回路と前記第2の周波数オフセット推定回路に対する動作開始トリガを出力する制御回路と、
    前記第2の周波数オフセット推定回路に対する動作開始トリガを前記適応等化回路による信号処理時間分遅延させる遅延回路と、
    を有することを特徴とする請求項1に記載の光受信器。
  3. 前記判定回路は、前記適応等化回路の偏波出力の反転に対応し、一方の前記偏波に対する推定値として、前記第1の周波数オフセット推定回路が出力する推定値に対し、前記第2の周波数オフセット推定回路が出力する推定値の差分の絶対値が小さい推定値を選択することを特徴とする請求項1または2に記載の光受信器。
  4. 前記第1の周波数オフセット推定回路は、一方の偏波側の受信信号に基づき当該一方の偏波側の推定値を出力することを特徴とする請求項3に記載の光受信器。
  5. 前記第1の周波数オフセット推定回路の分岐入力前段に設けられ、所定の周波数オフセットを付加する周波数オフセット付加回路を有し、
    前記判定回路は、前記周波数オフセット付加回路により所定の周波数オフセットを付加した場合における前記第1の周波数オフセット推定回路と前記第2の周波数オフセット推定回路が出力する推定値のうち前記付加した周波数オフセットの差分に基づき、前記フィルタ係数の正誤を判定することを特徴とする請求項1〜4のいずれか一つに記載の光受信器。
  6. 前記周波数オフセット付加回路は、複数のタイミング毎に異なる周波数オフセットを付加し、
    前記判定回路は、前記複数のタイミング毎に前記第1の周波数オフセット推定回路と前記第2の周波数オフセット推定回路が出力する推定値のうち前記付加した周波数オフセットの差分を求め、前記複数のタイミングの全てで当該付加した周波数オフセットの差分が生じた場合に、前記フィルタ係数が誤りと判定することを特徴とする請求項5に記載の光受信器。
  7. 前記受信信号は、X偏波とY偏波が偏波多重され、
    前記第1の周波数オフセット推定回路および前記第2の周波数オフセット推定回路は、それぞれ前記X偏波用の回路と前記Y偏波用の回路を有し、
    前記判定回路は、前記X偏波同士の推定値を比較し、前記Y偏波同士の推定値を比較することを特徴とする請求項1〜6のいずれか一つに記載の光受信器。
  8. 前記判定回路は、前記第1の周波数オフセット推定回路と前記第2の周波数オフセット推定回路が推定した周波数オフセットの推定値の比較により得られた当該推定値の差分を所定のしきい値と比較し、前記差分が前記しきい値を超えたときに前記フィルタ係数が誤りと判定することを特徴とする請求項1〜7のいずれか一つに記載の光受信器。
  9. 偏波多重された受信信号を偏波分離後にデジタル信号処理する信号処理部を有する光受信器の受信方法において、
    前記信号処理部は、
    フィルタ係数の制御により偏波分離後の前記受信信号を適応等化回路により補償する適応等化処理の工程と、
    前記適応等化回路の前段の受信信号の分岐入力により、偏波別の周波数オフセットを推定する第1の周波数オフセット推定工程と、
    前記適応等化回路の後段の受信信号の分岐入力により、偏波別の周波数オフセットを推定する第2の周波数オフセット推定工程と、
    前記第1の周波数オフセット推定工程と前記第2の周波数オフセット推定工程により推定された周波数オフセットの推定値を比較して得た当該推定値の差分に基づき、前記フィルタ係数の正誤を判定し、誤りとの判定時には前記適応等化回路に前記フィルタ係数の再計算のトリガを出力する判定工程と、
    を含むことを特徴とする光受信方法。
JP2013230726A 2013-11-06 2013-11-06 光受信器および光受信方法 Expired - Fee Related JP6131831B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013230726A JP6131831B2 (ja) 2013-11-06 2013-11-06 光受信器および光受信方法
US14/507,032 US9215011B2 (en) 2013-11-06 2014-10-06 Optical receiver and optical receiving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013230726A JP6131831B2 (ja) 2013-11-06 2013-11-06 光受信器および光受信方法

Publications (2)

Publication Number Publication Date
JP2015091068A JP2015091068A (ja) 2015-05-11
JP6131831B2 true JP6131831B2 (ja) 2017-05-24

Family

ID=53007131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013230726A Expired - Fee Related JP6131831B2 (ja) 2013-11-06 2013-11-06 光受信器および光受信方法

Country Status (2)

Country Link
US (1) US9215011B2 (ja)
JP (1) JP6131831B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160028480A1 (en) * 2013-03-14 2016-01-28 Nec Crporation Optical transmission system, optical transmitter, optical receiver, and optical transmission method
JP6519479B2 (ja) 2013-11-15 2019-05-29 日本電気株式会社 周波数偏差補償方式および周波数偏差補償方法
CN107409000B (zh) * 2015-04-10 2019-05-28 华为技术有限公司 一种相干光源频偏估计和补偿的相干接收机、方法和系统
US9998235B2 (en) * 2016-01-08 2018-06-12 Google Llc In-band optical interference mitigation for direct-detection optical communication systems
JP2022143919A (ja) 2021-03-18 2022-10-03 富士通株式会社 信号処理装置及び伝送装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798640B2 (ja) * 2001-03-02 2006-07-19 富士通株式会社 受信装置及び受信信号の波形劣化補償方法並びに波形劣化検出装置及び方法並びに波形測定装置及び方法
JP2008010971A (ja) 2006-06-27 2008-01-17 Fujitsu Ltd 高速分散補償制御装置
CN101453269B (zh) * 2007-11-30 2012-01-04 富士通株式会社 频差补偿装置和方法、光相干接收机
CN101599801B (zh) * 2008-06-06 2012-02-22 富士通株式会社 滤波器系数调整装置和方法
US8260156B2 (en) * 2008-10-28 2012-09-04 Nec Laboratories America, Inc. Adaptive crossing frequency domain equalization (FDE) in digital PolMux coherent systems
JP5466878B2 (ja) 2009-05-18 2014-04-09 日本電信電話株式会社 光送信器及び送受信モード切替方法
JP5444877B2 (ja) * 2009-06-24 2014-03-19 富士通株式会社 デジタルコヒーレント受信器
US8335438B2 (en) * 2009-10-30 2012-12-18 Fujitsu Limited Estimating frequency offset using a feedback loop
CN102209055B (zh) * 2010-03-30 2014-10-01 富士通株式会社 用于相移键控信号的自适应盲均衡方法、均衡器及接收机
JP5573627B2 (ja) * 2010-11-22 2014-08-20 富士通株式会社 光デジタルコヒーレント受信器
JP5633352B2 (ja) * 2010-12-09 2014-12-03 富士通株式会社 デジタルコヒーレント光受信器、適応等化型イコライザ及びデジタルコヒーレント光通信方法
CN103460659B (zh) * 2011-02-07 2016-03-30 日本电信电话株式会社 数字信号处理装置
JP5850041B2 (ja) * 2011-03-02 2016-02-03 日本電気株式会社 光受信器、偏波分離装置、および光受信方法
JP5870728B2 (ja) * 2012-02-10 2016-03-01 富士通株式会社 光パス確立方法及び光ノード装置
JP5628957B2 (ja) * 2013-04-08 2014-11-19 日本電信電話株式会社 光受信器及び光伝送システム

Also Published As

Publication number Publication date
JP2015091068A (ja) 2015-05-11
US9215011B2 (en) 2015-12-15
US20150125150A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP6131831B2 (ja) 光受信器および光受信方法
US8989602B2 (en) Digital coherent optical receiver, adaptive equalizer, and digital coherent optical communication method
RU2557012C2 (ru) Модуль оценивания расфазировки, модуль компенсации расфазировки и когерентный приемник
US7602322B2 (en) Analog-to-digital conversion controller, optical receiving device, optical receiving method, and waveform-distortion compensating device
US9281903B2 (en) Method and arrangement for adaptive dispersion compensation
JP6825700B2 (ja) 信号合成装置及び信号合成方法
JP4886813B2 (ja) デジタル信号処理回路
JP5463880B2 (ja) 波長分散モニタ器、波長分散モニタ方法、および波長分散補償器
US20120069941A1 (en) Symbol-Timing Recovery Techniques for Multi-Branch Services
EP2685642B1 (en) Method and device for processing optical signals
US9948448B2 (en) Clock recovery method and device
JP2002141836A (ja) 速度推定器を使用する移動無線通信ユニット用の受信装置
US8655195B2 (en) Average length magnitude detecting apparatus, and method
US10951345B2 (en) Optical communication device
KR20110005575A (ko) 코히어런트 광 수신기의 디지털 등화 장치 및 방법
WO2014183699A1 (zh) 光相干通信中色散估计方法及装置
WO2015103804A1 (zh) 基于lms的信道均衡和频偏估计联合并行方法
US20170012803A1 (en) Adaptive equalization circuit, digital coherent receiver, and adaptive equalization method
US9306675B2 (en) Digital coherent receiver, optical reception system, and optical reception method
Bai et al. Experimental demonstration of adaptive frequency-domain equalization for mode-division multiplexed transmission
WO2014000259A1 (zh) 光突发信号接收方法、装置和一种光突发信号接收机
KR101314844B1 (ko) 코히어런트 광 수신기의 디지털 신호 동기화 장치
JP6025918B1 (ja) 光受信装置及びコヒーレント光通信システム
JP6058682B2 (ja) デジタル信号処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170403

R150 Certificate of patent or registration of utility model

Ref document number: 6131831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees