JP6126570B2 - パターン形成方法、電子デバイスの製造方法 - Google Patents

パターン形成方法、電子デバイスの製造方法 Download PDF

Info

Publication number
JP6126570B2
JP6126570B2 JP2014231475A JP2014231475A JP6126570B2 JP 6126570 B2 JP6126570 B2 JP 6126570B2 JP 2014231475 A JP2014231475 A JP 2014231475A JP 2014231475 A JP2014231475 A JP 2014231475A JP 6126570 B2 JP6126570 B2 JP 6126570B2
Authority
JP
Japan
Prior art keywords
group
pattern
film
preferable
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014231475A
Other languages
English (en)
Other versions
JP2015132811A (ja
Inventor
正洋 吉留
正洋 吉留
山中 司
司 山中
亮介 上羽
亮介 上羽
貴之 中村
貴之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014231475A priority Critical patent/JP6126570B2/ja
Priority to PCT/JP2014/080916 priority patent/WO2015087689A1/ja
Priority to TW103141869A priority patent/TW201523699A/zh
Publication of JP2015132811A publication Critical patent/JP2015132811A/ja
Application granted granted Critical
Publication of JP6126570B2 publication Critical patent/JP6126570B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0395Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having a backbone with alicyclic moieties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means

Description

本発明は、IC等の半導体製造工程、液晶、サーマルヘッド等の回路基板の製造、更にはその他のフォトファブリケーションのリソグラフィ工程に適用可能なパターン形成方法、及び、電子デバイスの製造方法に関する。特に、波長が300nm以下の遠紫外線光を光源とするArF露光装置での露光に好適な、パターン形成方法、及び、電子デバイスの製造方法に関する。
KrFエキシマレーザー(248nm)用レジスト以降、光吸収による感度低下を補うべく、化学増幅を利用したパターン形成方法が用いられている。
半導体素子の微細化のために、露光光源の短波長化及び投影レンズの高開口数(高NA)化が進み、現在では、193nmの波長を有するArFエキシマレーザーを光源とする露光機が開発されている。解像力を更に高める技術として、投影レンズと試料との間に高屈折率の液体(以下、「液浸液」ともいう)を満たす方法(即ち、液浸法)が提唱されている。また、更に短い波長(13.5nm)の紫外光で露光を行うEUVリソグラフィも提唱されている。
最近は、上記、露光光源の短波長化及び投影レンズの高開口数(高NA)化のみならず、種々の工程(プロセス)の工夫、例えば形成されたレジストパターンに種々の物理的・化学的処理を行うことにより、光学的な解像限界以上の微細なパターンサイズを得る試みも数多く為されている。
そのような試みの1つとして、例えば、特許文献1に記載されているようなパターン形成方法がある。より具体的には、このパターン形成方法においては、(1)基板上にレジストパターンを形成する工程、(2)レジストパターンを覆うように架橋層を形成する工程、(3)形成された架橋層のうち、レジストパターン上部に形成された部分をドライエッチングで除去する工程、(4)レジストパターンを除去しつつ、レジストパターンの横部に形成された架橋層は残し、その残った架橋層を最終的なマスクパターンとするものである。
特表2010−534306号公報
しかしながら、この技術において、特に上記(3)のドライエッチングは架橋層の除去に必要であるが、一方でドライエッチングは基板上のレジストパターンの意図せぬ変性(硬化)等を引き起こす懸念があり、例えば、レジストパターンの除去が十分に進行せず、ブリッジ欠陥等の問題が発生する懸念がある。このような懸念を低減し、上記技術を実際の量産に適用するためにはより一層の改良が必要であった。
本発明は、上記問題を鑑みてなされたものであり、欠陥が生じにくいパターン形成方法を提供することを目的とする。
本発明者らは、従来技術の問題点について鋭意検討した結果、クラスターイオンでのエッチング処理を実施することにより、上記課題を解決できることを見出した。
すなわち、以下の構成により上記目的を達成することができることを見出した。
(1) 基板上に、有機物を含むパターン1を形成する工程Aと、
パターン1を覆う膜2を形成する工程Bと、
膜2をクラスターイオンでエッチングして膜2の一部を除去し、パターン1の少なくとも一部を表出させる工程Cと、を含むパターン形成方法。
(2) 更に、工程Cの後に、膜2を残存させつつ、パターン1の少なくとも一部を除去する工程Dを含む、(1)に記載のパターン形成方法。
(3) 工程Aが、感活性光線性又は感放射線性樹脂組成物を用いて基板上に膜1を形成する工程と、膜1に対して活性光線または放射線を照射する工程と、照射後の膜1を現像してパターン1を形成する工程とを含む、(1)または(2)に記載のパターン形成方法。
(4) 感活性光線性又は感放射線性樹脂組成物が、酸の作用により極性が増大する樹脂を含む組成物である、(3)に記載のパターン形成方法。
(5) 膜1の現像が、アルカリ水溶液を用いて実施される、(3)または(4)に記載のパターン形成方法。
(6) 工程Bが、膜2の形成に用いられる組成物をパターン1上に塗布する工程を含む、(1)〜(5)のいずれかに記載のパターン形成方法。
(7) 膜2の形成に用いられる組成物が、膜形成成分、及び、有機溶剤を含有する組成物である、(6)に記載のパターン形成方法。
(8) 有機溶剤が、アルコール系溶剤、及び、エーテル系溶剤の少なくともいずれかを含む、(7)に記載のパターン形成方法。
(9) 工程Dが、有機溶剤を含有する処理液によりパターン1の少なくとも一部を除去する工程を含む、(2)〜(8)のいずれかに記載のパターン形成方法。
(10) (1)〜(9)のいずれかのパターン形成方法を含む、電子デバイスの製造方法。
本発明によれば、欠陥が生じにくいパターン形成方法を提供することができる。
本発明のパターン形成方法の一実施態様の各工程の手順を順に示す模式的断面図である。 本発明のパターン形成方法の他の実施態様の各工程の手順を順に示す模式的断面図である。
以下、本発明を実施するための形態について説明する。
なお、本明細書に於ける基(原子団)の表記に於いて、置換及び無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
また本明細書中における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等を意味する。また本発明において光とは、活性光線又は放射線を意味する。本明細書中における「露光」とは、特に断らない限り、水銀灯、エキシマレーザーに代表される遠紫外線、X線、EUV光などによる露光のみならず、電子線、イオンビーム等の粒子線による描画も露光に含める。
本明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
また、本明細書中において、“(メタ)アクリレート”はアクリレート及びメタクリレートを表し、“(メタ)アクリル”はアクリル及びメタクリルを表し、“(メタ)アクリロイル”はアクリロイル及びメタクリロイルを表す。
本発明の特徴点の一つとしては、クラスターイオンによるエッチング処理を実施している点が挙げられる。本発明のメカニズムは以下のように、推察される。
上述したように、特許文献1においては、ドライエッチングにより架橋層の一部を除去する手法が採用されている。しかし、このドライエッチングの際に、イオンが架橋層を貫通して、架橋層の下部に配置されるレジストパターンまで到達してしまい、レジストパターンの変性(例えば、炭化)が進行してしまう。結果として、溶媒などを用いた除去方法ではレジストパターンを除去することができず、所望のパターンが得られない。それに対して、クラスターイオンによるエッチングを行うと、被エッチング物である膜2に照射されたクラスターイオンは、その性質のために膜2を貫通してパターン1まで到達することが難しく、結果として、パターン1の変性が抑制され、所望のパターンが得られることとなる。
本発明のパターン形成方法は、少なくとも以下の3つの工程を備える。
工程A:基板上に、有機物を含むパターン1を形成する工程
工程B:パターン1を覆う膜2を形成する工程
工程C:膜2をクラスターイオンでエッチングして膜2の一部を除去し、パターン1の少なくとも一部を表出させる工程
なお、上記工程A〜工程Cは、工程Aから工程Cの順に実施されることが好ましい。
また、上記工程A〜工程C以外に、工程Cの後に、更に以下の工程Dが含まれることが好ましい。
工程D:工程Cの後に、膜2を残存させつつ、パターン1の少なくとも一部を除去する工程
図1は、本発明のパターン形成方法の一実施態様の各工程の手順を順に示す模式的断面図である。以下に、図1を参照しながら、パターン形成方法の各工程の手順について詳述する。なお、図1においては、上記工程A〜工程Dを含むパターン形成方法の一実施態様について詳述する。
<工程A>
工程Aは、基板上に、有機物を含むパターン1を形成する工程である。本工程を実施することにより、図1(A)に示すように、基板10上にパターン1(12)が形成される。なお、図1(A)においては、パターン1(12)は、ストライプ状に配置されているが、この態様には限定されず、種々のパターン形状をとり得る。
工程Aの具体的な手順は、有機物を含むパターン1が形成される限り、特にそのパターン形成方法や用いられる材料が限定されることはない。例えば、(1)感活性光線性又は感放射線性樹脂組成物を用いて得られた膜1をパターン露光し、適当な現像液で現像処理することによりパターン1を形成する、(2)いわゆるナノインプリント技術によりパターン1を形成する(例えば、「ナノインプリントの基礎と技術開発・応用展開−ナノインプリントの基板技術と最新の技術展開−」編集:平井義彦、フロンティア出版社刊、など参照)、(3)いわゆる自己組織化によるパターン形成(Directed Self Assembly: DSA)によりパターン1を形成する(例えば、特開2008‐036491号公報、Proceedings of SPIE,第7637巻,第76370G‐1など参照)、等の方法が考えられる。なお、本工程は、例えば、特開2004−235468及び特開2005−19969に記載されたような、パターンの表面荒れを改善する工程を更に含んでもよい。
なかでも、得られるパターン1の形状をより簡便に制御できる点で、上記(1)感活性光線性又は感放射線性樹脂組成物を用いて得られた膜1をパターン露光し、適当な現像液で現像処理することによりパターン1を形成することが好ましい。以下、この方法について詳述する。
上記(1)の方法は、より具体的には、感活性光線性又は感放射線性樹脂組成物(以後、単に「組成物」とも称する)を用いて基板上に膜1を形成する工程と、得られた膜1に対して活性光線または放射線を照射する工程と、照射後の膜1を現像してパターン1を形成する工程であることが好ましい。以後、本工程を、以下の3つの手順に分けて、詳述する。
(工程X)感活性光線性又は感放射線性樹脂組成物を用いて基板上に膜1を形成する工程
(工程Y)膜1に対して活性光線または放射線を照射する工程
(工程Z)膜1を現像してパターン1を形成する工程
なお、上記工程Xで使用される感活性光線性又は感放射線性樹脂組成物については、後段で詳述する。また、工程A(工程X、工程Y、および、工程Z)で形成される膜1を、以後、単に「膜」とも言う。
(工程X)
工程Xは、感活性光線性又は感放射線性樹脂組成物を用いて基板上に膜を形成する工程である。
感活性光線性又は感放射線性樹脂組成物を用いて基板上に膜を形成する方法は特に制限されず、公知の方法を採用できる。なかでも、膜の厚みの調整がより容易である点から、基板上に感活性光線性又は感放射線性樹脂組成物を塗布して、膜を形成する方法が挙げられる。
なお、塗布の方法は特に制限されず、公知の方法を採用できる。なかでも、半導体製造分野においてはスピンコートが好ましく用いられる。
膜を形成する基板は特に限定されるものではなく、シリコン、SiN、SiOやSiN等の無機基板、SOG等の塗布系無機基板等、IC等の半導体製造工程、液晶、サーマルヘッド等の回路基板の製造工程、更にはその他のフォトファブリケーションのリソグラフィ工程で一般的に用いられる基板を用いることができる。更に、必要に応じて有機反射防止膜を膜と基板の間に形成させてもよい。
製膜後、後述する工程Yの前に、前加熱工程(PB;Prebake)を含むことも好ましい。
また、工程Yの後かつ工程Zの前に、露光後加熱工程(PEB;Post Exposure Bake)を含むことも好ましい。
加熱温度はPB、PEB共に70〜130℃で行うことが好ましく、80〜120℃で行うことがより好ましい。加熱時間は30〜300秒が好ましく、30〜180秒がより好ましく、30〜90秒が更に好ましい。
加熱は通常の露光・現像機に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。ベークにより露光部の反応が促進され、感度やパターンプロファイルが改善する。
感活性光線性又は感放射線性樹脂組成物を用いて形成した膜(レジスト膜)の後退接触角は温度23±3℃、湿度45±5%において70°以上であることが好ましく、液浸媒体を介して露光する場合に好適であり、75°以上であることがより好ましく、75〜85°であることが更に好ましい。
上記後退接触角が小さすぎると、液浸媒体を介して露光する場合に好適に用いることができず、かつ水残り(ウォーターマーク)欠陥低減の効果を十分に発揮することができない。好ましい後退接触角を実現する為には、上記の疎水性樹脂を上記感活性光線性又は放射線性組成物に含ませることが好ましい。あるいは、レジスト膜の上に、疎水性の樹脂組成物によるコーティング層(いわゆる「トップコート」)を形成することにより後退接触角を向上させてもよい。
レジスト膜の厚みは特に制限されないが、より高精度な微細パターンを形成することができる理由から、1〜500nmであることが好ましく、1〜100nmであることがより好ましい。
(工程Y)
工程Yは、工程Xで得られた膜に対して活性光線または放射線を照射する(以後、「活性光線または放射線を照射する」ことを、単に「露光する」とも称する)工程である。より具体的には、所望のパターンが形成されるように、膜を選択的に露光する工程である。これにより、膜がパターン状に露光され、露光された部分のみ膜の溶解性が変化する。
露光に用いられる光源波長に制限は無いが、赤外光、可視光、紫外光、遠紫外光、極紫外光、X線、電子線等を挙げることができ、好ましくは250nm以下、より好ましくは220nm以下、特に好ましくは1〜200nmの波長の遠紫外光、具体的には、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(157nm)、X線、EUV(13nm)、電子線等であり、KrFエキシマレーザー、ArFエキシマレーザー、EUV又は電子線が好ましく、ArFエキシマレーザーであることがより好ましい。
膜を選択的に露光する方法は特に限定されず、公知の方法を使用できる。例えば、遮光部の透過率が0%のバイナリーマスク(Binary−Mask)や、遮光部の透過率が6%のハーフトーン型位相シフトマスク(HT−Mask)を用いることができる。
バイナリーマスクは、一般的には石英ガラス基板上に、遮光部としてクロム膜、酸化クロム膜等が形成されたものが用いられる。
ハーフトーン型位相シフトマスクは、一般的には石英ガラス基板上に、遮光部としてMoSi(モリブデン・シリサイド)膜、クロム膜、酸化クロム膜、酸窒化シリコン膜等が形成されたものが用いられる。
なお、本発明では、フォトマスクを介して行う露光に限定されず、フォトマスクを介さない露光、たとえば電子線等による描画により選択的露光(パターン露光)を行ってもよい。
本工程Yは複数回の露光を含んでいてもよい。
また、工程Yにおいては液浸露光方法を適用することができる。液浸露光方法は、位相シフト法、変形照明法などの超解像技術と組み合わせることが可能である。
液浸露光を行う場合には、(1)基板上に膜を形成した後、露光する工程の前に、及び/又は、(2)液浸液を介して膜を露光する工程の後、膜を加熱する工程の前に、膜の表面を水系の薬液で洗浄する工程を実施してもよい。
液浸液は、露光波長に対して透明であり、かつ膜上に投影される光学像の歪みを最小限に留めるよう、屈折率の温度係数ができる限り小さい液体が好ましいが、特に露光光源がArFエキシマレーザー(波長;193nm)である場合には、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水を用いるのが好ましい。
水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させる添加剤(液体)を僅かな割合で添加してもよい。この添加剤はウエハ上の膜を溶解させず、かつレンズ素子の下面の光学コートに対する影響が無視できるものが好ましい。
このような添加剤としては、例えば、水とほぼ等しい屈折率を有する脂肪族系のアルコールが好ましく、具体的にはメチルアルコール、エチルアルコール、イソプロピルアルコール等が挙げられる。水とほぼ等しい屈折率を有するアルコールを添加することにより、水中のアルコール成分が蒸発して含有濃度が変化しても、液体全体としての屈折率変化を極めて小さくできるといった利点が得られる。
一方で、193nm光に対して不透明な物質や屈折率が水と大きく異なる不純物が混入した場合、レジスト上に投影される光学像の歪みを招くため、使用する水としては、蒸留水が好ましい。更にイオン交換フィルター等を通して濾過を行った純水を用いてもよい。
液浸液として用いる水の電気抵抗は、18.3MΩcm以上であることが望ましく、TOC(有機物濃度)は20ppb以下であることが望ましく、脱気処理をしていることが望ましい。
また、液浸液の屈折率を高めることにより、リソグラフィ性能を高めることが可能である。このような観点から、屈折率を高めるような添加剤を水に加えたり、水の代わりに重水(DO)を用いたりしてもよい。
液浸露光工程に於いては、露光ヘッドが高速でウエハ上をスキャンし露光パターンを形成していく動きに追随して、液浸液がウエハ上を動く必要があるので、動的な状態に於ける感活性光線性又は感放射線性膜に対する液浸液の接触角が重要になり、液滴が残存することなく、露光ヘッドの高速なスキャンに追随する性能がレジストには求められる。
(工程Z)
工程Zは、膜を現像してパターン1を形成する工程である。本工程を実施することにより、所望の有機物を含むパターン1が形成される。
現像に使用する現像液の種類は特に限定しないが、例えば、アルカリ現像液または有機溶剤を含有する現像液(以下、有機系現像液とも言う)を用いることができる。
アルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第一アミン類、ジエチルアミン、ジ−n−ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドドキシド、テトラブチルアンモニウムヒドロキシド、テトラペンチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド、エチルトリメチルアンモニウムヒドロキシド、ブチルトリメチルアンモニウムヒドロキシド、メチルトリアミルアンモニウムヒドロキシド、ジブチルジペンチルアンモニウムヒドロキシド等のテトラアルキルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド等の第四級アンモニウム塩、ピロール、ピヘリジン等の環状アミン類等のアルカリ性水溶液を使用することができる。更に、上記アルカリ性水溶液にアルコール類、界面活性剤を適当量添加して使用することもできる。アルカリ現像液のアルカリ濃度は、通常0.1〜20質量%である。アルカリ現像液のpHは、通常10.0〜15.0である。アルカリ現像液のアルカリ濃度及びpHは、適宜調製して用いることができる。アルカリ現像液は、界面活性剤や有機溶剤を添加して用いてもよい。
アルカリ現像の後に行うリンス処理におけるリンス液としては、純水を使用し、界面活性剤を適当量添加して使用することもできる。
また、現像処理又はリンス処理の後に、パターン上に付着している現像液又はリンス液を超臨界流体により除去する処理を行うことができる。
有機系現像液としては、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤、及び、炭化水素系溶剤を用いることができる。
ケトン系溶剤としては、例えば、1−オクタノン、2−オクタノン、1−ノナノン、2−ノナノン、アセトン、2−ヘプタノン(メチルアミルケトン)、4−ヘプタノン、1−ヘキサノン、2−ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート等を挙げることができる。
エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸ペンチル、酢酸イソペンチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル−3−エトキシプロピオネート、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル、2−ヒドロキシイソ酪酸メチル、酢酸3−メチルブチル等を挙げることができる。
アルコール系溶剤としては、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、イソブチルアルコール、n−ヘキシルアルコール、n−ヘプチルアルコール、n−オクチルアルコール、n−デカノール等のアルコールや、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤等を挙げることができる。
エーテル系溶剤としては、例えば、上記グリコールエーテル系溶剤の他、ジオキサン、テトラヒドロフラン等が挙げられる。
アミド系溶剤としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3−ジメチル−2−イミダゾリジノン等が挙げられる。
炭化水素系溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ペンタン、ヘキサン、オクタン、デカン、ウンデカン等の脂肪族炭化水素系溶剤が挙げられる。
上記の溶剤は、複数混合してもよいし、上記以外の溶剤や水と混合し使用してもよい。但し、本発明の効果を十二分に奏するためには、現像液全体としての含水率が10質量%未満であることが好ましく、実質的に水分を含有しないことがより好ましい。
すなわち、有機系現像液に対する有機溶剤の使用量は、現像液の全量に対して、90質量%以上100質量%以下であることが好ましく、95質量%以上100質量%以下であることが好ましい。
特に、有機系現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有する現像液であるのが好ましい。
有機系現像液の蒸気圧は、20℃に於いて、5kPa以下が好ましく、3kPa以下が更に好ましく、2kPa以下が特に好ましい。有機系現像液の蒸気圧を5kPa以下にすることにより、現像液の基板上あるいは現像カップ内での蒸発が抑制され、ウエハ面内の温度均一性が向上し、結果としてウエハ面内の寸法均一性が良化する。
有機系現像液には、必要に応じて界面活性剤を適当量添加することができる。
界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤として、例えば特開昭62−36663号公報、特開昭61−226746号公報、特開昭61−226745号公報、特開昭62−170950号公報、特開昭63−34540号公報、特開平7−230165号公報、特開平8−62834号公報、特開平9−54432号公報、特開平9−5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書記載の界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、フッ素系界面活性剤又はシリコン系界面活性剤を用いることが更に好ましい。
界面活性剤の使用量は現像液の全量に対して、通常0.001〜5質量%、好ましくは0.005〜2質量%、更に好ましくは0.01〜0.5質量%である。
有機系現像液は、塩基性化合物を含んでいてもよい。塩基性化合物の例としては、含窒素塩基性化合物があり、例えば特開2013−11833号公報の特に<0021>〜<0063>に記載の含窒素化合物が挙げられる。有機系現像液が塩基性化合物を含有することで、現像時のコントラスト向上、膜減り抑制などが期待できる。
現像液に含まれる有機溶剤としては、過酸化物の含有量が低減されたものを用いることが好ましく、これにより感活性光線性又は感放射線性樹脂組成物の保存安定性が向上する。有機溶剤中の過酸化物の含有量としては、2.0mmol%以下であることが好ましく、1.0mmol%以下であることがより好ましく、0.5mmol%以下であることが更に好ましく、過酸化物を実質的に含有しないことが特に好ましい。
なお、後述するリンス液として使用される有機溶剤、感活性光線性又は感放射線性樹脂組成物に含まれる有機溶剤、および、スペーサー形成用組成物に含まれる有機溶剤も、上記過酸化物の含有量の範囲を満たすことが好ましい。
現像方法としては、たとえば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)などを適用することができる。
上記各種の現像方法が、現像装置の現像ノズルから現像液をレジスト膜に向けて吐出する工程を含む場合、吐出される現像液の吐出圧(吐出される現像液の単位面積あたりの流速)は好ましくは2mL/sec/mm以下、より好ましくは1.5mL/sec/mm以下、更に好ましくは1mL/sec/mm以下である。流速の下限は特に無いが、スループットを考慮すると0.2mL/sec/mm以上が好ましい。
吐出される現像液の吐出圧を上記の範囲とすることにより、現像後のレジスト残渣に由来するパターンの欠陥を著しく低減することができる。
このメカニズムの詳細は定かではないが、恐らくは、吐出圧を上記範囲とすることで、現像液がレジスト膜に与える圧力が小さくなり、レジスト膜・レジストパターンが不用意に削られたり崩れたりすることが抑制されるためと考えられる。
なお、現像液の吐出圧(mL/sec/mm)は、現像装置中の現像ノズル出口における値である。
現像液の吐出圧を調整する方法としては、例えば、ポンプなどで吐出圧を調整する方法や、加圧タンクからの供給で圧力を調整することで変える方法などを挙げることができる。
また、有機溶剤を含む現像液を用いて現像する工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
工程Zにおいては、有機溶剤を含む現像液を用いて現像する工程(有機溶剤現像工程)、及び、アルカリ水溶液を用いて現像を行う工程(アルカリ現像工程)を組み合わせて使用してもよい。これにより、より微細なパターンを形成することができる。
本発明において、有機溶剤現像工程によって露光強度の弱い部分が除去されるが、更にアルカリ現像工程を行うことによって露光強度の強い部分も除去される。このように現像を複数回行う多重現像プロセスにより、中間的な露光強度の領域のみを溶解させずにパターン形成が行えるので、通常より微細なパターンを形成できる(特開2008−292975号公報 <0077>と同様のメカニズム)。
本発明のパターン形成方法においては、アルカリ現像工程及び有機溶剤現像工程の順序は特に限定されないが、アルカリ現像を、有機溶剤現像工程の前に行うことがより好ましい。
アルカリ現像工程、及び/又は、有機溶剤現像工程の後には、リンス液を用いて洗浄する工程(リンス工程)を含むことが好ましい。
リンス工程に用いるリンス液としては、レジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液を使用することができる。リンス液としては、炭化水素系溶剤(例えば、ウンデカン)、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。
炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤の具体例としては、有機溶剤を含む現像液において説明したものと同様のものを挙げることができる。
なかでも、より好ましくは、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行い、更に好ましくは、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行い、特に好ましくは、1価アルコールを含有するリンス液を用いて洗浄する工程を行い、最も好ましくは、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。
ここで、リンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、環状の1価アルコールが挙げられ、具体的には、1−ブタノール、2−ブタノール、3−メチル−1−ブタノール、tert―ブチルアルコール、1−ペンタノール、2−ペンタノール、1−ヘキサノール、4−メチル−2−ペンタノール、1−ヘプタノール、1−オクタノール、2−ヘキサノール、シクロペンタノール、2−ヘプタノール、2−オクタノール、3−ヘキサノール、3−ヘプタノール、3−オクタノール、4−オクタノールなどを用いることができ、特に好ましい炭素数5以上の1価アルコールとしては、1−ヘキサノール、2−ヘキサノール、4−メチル−2−ペンタノール、1−ペンタノール、3−メチル−1−ブタノールなどを用いることができる。
各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。
リンス液中の含水率は、10質量%以下が好ましく、より好ましくは5質量%以下、特に好ましくは3質量%以下である。含水率を10質量%以下にすることで、良好な現像特性を得ることができる。
有機溶剤を含む現像液を用いて現像する工程の後に用いるリンス液の蒸気圧は、20℃に於いて0.05kPa以上、5kPa以下が好ましく、0.1kPa以上、5kPa以下が更に好ましく、0.12kPa以上、3kPa以下が最も好ましい。リンス液の蒸気圧を0.05kPa以上、5kPa以下にすることにより、ウエハ面内の温度均一性が向上し、更にはリンス液の浸透に起因した膨潤が抑制され、ウエハ面内の寸法均一性が良化する。
リンス液には、界面活性剤を適当量添加して使用することもできる。
リンス工程においては、上記リンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、たとえば、一定速度で回転している基板上にリンス液を吐出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)、などを適用することができ、この中でも回転塗布方法で洗浄処理を行い、洗浄後に基板を2000rpm〜4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。また、リンス工程の後に加熱工程(Post Bake)を含むことも好ましい。ベークによりパターン間及びパターン内部に残留した現像液及びリンス液が除去される。リンス工程の後の加熱工程は、通常40〜160℃、好ましくは70〜95℃で、通常10秒〜3分、好ましくは30秒から90秒間行う。
本発明に使用される有機系現像液、アルカリ現像液、及び/またはリンス液は、各種微粒子や金属元素などの不純物が少ないことが好ましい。このような不純物が少ない薬液を得るためには、これら薬液をクリーンルーム内で製造し、また、テフロン(登録商標)フィルター、ポリオレフィン系フィルター、イオン交換フィルター等の各種フィルターによるろ過を行うなどして、不純物低減を行うことが好ましい。金属元素は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znの金属元素濃度がいずれも10ppm以下であることが好ましく、5ppm以下であることがより好ましい。
また、現像液やリンス液の保管容器については、特に限定されず、電子材料用途で用いられている、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレン−ポリプロピレン樹脂などの容器を適宜使用することができるが、容器から溶出する不純物を低減する為、容器の内壁から薬液へ溶出する成分が少ない容器を選択することも好ましい。このような容器として、容器の内壁がパーフルオロ樹脂である容器(例えば、Entegris社製 FluoroPurePFA複合ドラム(接液内面;PFA樹脂ライニング)、JFE社製 鋼製ドラム缶(接液内面;燐酸亜鉛皮膜))などが挙げられる。
<工程B>
工程Bは、パターン1を覆う膜2を形成する工程である。より具体的には、図1(B)に示すように、パターン1(12)の基板10と接していない面を覆うように、膜2(14)が配置される。なお、図1(B)においては、パターン1の間を埋めるように膜2が配置されているが、この態様には限定されず、膜2がパターン1を覆う態様であれば、パターン1の間に膜2が埋まってなくてもよい。
膜2を形成する方法は特に制限されず、膜2の形成に用いられる膜形成成分(以後、「スペーサー剤」とも称する)をパターン1と接触させることにより、膜2を形成することができる。膜形成成分の接触方法としては、たとえば、膜形成成分が満たされた槽中にパターン1を備える基板を一定時間浸漬する方法(ディップ法)、パターン1表面に膜形成成分を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、パターン1表面に膜形成成分を噴霧する方法(スプレー法)、一定速度で回転しているパターン1を備える基板のパターン1上に一定速度で吐出ノズルをスキャンしながら膜形成成分を吐出しつづける方法(ダイナミックディスペンス法)、膜形成成分をパターン1上に塗布してパターン1上に膜2を形成する方法、膜形成成分の蒸気にパターン1を暴露する方法などを適用することができる。
膜2を形成する際に、パターン1と膜形成成分との間で相互作用を生じることが好ましい。例えば、パターン1の形成に使用される感活性光線性又は感放射線性樹脂組成物中に酸の作用により分解して極性基を生じる樹脂が含まれる場合、この極性基との間で相互作用(例えば、化学結合、静電相互作用、水素結合、双極子相互作用、配位結合など。なお、本明細書では、化学結合も相互作用の一つとする。)を生じる膜形成成分を使用することが好ましい。このような相互作用が生じると、パターン1と膜2との間に、パターン1中の樹脂及び膜2中の膜形成成分が相互作用して相互作用膜が形成される。この相互作用膜は、パターン1と膜2とが接することにより生じる膜であるため、より微細なパターンとなり得る。なお、相互作用膜はパターン1及び膜2と溶媒に対する溶解性が異なるため、後述するように、余剰なパターン1及び余剰な膜2を除去することにより、上記相互作用膜のみを基板上に残存させることができる。
なお、上記のような相互作用を生じない膜形成成分も使用することもできる。
また、膜形成成分自体が架橋する成分であってもよい。
膜2を形成する方法としては、上述した方法のなかでも、膜2の膜厚の制御がしやすい点で、膜2の形成に用いられる組成物(以後、「スペーサー形成用組成物」とも称する)をパターン1上に塗布して、膜2を形成する方法(以後、「塗布法」とも称する)が好ましい。以下、塗布法の態様について詳述する。
スペーサー形成用組成物を塗布する方法は、特に制限されず公知の方法を使用できる。例えば、スピンコートが好ましく用いられる。
スペーサー形成用組成物に含まれる成分の種類は特に制限されず、上述した膜2を形成することができる成分が含まれていればよいが、形成されるパターンの線幅均一性の点で、膜形成成分、及び、有機溶剤が含まれていることが好ましい。
また、スペーサー形成用組成物には水が含まれていてもよいが、その含水率は、形成されるパターンの線幅均一性の点で、スペーサー形成用組成物全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。なお、上記含水率は、言い換えれば、組成物中に含まれる水の組成物全質量に対する含有量(質量%)である。
上記の膜形成成分の詳細については、後段で詳述する。
スペーサー形成用組成物に含まれる有機溶剤の種類は特に制限されず、公知の有機溶剤を使用することができる。例えば、上述した工程Zで使用される有機系現像液にて例示される、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤、または、炭化水素系溶剤が挙げられる。各溶媒の例示は、上述の通りである。なかでも、形成されるパターン形状がより優れる点で、アルコール系溶剤及びエーテル系溶剤の少なくともいずれかが好ましい。
スペーサー形成用組成物中における膜形成成分及び有機溶剤の含有量は特に制限されないが、膜形成成分100質量部に対して、有機溶剤の含有量が700〜8000質量部が好ましく、1500〜3000質量部がより好ましい。
工程Bにおいて、上記のようにスペーサー形成用組成物を塗布した後で、後述する工程Cの前に、加熱処理を行う加熱工程を設けることが好ましい。加熱処理を行うことにより、膜2自体の硬化が進むと共に、パターン1と膜2との間の相互作用を促進させることができる。
なお、加熱処理の条件は特に制限されず、パターン1及び膜2に使用される材料の種類により適宜最適な条件が選択されるが、加熱温度としては70〜200℃が好ましく、90〜160℃がより好ましく、加熱時間としては10〜90秒間が好ましく、30〜60秒間がより好ましい。
<工程C>
工程Cは、上記工程Bで得られた膜2をクラスターイオンでエッチングして膜2の一部を除去し、パターン1の少なくとも一部を表出させる工程である。より具体的には、図1(C)に示すように、矢印で示すクラスターイオンを被エッチング物である膜2(14)に照射して、膜2(14)の一部(上層部分)を除去して、図1(D)に示すように、パターン1(12)の少なくとも一部(図面上はパターン1の上部)を表出(露出)させる。上述したように、クラスターイオンを使用しないドライエッチングにより膜2をエッチングすると、膜2の内部に位置していたパターン1までイオンが浸透し、パターン1が変性(硬化)してしまい、後述する工程Dによってパターン1を除去することが困難となる。それに対して、クラスターイオンを使用した場合は、パターン1の変性を抑制しつつ、パターン1の上部に位置する膜2をエッチングすることができる。
なお、本工程においては、通常、クラスターイオンビームは基板10表面の法線方向から照射されることが好ましい。
上記クラスターイオンによるエッチングは、ガスクラスターイオンビーム(GCIB:Gas Cluster Ion Beam)を照射することができる公知の装置(例えば、アルバック・ファイ製Arガスクラスターイオンビーム(X線光電子分光装置付属))や公知の手順を使用することにより実施することができる(例えば、特開平4−354865号公報、米国特許5814194号、特開平8−321489号公報(特に、段落0012以降)、特表2008−502150号公報(特に、段落0030以降)を参照)。
なお、ガスクラスターイオンビームとは、原子または分子などを多数集めて塊(クラスター)とし、これをイオン化して加速したものを指す。高圧のガスを真空中に噴出すると、断熱膨張によりガスは急激に冷却され、ガスクラスターが生成される。ガスクラスターをイオン化して電界をかけることでイオン化されたガスクラスターを加速させることができる。対象物に照射されたガスクラスターイオンは、基板に浅く添加される。また、一部が基板面に平行に飛散する。基板面に平行に飛散したガスクラスターイオンの一部により、基板上に形成されている凹凸を優先的に除去し、基板表面の平坦化を図ることができる。
原料ガスとしては、Ar,CO,O,N,NO,NO,NH,SF,CF等のガス、又はそれらのクラスター生成を容易にするためにHeを混合したガスが利用できる。
クラスターイオンビーム照射の際の加速電圧の条件としては、得られるパターン形状がより優れる点で、0.1〜50kVが好ましく、5〜30kVがより好ましく、5〜20kVが更に好ましい。
また、イオン化電流の条件としては、得られるパターン形状がより優れる点で、1〜400nAが好ましく、5〜200nAがより好ましく、10〜50nAが更に好ましい。
更に、照射量の条件としては、得られるパターン形状がより優れる点で、1×10〜1×1030ions/cmが好ましく、1×1010〜1×1020ions/cmがより好ましく、1×1014〜1×1017ions/cmが更に好ましい。
本工程では、上述したように、膜2で覆われていたパターン1の少なくとも一部が表出(露出)されるように、膜2の一部をクラスターイオンにより、エッチングする。パターン1の一部が表出されることにより、後述する工程Dなどによりパターン1を除去しやすくなる。
なお、必要に応じて、膜2と共に、パターン1の一部を合わせてエッチングしてもよい。
<工程D>
工程Dは、上記工程Cの後に実施され、膜2を残存させつつ、パターン1の少なくとも一部を除去する工程である。より具体的には、図1(E)に示すように、本工程を実施することにより、パターン1(12)が除去され、基板10上に膜2(14)のパターンが形成される。なお、図1(E)に示すように、パターン1(12)がすべて除去された態様が好ましいが、この態様には限定されず、発明の効果を損なわない範囲で、パターン1(12)が一部残存していてもよい。
膜2を残存させつつ、パターン1の少なくとも一部を除去する方法は特に制限されず、公知の方法を採用できる。例えば、膜2とパターン1との溶剤に対する溶媒性の差を利用して、溶剤を含む処理液を用いた除去処理や、膜2とパターン1とのエッチング耐性の違いを利用したエッチング処理などが挙げられる。なかでも、手順が簡便で、形成されるパターン形状がより優れる点で、処理液を用いて処理する方法が好ましい。以下、この方法に関して詳述する。
使用される処理液に含まれる溶剤の種類は特に制限されず、膜2とパターン1の成分により適宜最適な溶媒が選択されるが、水若しくは有機溶剤、またはこれらの混合物が使用される。なかでも、形成されるパターン形状がより優れる点で、有機溶剤を含有する処理液が好ましい。
有機溶剤の種類は特に制限されないが、上述した工程Zで説明した有機系現像液として例示した、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤及び炭化水素系溶剤を用いることが好ましい。
なお、これらの溶媒の詳細は、上述の通りである。
また、処理液としては、上記工程Zで説明したアルカリ現像液として例示した、アルカリ水溶液を使用することもできる。
除去の方法は特に制限されないが、例えば、上記処理液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に処理液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に処理液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で吐出ノズルをスキャンしながら処理液を吐出しつづける方法(ダイナミックディスペンス法)などを適用することができる。
また、本工程Dの後に必要に応じて、上述した工程Zにて実施されてもよいリンス工程を更に実施してもよい。
上記工程A〜Dを実施することにより、図1(E)に示すように、基板10上に膜2(14)より形成されるパターンが形成される。
なお、本製造方法は、上記工程A〜D以外の工程を有していてもよい。例えば、本製造方法は、工程Bの後で、かつ工程Cの前、工程Cの後で、かつ工程Dの前、または、工程Dの後に、余剰の膜2を除去する工程(以後、工程E)を実施してもよい。本工程を実施することにより、パターン1に付着しなかった、または、パターン1と反応しなかった余剰の膜形成成分を除去することができる。特に、上述したパターン1と膜形成成分との間で相互作用を生じる場合においては、本工程を実施することにより、パターン1と相互作用を生じなかった膜2中の膜形成成分を除去することができ、結果としてより微細なパターンを形成することができる。
図2に、パターン1と膜形成成分との間で相互作用を生じ、相互作用膜が形成される場合において、上記工程Eを工程Cと工程Dとの間に実施した場合のパターン形成方法の各工程の手順を順に示す模式的断面図である。
まず、図2(A)に示すように、上記工程Aを実施することにより、基板10上にパターン1(12)が形成される。次に、上記工程Bを実施することにより、パターン1を覆う膜2(14)が形成される。この際に、パターン1と膜形成成分との間で相互作用を生じ、パターン1と膜2との間に相互作用膜16が形成される。次に、図2(C)に示すように、矢印の方向からクラスターイオンを照射する工程Cを実施することにより、パターン1上に位置する膜2(14)及び相互作用膜16の一部が除去され、図2(D)に示すように、パターン1が表出(露出)する。次に、本工程Eを実施することにより、図2(E)に示すように、余剰の膜2(パターン1との間で相互作用していない膜形成成分を含む膜2)が除去され、基板10上にパターン1及び相互作用膜16が残存する。更に、上記工程Dを実施することにより、図2(F)に示すように、パターン1が除去され、基板10上に相互作用膜16からなるパターンが残存する。上記手順を実施することにより、より幅が狭いパターンを形成することができる。なお、相互作用膜16の幅は、使用される膜形成成分により適宜調整できる。
なお、図2(E)においては、余剰の膜2がすべて除去された態様を示すが、この態様には限定されず、本発明の効果を損なわない範囲で、余剰の膜2が一部残存する態様であってもよい。言い換えると、余剰の膜2の少なくとも一部が除去される態様であってもよい。
余剰の膜2を除去する方法は特に制限されないが、膜2を溶解し得る処理液を用いて、除去を実施することが好ましい。
除去の方法は特に制限されないが、例えば、膜2を溶解し得る処理液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に膜2を溶解し得る処理液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に膜2を溶解し得る処理液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で吐出ノズルをスキャンしながら膜2を溶解し得る処理液を吐出しつづける方法(ダイナミックディスペンス法)などを適用することができる。
膜2を溶解し得る処理液の種類は特に制限されず、膜2を構成する膜構成成分の種類によって適宜最適な溶液が選択されるが、例えば、上記工程Zで述べたアルカリ現像液として例示した水溶液や、有機系現像液として例示した有機溶剤などが挙げられる。なかでも、水、または、アルコール系溶剤が好ましい。
膜2を溶解し得る処理液と膜2との接触時間は特に制限されないが、生産性及び除去性の両立の点から、5〜180秒が好ましく、15〜90秒がより好ましい。
また、上記第1除去工程の後に必要に応じて、上述した工程Zにて実施されてもよいリンス工程を更に実施してもよい。
<各種材料の説明>
以下では、上述した工程Xで使用される感活性光線性又は感放射線性樹脂組成物、及び、工程Bで使用される膜形成成分について詳述する。
<感活性光線性又は感放射線性樹脂組成物>
感活性光線性又は感放射線性樹脂組成物は、酸の作用により分解して極性基を生じる樹脂を含む。
また、感活性光線性又は感放射線性樹脂組成物は、一態様において、活性光線又は放射線の照射により酸を発生する化合物、疎水性樹脂、塩基性化合物、界面活性剤の少なくとも1つを更に含有していてもよい。
以下、これら各成分について説明する。
[酸の作用により分解して極性基を生じる樹脂]
酸の作用により分解して極性基を生じる樹脂(以下、「樹脂(A)」ともいう)は、酸の作用により極性が変化する樹脂であり、酸の作用により、有機溶剤系現像液に対する溶解度が減少し、また、アルカリ現像液に対する溶解度が増大する樹脂である。
樹脂(A)は、樹脂の主鎖又は側鎖、あるいは、主鎖及び側鎖の両方に、酸の作用により分解し、極性基を生じる基(以下、「酸分解性基」ともいう)を有することが好ましい。
酸分解性基は、極性基を酸の作用により分解し脱離する基で保護された構造を有することが好ましい。
極性基としては、有機溶剤を含む現像液中で難溶化又は不溶化する基であれば特に限定されないが、フェノール性水酸基、カルボキシル基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、スルホン酸基、スルホンアミド基、スルホニルイミド基、(アルキルスルホニル)(アルキルカルボニル)メチレン基、(アルキルスルホニル)(アルキルカルボニル)イミド基、ビス(アルキルカルボニル)メチレン基、ビス(アルキルカルボニル)イミド基、ビス(アルキルスルホニル)メチレン基、ビス(アルキルスルホニル)イミド基、トリス(アルキルカルボニル)メチレン基、トリス(アルキルスルホニル)メチレン基等の酸性基(従来レジストの現像液として用いられている、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液中で解離する基)、又はアルコール性水酸基等が挙げられる。
なお、アルコール性水酸基とは、炭化水素基に結合した水酸基であって、芳香環上に直接結合した水酸基(フェノール性水酸基)以外の水酸基をいい、水酸基としてα位がフッ素原子などの電子求引性基で置換された脂肪族アルコール(例えば、フッ素化アルコール基(ヘキサフルオロイソプロパノール基など))は除くものとする。アルコール性水酸基としては、pKaが12以上且つ20以下の水酸基であることが好ましい。
好ましい極性基としては、カルボキシル基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、スルホン酸基が挙げられる。
酸分解性基として好ましい基は、これらの基の水素原子を酸で脱離する基で置換した基である。
酸で脱離する基としては、例えば、−C(R36)(R37)(R38)、−C(R36)(R37)(OR39)、−C(R01)(R02)(OR39)等を挙げることができる。
式中、R36〜R39は、各々独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。R36とR37とは、互いに結合して環を形成してもよい。
01及びR02は、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。
36〜R39、R01及びR02のアルキル基は、炭素数1〜8のアルキル基が好ましい。
36〜R39、R01及びR02のシクロアルキル基は、単環型でも、多環型でもよい。炭素数は3〜20のものが好ましい。
36〜R39、R01及びR02のアリール基は、炭素数6〜10のアリール基が好ましい。
36〜R39、R01及びR02のアラルキル基は、炭素数7〜12のアラルキル基が好ましい。
36〜R39、R01及びR02のアルケニル基は、炭素数2〜8のアルケニル基が好ましい。
36とR37とが結合して形成される環としては、シクロアルキル基(単環若しくは多環)であることが好ましい。シクロアルキル基としては、シクロペンチル基、シクロヘキシル基などの単環のシクロアルキル基、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基などの多環のシクロアルキル基が好ましい。炭素数5〜6の単環のシクロアルキル基がより好ましく、炭素数5の単環のシクロアルキル基が特に好ましい。
酸分解性基としては好ましくは、クミルエステル基、エノールエステル基、アセタールエステル基、第3級のアルキルエステル基等である。更に好ましくは、第3級アルキルエステル基である。
[酸分解性基を有する繰り返し単位]
樹脂(A)は、酸分解性基を有する繰り返し単位を有することが好ましい。
樹脂(A)は、一形態において、酸分解性基を有する繰り返し単位として、酸によって分解しカルボキシル基を生じる繰り返し単位(AI)(以下、「繰り返し単位(AI)」とも言う。)を含有することが好ましく、下記一般式(aI)または(aI’)で表される繰り返し単位を有することがより好ましい。
一般式(aI)及び(aI’)に於いて、
Xaは、水素原子、アルキル基、シアノ基又はハロゲン原子を表す。
Tは、単結合又は2価の連結基を表す。
Rx〜Rxは、それぞれ独立に、アルキル基又はシクロアルキル基を表す。Rx〜Rxの2つが結合して環構造を形成してもよい。また、環構造は、環中に酸素原子等のヘテロ原子を含有してもよい。
Tの2価の連結基としては、例えば、アルキレン基、−COO−Rt−基、−O−Rt−基、フェニレン基等が挙げられる。式中、Rtは、アルキレン基又はシクロアルキレン基を表す。
一般式(aI)中のTは、有機溶剤系現像液に対するレジストの不溶化の観点から、単結合又は−COO−Rt−基が好ましく、−COO−Rt−基がより好ましい。Rtは、炭素数1〜5のアルキレン基が好ましく、−CH−基、−(CH−基、−(CH−基がより好ましい。
一般式(aI’)中のTは、単結合が好ましい。
a1のアルキル基は、置換基を有していてもよく、置換基としては、例えば、水酸基、ハロゲン原子(好ましくは、フッ素原子)が挙げられる。
a1のアルキル基は、炭素数1〜4のものが好ましく、メチル基であることが好ましい。
a1は、水素原子又はメチル基であることが好ましい。
Rx、Rx及びRxのアルキル基としては、直鎖状であっても、分岐状であってもよい。
Rx、Rx及びRxのシクロアルキル基としては、シクロペンチル基、シクロヘキシル基などの単環のシクロアルキル基、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基などの多環のシクロアルキル基が好ましい。
Rx、Rx及びRxの2つが結合して形成する環構造としては、シクロペンチル環、シクロヘキシル環などの単環のシクロアルカン環、ノルボルナン環、テトラシクロデカン環、テトラシクロドデカン環、アダマンタン環などの多環のシクロアルキル基が好ましい。炭素数5又は6の単環のシクロアルカン環が特に好ましい。
Rx、Rx及びRxは、各々独立に、アルキル基であることが好ましく、炭素数1〜4の直鎖状又は分岐状のアルキル基であることがより好ましい。
上記各基は、置換基を有していてもよく、置換基としては、例えば、アルキル基(炭素数1〜4)、シクロアルキル基(炭素数3〜8)、ハロゲン原子、アルコキシ基(炭素数1〜4)、カルボキシル基、アルコキシカルボニル基(炭素数2〜6)などが挙げられ、炭素数8以下が好ましい。なかでも、酸分解前後での有機溶剤を含有する現像液に対する溶解コントラストをより向上させる観点から、酸素原子、窒素原子、硫黄原子などのヘテロ原子を有さない置換基であることがより好ましく(例えば、水酸基で置換されたアルキル基などではないことがより好ましく)、水素原子及び炭素原子のみからなる基であることが更に好ましく、直鎖又は分岐のアルキル基、シクロアルキル基であることが特に好ましい。
以下に酸分解性基を有する繰り返し単位の具体例を挙げるが、本発明は、これらの具体例に限定されるものではない。
具体例中、Rxは、水素原子、CH、CF、又はCHOHを表す。Rxa、Rxbはそれぞれアルキル基(例えば炭素数1〜8、好ましくは炭素数1〜4のアルキル基で、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、t−ブチル基など)を表す。Xaは、水素原子、CH、CF、又はCHOHを表す。Zは、置換基を表し、複数存在する場合、複数のZは互いに同じであっても異なっていてもよい。pは0又は正の整数を表す。Zの具体例及び好ましい例は、Rx〜Rxなどの各基が有し得る置換基の具体例及び好ましい例と同様である。
下記具体例において、Xaは、水素原子、アルキル基、シアノ基又はハロゲン原子を表す。
樹脂(A)は、一形態において、酸分解性基を有する繰り返し単位として、酸により分解する部位の炭素数の合計が4〜9個である繰り返し単位を含有することが好ましい。より好ましくは、上掲の一般式(aI)において、−C(Rx)(Rx)(Rx)部分の炭素数が4〜9個である態様である。
更に好ましくは、一般式(aI)においてRx、Rx及びRxの全てがメチル基またはエチル基である態様か、あるいは、下記一般式(aII)で表される態様である。
一般式(aII)中、
31は、水素原子又はアルキル基を表す。
32は、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基又はsec−ブチル基を表す。
33は、R32が結合している炭素原子とともに単環の脂環炭化水素構造を形成するのに必要な原子団を表す。脂環炭化水素構造は、環を構成する炭素原子の一部が、ヘテロ原子、又は、ヘテロ原子を有する基で置換されていてもよい。
ここで、R32とR33が有する炭素原子の合計は8以下である。
31のアルキル基は、置換基を有していてもよく、置換基としてはフッ素原子、水酸基などが挙げられる。
31は、好ましくは水素原子、メチル基、トリフルオロメチル基又はヒドロキシメチル基を表す。
32は、メチル基、エチル基、n−プロピル基、又は、イソプロピル基であることが好ましく、メチル基、又は、エチル基であることがより好ましい。
33が炭素原子とともに形成する単環の脂環炭化水素構造は、3〜8員環であることが好ましく、5又は6員環であることがより好ましい。
33が炭素原子とともに形成する単環の脂環炭化水素構造において、環を構成し得るヘテロ原子としては、酸素原子、硫黄原子等が挙げられ、ヘテロ原子を有する基としては、カルボニル基等が挙げられる。ただし、ヘテロ原子を有する基は、エステル基(エステル結合)ではないことが好ましい。
33が炭素原子とともに形成する単環の脂環炭化水素構造は、炭素原子と水素原子とのみから形成されることが好ましい。
また、樹脂(A)は、他の形態において、酸分解性基を有する繰り返し単位として、酸により分解する部位の炭素数が10〜20個であり、多環構造を含む酸分解部位を有する繰り返し単位(aIII)を含んでいてもよい。
この酸分解部位の炭素数が10〜20個であり、且つ酸分解部位に多環構造を含む繰り返し単位(aIII)としては、上掲の一般式(aI)において、Rx、Rx及びRxの1つがアダマンタン骨格を有する基であり、残りの2つが直鎖または分岐のアルキル基である態様、または、一般式(aI)において、Rx、Rx及びRxのうち2つが結合してアダマンタン構造を形成し、残りの1つが直鎖または分岐のアルキル基である態様が好ましい。
また、樹脂(A)は、酸分解性基を有する繰り返し単位として、以下で表されるような、酸の作用により分解し、アルコール性水酸基を生じる繰り返し単位を有していてもよい。
下記具体例中、Xaは、水素原子、CH、CF、又はCHOHを表す。
樹脂(A)に含有され得る酸分解性基を有する繰り返し単位は、1種類であってもよいし、2種類以上を併用してもよい。
樹脂(A)が2種以上の酸分解性基を有する繰り返し単位を含有する場合、例えば、上述した一般式(aI)においてRx、Rx及びRxの全てがメチル基またはエチル基である態様、あるいは、上述した一般式(aII)で表される態様の繰り返し単位と、上述した酸分解部位の炭素数が10〜20個であり、且つ酸分解部位に多環構造を含む繰り返し単位(aIII)で表される繰り返し単位との組み合わせが好ましい。
酸分解性基を有する繰り返し単位の総量は、樹脂(A)を構成する全繰り返し単位に対して30〜80モル%が好ましく、40〜75モル%が更に好ましく、45〜70モル%が特に好ましく、50〜70モル%が最も好ましい。
一般式(aI)で表される繰り返し単位の含有率は、樹脂(A)を構成する全繰り返し単位に対して30〜80モル%が好ましく、40〜75モル%が更に好ましく、45〜70モル%が特に好ましく、50〜70モル%が最も好ましい。
また、繰り返し単位(aIII)が酸分解性基を有する全繰り返し単位に占める割合は、3〜50モル%が好ましく、5〜40モル%が更に好ましく、5〜30モル%以下が最も好ましい。
[ラクトン構造又はスルトン構造を有する繰り返し単位]
樹脂(A)は、ラクトン構造又はスルトン構造を有する繰り返し単位を含有していてもよい。
ラクトン構造又はスルトン構造としては、ラクトン構造又はスルトン構造を有していればいずれでも用いることができるが、好ましくは5〜7員環ラクトン構造又は5〜7員環スルトン構造であり、5〜7員環ラクトン構造にビシクロ構造、スピロ構造を形成する形で他の環構造が縮環しているもの、又は、5〜7員環スルトン構造にビシクロ構造、スピロ構造を形成する形で他の環構造が縮環しているもの、がより好ましい。下記一般式(LC1−1)〜(LC1−21)のいずれかで表されるラクトン構造、又は、下記一般式(SL1−1)〜(SL1−3)のいずれかで表されるスルトン構造、を有する繰り返し単位を有することが更に好ましい。また、ラクトン構造又はスルトン構造が主鎖に直接結合していてもよい。好ましいラクトン構造としては(LC1−1)、(LC1−4)、(LC1−5)、(LC1−6)、(LC1−13)、(LC1−14)、(LC1−17)であり、特に好ましいラクトン構造は(LC1−4)である。このような特定のラクトン構造を用いることでLER、現像欠陥が良好になる。
ラクトン構造部分又はスルトン構造部分は、置換基(Rb)を有していても有していなくてもよい。好ましい置換基(Rb)としては、炭素数1〜8のアルキル基、炭素数4〜7のシクロアルキル基、炭素数1〜8のアルコキシ基、炭素数2〜8のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、水酸基、シアノ基、酸分解性基などが挙げられる。より好ましくは炭素数1〜4のアルキル基、シアノ基、酸分解性基である。nは、0〜4の整数を表す。nが2以上の時、複数存在する置換基(Rb)は、同一でも異なっていてもよい。また、複数存在する置換基(Rb)同士が結合して環を形成してもよい。
ラクトン構造又はスルトン構造を有する繰り返し単位は、通常、光学異性体が存在するが、いずれの光学異性体を用いてもよい。また、1種の光学異性体を単独で用いても、複数の光学異性体を混合して用いてもよい。1種の光学異性体を主に用いる場合、その光学純度(ee)が90%以上のものが好ましく、より好ましくは95%以上である。
ラクトン構造又はスルトン構造を有する繰り返し単位は、下記一般式(III)で表される繰り返し単位であることが好ましい。
上記一般式(III)中、
Aは、エステル結合(−COO−で表される基)又はアミド結合(−CONH−で表される基)を表す。
は、複数個ある場合にはそれぞれ独立にアルキレン基、シクロアルキレン基、又はその組み合わせを表す。
Zは、複数個ある場合にはそれぞれ独立に、単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、
又はウレア結合、
を表す。ここで、Rは、各々独立して、水素原子、アルキル基、シクロアルキル基、又はアリール基を表す。
は、ラクトン構造又はスルトン構造を有する1価の有機基を表す。
nは、−R−Z−で表される構造の繰り返し数であり、0〜5の整数を表し、0又は1であることが好ましく、0であることがより好ましい。nが0である場合、−R−Z−は存在せず、単結合となる。
は、水素原子、ハロゲン原子又はアルキル基を表す。
のアルキレン基、シクロアルキレン基は置換基を有してよい。
Zは好ましくは、エーテル結合、エステル結合であり、特に好ましくはエステル結合である。
のアルキル基は、炭素数1〜4のアルキル基が好ましく、メチル基が特に好ましい。
のアルキレン基、シクロアルキレン基、Rにおけるアルキル基は、各々置換されていてもよく、置換基としては、例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子やメルカプト基、水酸基、アルコキシ基が挙げられる。
は、水素原子、メチル基、トリフルオロメチル基、ヒドロキシメチル基が好ましい。
における好ましい鎖状アルキレン基としては炭素数が1〜10の鎖状のアルキレンが好ましく、例えば、メチレン基、エチレン基、プロピレン基等が挙げられる。好ましいシクロアルキレン基としては、炭素数3〜20のシクロアルキレン基であり、例えば、シクロヘキシレン基、シクロペンチレン基、ノルボルニレン基、アダマンチレン基等が挙げられる。本発明の効果を発現するためには鎖状アルキレン基がより好ましく、メチレン基が特に好ましい。
で表されるラクトン構造又はスルトン構造を有する1価の有機基は、ラクトン構造又はスルトン構造を有していれば限定されるものではなく、具体例として一般式(LC1−1)〜(LC1−21)及び、(SL1−1)〜(SL1−3)の内のいずれかで表されるラクトン構造又はスルトン構造が挙げられ、これらのうち(LC1−4)で表される構造が特に好ましい。また、(LC1−1)〜(LC1−21)におけるnは2以下のものがより好ましい。
また、Rは無置換のラクトン構造又はスルトン構造を有する1価の有機基、或いはメチル基、シアノ基又はアルコキシカルボニル基を置換基として有するラクトン構造又はスルトン構造を有する1価の有機基が好ましく、シアノ基を置換基として有するラクトン構造(シアノラクトン)を有する1価の有機基がより好ましい。
以下にラクトン構造又はスルトン構造を有する基を有する繰り返し単位の具体例を示すが、本発明はこれに限定されるものではない。
本発明の効果を高めるために、2種以上のラクトン構造又はスルトン構造を有する繰り返し単位を併用することも可能である。
樹脂(A)がラクトン構造又はスルトン構造を有する繰り返し単位を含有する場合、ラクトン構造又はスルトン構造を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、5〜60モル%が好ましく、より好ましくは5〜55モル%、更に好ましくは10〜50モル%である。
[環状炭酸エステル構造を有する繰り返し単位]
また、樹脂(A)は、環状炭酸エステル構造を有する繰り返し単位を有していてもよい。
環状炭酸エステル構造を有する繰り返し単位は、下記一般式(A−1)で表される繰り返し単位であることが好ましい。
一般式(A−1)中、
は、水素原子又はアルキル基を表す。
は、nが2以上の場合は各々独立して、置換基を表す。
Aは、単結合、又は2価の連結基を表す。
Zは、式中の−O−C(=O)−O−で表される基と共に単環又は多環構造を形成する原子団を表す。
nは0以上の整数を表す。
一般式(A−1)について詳細に説明する。
で表されるアルキル基は、フッ素原子等の置換基を有していてもよい。R は、水素原子、メチル基又はトリフルオロメチル基を表すことが好ましく、メチル基を表すことがより好ましい。
で表される置換基は、例えば、アルキル基、シクロアルキル基、ヒドロキシル基、アルコキシ基、アミノ基、アルコキシカルボニルアミノ基である。好ましくは炭素数1〜5のアルキル基であり、炭素数1〜5の直鎖状アルキル基;炭素数3〜5の分岐状アルキル基等を挙げることができる。アルキル基はヒドロキシル基等の置換基を有していてもよい。
nは置換基数を表す0以上の整数である。nは、例えば、好ましくは0〜4であり、より好ましくは0である。
Aにより表される2価の連結基としては、例えば、アルキレン基、シクロアルキレン基、エステル結合、アミド結合、エーテル結合、ウレタン結合、ウレア結合、又はその組み合わせ等が挙げられる。アルキレン基としては、炭素数1〜10のアルキレン基が好ましく、炭素数1〜5のアルキレン基がより好ましい。
本発明の一形態において、Aは、単結合、アルキレン基であることが好ましい。
Zにより表される、−O−C(=O)−O−を含む単環としては、例えば、下記一般式(a)で表される環状炭酸エステルにおいて、n=2〜4である5〜7員環が挙げられ、5員環又は6員環(n=2又は3)であることが好ましく、5員環(n=2)であることがより好ましい。
Zにより表される、−O−C(=O)−O−を含む多環としては、例えば、下記一般式(a)で表される環状炭酸エステルが1又は2以上の他の環構造と共に縮合環を形成している構造や、スピロ環を形成している構造が挙げられる。縮合環又はスピロ環を形成し得る「他の環構造」としては、脂環式炭化水素基であってもよいし、芳香族炭化水素基であってもよいし、複素環であってもよい。
樹脂(A)には、一般式(A−1)で表される繰り返し単位のうちの1種が単独で含まれていてもよいし、2種以上が含まれていてもよい。
樹脂(A)において、環状炭酸エステル構造を有する繰り返し単位(好ましくは、一般式(A−1)で表される繰り返し単位)の含有率は、樹脂(A)を構成する全繰り返し単位に対して、3〜80モル%であることが好ましく、3〜60モル%であることが更に好ましく、3〜30モル%であることが特に好ましく、10〜15モル%であることが最も好ましい。このような含有率とすることによって、レジストとしての現像性、低欠陥性、低LWR、低PEB温度依存性、プロファイル等を向上させることができる。
以下に、一般式(A−1)で表される繰り返し単位の具体例を挙げるが、本発明はこれらに限定されない。
なお、以下の具体例中のR は、一般式(A−1)におけるR と同義である。
[水酸基、シアノ基又はカルボニル基を有する繰り返し単位]
樹脂(A)は、水酸基、シアノ基又はカルボニル基を有する繰り返し単位を有していてもよい。これにより基板密着性、現像液親和性が向上する。
水酸基、シアノ基又はカルボニル基を有する繰り返し単位は、水酸基、シアノ基又はカルボニル基で置換された脂環炭化水素構造を有する繰り返し単位であることが好ましく、酸分解性基を有さないことが好ましい。
また、水酸基、シアノ基又はカルボニル基で置換された脂環炭化水素構造を有する繰り返し単位は、酸分解性基を有する繰り返し単位とは異なることが好ましい(すなわち、酸に対して安定な繰り返し単位であることが好ましい)。
水酸基、シアノ基又はカルボニル基で置換された脂環炭化水素構造に於ける、脂環炭化水素構造としては、アダマンチル基、ジアダマンチル基、ノルボルナン基が好ましい。
より好ましくは、下記一般式(AIIa)〜(AIIe)のいずれかで表される繰り返し単位を挙げることができる。
式中、Rは、水素原子、メチル基、ヒドロキシメチル基、又は、トリフルオロメチル基を表す。
Abは、単結合、又は2価の連結基を表す。
Abにより表される2価の連結基としては、例えば、アルキレン基、シクロアルキレン基、エステル結合、アミド結合、エーテル結合、ウレタン結合、ウレア結合、又はその組み合わせ等が挙げられる。アルキレン基としては、炭素数1〜10のアルキレン基が好ましく、炭素数1〜5のアルキレン基がより好ましく、例えば、メチレン基、エチレン基、プロピレン基等が挙げられる。
本発明の一形態において、Abは、単結合、又は、アルキレン基であることが好ましい。
Rpは、水素原子、ヒドロキシル基、又は、ヒドロキシアルキル基を表す。複数のRpは、同一でも異なっていてもよいが、複数のRpの内の少なくとも1つは、ヒドロキシル基又はヒドロキシアルキル基を表す。
樹脂(A)は、水酸基、シアノ基又はカルボニル基を有する繰り返し単位を含有していても、含有していなくてもよいが、樹脂(A)が水酸基、シアノ基又はカルボニル基を有する繰り返し単位を含有する場合、水酸基、シアノ基又はカルボニル基を有する繰り返し単位の含有率は、樹脂(A)中の全繰り返し単位に対し、1〜40モル%が好ましく、より好ましくは3〜30モル%、更に好ましくは5〜25モル%である。
水酸基又はシアノ基を有する繰り返し単位の具体例を以下に挙げるが、本発明はこれらに限定されない。
その他、国際公開2011/122336号明細書の〔0011〕以降に記載のモノマー又はこれに対応する繰り返し単位なども適宜使用可能である。
[酸基を有する繰り返し単位]
樹脂(A)は、酸基を有する繰り返し単位を有してもよい。酸基としてはカルボキシル基、スルホンアミド基、スルホニルイミド基、ビススルホニルイミド基、ナフトール構造、α位が電子求引性基で置換された脂肪族アルコール基(例えばヘキサフロロイソプロパノール基)が挙げられ、カルボキシル基を有する繰り返し単位を有することがより好ましい。酸基を有する繰り返し単位を含有することによりコンタクトホール用途での解像性が増す。酸基を有する繰り返し単位としては、アクリル酸、メタクリル酸による繰り返し単位のような樹脂の主鎖に直接酸基が結合している繰り返し単位、あるいは連結基を介して樹脂の主鎖に酸基が結合している繰り返し単位、更には酸基を有する重合開始剤や連鎖移動剤を重合時に用いてポリマー鎖の末端に導入、のいずれも好ましく、連結基は単環又は多環の環状炭化水素構造を有していてもよい。特に好ましくはアクリル酸、メタクリル酸による繰り返し単位である。
樹脂(A)は、酸基を有する繰り返し単位を含有してもしなくてもよいが、含有する場合、酸基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、25モル%以下であることが好ましく、20モル%以下であることがより好ましい。樹脂(A)が酸基を有する繰り返し単位を含有する場合、樹脂(A)における酸基を有する繰り返し単位の含有量は、通常、1モル%以上である。
酸基を有する繰り返し単位の具体例を以下に示すが、本発明は、これに限定されるものではない。
具体例中、RxはH、CH、CHOH又はCFを表す。
[極性基を持たない脂環炭化水素構造を有し、酸分解性を示さない繰り返し単位]
本発明における樹脂(A)は、更に極性基(例えば、酸基、ヒドロキシル基、シアノ基)を持たない脂環炭化水素構造を有し、酸分解性を示さない繰り返し単位を有することができる。これにより、液浸露光時にレジスト膜から液浸液への低分子成分の溶出が低減できるとともに、有機溶剤を含む現像液を用いた現像の際に樹脂の溶解性を適切に調整することができる。このような繰り返し単位としては、一般式(IV)で表される繰り返し単位が挙げられる。
一般式(IV)中、Rは少なくとも1つの環状構造を有し、極性基を有さない炭化水素基を表す。
Raは、水素原子、アルキル基又は−CH−O−Ra基を表す。式中、Raは、水素原子、アルキル基又はアシル基を表す。Raは、水素原子、メチル基、ヒドロキシメチル基、トリフルオロメチル基が好ましく、水素原子、メチル基が特に好ましい。
が有する環状構造には、単環式炭化水素基及び多環式炭化水素基が含まれる。単環式炭化水素基としては、たとえば、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基などの炭素数3〜12のシクロアルキル基、シクロへキセニル基など炭素数3〜12のシクロアルケニル基が挙げられる。好ましい単環式炭化水素基としては、炭素数3〜7の単環式炭化水素基であり、より好ましくは、シクロペンチル基、シクロヘキシル基が挙げられる。
多環式炭化水素基には環集合炭化水素基、架橋環式炭化水素基が含まれ、環集合炭化水素基の例としては、ビシクロヘキシル基、パーヒドロナフタレニル基などが含まれる。架橋環式炭化水素環として、例えば、ピナン、ボルナン、ノルピナン、ノルボルナン、ビシクロオクタン環(ビシクロ[2.2.2]オクタン環、ビシクロ[3.2.1]オクタン環等)などの2環式炭化水素環及び、ホモブレダン、アダマンタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[4.3.1.12,5]ウンデカン環などの3環式炭化水素環、テトラシクロ[4.4.0.12,5.17,10]ドデカン、パーヒドロ−1,4−メタノ−5,8−メタノナフタレン環などの4環式炭化水素環などが挙げられる。また、架橋環式炭化水素環には、縮合環式炭化水素環、例えば、パーヒドロナフタレン(デカリン)、パーヒドロアントラセン、パーヒドロフェナントレン、パーヒドロアセナフテン、パーヒドロフルオレン、パーヒドロインデン、パーヒドロフェナレン環などの5〜8員シクロアルカン環が複数個縮合した縮合環も含まれる。
好ましい架橋環式炭化水素環として、ノルボルニル基、アダマンチル基、ビシクロオクタニル基、トリシクロ[5、2、1、02,6]デカニル基、などが挙げられる。より好ましい架橋環式炭化水素環としてノルボルニル基、アダマンチル基が挙げられる。
これらの脂環式炭化水素基は置換基を有していても良く、好ましい置換基としてはハロゲン原子、アルキル基、水素原子が置換されたヒドロキシル基、水素原子が置換されたアミノ基などが挙げられる。
樹脂(A)は、極性基を持たない脂環炭化水素構造を有し、酸分解性を示さない繰り返し単位を含有してもしなくてもよいが、含有する場合、この繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、1〜50モル%が好ましく、より好ましくは5〜50モル%であり、さらに好ましくは5〜20モル%である。
極性基を持たない脂環炭化水素構造を有し、酸分解性を示さない繰り返し単位の具体例を以下に挙げるが、本発明はこれらに限定されない。式中、Raは、H、CH、CHOH、又はCFを表す。
[芳香環を有する繰り返し単位]
本発明の感活性光線性又は感放射線性樹脂組成物に、KrFエキシマレーザー光、電子線、X線又は波長50nm以下の高エネルギー光線(例えば、EUV)を照射する場合には、樹脂(A)は、ヒドロキシスチレン繰り返し単位に代表されるような、芳香環を有する単位を有することが好ましい。
芳香環を有する繰り返し単位としては、特に限定されず、また、前述の各繰り返し単位に関する説明でも例示しているが、スチレン単位、ヒドロキシスチレン単位、フェニル(メタ)アクリレート単位、ヒドロキシフェニル(メタ)アクリレート単位などが挙げられる。樹脂(A)としては、より具体的には、ヒドロキシスチレン系繰り返し単位と、酸分解性基によって保護されたヒドロキシスチレン系繰り返し単位とを有する樹脂、上記芳香環を有する繰り返し単位と、(メタ)アクリル酸のカルボン酸部位が酸分解性基によって保護された繰り返し単位を有する樹脂、などが挙げられる。なお、特にEUV露光の際は、一般に高感度が要求される為、樹脂(A)は、酸分解しやすい保護基を含有する繰り返し単位を含むことが好ましい。その繰り返し単位として具体的には、前述の酸で脱離する基として説明した構造のうち、−C(R36)(R37)(OR39)または−C(R01)(R02)(OR39)で表されるもの(俗にアセタール型保護基と言われる構造)が好ましく挙げられる。
また、樹脂(A)は、一形態において、後述する酸発生剤に対応する構造が担持された態様であってもよい。このような態様として具体的には、特開2011−248019号公報に記載の構造(特に、段落0164から段落0191に記載の構造、段落0555の実施例で記載されている樹脂に含まれる構造)、特開2013−80002号公報の段落0023〜段落0210に説明されている繰り返し単位(R)などが挙げられ、これらの内容は本明細書に組み込まれる。樹脂(A)が酸発生剤に対応する構造を担持している態様であっても、本発明の感活性光線性又は感放射線性樹脂組成物は、更に、樹脂(A)に担持されていない酸発生剤(すなわち、後述する化合物(B))を含んでもよい。
酸発生剤に対応する構造を有する繰り返し単位として、以下のような繰り返し単位が挙げられるが、これに限定されるものではない。
本発明の感活性光線性又は感放射線性樹脂組成物に用いられる樹脂(A)は、上記の繰り返し構造単位以外に、ドライエッチング耐性や標準現像液適性、基板密着性、レジストプロファイル、更に感活性光線性又は感放射線性樹脂組成物の一般的な必要な特性である解像力、耐熱性、感度等を調節する目的で様々な繰り返し構造単位を有することができる。
このような繰り返し構造単位としては、下記の単量体に相当する繰り返し構造単位を挙げることができるが、これらに限定されるものではない。
これにより、本発明の感活性光線性又は感放射線性樹脂組成物に用いられる樹脂に要求される性能、特に、
(1)塗布溶剤に対する溶解性、
(2)製膜性(ガラス転移点)、
(3)アルカリ現像性、
(4)膜べり(親疎水性、アルカリ可溶性基選択)、
(5)未露光部の基板への密着性、
(6)ドライエッチング耐性、等の微調整が可能となる。
このような単量体として、例えばアクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、アリル化合物、ビニルエーテル類、ビニルエステル類等から選ばれる付加重合性不飽和結合を1個有する化合物等を挙げることができる。
その他にも、上記種々の繰り返し構造単位に相当する単量体と共重合可能である付加重合性の不飽和化合物であれば、共重合されていてもよい。
本発明の感活性光線性又は感放射線性樹脂組成物に用いられる樹脂(A)において、各繰り返し構造単位の含有モル比は感活性光線性又は感放射線性樹脂組成物のドライエッチング耐性や標準現像液適性、基板密着性、レジストプロファイル、更には感活性光線性又は感放射線性樹脂組成物の一般的な必要性能である解像力、耐熱性、感度等を調節するために適宜設定される。
本発明の感活性光線性又は感放射線性樹脂組成物が、ArF露光用であるとき、ArF光への透明性の点から本発明の感活性光線性又は感放射線性樹脂組成物に用いられる樹脂(A)は実質的には芳香環を有さない(具体的には、樹脂中、芳香族基を有する繰り返し単位の比率が好ましくは5モル%以下、より好ましくは3モル%以下、理想的には0モル%、すなわち、芳香族基を有さない)ことが好ましく、樹脂(A)は単環又は多環の脂環炭化水素構造を有することが好ましい。
本発明における樹脂(A)の形態としては、ランダム型、ブロック型、クシ型、スター型のいずれの形態でもよい。樹脂(A)は、例えば、各構造に対応する不飽和モノマーのラジカル、カチオン、又はアニオン重合により合成することができる。また各構造の前駆体に相当する不飽和モノマーを用いて重合した後に、高分子反応を行うことにより目的とする樹脂を得ることも可能である。
本発明の感活性光線性又は感放射線性樹脂組成物が、後述する疎水性樹脂(HR)を含んでいる場合、樹脂(A)は、疎水性樹脂(HR)との相溶性の観点から、フッ素原子及びケイ素原子を含有しない(具体的には、樹脂中、フッ素原子またはケイ素原子を有する繰り返し単位の比率が、好ましくは5モル%以下、より好ましくは3モル%以下、理想的には0モル%)ことが好ましい。
本発明の感活性光線性又は感放射線性樹脂組成物に用いられる樹脂(A)として好ましくは、繰り返し単位のすべてが(メタ)アクリレート系繰り返し単位で構成されたものである。この場合、繰り返し単位のすべてがメタクリレート系繰り返し単位であるもの、繰り返し単位のすべてがアクリレート系繰り返し単位であるもの、繰り返し単位のすべてがメタクリレート系繰り返し単位とアクリレート系繰り返し単位とによるもののいずれのものでも用いることができるが、アクリレート系繰り返し単位が全繰り返し単位の50モル%以下であることが好ましい。
本発明における樹脂(A)は、常法に従って(例えばラジカル重合、リビングラジカル重合、アニオン重合、カチオン重合など、高分子合成の分野において慣用される方法によって)合成することができる。例えば、一般的合成方法としては、モノマー種及び開始剤を溶剤に溶解させ、加熱することにより重合を行う一括重合法、加熱溶剤にモノマー種と開始剤の溶液を1〜10時間かけて滴下して加える滴下重合法などが挙げられ、滴下重合法が好ましい。反応溶媒としては、例えばテトラヒドロフラン、1,4−ジオキサン、ジイソプロピルエーテルなどのエーテル類やメチルエチルケトン、メチルイソブチルケトンのようなケトン類、酢酸エチルのようなエステル溶媒、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド溶剤、更には後述のプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノンのような本発明の感活性光線性又は感放射線性樹脂組成物を溶解する溶媒が挙げられる。より好ましくは本発明の感活性光線性又は感放射線性樹脂組成物に用いられる溶剤と同一の溶剤を用いて重合することが好ましい。これにより保存時のパーティクルの発生が抑制できる。
重合反応は窒素やアルゴンなど不活性ガス雰囲気下で行われることが好ましい。重合開始剤としては市販のラジカル開始剤(アゾ系開始剤、パーオキサイドなど)を用いて重合を開始させる。ラジカル開始剤としてはアゾ系開始剤が好ましく、エステル基、シアノ基、カルボキシル基を有するアゾ系開始剤が好ましい。好ましい開始剤としては、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、ジメチル2,2’−アゾビス(2−メチルプロピオネート)などが挙げられる。所望により開始剤を追加、あるいは分割で添加し、反応終了後、溶剤に投入して粉体あるいは固形回収等の方法で所望のポリマーを回収する。反応の濃度は5〜50質量%であり、好ましくは10〜30質量%である。反応温度は、通常10℃〜150℃であり、好ましくは30℃〜120℃、更に好ましくは60〜100℃である。
反応終了後、室温まで放冷し、精製する。精製は、水洗や適切な溶媒を組み合わせることにより残留単量体やオリゴマー成分を除去する液々抽出法、特定の分子量以下のもののみを抽出除去する限外ろ過等の溶液状態での精製方法や、樹脂溶液を貧溶媒へ滴下することで樹脂を貧溶媒中に凝固させることにより残留単量体等を除去する再沈澱法やろ別した樹脂スラリーを貧溶媒で洗浄する等の固体状態での精製方法等の通常の方法を適用できる。
例えば、上記樹脂が難溶或いは不溶の溶媒(貧溶媒)を、反応溶液の10倍以下の体積量、好ましくは10〜5倍の体積量で、接触させることにより樹脂を固体として析出させる。
ポリマー溶液からの沈殿又は再沈殿操作の際に用いる溶媒(沈殿又は再沈殿溶媒)としては、ポリマーの貧溶媒であればよく、ポリマーの種類に応じて、炭化水素、ハロゲン化炭化水素、ニトロ化合物、エーテル、ケトン、エステル、カーボネート、アルコール、カルボン酸、水、これらの溶媒を含む混合溶媒等の中から適宜選択して使用できる。これらの中でも、沈殿又は再沈殿溶媒として、少なくともアルコール(特に、メタノールなど)又は水を含む溶媒が好ましい。
沈殿又は再沈殿溶媒の使用量は、効率や収率等を考慮して適宜選択できるが、一般には、ポリマー溶液100質量部に対して、100〜10000質量部、好ましくは200〜2000質量部、更に好ましくは300〜1000質量部である。
沈殿又は再沈殿する際の温度としては、効率や操作性を考慮して適宜選択できるが、通常0〜50℃程度、好ましくは室温付近(例えば20〜35℃程度)である。沈殿又は再沈殿操作は、攪拌槽などの慣用の混合容器を用い、バッチ式、連続式等の公知の方法により行うことができる。
沈殿又は再沈殿したポリマーは、通常、濾過、遠心分離等の慣用の固液分離に付し、乾燥して使用に供される。濾過は、耐溶剤性の濾材を用い、好ましくは加圧下で行われる。乾燥は、常圧又は減圧下(好ましくは減圧下)、30〜100℃程度、好ましくは30〜50℃程度の温度で行われる。
なお、一度、樹脂を析出させて、分離した後に、再び溶媒に溶解させ、樹脂が難溶或いは不溶の溶媒と接触させてもよい。即ち、上記ラジカル重合反応終了後、ポリマーが難溶或いは不溶の溶媒を接触させ、樹脂を析出させ(工程a)、樹脂を溶液から分離し(工程b)、改めて溶媒に溶解させ樹脂溶液Aを調製(工程c)、その後、樹脂溶液Aに、樹脂が難溶或いは不溶の溶媒を、樹脂溶液Aの10倍未満の体積量(好ましくは5倍以下の体積量)で、接触させることにより樹脂固体を析出させ(工程d)、析出した樹脂を分離する(工程e)ことを含む方法でもよい。
また、感活性光線性又は感放射線性樹脂組成物の調製後に樹脂が凝集することなどを抑制する為に、例えば、特開2009−037108号公報に記載のように、合成された樹脂を溶剤に溶解して溶液とし、その溶液を30℃〜90℃程度で30分〜4時間程度加熱するような工程を加えてもよい。
これら精製工程により、未反応の低分子成分(モノマー、オリゴマー)をできるだけ少なくすることが好ましい。
本発明における樹脂(A)の重量平均分子量は、GPC法によりポリスチレン換算値として、6000〜50000が好ましく、8000〜30000が更に好ましく、10000〜25000が最も好ましい。この分子量範囲にすることで、有機系現像液に対する溶解度が適切な数値となることが期待できる。
分散度(分子量分布)は、通常1.0〜3.0であり、好ましくは1.0〜2.6、更に好ましくは1.0〜2.0、特に好ましくは1.4〜2.0の範囲のものが使用される。分子量分布の小さいものほど、解像度、レジスト形状が優れ、かつ、レジストパターンの側壁がスムーズであり、ラフネス性に優れる。
樹脂(A)の含有量は、感活性光線性又は感放射線性樹脂組成物の全固形分を基準として、30〜99質量%が好ましく、より好ましくは60〜95質量%である。
また、本発明において、樹脂(A)は、1種で使用してもよいし、複数併用してもよい。
以下、樹脂(A)の具体例(繰り返し単位の組成比はモル比である)を挙げるが、本発明はこれらに限定されるものではない。なお、以下では、後述する、酸発生剤に対応する構造が樹脂(A)に担持されている場合の態様も例示している。
以下に例示する樹脂は、特に、EUV露光または電子線露光の際に、好適に用いることができる樹脂の例である。
[活性光線又は放射線の照射により酸を発生する化合物]
本発明の感活性光線性又は感放射線性樹脂組成物は、活性光線又は放射線の照射により酸を発生する化合物(以下、「化合物(B)」又は「酸発生剤」ともいう。)を含有してもよい。
酸発生剤は、低分子化合物の形態であってもよく、重合体の一部に組み込まれた形態であっても良い。また、低分子化合物の形態と重合体の一部に組み込まれた形態を併用してもよい。
酸発生剤が、低分子化合物の形態である場合、分子量が3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることが更に好ましい。
酸発生剤が、重合体の一部に組み込まれた形態である場合、前述した酸分解性樹脂の一部に組み込まれてもよく、酸分解性樹脂とは異なる樹脂に組み込まれてもよい。
本発明において、酸発生剤は、低分子化合物の形態であることが好ましい。本発明の一態様において、酸発生剤としては、下記一般式(ZI)、(ZII)又は(ZIII)で表される化合物を挙げることができる。
上記一般式(ZI)において、
201、R202及びR203は、各々独立に、有機基を表す。
201、R202及びR203としての有機基の炭素数は、一般的に1〜30、好ましくは1〜20である。
また、R201〜R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル結合、アミド結合、カルボニル基を含んでいてもよい。R201〜R203の内の2つが結合して形成する基としては、アルキレン基(例えば、ブチレン基、ペンチレン基)を挙げることができる。
なお、一般式(ZI)で表される構造を複数有する化合物であってもよい。例えば、一般式(ZI)で表される化合物のR201〜R203の少なくとも1つが、一般式(ZI)で表されるもうひとつの化合物のR201〜R203の少なくとも1つと、単結合又は連結基を介して結合した構造を有する化合物であってもよい。
は、非求核性アニオン(求核反応を起こす能力が著しく低いアニオン)を表す。
としては、例えば、スルホン酸アニオン(脂肪族スルホン酸アニオン、芳香族スルホン酸アニオン、カンファースルホン酸アニオンなど)、カルボン酸アニオン(脂肪族カルボン酸アニオン、芳香族カルボン酸アニオン、アラルキルカルボン酸アニオンなど)、スルホニルイミドアニオン、ビス(アルキルスルホニル)イミドアニオン、トリス(アルキルスルホニル)メチドアニオン等を挙げられる。
脂肪族スルホン酸アニオン及び脂肪族カルボン酸アニオンにおける脂肪族部位は、アルキル基であってもシクロアルキル基であってもよく、好ましくは炭素数1〜30の直鎖又は分岐のアルキル基及び炭素数3〜30のシクロアルキル基が挙げられる。
芳香族スルホン酸アニオン及び芳香族カルボン酸アニオンにおける芳香族基としては、好ましくは炭素数6〜14のアリール基、例えば、フェニル基、トリル基、ナフチル基等を挙げることができる。
上記で挙げたアルキル基、シクロアルキル基及びアリール基は、置換基を有していてもよい。この具体例としては、ニトロ基、フッ素原子などのハロゲン原子、カルボキシル基、水酸基、アミノ基、シアノ基、アルコキシ基(好ましくは炭素数1〜15)、シクロアルキル基(好ましくは炭素数3〜15)、アリール基(好ましくは炭素数6〜14)、アルコキシカルボニル基(好ましくは炭素数2〜7)、アシル基(好ましくは炭素数2〜12)、アルコキシカルボニルオキシ基(好ましくは炭素数2〜7)、アルキルチオ基(好ましくは炭素数1〜15)、アルキルスルホニル基(好ましくは炭素数1〜15)、アルキルイミノスルホニル基(好ましくは炭素数2〜15)、アリールオキシスルホニル基(好ましくは炭素数6〜20)、アルキルアリールオキシスルホニル基(好ましくは炭素数7〜20)、シクロアルキルアリールオキシスルホニル基(好ましくは炭素数10〜20)、アルキルオキシアルキルオキシ基(好ましくは炭素数5〜20)、シクロアルキルアルキルオキシアルキルオキシ基(好ましくは炭素数8〜20)等を挙げることができる。各基が有するアリール基及び環構造については、置換基として更にアルキル基(好ましくは炭素数1〜15)を有していてもよい。
アラルキルカルボン酸アニオンにおけるアラルキル基としては、好ましくは炭素数7〜12のアラルキル基、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基、ナフチルブチル基等を挙げることができる。
スルホニルイミドアニオンとしては、例えば、サッカリンアニオンを挙げることができる。
ビス(アルキルスルホニル)イミドアニオン、トリス(アルキルスルホニル)メチドアニオンにおけるアルキル基は、炭素数1〜5のアルキル基が好ましい。これらのアルキル基の置換基としてはハロゲン原子、ハロゲン原子で置換されたアルキル基、アルコキシ基、アルキルチオ基、アルキルオキシスルホニル基、アリールオキシスルホニル基、シクロアルキルアリールオキシスルホニル基等を挙げることができ、フッ素原子又はフッ素原子で置換されたアルキル基が好ましい。
その他のZとしては、例えば、弗素化燐(例えば、PF )、弗素化硼素(例えば、BF )、弗素化アンチモン(例えば、SbF )等を挙げることができる。
としては、スルホン酸の少なくともα位がフッ素原子で置換された脂肪族スルホン酸アニオン、フッ素原子又はフッ素原子を有する基で置換された芳香族スルホン酸アニオン、アルキル基がフッ素原子で置換されたビス(アルキルスルホニル)イミドアニオン、アルキル基がフッ素原子で置換されたトリス(アルキルスルホニル)メチドアニオンが好ましい。
本発明の一形態において、Zとしてのアニオンに含まれるフッ素原子数は2又は3であることが好ましい。
酸強度の観点からは、発生酸のpKaが−1以下であることが、感度向上のために好ましい。
201、R202及びR203の有機基としては、アリール基(炭素数6〜15が好ましい)、直鎖又は分岐のアルキル基(炭素数1〜10が好ましい)、シクロアルキル基(炭素数3〜15が好ましい)などが挙げられる。
201、R202及びR203のうち、少なくとも1つがアリール基であることが好ましく、3つ全てがアリール基であることがより好ましい。アリール基としては、フェニル基、ナフチル基などの他に、インドール残基、ピロール残基などのヘテロアリール基も可能である。
201、R202及びR203としてのこれらアリール基、アルキル基、シクロアルキル基は更に置換基を有していてもよい。その置換基としては、ニトロ基、フッ素原子などのハロゲン原子、カルボキシル基、水酸基、アミノ基、シアノ基、アルコキシ基(好ましくは炭素数1〜15)、シクロアルキル基(好ましくは炭素数3〜15)、アリール基(好ましくは炭素数6〜14)、アルコキシカルボニル基(好ましくは炭素数2〜7)、アシル基(好ましくは炭素数2〜12)、アルコキシカルボニルオキシ基(好ましくは炭素数2〜7)等が挙げられるが、これらに限定されるものではない。
また、R201、R202及びR203から選ばれる2つが、単結合又は連結基を介して結合していてもよい。連結基としてはアルキレン基(炭素数1〜3が好ましい)、−O−,−S−,−CO−,−SO−などがあげられるが、これらに限定されるものではない。
201、R202及びR203のうち少なくとも1つがアリール基でない場合の好ましい構造としては、特開2004−233661号公報の段落0046,0047、特開2003−35948号公報の段落0040〜0046、米国特許出願公開第2003/0224288A1号明細書に式(I−1)〜(I−70)として例示されている化合物、米国特許出願公開第2003/0077540A1号明細書に式(IA−1)〜(IA−54)、式(IB−1)〜(IB−24)として例示されている化合物等のカチオン構造を挙げることができる。
一般式(ZI)で表される化合物の更に好ましい例として、以下に説明する一般式(ZI−3)又は(ZI−4)で表される化合物を挙げることができる。先ず、一般式(ZI−3)で表される化合物について説明する。
上記一般式(ZI−3)中、
は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又はアルケニル基を表し、
及びRは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、RとRが互いに連結して環を形成してもよく、
とRは、互いに連結して環を形成してもよく、
及びRは、各々独立に、アルキル基、シクロアルキル基、アルケニル基、アリール基、2−オキソアルキル基、2−オキソシクロアルキル基、アルコキシカルボニルアルキル基、アルコキシカルボニルシクロアルキル基を表し、RとRが互いに連結して環を形成してもよく、この環構造は酸素原子、窒素原子、硫黄原子、ケトン基、エーテル結合、エステル結合、アミド結合を含んでいてもよい。
は、非求核性アニオンを表す。
としてのアルキル基は、好ましくは炭素数1〜20の直鎖又は分岐アルキル基であり、アルキル鎖中に酸素原子、硫黄原子、窒素原子を有していてもよい。具体的には分岐アルキル基を挙げることができる。Rのアルキル基は置換基を有していてもよい。
としてのシクロアルキル基は、好ましくは炭素数3〜20のシクロアルキル基であり、環内に酸素原子又は硫黄原子を有していてもよい。Rのシクロアルキル基は置換基を有していてもよい。
としてのアルコキシ基は、好ましくは炭素数1〜20のアルコキシ基である。Rのアルコキシ基は置換基を有していてもよい。
としてのシクロアルコキシ基は、好ましくは炭素数3〜20のシクロアルコキシ基である。Rのシクロアルコキシ基は置換基を有していてもよい。
としてのアリール基は、好ましくは炭素数6〜14のアリール基である。Rのアリール基は置換基を有していてもよい。
としてのアルケニル基は、ビニル基、アリル基が挙げられる。
及びRは、水素原子、アルキル基、シクロアルキル基、又はアリール基を表し、RとRが互いに連結して環を形成してもよい。但し、R及びRのうち少なくとも1つは、アルキル基、シクロアルキル基、アリール基を表す。R、Rについてのアルキル基、シクロアルキル基、アリール基の具体例及び好ましい例としては、Rについて前述した具体例及び好ましい例と同様のものが挙げられる。RとRが互いに連結して環を形成する場合、R及びRに含まれる環の形成に寄与する炭素原子の数の合計は、4〜7であることが好ましく、4又は5であることが特に好ましい。
とRは、互いに連結して環を形成してもよい。RとRが互いに連結して環を形成する場合、Rがアリール基(好ましくは置換基を有してもよいフェニル基又はナフチル基)であり、Rが炭素数1〜4のアルキレン基(好ましくはメチレン基又はエチレン基)であることが好ましく、好ましい置換基としては、上述したRとしてのアリール基が有していても良い置換基と同様のものが挙げられる。RとRが互いに連結して環を形成する場合における他の形態として、Rがビニル基であり、Rが炭素数1〜4のアルキレン基であることも好ましい。
及びRにより表されるアルキル基は、好ましくは炭素数1〜15のアルキル基である。
及びRにより表されるシクロアルキル基は、好ましくは炭素数3〜20のシクロアルキル基である。
及びRにより表されるアルケニル基は、好ましくは、2〜30のアルケニル基、例えば、ビニル基、アリル基、及びスチリル基を挙げることができる。
及びRにより表されるアリール基としては、例えば、炭素数6〜20のアリール基であり、好ましくは、フェニル基、ナフチル基であり、更に好ましくは、フェニル基である。
及びRにより表される2−オキソアルキル基及びアルコキシカルボニルアルキル基のアルキル基部分としては、例えば、先にR及びRとして列挙したものが挙げられる。
及びRにより表される2−オキソシクロアルキル基及びアルコキシカルボニルシクロアルキル基のシクロアルキル基部分としては、例えば、先にR及びRyとして列挙したものが挙げられる。
は、例えば、前述の一般式(ZI)におけるZとして列挙したものが挙げられる。
一般式(ZI−3)で表される化合物は、好ましくは、以下の一般式(ZI−3a)及び(ZI−3b)で表される化合物である。
一般式(ZI−3a)及び(ZI−3b)において、R、R及びRは、上記一般式(ZI−3)で定義した通りである。
Yは、酸素原子、硫黄原子又は窒素原子を表し、酸素原子又は窒素原子であることが好ましい。m、n、p及びqは整数を意味し、0〜3であることが好ましく、1〜2であることがより好ましく、1であることが特に好ましい。SとYを連結するアルキレン基は置換基を有してもよく、好ましい置換基としてはアルキル基が挙げられる。
は、Yが窒素原子である場合には1価の有機基を表し、Yが酸素原子又は硫黄原子である場合には存在しない。Rは、電子求引性基を含む基であることが好ましく、下記一般式(ZI−3a−1)〜(ZI−3a−4)で表される基であることが特に好ましい。
上記(ZI−3a−1)〜(ZI−3a−3)において、Rは水素原子、アルキル基、シクロアルキル基又はアリール基を表し、好ましくはアルキル基である。Rについてのアルキル基、シクロアルキル基、アリール基の具体例及び好ましい例としては、上記一般式(ZI−3)におけるRについて前述した具体例及び好ましい例と同様のものが挙げられる。
上記(ZI−3a−1)〜(ZI−3a−4)において、*は一般式(ZI−3a)で表される化合物中のYとしての窒素原子に接続する結合手を表す。
Yが窒素原子である場合、Rは、−SO−Rで表される基であることが特に好ましい。Rは、アルキル基、シクロアルキル基又はアリール基を表し、好ましくはアルキル基である。Rについてのアルキル基、シクロアルキル基、アリール基の具体例及び好ましい例としては、Rについて前述した具体例及び好ましい例と同様のものが挙げられる。
は、例えば、前述の一般式(ZI)におけるZとして列挙したものが挙げられる。
一般式(ZI−3)で表される化合物のカチオン部分の具体例を以下に挙げる。
次に、一般式(ZI−4)で表される化合物について説明する。
一般式(ZI−4)中、
13は、水素原子、フッ素原子、水酸基、アルキル基、シクロアルキル基、アルコキシ基、アルコキシカルボニル基、又はシクロアルキル基を有する基を表す。これらの基は置換基を有してもよい。
14は複数存在する場合は各々独立して、水酸基、アルキル基、シクロアルキル基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルスルホニル基、シクロアルキルスルホニル基、又はシクロアルキル基を有する基を表す。これらの基は置換基を有してもよい。
15は各々独立して、アルキル基、シクロアルキル基又はナフチル基を表す。2個のR15が互いに結合して環を形成してもよく、環を構成する原子として、酸素原子、硫黄原子及び窒素原子などのヘテロ原子を含んでも良い。これらの基は置換基を有してもよい。
lは0〜2の整数を表す。
rは0〜8の整数を表す。
は、非求核性アニオンを表し、一般式(ZI)に於けるZと同様の非求核性アニオンを挙げることができる。
一般式(ZI−4)において、R13、R14及びR15のアルキル基としては、直鎖状若しくは分岐状であり、炭素原子数1〜10のものが好ましい。
13、R14及びR15のシクロアルキル基としては、単環若しくは多環のシクロアルキル基が挙げられる。
13及びR14のアルコキシ基としては、直鎖状若しくは分岐状であり、炭素原子数1〜10のものが好ましい。
13及びR14のアルコキシカルボニル基としては、直鎖状若しくは分岐状であり、炭素原子数2〜11のものが好ましい。
13及びR14のシクロアルキル基を有する基としては、単環若しくは多環のシクロアルキル基を有する基が挙げられる。これら基は、置換基を更に有していてもよい。
14のアルキルカルボニル基のアルキル基としては、上述したR13〜R15としてのアルキル基と同様の具体例が挙げられる。
14のアルキルスルホニル基及びシクロアルキルスルホニル基としては、直鎖状、分岐状、環状であり、炭素原子数1〜10のものが好ましい。
上記各基が有していてもよい置換基としては、ハロゲン原子(例えば、フッ素原子)、水酸基、カルボキシル基、シアノ基、ニトロ基、アルコキシ基、アルコキシアルキル基、アルコキシカルボニル基、アルコキシカルボニルオキシ基等を挙げることができる。
2個のR15が互いに結合して形成してもよい環構造としては、2個のR15が一般式(ZI−4)中の硫黄原子と共に形成する5員又は6員の環、特に好ましくは5員の環(即ち、テトラヒドロチオフェン環又は2,5−ジヒドロチオフェン環)が挙げられ、アリール基又はシクロアルキル基と縮環していてもよい。この2価のR15は置換基を有してもよく、置換基としては、例えば、水酸基、カルボキシル基、シアノ基、ニトロ基、アルキル基、シクロアルキル基、アルコキシ基、アルコキシアルキル基、アルコキシカルボニル基、アルコキシカルボニルオキシ基等を挙げることができる。環構造に対する置換基は、複数個存在してもよく、また、それらが互いに結合して環を形成してもよい。
一般式(ZI−4)におけるR15としては、メチル基、エチル基、ナフチル基、及び2個のR15が互いに結合して硫黄原子と共にテトラヒドロチオフェン環構造を形成する2価の基等が好ましく、2個のR15が互いに結合して硫黄原子と共にテトラヒドロチオフェン環構造を形成する2価の基が特に好ましい。
13及びR14が有し得る置換基としては、水酸基、アルコキシ基、又はアルコキシカルボニル基、ハロゲン原子(特に、フッ素原子)が好ましい。
lとしては、0又は1が好ましく、1がより好ましい。
rとしては、0〜2が好ましい。
以上説明した一般式(ZI−3)又は(ZI−4)で表される化合物が有するカチオン構造の具体例としては、上述した、特開2004−233661号公報、特開2003−35948号公報、米国特許出願公開第2003/0224288A1号明細書、米国特許出願公開第2003/0077540A1号明細書に例示されている化合物等のカチオン構造の他、例えば、特開2011−53360号公報の段落0046、0047、0072〜0077、0107〜0110に例示されている化学構造等におけるカチオン構造、特開2011−53430号公報の段落0135〜0137、0151、0196〜0199に例示されている化学構造等におけるカチオン構造などが挙げられる。
一般式(ZII)、(ZIII)中、
204〜R207は、各々独立に、アリール基、アルキル基又はシクロアルキル基を表す。
204〜R207のアリール基、アルキル基、シクロアルキル基としては、前述の化合物(ZI)におけるR201〜R203のアリール基、アルキル基、シクロアルキル基と同様である。
204〜R207のアリール基、アルキル基、シクロアルキル基は、置換基を有していてもよい。この置換基としても、前述の化合物(ZI)におけるR201〜R203のアリール基、アルキル基、シクロアルキル基が有していてもよいものが挙げられる。
は、例えば、前述の一般式(ZI)におけるZとして列挙したものが挙げられる。
次に、非求核性アニオンZの好ましい構造について説明する。
非求核性アニオンZは、一般式(2)で表されるスルホン酸アニオンであることが好ましい。
一般式(2)中、
Xfは、各々独立に、フッ素原子、又は少なくとも一つのフッ素原子で置換されたアルキル基を表す。
及びRは、各々独立に、水素原子、フッ素原子、アルキル基、又は、少なくとも一つのフッ素原子で置換されたアルキル基を表し、複数存在する場合のR及びRは、それぞれ同一でも異なっていてもよい。
Lは、二価の連結基を表し、複数存在する場合のLは同一でも異なっていてもよい。
Aは、環状構造を含む有機基を表す。
xは、1〜20の整数を表す。yは、0〜10の整数を表す。zは、0〜10の整数を表す。
一般式(2)のアニオンについて、更に詳しく説明する。
Xfは、上記の通り、フッ素原子、又は少なくとも1つのフッ素原子で置換されたアルキル基であり、フッ素原子で置換されたアルキル基におけるアルキル基としては、炭素数1〜10のアルキル基が好ましく、炭素数1〜4のアルキル基がより好ましい。また、Xfのフッ素原子で置換されたアルキル基は、パーフルオロアルキル基であることが好ましい。
Xfとして、好ましくは、フッ素原子又は炭素数1〜4のパーフルオロアルキル基である。具体的には、フッ素原子またはCFが好ましい。特に、双方のXfがフッ素原子であることが好ましい。
及びRは、上記の通り、水素原子、フッ素原子、アルキル基、又は、少なくとも一つのフッ素原子で置換されたアルキル基を表し、アルキル基は、炭素数1〜4のものが好ましい。更に好ましくは炭素数1〜4のパーフルオロアルキル基である。R及びRの少なくとも一つのフッ素原子で置換されたアルキル基の具体例としては、CFが好ましい。
Lは、2価の連結基を表し、−COO−、−OCO−、−CO−、−O−、−S−、−SO−、−SO−、−N(Ri)−(式中、Riは水素原子又はアルキルを表す)、アルキレン基(好ましくは炭素数1〜6)、シクロアルキレン基(好ましくは炭素数3〜10)、アルケニレン基(好ましくは炭素数2〜6)又はこれらの複数を組み合わせた2価の連結基などが挙げられ、−COO−、−OCO−、−CO−、−SO−、−CON(Ri)−、−SON(Ri)−、−CON(Ri)−アルキレン基−、−N(Ri)CO−アルキレン基−、−COO−アルキレン基−又は−OCO−アルキレン基−であることが好ましく、−COO−、−OCO−、−SO−、−CON(Ri)−又は−SON(Ri)−であることがより好ましい。複数存在する場合のLは同一でも異なっていてもよい。
Riとしてのアルキル基は、好ましくは炭素数1〜20の直鎖又は分岐アルキル基であり、アルキル鎖中に酸素原子、硫黄原子、窒素原子を有していてもよい。具体的には直鎖アルキル基、分岐アルキル基を挙げることができる。置換基を有するアルキル基としては、シアノメチル基、2,2,2−トリフルオロエチル基、メトキシカルボニルメチル基、エトキシカルボニルメチル基等が挙げられる。
Aの環状構造を含む有機基としては、環状構造を有するものであれば特に限定されず、脂環基、アリール基、複素環基(芳香属性を有するものだけでなく、芳香族性を有さないものも含み、例えば、テトラヒドロピラン環、ラクトン環構造も含む。)等が挙げられる。
脂環基としては、単環でも多環でもよい。また、ピペリジン基、デカヒドロキノリン基、デカヒドロイソキノリン基等の窒素原子含有脂環基も好ましい。中でも、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基、デカヒドロキノリン基、デカヒドロイソキノリン基といった炭素数7以上のかさ高い構造を有する脂環基が、PEB(露光後加熱)工程での膜中拡散性を抑制でき、露光ラチチュード向上の観点から好ましい。
アリール基としては、ベンゼン環、ナフタレン環、フェナンスレン環、アントラセン環が挙げられる。中でも193nmにおける光吸光度の観点から低吸光度のナフタレンが好ましい。
複素環基としては、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、ピリジン環が挙げられる。中でもフラン環、チオフェン環、ピリジン環が好ましい。
上記環状の有機基は、置換基を有していてもよく、置換基としては、アルキル基(直鎖、分岐、環状のいずれであってもよく、炭素数1〜12が好ましい)、アリール基(炭素数6〜14が好ましい)、ヒドロキシ基、アルコキシ基、エステル基、アミド基、ウレタン基、ウレイド基、チオエーテル基、スルホンアミド基、スルホン酸エステル基、シアノ基等が挙げられる。
なお、環状構造を含む有機基を構成する炭素(環形成に寄与する炭素)はカルボニル炭素であってもよい。
xは1〜8が好ましく、1〜4がより好ましく、1が特に好ましい。yは0〜4が好ましく、0又は1がより好ましく、0が更に好ましい。zは0〜8が好ましく、0〜4がより好ましく、1が更に好ましい。
また、本発明の一形態において、一般式(2)で表されるアニオンに含まれるフッ素原子数は2又は3であることが好ましい。これにより、本発明の効果を更に高めることができる。
一般式(2)で表されるスルホン酸アニオン構造の具体例を以下に挙げるが、本発明はこれらに限定されない。
としては、下記一般式(B−1)で表されるスルホン酸アニオンも好ましい。
上記一般式(B−1)中、
b1は、各々独立に、水素原子、フッ素原子又はトリフルオロメチル基(CF)を表す。
nは0〜4の整数を表す。
nは0〜3の整数であることが好ましく、0又は1であることがより好ましい。
b1は単結合、アルキレン基、エーテル結合、エステル結合(−OCO−若しくは−COO−)、スルホン酸エステル結合(−OSO−若しくは−SO−)、又はそれらの組み合わせを表す。
b1はエステル結合(−OCO−若しくは−COO−)又はスルホン酸エステル結合(−OSO−若しくは−SO−)であることが好ましく、エステル結合(−OCO−若しくは−COO−)であることがより好ましい。
b2は炭素数6以上の有機基を表す。
b2についての炭素数6以上の有機基としては、嵩高い基であることが好ましく、炭素数6以上の、アルキル基、脂環基、アリール基、複素環基などが挙げられる。
b2についての炭素数6以上のアルキル基としては、直鎖状であっても分岐状であってもよく、炭素数6〜20の直鎖又は分岐のアルキル基であることが好ましく、例えば、直鎖又は分岐ヘキシル基、直鎖又は分岐ヘプチル基、直鎖又は分岐オクチル基などが挙げられる。嵩高さの観点から分岐アルキル基であることが好ましい。
b2についての炭素数6以上の脂環基としては、単環式であってもよく、多環式であってもよい。中でも、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基などの炭素数7以上の嵩高い構造を有する脂環基が、PEB(露光後加熱)工程での膜中拡散性の抑制及びMEEF(Mask Error Enhancement Factor)の向上の観点から好ましい。
b2についての炭素数6以上のアリール基は、単環式であってもよく、多環式であってもよい。このアリール基としては、例えば、フェニル基、ナフチル基、フェナントリル基及びアントリル基が挙げられる。中でも、193nmにおける光吸光度が比較的低いナフチル基が好ましい。
b2についての炭素数6以上の複素環基は、単環式であってもよく、多環式であってもよいが、多環式の方がより酸の拡散を抑制可能である。また、複素環基は、芳香族性を有していてもよく、芳香族性を有していなくてもよい。芳香族性を有している複素環としては、例えば、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、及びジベンゾチオフェン環が挙げられる。芳香族性を有していない複素環としては、例えば、テトラヒドロピラン環、ラクトン環、スルトン環、及びデカヒドロイソキノリン環が挙げられる。
上記Rb2についての炭素数6以上の置換基は、更に置換基を有していてもよい。この更なる置換基としては、例えば、アルキル基(直鎖、分岐のいずれであっても良く、炭素数1〜12が好ましい)、シクロアルキル基(単環、多環、スピロ環のいずれであっても良く、炭素数3〜20が好ましい)、アリール基(炭素数6〜14が好ましい)、ヒドロキシ基、アルコキシ基、エステル基、アミド基、ウレタン基、ウレイド基、チオエーテル基、スルホンアミド基、及びスルホン酸エステル基が挙げられる。なお、上述の脂環基、アリール基、又は複素環基を構成する炭素(環形成に寄与する炭素)はカルボニル炭素であってもよい。
一般式(B−1)で表されるスルホン酸アニオン構造の具体例を以下に挙げるが、本発明はこれらに限定されない。なお、下記具体例には、上述した一般式(2)で表されるスルホン酸アニオンに該当するものも含まれている。
としては、下記一般式(A−I)で表されるスルホン酸アニオンも好ましい。
一般式(A−I)中、
は、アルキル基、1価の脂環式炭化水素基、アリール基、又は、ヘテロアリール基である。
は、2価の連結基である。
Rfは、フッ素原子、又は、少なくとも1つのフッ素原子で置換されたアルキル基である。
及びnは、それぞれ独立して、0又は1である。
上記Rで表されるアルキル基は、炭素数1〜20のアルキル基であることが好ましく、炭素数1〜10のアルキル基であることがより好ましく、炭素数1〜5のアルキル基であることが更に好ましく、炭素数1〜4のアルキル基であることが特に好ましい。
また、上記アルキル基は置換基(好ましくはフッ素原子)を有していてもよく、置換基を有するアルキル基としては、少なくとも1つのフッ素原子で置換された炭素数1〜5のアルキル基であることが好ましく、炭素数1〜5のパーフルオロアルキル基であることが好ましい。
上記Rで表されるアルキル基は、メチル基、エチル基又はトリフルオロメチル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
上記Rで表される1価の脂環式炭化水素基は、炭素数が5以上であることが好ましい。また1価の脂環式炭化水素基は炭素数が20以下であることが好ましく、15以下であることがより好ましい。上記1価の脂環式炭化水素基は、単環の脂環式炭化水素基であっても、多環の脂環式炭化水素基であってもよい。脂環式炭化水素基の−CH−の一部が、−O−や−C(=O)−と置換されていてもよい。
単環の脂環式炭化水素基としては、炭素数5〜12のものが好ましく、シクロペンチル基、シクロヘキシル基、シクロオクチル基が好ましい。
多環の脂環式炭化水素基としては、炭素数10〜20のものが好ましく、ノルボルニル基、アダマンチル基、ノルアダマンチル基が好ましい。
上記Rで表されるアリール基は、炭素数が6以上であることが好ましい。また、アリール基は炭素数が20以下であることが好ましく、15以下であることがより好ましい。
上記Rで表されるヘテロアリール基は、炭素数が2以上であることが好ましい。また、ヘテロアリール基は炭素数が20以下であることが好ましく、15以下であることがより好ましい。
上記アリール基、ヘテロアリール基は、単環式アリール基、単環式ヘテロアリール基であっても、多環式アリール基、多環式ヘテロアリール基であってもよい。
単環式のアリール基としては、フェニル基等が挙げられる。
多環式のアリール基としては、ナフチル基、アントラセニル基等が挙げられる。
単環式のヘテロアリール基としては、ピリジル基、チエニル基、フラニル基等が挙げられる。
多環式のヘテロアリール基としては、キノリル基、イソキノリル基等が挙げられる。
上記Rとしての1価の脂環式炭化水素基、アリール基、及び、ヘテロアリール基は、更に置換基を有していてもよく、このような更なる置換基としては、ヒドロキシル基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、ニトロ基、シアノ基、アミド基、スルホンアミド基、アルキル基、アルコキシ基、アルコキシカルボニル基、アシル基、アシロキシ基、カルボキシ基が挙げられる。
は、シクロヘキシル基、又は、アダマンチル基であることが特に好ましい。
上記Rで表される2価の連結基としては、特に限定されないが、−COO−、−OCO−、−CO−、−O−、−S―、−SO−、−SO−、アルキレン基(好ましくは炭素数1〜30のアルキレン基)、シクロアルキレン基(好ましくは炭素数3〜30のシクロアルキレン基)、アルケニレン基(好ましくは炭素数2〜30のアルケニレン基)、アリーレン基(好ましくは炭素数6〜30のアリーレン基)、ヘテロアリーレン基(好ましくは炭素数2〜30のヘテロアリーレン基)、及び、これらの2種以上が組み合わされた基を挙げることができる。上記のアルキレン基、シクロアルキレン基、アルケニレン基、アリーレン基及びヘテロアリーレン基は、置換基を更に有していても良く、そのような置換基の具体例は、Rとしての1価の脂環式炭化水素基、アリール基、及び、ヘテロアリール基が更に有していてもよい置換基について前述したものと同様である。
上記Rで表される2価の連結基としては、アルキレン基、シクロアルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基が好ましく、アルキレン基がより好ましく、炭素数1〜10のアルキレン基が更に好ましく、炭素数1〜5のアルキレン基が特に好ましい。
Rfは、フッ素原子、又は、少なくとも1つのフッ素原子で置換されたアルキル基である。このアルキル基の炭素数は、1〜30であることが好ましく、1〜10であることがより好ましく、1〜4であることが更に好ましい。また、少なくとも1つのフッ素原子で置換されたアルキル基は、パーフルオロアルキル基であることが好ましい。
Rfは、好ましくは、フッ素原子又は炭素数1〜4のパーフルオロアルキル基である。より具体的には、Rfはフッ素原子又はCFであることが好ましい。
は1であることが好ましい。
は1であることが好ましい。
上記一般式(A−I)で表されるスルホン酸アニオンの好ましい具体例を以下に挙げるが、本発明はこれらに限定されるものではない。なお、下記具体例には、上述した一般式(2)で表されるスルホン酸アニオンに該当するものも含まれている。
非求核性アニオンZは、一般式(2’)で表されるジスルホニルイミド酸アニオンであってもよい。
一般式(2’)中、
Xfは、上記一般式(2)で定義した通りであり、好ましい例も同様である。一般式(2’)において、2つのXfは互いに連結して環構造を形成してもよい。
についてのジスルホニルイミド酸アニオンとしては、ビス(アルキルスルホニル)イミドアニオンであることが好ましい。
ビス(アルキルスルホニル)イミドアニオンにおけるアルキル基は、炭素数1〜5のアルキル基が好ましい。
ビス(アルキルスルホニル)イミドアニオンにおける2つのアルキル基が互いに連結してアルキレン基(好ましくは炭素数2〜4)を成し、イミド基及び2つのスルホニル基とともに環を形成していてもよい。ビス(アルキルスルホニル)イミドアニオンが形成していてもよい上記の環構造としては、5〜7員環であることが好ましく、6員環であることがより好ましい。
これらのアルキル基、及び2つのアルキル基が互いに連結して成すアルキレン基が有し得る置換基としてはハロゲン原子、ハロゲン原子で置換されたアルキル基、アルコキシ基、アルキルチオ基、アルキルオキシスルホニル基、アリールオキシスルホニル基、シクロアルキルアリールオキシスルホニル基等を挙げることができ、フッ素原子又はフッ素原子で置換されたアルキル基が好ましい。
酸発生剤として、更に、下記一般式(ZV)で表される化合物も挙げられる。
一般式(ZV)中、
208はアルキル基、シクロアルキル基又はアリール基を表す。
Aは、アルキレン基、アルケニレン基又はアリーレン基を表す。
208のアリール基の具体例としては、上記一般式(ZI)におけるR201〜R203としてのアリール基の具体例と同様のものを挙げることができる。
208のアルキル基及びシクロアルキル基の具体例としては、それぞれ、上記一般式(ZI)におけるR201〜R203としてのアルキル基及びシクロアルキル基の具体例と同様のものを挙げることができる。
Aのアルキレン基としては、炭素数1〜12のアルキレン基を、Aのアルケニレン基としては、炭素数2〜12のアルケニレン基を、Aのアリーレン基としては、炭素数6〜10のアリーレン基を、それぞれ挙げることができる。
酸発生剤の例を以下に挙げる。但し、本発明はこれらに限定されるものではない。
酸発生剤は、1種類単独で又は2種類以上を組み合わせて使用することができる。
酸発生剤の含有量は、感活性光線性又は感放射線性樹脂組成物の全固形分を基準として、0.1〜30質量%が好ましく、より好ましくは1〜28質量%、更に好ましくは3〜25質量%である。
[疎水性樹脂]
本発明の感活性光線性又は感放射線性樹脂組成物は、特に液浸露光に適用する際、疎水性樹脂(以下、「疎水性樹脂(HR)」又は単に「樹脂(HR)」ともいう)を含有してもよい。なお、疎水性樹脂(HR)は上記樹脂(A)とは異なることが好ましい。
これにより、膜表層に疎水性樹脂(HR)が偏在化し、液浸媒体が水の場合、水に対するレジスト膜表面の静的/動的な接触角を向上させ、液浸液追随性を向上させることができる。
なお、疎水性樹脂は、組成物を液浸露光に適用しない場合であっても種々の目的で含んでいてもよい。例えば、組成物をEUV露光に適用する際は、アウトガス抑制、パターンの形状調整などを期待して疎水性樹脂を用いることも好ましい。
疎水性樹脂(HR)は前述のように界面に偏在するように設計されることが好ましいが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性/非極性物質を均一に混合することに寄与しなくても良い。
疎水性樹脂(HR)は、膜表層への偏在化の観点から、“フッ素原子”、“珪素原子”、及び、“樹脂の側鎖部分に含有されたCH部分構造”のいずれか1種以上を有することが好ましく、2種以上を有することが更に好ましい。
疎水性樹脂(HR)が、フッ素原子及び/又は珪素原子を含む場合、疎水性樹脂(HR)に於ける上記フッ素原子及び/又は珪素原子は、樹脂の主鎖中に含まれていてもよく、側鎖中に含まれていてもよい。
疎水性樹脂(HR)がフッ素原子を含んでいる場合、フッ素原子を有する部分構造として、フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基、又は、フッ素原子を有するアリール基を有する樹脂であることが好ましい。
フッ素原子を有するアルキル基(好ましくは炭素数1〜10、より好ましくは炭素数1〜4)は、少なくとも1つの水素原子がフッ素原子で置換された直鎖又は分岐アルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
フッ素原子を有するシクロアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された単環又は多環のシクロアルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
フッ素原子を有するアリール基としては、フェニル基、ナフチル基などのアリール基の少なくとも1つの水素原子がフッ素原子で置換されたものが挙げられ、更にフッ素原子以外の置換基を有していてもよい。
フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基、及びフッ素原子を有するアリール基として、好ましくは、下記一般式(F2)〜(F4)で表される基を挙げることができるが、本発明は、これに限定されるものではない。
一般式(F2)〜(F4)中、
57〜R68は、それぞれ独立に、水素原子、フッ素原子又はアルキル基(直鎖若しくは分岐)を表す。但し、R57〜R61の少なくとも1つ、R62〜R64の少なくとも1つ、及びR65〜R68の少なくとも1つは、それぞれ独立に、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたアルキル基(好ましくは炭素数1〜4)を表す。
57〜R61及びR65〜R67は、全てがフッ素原子であることが好ましい。R62、R63及びR68は、少なくとも1つの水素原子がフッ素原子で置換されたアルキル基(好ましくは炭素数1〜4)が好ましく、炭素数1〜4のパーフルオロアルキル基であることが更に好ましい。R62とR63は、互いに連結して環を形成してもよい。
一般式(F2)で表される基の具体例としては、例えば、p−フルオロフェニル基、ペンタフルオロフェニル基、3,5−ジ(トリフルオロメチル)フェニル基等が挙げられる。
一般式(F3)で表される基の具体例としては、トリフルオロメチル基、ペンタフルオロプロピル基、ペンタフルオロエチル基、ヘプタフルオロブチル基、ヘキサフルオロイソプロピル基、ヘプタフルオロイソプロピル基、ヘキサフルオロ(2−メチル)イソプロピル基、ノナフルオロブチル基、オクタフルオロイソブチル基、ノナフルオロヘキシル基、ノナフルオロ−t−ブチル基、パーフルオロイソペンチル基、パーフルオロオクチル基、パーフルオロ(トリメチル)ヘキシル基、2,2,3,3−テトラフルオロシクロブチル基、パーフルオロシクロヘキシル基などが挙げられる。ヘキサフルオロイソプロピル基、ヘプタフルオロイソプロピル基、ヘキサフルオロ(2−メチル)イソプロピル基、オクタフルオロイソブチル基、ノナフルオロ−t−ブチル基、パーフルオロイソペンチル基が好ましく、ヘキサフルオロイソプロピル基、ヘプタフルオロイソプロピル基が更に好ましい。
一般式(F4)で表される基の具体例としては、例えば、−C(CFOH、−C(COH、−C(CF)(CH)OH、−CH(CF)OH等が挙げられ、−C(CFOHが好ましい。
フッ素原子を含む部分構造は、主鎖に直接結合してもよく、更に、アルキレン基、フェニレン基、エーテル結合、チオエーテル結合、カルボニル基、エステル結合、アミド結合、ウレタン結合及びウレイレン結合よりなる群から選択される基、或いはこれらの2つ以上を組み合わせた基を介して主鎖に結合してもよい。
以下、フッ素原子を有する繰り返し単位の具体例を示すが、本発明は、これに限定されるものではない。
具体例中、Xは、水素原子、−CH、−F又は−CFを表す。Xは、−F又は−CFを表す。
疎水性樹脂(HR)は、珪素原子を含有してもよい。珪素原子を有する部分構造として、アルキルシリル構造(好ましくはトリアルキルシリル基)、又は環状シロキサン構造を有する樹脂であることが好ましい。
アルキルシリル構造、又は環状シロキサン構造としては、具体的には、下記一般式(CS−1)〜(CS−3)で表される基などが挙げられる。
一般式(CS−1)〜(CS−3)に於いて、
12〜R26は、各々独立に、直鎖若しくは分岐アルキル基(好ましくは炭素数1〜20)又はシクロアルキル基(好ましくは炭素数3〜20)を表す。
〜Lは、単結合又は2価の連結基を表す。2価の連結基としては、アルキレン基、フェニレン基、エーテル結合、チオエーテル結合、カルボニル基、エステル結合、アミド結合、ウレタン結合、及びウレア結合よりなる群から選択される単独或いは2つ以上の組み合わせ(好ましくは総炭素数12以下)が挙げられる。
nは、1〜5の整数を表す。nは、好ましくは、2〜4の整数である。
以下、一般式(CS−1)〜(CS−3)で表される基を有する繰り返し単位の具体例を挙げるが、本発明は、これに限定されるものではない。なお、具体例中、Xは、水素原子、−CH、−F又は−CFを表す。
また、上記したように、疎水性樹脂(HR)は、側鎖部分にCH部分構造を含むことも好ましい。
ここで、樹脂(HR)中の側鎖部分が有するCH部分構造(以下、単に「側鎖CH部分構造」ともいう)には、エチル基、プロピル基等が有するCH部分構造を包含するものである。
一方、樹脂(HR)の主鎖に直接結合しているメチル基(例えば、メタクリル酸構造を有する繰り返し単位のα−メチル基)は、主鎖の影響により樹脂(HR)の表面偏在化への寄与が小さいため、本発明におけるCH部分構造に包含されないものとする。
より具体的には、樹脂(HR)が、例えば、下記一般式(M)で表される繰り返し単位などの、炭素−炭素二重結合を有する重合性部位を有するモノマーに由来する繰り返し単位を含む場合であって、R11〜R14がCH「そのもの」である場合、そのCHは、本発明における側鎖部分が有するCH部分構造には包含されない。
一方、C−C主鎖から何らかの原子を介して存在するCH部分構造は、本発明におけるCH部分構造に該当するものとする。例えば、R11がエチル基(CHCH)である場合、本発明におけるCH部分構造を「1つ」有するものとする。
上記一般式(M)中、
11〜R14は、各々独立に、側鎖部分を表す。
側鎖部分のR11〜R14としては、水素原子、1価の有機基などが挙げられる。
11〜R14についての1価の有機基としては、アルキル基、シクロアルキル基、アリール基、アルキルオキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、シクロアルキルアミノカルボニル基、アリールアミノカルボニル基などが挙げられ、これらの基は、更に置換基を有していてもよい。
疎水性樹脂(HR)は、側鎖部分にCH部分構造を有する繰り返し単位を有する樹脂であることが好ましく、このような繰り返し単位として、下記一般式(II)で表される繰り返し単位、及び、下記一般式(V)で表される繰り返し単位のうち少なくとも一種の繰り返し単位(x)を有していることがより好ましい。
以下、一般式(II)で表される繰り返し単位について詳細に説明する。
上記一般式(II)中、Xb1は水素原子、アルキル基、シアノ基又はハロゲン原子を表し、Rは1つ以上のCH部分構造を有する、酸に対して安定な有機基を表す。ここで、酸に対して安定な有機基は、より具体的には、樹脂(A)において説明した“酸の作用により分解して極性基を生じる基”を有さない有機基であることが好ましい。
b1のアルキル基は、炭素数1〜4のものが好ましく、メチル基、エチル基、プロピル基、ヒドロキシメチル基又はトリフルオロメチル基等が挙げられるが、メチル基であることが好ましい。
b1は、水素原子又はメチル基であることが好ましい。
としては、1つ以上のCH部分構造を有する、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、及び、アラルキル基が挙げられる。上記のシクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、及び、アラルキル基は、更に、置換基としてアルキル基を有していてもよい。
は、1つ以上のCH部分構造を有する、アルキル基又はアルキル置換シクロアルキル基が好ましい。
としての1つ以上のCH部分構造を有する酸に安定な有機基は、CH部分構造を2個以上10個以下有することが好ましく、2個以上8個以下有することがより好ましい。
に於ける、1つ以上のCH部分構造を有するアルキル基としては、炭素数3〜20の分岐のアルキル基が好ましい。
に於ける、1つ以上のCH部分構造を有するシクロアルキル基は、単環式でも、多環式でもよい。具体的には、炭素数5以上のモノシクロ、ビシクロ、トリシクロ、テトラシクロ構造等を有する基を挙げることができる。その炭素数は6〜30個が好ましく、特に炭素数7〜25個が好ましい。好ましくは、ノルボルニル基、シクロペンチル基、シクロヘキシル基である。
に於ける、1つ以上のCH部分構造を有するアルケニル基としては、炭素数1〜20の直鎖または分岐のアルケニル基が好ましく、分岐のアルケニル基がより好ましい。
に於ける、1つ以上のCH部分構造を有するアリール基としては、炭素数6〜20のアリール基が好ましく、例えば、フェニル基、ナフチル基を挙げることができ、好ましくはフェニル基である。
に於ける、1つ以上のCH部分構造を有するアラルキル基としては、炭素数7〜12のアラルキル基が好ましく、例えば、ベンジル基、フェネチル基、ナフチルメチル基等を挙げることができる。
に於ける、2つ以上のCH部分構造を有する炭化水素基としては、具体的には、イソブチル基、t−ブチル基、2−メチル−3−ブチル基、2,3−ジメチル−2−ブチル基、2−メチル−3−ペンチル基、3−メチル−4−ヘキシル基、3,5−ジメチル−4−ペンチル基、2,4,4−トリメチルペンチル基、2−エチルヘキシル基、2,6−ジメチルヘプチル基、1,5−ジメチル−3−ヘプチル基、2,3,5,7−テトラメチル−4−ヘプチル基、3,5−ジメチルシクロヘキシル基、3,5−ジtert−ブチルシクロヘキシル基、4−イソプロピルシクロヘキシル基、4−tブチルシクロヘキシル基、イソボルニル基である。
一般式(II)で表される繰り返し単位の好ましい具体例を以下に挙げる。尚、本発明はこれに限定されるものではない。
一般式(II)で表される繰り返し単位は、酸に安定な(非酸分解性の)繰り返し単位であることが好ましく、具体的には、酸の作用により分解して、極性基を生じる基を有さない繰り返し単位であることが好ましい。
以下、一般式(V)で表される繰り返し単位について詳細に説明する。
上記一般式(V)中、Xb2は水素原子、アルキル基、シアノ基又はハロゲン原子を表し、Rは1つ以上のCH部分構造を有する、酸に対して安定な有機基を表し、nは1から5の整数を表す。
b2のアルキル基は、炭素数1〜4のものが好ましく、メチル基、エチル基、プロピル基、ヒドロキシメチル基又はトリフルオロメチル基等が挙げられるが、水素原子であることが好ましい。
b2は、水素原子であることが好ましい。
は、酸に対して安定な有機基であるため、より具体的には、樹脂(A)において説明した“酸の作用により分解して極性基を生じる基”を有さない有機基であることが好ましい。
としては、1つ以上のCH部分構造を有する、アルキル基が挙げられる。
としての1つ以上のCH部分構造を有する酸に安定な有機基は、CH部分構造を1個以上10個以下有することが好ましく、1個以上8個以下有することがより好ましく、1個以上4個以下有することが更に好ましい。
に於ける、1つ以上のCH部分構造を有するアルキル基としては、炭素数3〜20の分岐のアルキル基が好ましい。
に於ける、2つ以上のCH部分構造を有するアルキル基としては、具体的には、イソプロピル基、t−ブチル基、2−メチル−3−ブチル基、2−メチル−3−ペンチル基、3−メチル−4−ヘキシル基、3,5−ジメチル−4−ペンチル基、2,4,4−トリメチルペンチル基、2−エチルヘキシル基、2,6−ジメチルヘプチル基、1,5−ジメチル−3−ヘプチル基、2,3,5,7−テトラメチル−4−ヘプチル基、2,6−ジメチルヘプチル基である。
nは1から5の整数を表し、1〜3の整数を表すことがより好ましく、1又は2を表すことが更に好ましい。
一般式(V)で表される繰り返し単位の好ましい具体例を以下に挙げる。尚、本発明はこれに限定されるものではない。
一般式(V)で表される繰り返し単位は、酸に安定な(非酸分解性の)繰り返し単位であることが好ましく、具体的には、酸の作用により分解して、極性基を生じる基を有さない繰り返し単位であることが好ましい。
樹脂(HR)が、側鎖部分にCH部分構造を含む場合であり、更に、特にフッ素原子及び珪素原子を有さない場合、一般式(II)で表される繰り返し単位、及び、一般式(V)で表される繰り返し単位のうち少なくとも一種の繰り返し単位(x)の含有量は、樹脂(HR)の全繰り返し単位に対して、90モル%以上であることが好ましく、95モル%以上であることがより好ましい。含有量は、樹脂(HR)の全繰り返し単位に対して、通常、100モル%以下である。
樹脂(HR)が、一般式(II)で表される繰り返し単位、及び、一般式(V)で表される繰り返し単位のうち少なくとも一種の繰り返し単位(x)を、樹脂(HR)の全繰り返し単位に対し、90モル%以上で含有することにより、樹脂(HR)の表面自由エネルギーが増加する。その結果として、樹脂(HR)がレジスト膜の表面に偏在しにくくなり、水に対するレジスト膜の静的/動的接触角を確実に向上させて、液浸液追随性を向上させることができる。
また、疎水性樹脂(HR)は、(i)フッ素原子及び/又は珪素原子を含む場合においても、(ii)側鎖部分にCH部分構造を含む場合においても、下記(x)〜(z)の群から選ばれる基を少なくとも1つを有していてもよい。
(x)酸基、
(y)ラクトン構造を有する基、酸無水物基、又は酸イミド基、
(z)酸の作用により分解する基
酸基(x)としては、フェノール性水酸基、カルボン酸基、フッ素化アルコール基、スルホン酸基、スルホンアミド基、スルホニルイミド基、(アルキルスルホニル)(アルキルカルボニル)メチレン基、(アルキルスルホニル)(アルキルカルボニル)イミド基、ビス(アルキルカルボニル)メチレン基、ビス(アルキルカルボニル)イミド基、ビス(アルキルスルホニル)メチレン基、ビス(アルキルスルホニル)イミド基、トリス(アルキルカルボニル)メチレン基、トリス(アルキルスルホニル)メチレン基等が挙げられる。
好ましい酸基としては、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール)、スルホンイミド基、ビス(アルキルカルボニル)メチレン基が挙げられる。
酸基(x)を有する繰り返し単位としては、アクリル酸、メタクリル酸による繰り返し単位のような樹脂の主鎖に、直接、酸基が結合している繰り返し単位、或いは、連結基を介して樹脂の主鎖に酸基が結合している繰り返し単位などが挙げられ、更には酸基を有する重合開始剤や連鎖移動剤を重合時に用いてポリマー鎖の末端に導入することもでき、いずれの場合も好ましい。酸基(x)を有する繰り返し単位が、フッ素原子及び珪素原子の少なくともいずれかを有していてもよい。
酸基(x)を有する繰り返し単位の含有量は、疎水性樹脂(HR)中の全繰り返し単位に対し、1〜50モル%が好ましく、より好ましくは3〜35モル%、更に好ましくは5〜20モル%である。
酸基(x)を有する繰り返し単位の具体例を以下に示すが、本発明は、これに限定されるものではない。式中、Rxは水素原子、CH、CF、又は、CHOHを表す。
ラクトン構造を有する基、酸無水物基、又は酸イミド基(y)としては、ラクトン構造を有する基が特に好ましい。
これらの基を含んだ繰り返し単位は、例えば、アクリル酸エステル及びメタクリル酸エステルによる繰り返し単位等の、樹脂の主鎖に直接この基が結合している繰り返し単位である。或いは、この繰り返し単位は、この基が連結基を介して樹脂の主鎖に結合している繰り返し単位であってもよい。或いは、この繰り返し単位は、この基を有する重合開始剤又は連鎖移動剤を重合時に用いて、樹脂の末端に導入されていてもよい。
ラクトン構造を有する基を有する繰り返し単位としては、例えば、先に樹脂(A)の項で説明したラクトン構造を有する繰り返し単位と同様のものが挙げられる。
ラクトン構造を有する基、酸無水物基、又は酸イミド基を有する繰り返し単位の含有量は、疎水性樹脂(HR)中の全繰り返し単位を基準として、1〜100モル%であることが好ましく、3〜98モル%であることがより好ましく、5〜95モル%であることが更に好ましい。
疎水性樹脂(HR)に於ける、酸の作用により分解する基(z)を有する繰り返し単位は、樹脂(A)で挙げた酸分解性基を有する繰り返し単位と同様のものが挙げられる。酸の作用により分解する基(z)を有する繰り返し単位が、フッ素原子及び珪素原子の少なくともいずれかを有していても良い。疎水性樹脂(HR)に於ける、酸の作用により分解する基(z)を有する繰り返し単位の含有量は、樹脂(HR)中の全繰り返し単位に対し、1〜80モル%が好ましく、より好ましくは10〜80モル%、更に好ましくは20〜60モル%である。
疎水性樹脂(HR)は、更に、下記一般式(VI)で表される繰り返し単位を有していてもよい。
一般式(VI)に於いて、
c31は、水素原子、アルキル基(フッ素原子等で置換されていてもよい)、シアノ基又は−CH−O−Rac基を表す。式中、Racは、水素原子、アルキル基又はアシル基を表す。Rc31は、水素原子、メチル基、ヒドロキシメチル基、トリフルオロメチル基が好ましく、水素原子、メチル基が特に好ましい。
c32は、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基又はアリール基を有する基を表す。これら基はフッ素原子、珪素原子を含む基で置換されていてもよい。
c3は、単結合又は2価の連結基を表す。
一般式(VI)に於ける、Rc32のアルキル基は、炭素数3〜20の直鎖若しくは分岐状アルキル基が好ましい。
シクロアルキル基は、炭素数3〜20のシクロアルキル基が好ましい。
アルケニル基は、炭素数3〜20のアルケニル基が好ましい。
シクロアルケニル基は、炭素数3〜20のシクロアルケニル基が好ましい。
アリール基は、炭素数6〜20のアリール基が好ましく、フェニル基、ナフチル基がより好ましく、これらは置換基を有していてもよい。
c32は無置換のアルキル基又はフッ素原子で置換されたアルキル基が好ましい。
c3の2価の連結基は、アルキレン基(好ましくは炭素数1〜5)、エーテル結合、フェニレン基、エステル結合(−COO−で表される基)が好ましい。
一般式(VI)により表される繰り返し単位の含有量は、疎水性樹脂中の全繰り返し単位を基準として、1〜100モル%であることが好ましく、10〜90モル%であることがより好ましく、30〜70モル%であることが更に好ましい。
疎水性樹脂(HR)は、更に、下記一般式(CII−AB)で表される繰り返し単位を有することも好ましい。
式(CII−AB)中、
c11’及びRc12’は、各々独立に、水素原子、シアノ基、ハロゲン原子又はアルキル基を表す。
Zc’は、結合した2つの炭素原子(C−C)を含み、脂環式構造を形成するための原子団を表す。
一般式(CII−AB)により表される繰り返し単位の含有量は、疎水性樹脂中の全繰り返し単位を基準として、1〜100モル%であることが好ましく、10〜90モル%であることがより好ましく、30〜70モル%であることが更に好ましい。
以下に一般式(VI)、(CII−AB)で表される繰り返し単位の具体例を以下に挙げるが、本発明はこれらに限定されない。式中、Raは、H、CH、CHOH、CF又はCNを表す。
疎水性樹脂(HR)がフッ素原子を有する場合、フッ素原子の含有量は、疎水性樹脂(HR)の重量平均分子量に対し、5〜80質量%であることが好ましく、10〜80質量%であることがより好ましい。また、フッ素原子を含む繰り返し単位は、疎水性樹脂(HR)に含まれる全繰り返し単位中10〜100モル%であることが好ましく、30〜100モル%であることがより好ましい。
疎水性樹脂(HR)が珪素原子を有する場合、珪素原子の含有量は、疎水性樹脂(HR)の重量平均分子量に対し、2〜50質量%であることが好ましく、2〜30質量%であることがより好ましい。また、珪素原子を含む繰り返し単位は、疎水性樹脂(HR)に含まれる全繰り返し単位中、10〜100モル%であることが好ましく、20〜100モル%であることがより好ましい。
一方、特に樹脂(HR)が側鎖部分にCH部分構造を含む場合においては、樹脂(HR)が、フッ素原子及び珪素原子を実質的に含有しない形態も好ましく、この場合、具体的には、フッ素原子又は珪素原子を有する繰り返し単位の含有量が、樹脂(HR)中の全繰り返し単位に対して5モル%以下であることが好ましく、3モル%以下であることがより好ましく、1モル%以下であることが更に好ましく、理想的には0モル%、すなわち、フッ素原子及び珪素原子を含有しない。また、樹脂(HR)は、炭素原子、酸素原子、水素原子、窒素原子及び硫黄原子から選ばれる原子のみによって構成された繰り返し単位のみで実質的に構成されることが好ましい。より具体的には、炭素原子、酸素原子、水素原子、窒素原子及び硫黄原子から選ばれる原子のみによって構成された繰り返し単位が、樹脂(HR)の全繰り返し単位中95モル%以上であることが好ましく、97モル%以上であることがより好ましく、99モル%以上であることが更に好ましく、理想的には100モル%である。
疎水性樹脂(HR)の標準ポリスチレン換算の重量平均分子量は、好ましくは1,000〜100,000で、より好ましくは1,000〜50,000、更に好ましくは2,000〜15,000である。
また、疎水性樹脂(HR)は、1種で使用してもよいし、複数併用してもよい。
疎水性樹脂(HR)の含有量は、本発明の感活性光線性又は感放射線性樹脂組成物中の全固形分に対し、0.01〜10質量%が好ましく、0.05〜8質量%がより好ましく、0.1〜7質量%が更に好ましい。
疎水性樹脂(HR)は、樹脂(A)同様、金属等の不純物が少ないのは当然のことながら、残留単量体やオリゴマー成分が0.01〜5質量%であることが好ましく、より好ましくは0.01〜3質量%、0.05〜1質量%が更により好ましい。それにより、液中異物や感度等の経時変化のない感活性光線性又は感放射線性樹脂組成物が得られる。また、解像度、レジスト形状、レジストパターンの側壁、ラフネスなどの点から、分子量分布(Mw/Mn、分散度ともいう)は、1〜5の範囲が好ましく、より好ましくは1〜3、更に好ましくは1〜2の範囲である。
疎水性樹脂(HR)は、各種市販品を利用することもできるし、常法に従って(例えばラジカル重合)合成することができる。例えば、一般的合成方法としては、モノマー種及び開始剤を溶剤に溶解させ、加熱することにより重合を行う一括重合法、加熱溶剤にモノマー種と開始剤の溶液を1〜10時間かけて滴下して加える滴下重合法などが挙げられ、滴下重合法が好ましい。
反応溶媒、重合開始剤、反応条件(温度、濃度等)、及び、反応後の精製方法は、樹脂(A)で説明した内容と同様であるが、疎水性樹脂(HR)の合成においては、反応の濃度が30〜50質量%であることが好ましい。
以下に疎水性樹脂(HR)の具体例を示す。また、下記表に、各樹脂における繰り返し単位のモル比(各繰り返し単位と左から順に対応)、重量平均分子量、分散度を示す。
[塩基性化合物]
本発明の感活性光線性又は感放射線性樹脂組成物は、露光から加熱までの経時による性能変化を低減するために、塩基性化合物を含有することが好ましい。使用可能な塩基性化合物は特に限定されないが、例えば、以下の(1)〜(5)に分類される化合物を用いることができる。
(1)塩基性化合物(N)
塩基性化合物としては、好ましくは、下記式(A)〜(E)で示される構造を有する化合物(N)を挙げることができる。
一般式(A)及び(E)中、
200、R201及びR202は、同一でも異なってもよく、水素原子、アルキル基(好ましくは炭素数1〜20)、シクロアルキル基(好ましくは炭素数3〜20)又はアリール基(炭素数6〜20)を表し、ここで、R201とR202は、互いに結合して環を形成してもよい。
203、R204、R205及びR206は、同一でも異なってもよく、炭素数1〜20個のアルキル基を表す。
上記アルキル基について、置換基を有するアルキル基としては、炭素数1〜20のアミノアルキル基、炭素数1〜20のヒドロキシアルキル基、又は炭素数1〜20のシアノアルキル基が好ましい。
これら一般式(A)及び(E)中のアルキル基は、無置換であることがより好ましい。
好ましい化合物(N)として、グアニジン、アミノピロリジン、ピラゾール、ピラゾリン、ピペラジン、アミノモルホリン、アミノアルキルモルフォリン、ピペリジン等を挙げることができ、更に好ましい化合物(N)として、イミダゾール構造、ジアザビシクロ構造、オニウムヒドロキシド構造、オニウムカルボキシレート構造、トリアルキルアミン構造、アニリン構造又はピリジン構造を有する化合物(N)、水酸基及び/又はエーテル結合を有するアルキルアミン誘導体、水酸基及び/又はエーテル結合を有するアニリン誘導体等を挙げることができる。
イミダゾール構造を有する化合物(N)としては、イミダゾール、2、4、5−トリフェニルイミダゾール、ベンズイミダゾール、2−フェニルベンゾイミダゾール等が挙げられる。ジアザビシクロ構造を有する化合物(N)としては、1、4−ジアザビシクロ[2,2,2]オクタン、1、5−ジアザビシクロ[4,3,0]ノナ−5−エン、1、8−ジアザビシクロ[5,4,0]ウンデカ−7−エン等が挙げられる。オニウムヒドロキシド構造を有する化合物(N)としては、テトラブチルアンモニウムヒドロキシド、トリアリールスルホニウムヒドロキシド、フェナシルスルホニウムヒドロキシド、2−オキソアルキル基を有するスルホニウムヒドロキシド、具体的にはトリフェニルスルホニウムヒドロキシド、トリス(t−ブチルフェニル)スルホニウムヒドロキシド、ビス(t−ブチルフェニル)ヨードニウムヒドロキシド、フェナシルチオフェニウムヒドロキシド、2−オキソプロピルチオフェニウムヒドロキシド等が挙げられる。オニウムカルボキシレート構造を有する化合物(N)としては、オニウムヒドロキシド構造を有する化合物(N)のアニオン部がカルボキシレートになったものであり、例えばアセテート、アダマンタン−1−カルボキシレート、パーフロロアルキルカルボキシレート等が挙げられる。トリアルキルアミン構造を有する化合物(N)としては、トリ(n−ブチル)アミン、トリ(n−オクチル)アミン等を挙げることができる。アニリン化合物(N)としては、2,6−ジイソプロピルアニリン、N,N−ジメチルアニリン、N,N−ジブチルアニリン、N,N−ジヘキシルアニリン等を挙げることができる。水酸基及び/又はエーテル結合を有するアルキルアミン誘導体としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−フェニルジエタノールアミン、トリス(メトキシエトキシエチル)アミン等を挙げることができる。水酸基及び/又はエーテル結合を有するアニリン誘導体としては、N,N−ビス(ヒドロキシエチル)アニリン等を挙げることができる。
好ましい塩基性化合物(N)として、更に、フェノキシ基を有するアミン化合物、フェノキシ基を有するアンモニウム塩化合物、スルホン酸エステル基を有するアミン化合物及びスルホン酸エステル基を有するアンモニウム塩化合物を挙げることができる。これら化合物の例としては、米国特許出願公開第2007/0224539A1号明細書の段落<0066>に例示されている化合物(C1−1)〜(C3−3)などが挙げられる。
また、下記化合物も塩基性化合物(N)として好ましい。
塩基性化合物(N)としては、上述した化合物のほかに、特開2011−22560号公報<0180>〜<0225>、特開2012−137735号公報<0218>〜<0219>、国際公開パンフレットWO2011/158687A1<0416>〜<0438>に記載されている化合物等を使用することもできる。塩基性化合物(N)は、活性光線又は放射線の照射により塩基性が低下する、塩基性化合物又はアンモニウム塩化合物であってもよい。
これらの塩基性化合物(N)は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
本発明の感活性光線性又は感放射線性樹脂組成物は、塩基性化合物(N)を含有してもしなくてもよいが、含有する場合、塩基性化合物(N)の含有率は、感活性光線性又は感放射線性樹脂組成物の固形分を基準として、通常、0.001〜10質量%、好ましくは0.01〜5質量%である。
酸発生剤と塩基性化合物(N)の感活性光線性又は感放射線性樹脂組成物中の使用割合は、酸発生剤/塩基性化合物(モル比)=2.5〜300であることが好ましい。即ち、感度、解像度の点からモル比が2.5以上が好ましく、露光後加熱処理までの経時によるレジストパターンの太りによる解像度の低下抑制の点から300以下が好ましい。酸発生剤/塩基性化合物(N)(モル比)は、より好ましくは5.0〜200、更に好ましくは7.0〜150である。
(2)活性光線又は放射線の照射により塩基性が低下する、塩基性化合物又はアンモニウム塩化合物(F)
本発明における感活性光線性又は感放射線性樹脂組成物は、活性光線又は放射線の照射により塩基性が低下する、塩基性化合物又はアンモニウム塩化合物(以下、「化合物(F)」ともいう)を含有することが好ましい。
化合物(F)は、塩基性官能基又はアンモニウム基と、活性光線又は放射線の照射により酸性官能基を発生する基とを有する化合物(F−1)であることが好ましい。すなわち、化合物(F)は、塩基性官能基と活性光線若しくは放射線の照射により酸性官能基を発生する基とを有する塩基性化合物、又は、アンモニウム基と活性光線若しくは放射線の照射により酸性官能基を発生する基とを有するアンモニウム塩化合物であることが好ましい。
化合物(F)又は(F−1)が、活性光線又は放射線の照射により分解して発生する、塩基性が低下した化合物として、下記一般式(PA−I)、(PA−II)又は(PAIII)で表される化合物を挙げることができ、LWR、局所的なパターン寸法の均一性及びDOFに関して優れた効果を高次元で両立できるという観点から、特に、一般式(PA−II)又は(PA−III)で表される化合物が好ましい。
まず、一般式(PA−I)で表される化合物について説明する。
Q−A−(X)−B−R (PA−I)
一般式(PA−I)中、
は、単結合又は2価の連結基を表す。
Qは、−SOH、又は−COHを表す。Qは、活性光線又は放射線の照射により発生する酸性官能基に相当する。
Xは、−SO−又は−CO−を表す。
nは、0又は1を表す。
Bは、単結合、酸素原子又は−N(Rx)−を表す。
Rxは、水素原子又は1価の有機基を表す。
Rは、塩基性官能基を有する1価の有機基又はアンモニウム基を有する1価の有機基を表す。
次に、一般式(PA−II)で表される化合物について説明する。
−X−NH−X−Q(PA−II)
一般式(PA−II)中、
及びQは、各々独立に、1価の有機基を表す。但し、Q及びQのいずれか一方は、塩基性官能基を有する。QとQは、結合して環を形成し、形成された環が塩基性官能基を有してもよい。
及びXは、各々独立に、−CO−又は−SO−を表す。
なお、−NH−は、活性光線又は放射線の照射により発生する酸性官能基に相当する。
次に、一般式(PA−III)で表される化合物を説明する。
−X−NH−X−A−(X−B−Q(PA−III)
一般式(PA−III)中、
及びQは、各々独立に、1価の有機基を表す。但し、Q及びQのいずれか一方は、塩基性官能基を有する。QとQは、結合して環を形成し、形成された環が塩基性官能基を有していてもよい。
、X及びXは、各々独立に、−CO−又は−SO−を表す。
は、2価の連結基を表す。
Bは、単結合、酸素原子又は−N(Qx)−を表す。
Qxは、水素原子又は1価の有機基を表す。
Bが、−N(Qx)−の時、QとQxが結合して環を形成してもよい。
mは、0又は1を表す。
なお、−NH−は、活性光線又は放射線の照射により発生する酸性官能基に相当する。
以下、化合物(F)の具体例を挙げるが、これらに限定されるものではない。また、例示化合物以外で、化合物(E)の好ましい具体例としては、米国特許出願公開第2010/0233629号明細書の(A−1)〜(A−44)の化合物や、米国特許出願公開第2012/0156617号明細書の(A−1)〜(A−23)などが挙げられる。
化合物(F)の分子量は、500〜1000であることが好ましい。
本発明における感活性光線性又は感放射線性樹脂組成物は化合物(F)を含有してもしていなくてもよいが、含有する場合、化合物(F)の含有量は、感活性光線性又は感放射線性樹脂組成物の固形分を基準として、0.1〜20質量%が好ましく、より好ましくは0.1〜10質量%である。
(3)窒素原子を有し、酸の作用により脱離する基を有する低分子化合物(G)
本発明の感活性光線性又は感放射線性樹脂組成物は、窒素原子を有し、酸の作用により脱離する基を有する化合物(以下「化合物(G)」ともいう)を含有してもよい。
酸の作用により脱離する基としては特に限定されないが、アセタール基、カルボネート基、カルバメート基、3級エステル基、3級水酸基、ヘミアミナールエーテル基が好ましく、カルバメート基、ヘミアミナールエーテル基であることが特に好ましい。
酸の作用により脱離する基を有する化合物(N’’)の分子量は、100〜1000が好ましく、100〜700がより好ましく、100〜500が特に好ましい。
化合物(G)としては、酸の作用により脱離する基を窒素原子上に有するアミン誘導体が好ましい。
化合物(G)は、窒素原子上に保護基を有するカルバメート基を有してもよい。カルバメート基を構成する保護基としては、下記一般式(d−1)で表すことができる。
一般式(d−1)において、
Rbは、それぞれ独立に、水素原子、アルキル基(好ましくは炭素数1〜10)、シクロアルキル基(好ましくは炭素数3〜30)、アリール基(好ましくは炭素数3〜30)、アラルキル基(好ましくは炭素数1〜10)、又はアルコキシアルキル基(好ましくは炭素数1〜10)を表す。Rbは相互に連結して環を形成していてもよい。
Rbが示すアルキル基、シクロアルキル基、アリール基、アラルキル基は、ヒドロキシル基、シアノ基、アミノ基、ピロリジノ基、ピペリジノ基、モルホリノ基、オキソ基等の官能基、アルコキシ基、ハロゲン原子で置換されていてもよい。Rbが示すアルコキシアルキル基についても同様である。
Rbとして好ましくは、直鎖状、又は分岐状のアルキル基、シクロアルキル基、アリール基である。より好ましくは、直鎖状、又は分岐状のアルキル基、シクロアルキル基である。
2つのRbが相互に連結して形成する環としては、脂環式炭化水素基、芳香族炭化水素基、複素環式炭化水素基若しくはその誘導体等が挙げられる。
一般式(d−1)で表される基の具体的な構造としては、米国特許出願公開第2012/0135348A1号明細書の段落<0466>に開示された構造を挙げることができるが、これに限定されるものではない。
化合物(G)は、下記一般式(6)で表される構造を有するものであることが特に好ましい。
一般式(6)において、Raは、水素原子、アルキル基、シクロアルキル基、アリール基又はアラルキル基を表す。lが2のとき、2つのRaは同じでも異なっていてもよく、2つのRaは相互に連結して式中の窒素原子と共に複素環を形成していてもよい。複素環には式中の窒素原子以外のヘテロ原子を含んでいてもよい。
Rbは、一般式(d−1)におけるRbと同義であり、好ましい例も同様である。
lは0〜2の整数を表し、mは1〜3の整数を表し、l+m=3を満たす。
一般式(6)において、Raとしてのアルキル基、シクロアルキル基、アリール基、アラルキル基は、Rbとしてのアルキル基、シクロアルキル基、アリール基、アラルキル基が置換されていてもよい基として前述した基と同様な基で置換されていてもよい。
Raのアルキル基、シクロアルキル基、アリール基、及びアラルキル基(これらのアルキル基、シクロアルキル基、アリール基、及びアラルキル基は、上記基で置換されていてもよい)の好ましい例としては、Rbについて前述した好ましい例と同様な基が挙げられる。
また、Raが相互に連結して形成する複素環としては、好ましくは炭素数20以下であり、例えば、ピロリジン、ピペリジン、モルホリン、1,4,5,6−テトラヒドロピリミジン、1,2,3,4−テトラヒドロキノリン、1,2,3,6−テトラヒドロピリジン、ホモピペラジン、4−アザベンズイミダゾール、ベンゾトリアゾール、5−アザベンゾトリアゾール、1H−1,2,3−トリアゾール、1,4,7−トリアザシクロノナン、テトラゾール、7−アザインドール、インダゾール、ベンズイミダゾール、イミダゾ[1,2−a]ピリジン、(1S,4S)−(+)−2,5−ジアザビシクロ[2.2.1]ヘプタン、1,5,7−トリアザビシクロ[4.4.0]デック−5−エン、インドール、インドリン、1,2,3,4−テトラヒドロキノキサリン、パーヒドロキノリン、1,5,9−トリアザシクロドデカン等の複素環式化合物に由来する基、これらの複素環式化合物に由来する基を直鎖状、分岐状のアルカンに由来する基、シクロアルカンに由来する基、芳香族化合物に由来する基、複素環化合物に由来する基、ヒドロキシル基、シアノ基、アミノ基、ピロリジノ基、ピペリジノ基、モルホリノ基、オキソ基等の官能基の1種以上或いは1個以上で置換した基等が挙げられる。
本発明における特に好ましい化合物(G)の具体的としては、米国特許出願公開第2012/0135348A1号明細書の段落<0475>に開示された化合物を挙げることができるが、これに限定されるものではない。
一般式(6)で表される化合物は、特開2007−298569号公報、特開2009−199021号公報などに基づき合成することができる。
本発明において、低分子化合物(G)は、一種単独でも又は2種以上を混合しても使用することができる。
本発明の感活性光線性又は感放射線性樹脂組成物における化合物(G)の含有量は、感活性光線性又は感放射線性樹脂組成物の全固形分を基準として、0.001〜20質量%であることが好ましく、より好ましくは0.001〜10質量%、更に好ましくは0.01〜5質量%である。
(4)オニウム塩
また、本発明の感活性光線性又は感放射線性樹脂組成物は、塩基性化合物として、オニウム塩を含んでもよい。オニウム塩としては、例えば下記一般式(6A)又は(6B)で表されるオニウム塩が挙げられる。このオニウム塩は、レジスト組成物で通常用いられる光酸発生剤の酸強度との関係で、レジスト系中で、発生酸の拡散を制御することが期待される。
一般式(6A)中、
Raは、有機基を表す。但し、式中のカルボン酸基に直接結合する炭素原子にフッ素原子が置換しているものを除く。
は、オニウムカチオンを表す。
一般式(6B)中、
Rbは、有機基を表す。但し、式中のスルホン酸基に直接結合する炭素原子にフッ素原子が置換しているものを除く。
はオニウムカチオンを表す。
Ra及びRbにより表される有機基は、式中のカルボン酸基又はスルホン酸基に直接結合する原子が炭素原子であることが好ましい。但し、この場合、上述した光酸発生剤から発生する酸よりも相対的に弱い酸とするために、スルホン酸基又はカルボン酸基に直接結合する炭素原子にフッ素原子が置換することはない。
Ra及びRbにより表される有機基としては、例えば、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアラルキル基又は炭素数3〜30の複素環基等が挙げられる。これらの基は水素原子の一部又は全部が置換されていてもよい。
上記アルキル基、シクロアルキル基、アリール基、アラルキル基及び複素環基が有し得る置換基としては、例えば、ヒドロキシル基、ハロゲン原子、アルコキシ基、ラクトン基、アルキルカルボニル基等が挙げられる。
一般式(6A)及び(6B)中のXにより表されるオニウムカチオンとしては、スルホニウムカチオン、アンモニウムカチオン、ヨードニウムカチオン、ホスホニウムカチオン、ジアゾニウムカチオンなどが挙げられ、中でもスルホニウムカチオンがより好ましい。
スルホニウムカチオンとしては、例えば、少なくとも1つのアリール基を有するアリールスルホニウムカチオンが好ましく、トリアリールスルホニウムカチオンがより好ましい。アリール基は置換基を有していてもよく、アリール基としては、フェニル基が好ましい。
スルホニウムカチオン及びヨードニウムカチオンの例としては、前述の、化合物(B)における一般式(ZI)のスルホニウムカチオン構造や一般式(ZII)におけるヨードニウム構造も好ましく挙げることができる。
一般式(6A)又は(6B)で表されるオニウム塩の具体的構造を以下に示す。
本発明の感活性光線性又は感放射線性樹脂組成物が一般式(6A)又は(6B)で表されるオニウム塩を含有する場合、その含有率は、感活性光線性又は感放射線性樹脂組成物の固形分を基準として、通常、0.01〜10質量%、好ましくは0.1〜5質量%である。
(5)ベタイン化合物
更に、本発明の感活性光線性又は感放射線性樹脂組成物は、特開2012−189977号公報の式(I)に含まれる化合物、特開2013−6827号公報の式(I)で表される化合物、特開2013−8020号公報の式(I)で表される化合物、特開2012−252124号公報の式(I)で表される化合物などのような、1分子内にオニウム塩構造と酸アニオン構造の両方を有する化合物(以下、ベタイン化合物ともいう)も好ましく用いることができる。このオニウム塩構造としては、スルホニウム、ヨードニウム、アンモニウム構造が挙げられ、スルホニウムまたはヨードニウム塩構造であることが好ましい。また、酸アニオン構造としては、スルホン酸アニオンまたはカルボン酸アニオンが好ましい。この化合物の例としては、例えば以下が挙げられる。
[溶剤]
本発明の感活性光線性又は感放射線性樹脂組成物を調製する際に使用することができる溶剤としては、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4〜10)、環を有しても良いモノケトン化合物(好ましくは炭素数4〜10)、アルキレンカーボネート、アルコキシ酢酸アルキル、ピルビン酸アルキル、2−ヒドロキシイソ酪酸メチル等の有機溶剤を挙げることができる。
これらの溶剤の具体例は、米国特許出願公開2008/0187860号明細書<0441>〜<0455>に記載のものを挙げることができる。
本発明においては、有機溶剤として構造中に水酸基を含有する溶剤と、水酸基を含有しない溶剤とを混合した混合溶剤を使用してもよい。
水酸基を含有する溶剤、水酸基を含有しない溶剤としては前述の例示化合物が適宜選択可能であるが、水酸基を含有する溶剤としては、アルキレングリコールモノアルキルエーテル、乳酸アルキル等が好ましく、プロピレングリコールモノメチルエーテル(PGME、別名1−メトキシ−2−プロパノール)、乳酸エチルがより好ましい。また、水酸基を含有しない溶剤としては、アルキレングリコールモノアルキルエーテルアセテート、アルキルアルコキシプロピオネート、環を含有してもよいモノケトン化合物、環状ラクトン、酢酸アルキルなどが好ましく、これらの内でもプロピレングリコールモノメチルエーテルアセテート(PGMEA、別名1−メトキシ−2−アセトキシプロパン)、エチルエトキシプロピオネート、2−ヘプタノン、γ−ブチロラクトン、シクロヘキサノン、酢酸ブチルが特に好ましく、プロピレングリコールモノメチルエーテルアセテート、エチルエトキシプロピオネート、プロピレンカーボネート、2−ヘプタノンが最も好ましい。
水酸基を含有する溶剤と水酸基を含有しない溶剤との混合比(質量)は、1/99〜99/1、好ましくは10/90〜90/10、更に好ましくは20/80〜60/40である。水酸基を含有しない溶剤を50質量%以上含有する混合溶剤が塗布均一性の点で特に好ましい。
溶剤は、プロピレングリコールモノメチルエーテルアセテートを含むことが好ましく、プロピレングリコールモノメチルエーテルアセテート(PGMEA)単独溶媒、又は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を含有する2種類以上の混合溶剤であることが好ましい。混合溶剤の好ましい具体例としては、PGMEAとケトン系溶剤(シクロヘキサノン、2−ヘプタノンなど)を含む混合溶剤、PGMEAとラクトン系溶剤(γ−ブチロラクトンなど)を含む混合溶剤、PGMEAとPGMEを含む混合溶剤、PGMEA・ケトン系溶剤・ラクトン系溶剤の3種を含む混合溶剤、PGMEA・PGME・ラクトン系溶剤の3種を含む混合溶剤、PGMEA・PGME・ケトン系溶剤の3種を含む混合溶剤、などが挙げられるが、これらに限定されるわけではない。
[界面活性剤]
本発明における感活性光線性又は感放射線性樹脂組成物は、更に界面活性剤を含有してもしなくてもよく、含有する場合、フッ素及び/又はシリコン系界面活性剤(フッ素系界面活性剤、シリコン系界面活性剤、フッ素原子とケイ素原子の両方を有する界面活性剤)のいずれか、あるいは2種以上を含有することがより好ましい。
本発明における感活性光線性又は感放射線性樹脂組成物が界面活性剤を含有することにより、250nm以下、特に220nm以下の露光光源の使用時に、良好な感度及び解像度で、密着性及び現像欠陥の少ないレジストパターンを与えることが可能となる。
フッ素系及び/又はシリコン系界面活性剤として、米国特許出願公開第2008/0248425号明細書の<0276>に記載の界面活性剤が挙げられ、例えばエフトップEF301、EF303、(新秋田化成(株)製)、フロラードFC430、431、4430(住友スリーエム(株)製)、メガファックF171、F173、F176、F189、F113、F110、F177、F120、R08(DIC(株)製)、サーフロンS−382、SC101、102、103、104、105、106、KH−20(旭硝子(株)製)、トロイゾルS−366(トロイケミカル(株)製)、GF−300、GF−150(東亜合成化学(株)製)、サーフロンS−393(セイミケミカル(株)製)、エフトップEF121、EF122A、EF122B、RF122C、EF125M、EF135M、EF351、EF352、EF801、EF802、EF601((株)ジェムコ製)、PF636、PF656、PF6320、PF6520(OMNOVA社製)、FTX−204G、208G、218G、230G、204D、208D、212D、218D、222D((株)ネオス製)等である。またポリシロキサンポリマーKP−341(信越化学工業(株)製)もシリコン系界面活性剤として用いることができる。
また、界面活性剤としては、上記に示すような公知のものの他に、テロメリゼーション法(テロマー法ともいわれる)若しくはオリゴメリゼーション法(オリゴマー法ともいわれる)により製造されたフルオロ脂肪族化合物から導かれたフルオロ脂肪族基を有する重合体を用いた界面活性剤を用いることが出来る。フルオロ脂肪族化合物は、特開2002−90991号公報に記載された方法によって合成することが出来る。
上記に該当する界面活性剤として、メガファックF178、F−470、F−473、F−475、F−476、F−472(DIC(株)製)、C13基を有するアクリレート(又はメタクリレート)と(ポリ(オキシアルキレン))アクリレート(又はメタクリレート)との共重合体、C基を有するアクリレート(又はメタクリレート)と(ポリ(オキシエチレン))アクリレート(又はメタクリレート)と(ポリ(オキシプロピレン))アクリレート(又はメタクリレート)との共重合体等を挙げることができる。
また、本発明では、米国特許出願公開第2008/0248425号明細書の<0280>に記載の、フッ素系及び/又はシリコン系界面活性剤以外の他の界面活性剤を使用することもできる。
これらの界面活性剤は単独で使用してもよいし、また、いくつかの組み合わせで使用してもよい。
感活性光線性又は感放射線性樹脂組成物が界面活性剤を含有する場合、界面活性剤の使用量は、感活性光線性又は感放射線性樹脂組成物全量(溶剤を除く)に対して、好ましくは0.0001〜2質量%、より好ましくは0.0005〜1質量%である。
一方、界面活性剤の添加量を、感活性光線性又は感放射線性樹脂組成物全量(溶剤を除く)に対して、10ppm以下とすることで、疎水性樹脂の表面偏在性があがり、それにより、レジスト膜表面をより疎水的にすることができ、液浸露光時の水追随性を向上させることが出来る。
本発明の感活性光線性又は感放射線性樹脂組成物は、上記各成分を適宜混合して調製することが可能である。なお、調製の際、イオン交換膜を用いて組成物中のメタル不純物をppbレベルに低減させる工程、適当なフィルターを用いて各種パーティクルなどの不純物をろ過する工程、脱気工程などを行ってもよい。これらの工程の具体的なことについては、特開2012−88574号公報、特開2010−189563号公報、特開2001−12529号公報、特開2001−350266号公報、特開2002−99076号公報、特開平5−307263号公報、特開2010−164980号公報、WO2006/121162A、特開2010−243866号公報、特開2010−020297号公報などに記載されている。
また、本発明の感活性光線性又は感放射線性樹脂組成物は、含水率が低いことが好ましい。具体的には、含水率は組成物の全重量中2.5質量%以下が好ましく、1.0質量%以下がより好ましく、0.3質量%以下であることが更に好ましい。
<膜形成成分(スペーサー剤)>
以下では、工程Bで使用される膜形成成分について詳述する。
(膜形成成分)
膜形成成分としては、上述した膜2を構成するために使用される材料であり、特にその種類は特に制限されないが、通常、有機物を使用することが好ましい。
有機物としては、低分子化合物及び高分子化合物のいずれも使用することができ、高分子化合物(繰り返し単位を有する化合物)がより好ましい。なお、低分子化合物とは分子量が1000未満の化合物であり、高分子化合物とは分子量が1000以上の化合物である。
なお、上記有機物の分子量は特に制限されないが、1000以上が好ましく、10000以上がより好ましい。
高分子化合物の分散度(Mw/Mn)は特に制限されないが、形成されるパターン形状がより優れる点で、1.0〜3.0が好ましく、1.0〜2.0がより好ましい。
高分子化合物のMw(重量平均分子量)は特に制限されないが、形成されるパターン形状がより優れる点で、1000〜60000が好ましく、3000〜25000がより好ましい。
また、膜形成成分としては、パターン1と相互作用を形成し得る成分であっても、そうでない成分であってもいずれも使用できる。また、膜形成成分自体が架橋性を有しており、膜形成成分同士が反応して、架橋構造を有する膜2が形成されてもよい。
なかでも、上述した図2に示すような、相互作用膜を形成できる点で、膜形成成分としてはパターン1と相互作用を形成し得る成分(化合物)であることが好ましい。特に、パターン1の形成に使用される感活性光線性又は感放射線性樹脂組成物中に酸の作用により分解して極性基を生じる樹脂が含まれる場合、この極性基との間で相互作用(例えば、化学結合、静電相互作用、水素結合、双極子相互作用、配位結合など。)を生じる膜形成成分を使用することが好ましい。
上記のような、相互作用を形成しうる膜形成成分としては、例えば、オニウム塩化合物、含窒素化合物、及び、リン系化合物からなる群から選択される少なくとも1つが挙げられる。
これらの化合物は、低分子化合物の形態であってもよく、高分子化合物の形態であってもよいが、高分子化合物の形態であることが好ましい。
以下、それぞれの化合物のうち、先ず、低分子化合物の形態について詳述する。
〔低分子化合物〕
(オニウム塩化合物)
オニウム塩化合物としては、オニウム塩構造を有する化合物を意図する。なお、オニウム塩構造とは、有機物成分とルイス塩基が配位結合をつくることによって生成された塩構造を指す。オニウム塩化合物は、主に、上記極性基との間でイオン結合により相互作用を形成する。例えば、極性基がカルボキシル基である場合、オニウム塩化合物中のカチオンがカルボキシル由来のカルボキシル陰イオン(COO)と静電相互作用を形成する(イオン結合を形成する)。
オニウム塩構造の種類は特に制限されず、例えば、以下に示されるカチオン構造を有するアンモニウム塩、ホスホニウム塩、オキソニウム塩、スルホニウム塩、セレノニウム塩、カルボニウム塩、ジアゾニウム塩、ヨードニウム塩などの構造が挙げられる。
また、オニウム塩構造中のカチオンとしては、複素芳香環のヘテロ原子上に正電荷を有するものも含む。そのようなオニウム塩としては、例えば、ピリジニウム塩、イミダゾリウム塩などが挙げられる。
なお、本明細書においては、アンモニウム塩の一態様として、上記ピリジニウム塩、イミダゾリウム塩も含まれる。
オニウム塩化合物としては、本発明の効果がより優れる点で、1分子中に2個以上のオニウムイオン原子を有する多価オニウム塩化合物であってもよい。多価オニウム塩化合物としては、2個以上のカチオンが、共有結合により連結されている化合物が好ましい。
多価オニウム塩化合物としては、例えば、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、アンモニウム塩、ホスホニウム塩が挙げられる。なかでも、本発明の効果がより優れる点で、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、アンモニウム塩が好ましく、また、安定性の面からアンモニウム塩が更に好ましい。
また、オニウム塩化合物(オニウム塩構造)に含まれるアニオン(陰イオン)としては、アニオンであればどのようなものでもよいが、1価のイオンであっても多価のイオンであってもよい。
例えば、1価のアニオンとしては、スルホン酸アニオン、ギ酸アニオン、カルボン酸アニオン、スルフィン酸アニオン、ホウ素アニオン、ハロゲン化物イオン、フェノールアニオン、アルコキシアニオン、水酸化物イオンなどが挙げられる。なお、2価のアニオンとしては、例えば、シュウ酸イオン、フタル酸イオン、マレイン酸イオン、フマル酸イオン、酒石酸イオン、リンゴ酸イオン、乳酸イオン、硫酸イオン、ジグリコール酸イオン、2、5−フランジカルボン酸イオンなどが挙げられる。
より具体的には、1価のアニオンとしては、Cl、Br、I、AlCl 、AlCl 、BF 、PF 、ClO 、NO 、CHCOO、CFCOO、CHSO 、CFSO 、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF) 、(CN)、CSO 、(CSO、CCOO、(CFSO)(CFCO)N、C19COO、(CHPO 、(CPO 、COSO 、C13OSO 、C17OSO 、CH(OCOSO 、C(CH)SO 、(CPF 、CHCH(OH)COO、B(C 、FSO 、C、(CFCHO、(CFCHO、C(CH、COCCOOなどが挙げられる。
なかでも、スルホン酸アニオン、カルボン酸アニオン、ビス(アルキルスルホニル)アミドアニオン、トリス(アルキルスルホニル)メチドアニオン、BF 、PF 、SbF などが好ましく挙げられ、より好ましくは炭素原子を含有する有機アニオンである。
以下に、オニウム塩構造に含まれるカチオンの具体例を例示する。
以下に、オニウム塩構造に含まれるアニオンの具体例を例示する。
以下に、オニウム塩構造の具体例を例示する。
オニウム塩化合物の好適態様としては、本発明の効果がより優れる点で、式(1−1)で表されるオニウム塩化合物、及び、式(1−2)で表されるオニウム塩化合物からなる群から選択される少なくとも1つが挙げられる。
なお、式(1−1)で表されるオニウム塩化合物は、1種のみを使用しても、2種以上を併用してもよい。また、式(1−2)で表されるオニウム塩化合物は、1種のみを使用しても、2種以上を併用してもよい。また、式(1−1)で表されるオニウム塩化合物、及び、式(1−2)で表されるオニウム塩化合物を併用してもよい。
式(1−1)中、Mは、窒素原子、リン原子、硫黄原子、又はヨウ素原子を表す。なかでも、本発明の効果がより優れる点で、窒素原子が好ましい。
Rは、それぞれ独立に、水素原子、ヘテロ原子を含んでいてもよい脂肪族炭化水素基、ヘテロ原子を含んでいてもよい芳香族炭化水素基、又は、これらを2種以上組み合わせた基を表す。
脂肪族炭化水素基としては、直鎖状、分岐鎖状、環状のいずれであってもよい。また、脂肪族炭化水素基中に含まれる炭素数は特に制限されないが、本発明の効果がより優れる点で、1〜15が好ましく、1〜5がより好ましい。
脂肪族炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケン基、アルキン基、又は、これらを2種以上組み合わせた基が挙げられる。
脂肪族炭化水素基には、ヘテロ原子が含まれていてもよい。つまり、ヘテロ原子含有炭化水素基であってもよい。含有されるヘテロ原子の種類は特に制限されないが、ハロゲン原子、酸素原子、窒素原子、硫黄原子、セレン原子、テルル原子などが挙げられる。例えば、−YH、−Y−、−N(R)−、−C(=Y)−、−CON(R)−、−C(=Y)Y−、−SO−、−SON(R)−、ハロゲン原子、又はこれらを2種以上組み合わせた基の態様で含まれる。
〜Yは、各々独立に、酸素原子、硫黄原子、セレン原子、及びテルル原子からなる群から選択される。なかでも、取り扱いがより簡便である点から、酸素原子、硫黄原子が好ましい。
上記R、R、Rは、各々独立に、水素原子又は炭素数1〜20の炭化水素基から選択される。
tは1〜3の整数を表す。
芳香族炭化水素基中に含まれる炭素数は特に制限されないが、本発明の効果がより優れる点で、6〜20が好ましく、6〜10がより好ましい。
芳香族炭化水素基としては、例えば、フェニル基、ナフチル基などが挙げられる。
芳香族炭化水素基には、ヘテロ原子が含まれていてもよい。ヘテロ原子が含まれる態様は上述の通りである。なお、芳香族炭化水素基中にヘテロ原子が含まれる場合、芳香族複素環基を構成してもよい。
Rの好適態様としては、本発明の効果がより優れる点で、ヘテロ原子を含んでいてもよいアルキル基、ヘテロ原子を含んでいてもよいアルケン基、ヘテロ原子を含んでいてもよいシクロアルキル基、ヘテロ原子を含んでいてもよいアリール基が挙げられる。
なお、複数のRは互いに結合して環を形成してもよい。形成される環の種類は特に制限されないが、例えば、5〜6員環構造を挙げることができる。
また、形成される環は、芳香族性を有していてもよく、例えば、式(1−1)で表されるオニウム塩化合物のカチオンは、以下式(10)で表されるピリジニウム環であってもよい。更に、形成される環中の一部にはヘテロ原子が含まれていてもよく、例えば、式(1−1)で表されるオニウム塩化合物のカチオンは、以下式(11)で表されるイミダゾリウム環であってもよい。
なお、式(10)及び式(11)中のRの定義は、上述の通りである。
式(10)及び式(11)中、Rvは、それぞれ独立に、水素原子、または、アルキル基を表す。複数のRvは、互いに結合して環を形成してもよい。
は、1価のアニオンを表す。1価のアニオンの定義は、上述の通りである。
式(1−1)中、nは2〜4の整数を表す。なお、Mが窒素原子又はリン原子の場合、nは4を表し、Mが硫黄原子の場合、nは3を表し、Mがヨウ素原子の場合、nは2を表す。
式(1−2)中のM、R及びXの定義は、上述の通りである。なお、式(1−2)中、Xは2つ含まれる。
Lは、2価の連結基を表す。2価の連結基としては、置換若しくは無置換の2価の脂肪族炭化水素基(好ましくは炭素数1〜8。例えば、メチレン基、エチレン基、プロピレン基などのアルキレン基)、置換若しくは無置換の2価の芳香族炭化水素基(好ましくは炭素数6〜12。例えば、フェニレン基)、−O−、−S−、−SO−、−N(R)−(R:アルキル基)、−CO−、−NH−、−COO−、−CONH−、又はこれらを2種以上組み合わせた基(例えば、アルキレンオキシ基、アルキレンオキシカルボニル基、アルキレンカルボニルオキシ基など)などが挙げられる。
なかでも、本発明の効果がより優れる点で、2価の脂肪族炭化水素基又は2価の芳香族炭化水素基が好ましい。
式(1−2)中、mは、それぞれ独立に、1〜3の整数を表す。なお、Mが窒素原子又はリン原子の場合、mは3を表し、Mが硫黄原子の場合、mは2を表し、Mがヨウ素原子の場合、mは1を表す。
(含窒素化合物)
含窒素化合物とは、窒素原子を含む化合物を意図する。なお、本明細書において、含窒素化合物には、上記オニウム塩化合物は含まれない。含窒素化合物は、主に、化合物中の窒素原子と上記極性基との間で相互作用を形成する。例えば、極性基がカルボキシル基である場合、含窒素化合物中の窒素原子と相互作用して、塩を形成する。
上記含窒素化合物としては、例えば、下記一般式(6)で表される化合物が挙げられる。
上記一般式(6)中、R及びRは、それぞれ独立して、水素原子、水酸基、ホルミル基、アルコキシ基、アルコキシカルボニル基、炭素数1〜30の鎖状炭化水素基、炭素数3〜30の脂環式炭化水素基、炭素数6〜14の芳香族炭化水素基又はこれらの基を2種以上組み合わせてなる基である。Rは、水素原子、水酸基、ホルミル基、アルコキシ基、アルコキシカルボニル基、炭素数1〜30のn価の鎖状炭化水素基、炭素数3〜30のn価の脂環式炭化水素基、炭素数6〜14のn価の芳香族炭化水素基又はこれらの基を2種以上組み合わせてなるn価の基である。nは、1以上の整数である。但し、nが2以上のとき、複数のR及びRはそれぞれ同一でも異なっていてもよい。またR〜Rのいずれか2つが結合して、それぞれが結合する窒素原子と共に環構造を形成してもよい。
上記R及びRで表される炭素数1〜30の鎖状炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基等が挙げられる。
上記R及びRで表される炭素数3〜30の脂環状炭化水素基としては、例えばシクロプロピル基、シクロペンチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基等が挙げられる。
上記R及びRで表される炭素数6〜14の芳香族炭化水素基としては、例えばフェニル基、トリル基、ナフチル基等が挙げられる。
上記R及びRで表されるこれらの基を2種以上組み合わせてなる基としては、例えばベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基等の炭素数6〜12のアラルキル基等が挙げられる。
上記Rで表される炭素数1〜30のn価の鎖状炭化水素基としては、例えば上記R及びRで表される炭素数1〜30の鎖状炭化水素基として例示した基と同様の基から水素原子を(n−1)個除いた基等が挙げられる。
上記Rで表される炭素数3〜30のn価の脂環状炭化水素基としては、例えば上記R及びRで表される炭素数3〜30の環状炭化水素基として例示した基と同様の基から水素原子を(n−1)個除いた基等が挙げられる。
上記Rで表される炭素数6〜14のn価の芳香族炭化水素基としては、例えば上記R及びRで表される炭素数6〜14の芳香族炭化水素基として例示した基と同様の基から水素原子を(n−1)個除いた基等が挙げられる。
上記Rで表されるこれらの基を2種以上組み合わせてなる基としては、例えば上記R及びRで表されるこれらの基を2種以上組み合わせてなる基として例示した基と同様の基から水素原子を(n−1)個除いた基等が挙げられる。
上記R〜Rで表される基は置換されていてもよい。具体的な置換基としては、例えばメチル基、エチル基、プロピル基、n−ブチル基、t−ブチル基、ヒドロキシル基、カルボキシ基、ハロゲン原子、アルコキシ基等が挙げられる。上記ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子等が挙げられる。また、アルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。
上記式(6)で表される化合物としては、例えば(シクロ)アルキルアミン化合物、含窒素複素環化合物、アミド基含有化合物、ウレア化合物等が挙げられる。
(シクロ)アルキルアミン化合物としては、例えば窒素原子を1つ有する化合物、窒素原子を2つ有する化合物、窒素原子を3つ以上有する化合物等が挙げられる。
窒素原子を1つ有する(シクロ)アルキルアミン化合物としては、例えばn−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、1−アミノデカン、シクロヘキシルアミン等のモノ(シクロ)アルキルアミン類;
ジ−n−ブチルアミン、ジ−n−ペンチルアミン、ジ−n−ヘキシルアミン、ジ−n−ヘプチルアミン、ジ−n−オクチルアミン、ジ−n−ノニルアミン、ジ−n−デシルアミン、シクロヘキシルメチルアミン、ジシクロヘキシルアミン等のジ(シクロ)アルキルアミン類;トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ペンチルアミン、トリ−n−ヘキシルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デシルアミン、シクロヘキシルジメチルアミン、メチルジシクロヘキシルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;
トリエタノールアミン等の置換アルキルアミン;
アニリン、N−メチルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、N,N−ジブチルアニリン、4−ニトロアニリン、ジフェニルアミン、トリフェニルアミン、ナフチルアミン、2,4,6−トリ−tert−ブチル−N−メチルアニリン、N−フェニルジエタノールアミン、2,6−ジイソプロピルアニリン、2−(4−アミノフェニル)−2−(3−ヒドロキシフェニル)プロパン、2−(4−アミノフェニル)−2−(4−ヒドロキシフェニル)プロパン等の芳香族アミン類が挙げられる。
窒素原子を2つ有する(シクロ)アルキルアミン化合物としては、例えばエチレンジアミン、テトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルアミン、2,2−ビス(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、1,4−ビス〔1−(4−アミノフェニル)−1−メチルエチル〕ベンゼン、1,3−ビス〔1−(4−アミノフェニル)−1−メチルエチル〕ベンゼン、ビス(2−ジメチルアミノエチル)エーテル、ビス(2−ジエチルアミノエチル)エーテル、1−(2−ヒドロキシエチル)−2−イミダゾリジノン、2−キノキサリノール、N,N,N’,N’−テトラキス(2−ヒドロキシプロピル)エチレンジアミン等が挙げられる。
窒素原子を3つ以上有する(シクロ)アルキルアミン化合物としては、例えばポリエチレンイミン、ポリアリルアミン、2−ジメチルアミノエチルアクリルアミド等の重合体等が挙げられる。
含窒素複素環化合物としては、例えば含窒素芳香族複素環化合物、含窒素脂肪族複素環化合物等が挙げられる。
含窒素芳香族複素環化合物としては、例えば、イミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール、ベンズイミダゾール、2−フェニルベンズイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−メチル−1H−イミダゾール等のイミダゾール類;ピリジン、2−メチルピリジン、4−メチルピリジン、2−エチルピリジン、4−エチルピリジン、2−フェニルピリジン、4−フェニルピリジン、2−メチル−4−フェニルピリジン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、4−ヒドロキシキノリン、8−オキシキノリン、アクリジン、2,2’:6’,2’’−ターピリジン等のピリジン類が挙げられる。
含窒素脂肪族複素環化合物としては、例えば、ピペラジン、1−(2−ヒドロキシエチル)ピペラジン等のピペラジン類;ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、プロリン、ピペリジン、ピペリジンエタノール、3−ピペリジノ−1,2−プロパンジオール、モルホリン、4−メチルモルホリン、1−(4−モルホリニル)エタノール、4−アセチルモルホリン、3−(N−モルホリノ)−1,2−プロパンジオール、1,4−ジメチルピペラジン、1,4−ジアザビシクロ[2.2.2]オクタン等が挙げられる。
アミド基含有化合物としては、例えば、N−t−ブトキシカルボニルジ−n−オクチルアミン、N−t−ブトキシカルボニルジ−n−ノニルアミン、N−t−ブトキシカルボニルジ−n−デシルアミン、N−t−ブトキシカルボニルジシクロヘキシルアミン、N−t−ブトキシカルボニル−1−アダマンチルアミン、N−t−ブトキシカルボニル−2−アダマンチルアミン、N−t−ブトキシカルボニル−N−メチル−1−アダマンチルアミン、(S)−(−)−1−(t−ブトキシカルボニル)−2−ピロリジンメタノール、(R)−(+)−1−(t−ブトキシカルボニル)−2−ピロリジンメタノール、N−t−ブトキシカルボニル−4−ヒドロキシピペリジン、N−t−ブトキシカルボニルピロリジン、N−t−ブトキシカルボニルピペラジン、N,N−ジ−t−ブトキシカルボニル−1−アダマンチルアミン、N,N−ジ−t−ブトキシカルボニル−N−メチル−1−アダマンチルアミン、N−t−ブトキシカルボニル−4,4’−ジアミノジフェニルメタン、N,N’−ジ−t−ブトキシカルボニルヘキサメチレンジアミン、N,N,N’,N’−テトラ−t−ブトキシカルボニルヘキサメチレンジアミン、N,N’−ジ−t−ブトキシカルボニル−1,7−ジアミノヘプタン、N,N’−ジ−t−ブトキシカルボニル−1,8−ジアミノオクタン、N,N’−ジ−t−ブトキシカルボニル−1,9−ジアミノノナン、N,N’−ジ−t−ブトキシカルボニル−1,10−ジアミノデカン、N,N’−ジ−t−ブトキシカルボニル−1,12−ジアミノドデカン、N,N’−ジ−t−ブトキシカルボニル−4,4’−ジアミノジフェニルメタン、N−t−ブトキシカルボニルベンズイミダゾール、N−t−ブトキシカルボニル−2−メチルベンズイミダゾール、N−t−ブトキシカルボニル−2−フェニルベンズイミダゾール等のN−t−ブトキシカルボニル基含有アミノ化合物;
ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N−メチルピロリドン、N−アセチル−1−アダマンチルアミン、イソシアヌル酸トリス(2−ヒドロキシエチル)等が挙げられる。
ウレア化合物としては、例えば、尿素、メチルウレア、1,1−ジメチルウレア、1,3−ジメチルウレア、1,1,3,3−テトラメチルウレア、1,3−ジフェニルウレア、トリ−n−ブチルチオウレア等が挙げられる。
これらのうち、(シクロ)アルキルアミン化合物、含窒素脂肪族複素環化合物が好ましく、1−アミノデカン、ジ−n−オクチルアミン、トリ−n−オクチルアミン、テトラメチルエチレンジアミン、N,N−ジブチルアニリン、プロリンがより好ましい。
含窒素化合物の好適態様としては、窒素原子を複数(2つ以上)含む含窒素化合物(多価含窒素化合物)が好ましい。特に、3つ以上含む態様が好ましく、4つ以上含む態様がより好ましい。
また、含窒素化合物の他の好適態様としては、本発明の効果がより優れる点で、式(3)で表される化合物が挙げられる。
式(3)において、Aは単結合、又はn価の有機基を表す。
nは2以上の整数を表す。
Aとして具体的には、単結合、下記式(1A)で表される基、下記式(1B)で表される基、
−NH−、−NR−、−O−、−S−、カルボニル基、アルキレン基、アルケニレン基、アルキニレン基、シクロアルキレン基、芳香族基、ヘテロ環基、及び、これらを2種以上組み合わせた基からなるn価の有機基を好ましい例として挙げることができる。ここで、上記式中、Rは有機基を表し、好ましくはアルキル基、アルキルカルボニル基、アルキルスルホニル基である。また、上記組み合わせにおいて、ヘテロ原子同士が連結することはない。
なかでも、脂肪族炭化水素基(アルキレン基、アルケニレン基、アルキニレン基、シクロアルキレン基)、上述した式(1B)で表される基、−NH−、−NR−が好ましい。
ここで、アルキレン基、アルケニレン基、アルキニレン基としては、炭素数1から40であることが好ましく、炭素数1〜20であることがより好ましく、炭素数2から12であることが更に好ましい。アルキレン基は直鎖でも分岐でもよく、置換基を有していてもよい。ここでシクロアルキレン基としては、炭素数3から40であることが好ましく、炭素数3から20であることがより好ましく、炭素数5から12であることが更に好ましい。シクロアルキレン基は単環でも多環でもよく、環上に置換基を有していてもよい。
芳香族基としては、単環でも多環でもよく、非ベンゼン系芳香族基も含まれる。単環芳香族基としてはベンゼン残基、ピロール残基、フラン残基、チオフェン残基、インドール残基等、多環芳香族基としてはナフタレン残基、アントラセン残基、テトラセン残基、ベンゾフラン残基、ベンゾチオフェン残基等を例として挙げることができる。芳香族基は置換基を有していてもよい。
n価の有機基は置換基を有していてもよく、その種類は特に限定されないが、アルキル基、アルコキシ基、アルキルカルボニル基、アルキルカルボニルオキシ基、アルキルオキシカルボニル基、アルケニル基、アルケニルオキシ基、アルケニルカルボニル基、アルケニルカルボニルオキシ基、アルケニルオキシカルボニル基、アルキニル基、アルキニレンオキシ基、アルキニレンカルボニル基、アルキニレンカルボニルオキシ基、アルキニレンオキシカルボニル基、アラルキル基、アラルキルオキシ基、アラルキルカルボニル基、アラルキルカルボニルオキシ基、アラルキルオキシカルボニル基、水酸基、アミド基、カルボキシル基、シアノ基、フッ素原子などを例として挙げることができる。
Bは単結合、アルキレン基、シクロアルキレン基、又は芳香族基を表し、アルキレン基、シクロアルキレン基、及び芳香族基は置換基を有していてもよい。ここでアルキレン基、シクロアルキレン基、及び芳香族基の説明は上記と同様である。
ただし、A、Bが共に単結合であることはない。
は、それぞれ独立に、水素原子、ヘテロ原子が含まれていてもよい脂肪族炭化水素基、又は、ヘテロ原子が含まれていてもよい芳香族炭化水素基を表す。
脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基などが挙げられる。脂肪族炭化水素基に含まれる炭素数は特に制限されないが、本発明の効果がより優れる点で、1〜20が好ましく、1〜10がより好ましい。
芳香族炭化水素基としては、例えば、フェニル基、ナフチル基などが挙げられる。
脂肪族炭化水素基及び芳香族炭化水素基には、ヘテロ原子が含まれていてもよい。ヘテロ原子の定義及び好適態様は、上記式(1−1)で説明したヘテロ原子の定義と同義である。
また、脂肪族炭化水素基及び芳香族炭化水素基には、置換基(例えば、ヒドロキシル基、シアノ基、アミノ基、ピロリジノ基、ピペリジノ基、モルホリノ基、オキソ基等の官能基、アルコキシ基、ハロゲン原子)が含まれていてもよい。
nは2から8の整数を表すことが好ましく、より好ましくは3から8の整数を表す。
なお、上記式(3)で表される化合物は、窒素原子を3つ以上有することが好ましい。この態様においては、nが2の場合、Aには少なくとも一つの窒素原子が含まれる。Aに窒素原子が含まれるとは、例えば、上述した式(1B)で表される基、−NH−、及び−NR−からなる群から選択される少なくとも一つがAに含まれる。
以下に、式(3)で表される化合物を例示する。
(リン系化合物)
リン系化合物とは、−P<(リン原子)を含む化合物である。なお、リン系化合物には、オニウム塩化合物は含まれない。リン系化合物は、主に、化合物中のリン原子と上記極性基との間で相互作用を形成する。例えば、極性基がカルボキシル基である場合、リン系化合物中のリン原子と相互作用して、塩を形成する。
リン系化合物には、少なくとも1つのリン原子が含まれていればよく、複数(2つ以上)含まれていてもよい。
リン系化合物の分子量は特に制限されないが、本発明の効果がより優れる点で、70〜500が好ましく、70〜300がより好ましい。
リン系化合物の好適態様としては、本発明の効果がより優れる点で、以下の式(4−1)で表される化合物及び式(4−2)で表される化合物からなる群から選択されるリン系化合物が好ましい。
式(4−1)及び式(4−2)中、Rは、それぞれ独立に、ヘテロ原子を含んでいてもよい脂肪族炭化水素基、ヘテロ原子を含んでいてもよい芳香族炭化水素基、または、これらを2種以上組み合わせた基からなる群から選択される基を表す。
脂肪族炭化水素基としては、直鎖状、分岐鎖状、環状のいずれであってもよい。また、脂肪族炭化水素基中に含まれる炭素数は特に制限されないが、本発明の効果がより優れる点で、1〜15が好ましく、1〜5がより好ましい。
脂肪族炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケン基、アルキン基、又は、これらを2種以上組み合わせた基が挙げられる。
芳香族炭化水素基中に含まれる炭素数は特に制限されないが、本発明の効果がより優れる点で、6〜20が好ましく、6〜10がより好ましい。
芳香族炭化水素基としては、例えば、フェニル基、ナフチル基などが挙げられる。
脂肪族炭化水素基及び芳香族炭化水素基には、ヘテロ原子が含まれていてもよい。ヘテロ原子の定義及び好適態様は、上記式(1−1)で説明したヘテロ原子の定義と同義である。なお、ヘテロ原子としては酸素原子が含まれることが好ましく、−O−の態様で含まれることが好ましい。
は、2価の連結基を表す。2価の連結基としては、置換若しくは無置換の2価の脂肪族炭化水素基(好ましくは炭素数1〜8。例えば、メチレン基、エチレン基、プロピレン基などのアルキレン基)、置換若しくは無置換の2価の芳香族炭化水素基(好ましくは炭素数6〜12。例えば、アリーレン基)、−O−、−S−、−SO−、−N(R)−(R:アルキル基)、−CO−、−NH−、−COO−、−CONH−、又はこれらを2種以上組み合わせた基(例えば、アルキレンオキシ基、アルキレンオキシカルボニル基、アルキレンカルボニルオキシ基など)などが挙げられる。
なかでも、本発明の効果がより優れる点で、2価の脂肪族炭化水素基又は2価の芳香族炭化水素基が好ましい。
以下に、リン系化合物の具体例を例示する。
上述したように、化合物(A)は、低分子化合物の形態であっても高分子化合物の形態であってもよいが、極性基と多点相互作用を行う観点から、高分子化合物の形態であることが好ましい。
以下、オニウム塩化合物、含窒素化合物及びリン系化合物のうち、高分子化合物の形態について詳述する。
(オニウム塩化合物)
オニウム塩化合物のうち、高分子化合物の形態としては、オニウム塩を有するポリマーが挙げられる。オニウム塩を有するポリマーとは、オニウム塩構造を側鎖または主鎖に有するポリマーを意図する。特に、オニウム塩構造を有する繰り返し単位を有するポリマーであることが好ましい。
オニウム塩構造の定義は、上述した通りであり、カチオン及びアニオンの定義も同義である。
オニウム塩を有するポリマーの好適態様としては、本発明の効果がより優れる点で、式(5−1)で表される繰り返し単位を有するポリマーが挙げられる。
式(5−1)中、Rは、水素原子またはアルキル基を表す。アルキル基中に含まれる炭素原子の数は特に制限されないが、本発明の効果がより優れる点で、1〜20個が好ましく、1〜10個がより好ましい。
は、2価の連結基を表す。Lで表される2価の連結基の定義は、上述した式(1−2)で表されるLの定義と同じである。
なかでも、本発明の効果がより優れる点で、Lとしては、アルキレン基、アリーレン基、−COO−、及び、これらを2種以上組み合わせた基(−アリーレン基−アルキレン基−、−COO−アルキレン基−など)が好ましく、アルキレン基がより好ましい。
は、オニウム塩構造を有する基を表し、具体的には、式(1−1)及び式(1−2)のいずれかで表されるオニウム塩から1個の水素原子を除いた残基を表すことが好ましい。なお、残基とは、オニウム塩を示す構造式中の任意の位置から水素原子が1個引き抜かれ、上記Lに結合可能な構造の基をいう。通常、R中の水素原子の1個が引き抜かれて、上記Lに結合可能な構造の基となる。
式(1−1)及び式(1−2)中の各基の定義は、上述の通りである。
ポリマー中における上記式(5−1)で表される繰り返し単位の含有量は特に制限されないが、本発明の効果がより優れる点で、ポリマー中の全繰り返し単位に対して、30〜100モル%が好ましく、50〜100モル%がより好ましい。
上記ポリマーの重量平均分子量は特に制限されないが、本発明の効果がより優れる点で、1000〜30000が好ましく、1000〜10000がより好ましい。
上記ポリマーの重量平均分子量及び分散度(重量平均分子量/数平均分子量)は、GPC測定によるポリスチレン換算値として定義される。本明細書において、重量平均分子量及び分散度は、例えば、HLC−8120(東ソー(株)製)を用い、カラムとしてTSK gel Multipore HXL−M(東ソー(株)製、7.8mmID×30.0cm)を、溶離液としてTHF(テトラヒドロフラン)を用いることによって求めることができる。
式(5−1)で表される繰り返し単位の好適態様としては、式(5−2)で表される繰り返し単位が挙げられる。
式(5−2)中、R、R、L、及び、Xの定義は、上述の通りである。
更に、式(5−2)で表される繰り返し単位の好適態様としては、式(5−3)〜式(5−5)で表される繰り返し単位が挙げられる。
式(5−3)中、R、R、及び、Xの定義は、上述の通りである。
式(5−4)中、R、R、及び、Xの定義は、上述の通りである。
Aは、−O−、−NH−、又は−NR−を表す。Rの定義は、上記式(1−1)中のRの定義と同じである。
Bは、アルキレン基を表す。
式(5−5)中、R、R、及び、Xの定義は、上述の通りである。
(含窒素化合物)
含窒素化合物の内、高分子化合物の形態としては、本発明の効果がより優れる点で、アミノ基を有するポリマーが好ましく挙げられる。なお、本明細書において、「アミノ基」とは、1級アミノ基、2級アミノ基、及び、3級アミノ基を含む概念である。なお、2級アミノ基には、ピロリジノ基、ピペリジノ基、ピペラジノ基、ヘキサヒドロトリアジノ基等の環状2級アミノ基も含まれる。
アミノ基は、ポリマーの主鎖及び側鎖のいずれに含まれていてもよい。
アミノ基が側鎖の一部に含まれる場合の側鎖の具体例を以下に示す。なお、※はポリマー及び/又はオリゴマー残基との連結部を表す。
上記アミノ基を有するポリマーとしては、例えば、ポリアリルアミン、ポリエチレンイミン、ポリビニルピリジン、ポリビニルイミダゾ一ル、ポリピリミジン、ポリトリアゾール、ポリキノリン、ポリインドール、ポリプリン、ポリビニルピロリドン、ポリベンズイミダゾールなどが挙げられる。
アミノ基を有するポリマーの好適態様としては、式(2)で表される繰り返し単位を有するポリマーが挙げられる。
式(2)中、Rは、水素原子又はアルキル基を表す。アルキル基中に含まれる炭素原子の数は特に制限されないが、本発明の効果がより優れる点で、1〜4個が好ましく、1〜2個がより好ましい。
及びRは、それぞれ独立に、水素原子、ヘテロ原子を含んでいてもよいアルキル基、ヘテロ原子を含んでいてもよいシクロアルキル基、又は、ヘテロ原子を含んでいてもよい芳香族基を表す。
アルキル基及びシクロアルキル基に含まれる炭素数は特に制限されないが、1〜20が好ましく、1〜10がより好ましい。
芳香族基としては、芳香族炭化水素又は芳香族複素環基などが挙げられる。
上記アルキル基、シクロアルキル基、芳香族基には、ヘテロ原子が含まれていてもよい。ヘテロ原子の定義及び好適態様は、上記式(1−1)で説明したヘテロ原子の定義と同義である。
また、上記アルキル基、シクロアルキル基、芳香族基には、置換基(例えば、ヒドロキシル基、シアノ基、アミノ基、ピロリジノ基、ピペリジノ基、モルホリノ基、オキソ基等の官能基、アルコキシ基、ハロゲン原子)が含まれていてもよい。
は、2価の連結基を表す。Lで表される2価の連結基の定義は、上述した式(1−2)で表されるLの定義を同じである。
なかでも、本発明の効果がより優れる点で、Lとしては、アルキレン基、アリーレン基、−COO−、及び、これらを2種以上組み合わせた基(−アリーレン基−アルキレン基−、−COO−アルキレン基−など)が好ましく、アルキレン基がより好ましい。
なお、上記R〜Rで表される基、及び、Lで表される2価の連結基には、置換基(例えば、水酸基など)が更に置換していてもよい。
以下に、式(2)で表される繰り返し単位を例示する。
ポリマー中における上記式(2)で表される繰り返し単位の含有量は特に制限されないが、本発明の効果がより優れる点で、ポリマー中の全繰り返し単位に対して、40〜100モル%が好ましく、70〜100モル%がより好ましい。
なお、ポリマー中には、式(2)で表される繰り返し単位以外の他の繰り返し単位が含まれていてもよい。
アミノ基を有するポリマーの重量平均分子量は特に制限されないが、本発明の効果がより優れる点で、1000〜30000が好ましく、1000〜10000がより好ましい。
膜形成成分としては、上述した相互作用を形成しうる膜形成成分以外の成分であってもよい。
例えば、公知の樹脂が使用でき、例えば、上記樹脂(A)で例示した繰り返し単位を有する樹脂が挙げられる。なお、樹脂には、上述した(A)で例示した繰り返し単位を複数種含んでいてもよい。
樹脂は、酸分解性基を有する繰り返し単位を含んでいても、いなくてもよい。
また、樹脂の好適態様の一つとしては、後述する架橋成分中に含まれる架橋性基と反応し得る反応性基を有する樹脂が好ましい。反応性基の種類は特に制限されず、架橋性基の種類によって適宜最適な基が選択されるが、なかでも、−OH基を有することが好ましい。−OH基としては、フェノール性水酸基(芳香族基に置換した−OH基)、アルコール性水酸基(フェノール性ではない水酸基)が挙げられる。これにより、後述する架橋成分との架橋性向上が見込まれる。
膜形成成分としては、さらに、例えば、架橋性基を有する架橋成分が好適に使用できる。架橋成分を使用することにより形成される膜2の機械的強度が向上する。特に、上述した樹脂と、架橋成分との併用する態様が好ましい。
架橋成分の種類は特に制限されず、公知の架橋成分が使用できる。架橋成分に含まれる架橋性基の種類は特に制限されず、例えば、水酸基含有官能基(例えば、メチロール基、ジメチロールアミノメチル基、ジエチロールアミノメチル基等)、窒素原子含有官能基(例えば、イミノ基、オキサゾリン基、イミダゾリウム基、ジメチルアミノメチル基、ジエチルアミノメチル基等)、エーテル基含有官能基(例えば、メトキシメチル基、エトキシメチル基、ベンジルオキシメチル基、アセトキシメチル基、ベンゾイロキシメチル基、モルホリノメチル基などの鎖状エーテル基、または、オキセタニル基、グリシジルエーテル基、グリシジルエステル基などの環状エーテル基)、重合性炭素−炭素二重結合含有官能基(例えば、(メタ)アクリロイル基、ビニル基)などが挙げられる。
架橋成分には上記架橋性基が2つ以上含まれることが好ましく、2〜10個含まれることがより好ましい。
なお、架橋成分としては、2つ以上の環状エーテル基を含む化合物、2つ以上の(メタ)アクリロイル基を含む化合物、または、下記式(3)で表される基を含む化合物が好適に挙げられる。
架橋成分としては、1種のみを使用してもよいし、2種以上を併用してもよい。
式(3)において、R4およびR5は、水素原子または下記式(4)で表され、R4およびR5の少なくとも1つは下記式(4)で表され;
式(4)において、R6およびR7は、水素原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシアルキル基、またはR6およびR7が互いに連結した炭素数2〜10の環を表し、R8は、水素原子、炭素数1〜6のアルキル基を表す。
なお、2つ以上の(メタ)アクリロイル基を含む化合物としては、以下の式(1)で表される化合物が好適に挙げられる。
式(1)において、AおよびDは炭素数1〜10の炭化水素基、Bは単結合、エステル、−O−を表す。Rは水素またはメチル基を表し、それぞれ同じでも異なってもよい。mおよびnは1〜5の整数であり、m+n=2〜8である。ただし、AまたはDが炭素数1のとき、それぞれmまたはnは1〜3である。
また、膜形成成分としては、さらに、架橋反応の制御の観点から、塩基を使用することもできる。塩基の種類は特に制限されず、感活性光線性又は感放射線性樹脂組成物に含まれてもよい上記塩基性化合物が例示される。
また、膜形成成分としては、さらに、界面活性剤を使用することもできる。界面活性剤の種類は特に制限されず、感活性光線性又は感放射線性樹脂組成物に含まれてもよい上記界面活性剤が例示される。
上述したように、膜形成成分の好適態様の一つとしては、樹脂を含むことが好ましく、樹脂と架橋成分とを含むことがより好ましく、樹脂と架橋成分と塩基および/または界面活性剤とを含む態様がさらに好ましい。
本発明は、上記した本発明のパターン形成方法を含む、電子デバイスの製造方法、及び、この製造方法により製造された電子デバイスにも関する。
本発明の電子デバイスは、電気電子機器(家電、OA・メディア関連機器、光学用機器及び通信機器等)に、好適に、搭載されるものである。
また、本発明のパターン形成方法は、DSA(Directed Self−Assembly)におけるガイドパターン形成(例えば、ACS Nano Vol.4 No.8 Page4815−4823参照)にも好適に用いることができる。
以下、実施例により本発明を説明するが、本発明は、これらに限定されるものではない。
(合成例1)
窒素気流下、プロピレングリコールモノメチルエーテルアセテートと、プロピレングリコールモノメチルエーテルとの6/4(質量比)の混合溶剤40gを3つ口フラスコに入れ、これを80℃に加熱した(溶剤1)。下記繰り返し単位に対応するモノマーをそれぞれモル比30/10/60の割合でプロピレングリコールモノメチルエーテルアセテートと、プロピレングリコールモノメチルエーテルとの6/4(質量比)の混合溶剤に溶解し、22質量%のモノマー溶液(400g)を調製した。更に、重合開始剤V−601(和光純薬工業製)をモノマーに対し8mol%加え、溶解させた溶液を、上記溶剤1に対して6時間かけて滴下した。滴下終了後、更に80℃で2時間反応させた。反応液を放冷後ヘキサン3600ml/酢酸エチル400mlに注ぎ、析出した粉体をろ取、乾燥すると、樹脂(P−1)が74g得られた。得られた樹脂(P−1)の重量平均分子量は、12000、分散度(Mw/Mn)は、1.6であった。
各繰り返し単位に対応するモノマーを、所望の組成比(モル比)となるように使用した以外は、上記合成例1と同様にして、樹脂(P−2)〜(P−9)及び疎水性樹脂(N−1)〜(N−3)を合成した。
(感活性光線性又は感放射線性樹脂組成物(レジスト組成物))
下記表1に示す成分を同表に示す溶剤に溶解させ全固形分濃度を3.5質量%とし、それぞれを0.05μmのポアサイズを有するポリエチレンフィルターでろ過して、レジスト組成物Ar−1〜Ar−14を調製した。
〔樹脂〕
表1で使用された樹脂の組成比(モル比)、重量平均分子量及び分散度を以下に示す。
〔酸発生剤〕
酸発生剤の構造式を以下に示す。
〔塩基性化合物〕
塩基性化合物の構造式を以下に示す。
〔疎水性樹脂〕
実施例において使用された疎水性樹脂の組成比(モル比)、重量平均分子量及び分散度を以下に示す。
表1における略号は、次の通りである。
〔界面活性剤〕
W−1: メガファックF176(DIC(株)製)(フッ素系)
W−2: メガファックR08(DIC(株)製)(フッ素及びシリコン系)
W−3: ポリシロキサンポリマーKP−341(信越化学工業(株)製)(シリコン系)
W−4: PolyFox PF−6320(OMNOVA製)(フッ素系)
〔溶剤〕
A1: プロピレングリコールモノメチルエーテルアセテート(PGMEA)
A2: γ−ブチロラクトン
A3: シクロヘキサノン
B1: プロピレングリコールモノメチルエーテル(PGME)
B2: 乳酸エチル
B3: 2−ヘプタノン
B4: プロピレンカーボネート
<実施例及び比較例>
<パターンの形成:ドライ露光>
シリコンウエハー(以下、「ウエハ」ともいう。)上に有機反射防止膜形成用のARC29A(日産化学社製)を塗布し、205℃で60秒間ベークを行って、膜厚86nmの反射防止膜を形成した。その上に、上記のレジスト組成物(Ar−1〜Ar−14のいずれか)を塗布し、100℃で60秒間ベークを行い、膜厚75nmのレジスト膜(膜1)を形成した。
次いで、このレジスト膜に対し、線幅72nmの1:1ラインアンドスペースのマスクを通して、ArFエキシマレーザースキャナー(ASML社製;PAS5500、NA0.75、Dipole、アウターシグマ0.89、インナーシグマ0.65)を用いた露光を行った。
その後、露光後のレジスト膜を95℃で、60秒間ホットプレート上で加熱した後、室温まで冷却させた。次いで、下記表3に記載の第一の現像液を用いて20秒間パドルして現像し、表3中に第一のリンス液が記載された例については、下記表3に記載の第一のリンス液を用いて30秒間パドルしてリンスし、パターン1を形成した。
以上のようにして得られた各パターン1上に表3に記載のスペーサー形成用組成物を塗布し、表3中のベーク欄に温度(℃)及び時間(秒)が記載されている例については、その温度と時間でベークを行って膜厚200nm(反射防止膜の表面を基準面とした膜厚)の膜2を形成した。
次いで、得られた膜2に対して、パターン1が露出するまで、下記装置及び条件でエッチングを行った。
GCIB:アルバック・ファイ製Arガスクラスターイオンビーム(X線光電子分光装置付属)を使用。
条件:加速電圧5kV,イオン化電流20nA,照射領域5.0mm×5.0mm,Zalar回転利用
なお、比較例1〜5中の条件1〜4に関しては、以下の装置、及び、表2に記載の条件で膜2のエッチングを実施した。なお、条件1〜4のエッチング処理は、クラスターイオンを使用した態様ではない。
エッチング装置としては、アプライドマテリアルズ社製の高周波プラズマ源(DPS)を有するEtch CenturaDPSを使用した。DPSチャンバーは,真空チャンバーと、真空チャンバーの上部に設置されたプラズマを発生させるための高周波電源(ソース電源)と、ウエハ下部には基板にイオンを異方的に照射するための高周波電源(バイアス電源)とを備えている。
上部高周波電源(ソース電源)の周波数は2MHzであり、下部高周波電源(バイアス電源)の周波数は13.56MHzとした。また、エッチング時のウエハの冷却温度は20℃とした。
表中のICPパワー及びバイアスパワーは、それぞれソース電源及びバイアス電源に投入したパワーを示しており、圧力は、エッチング時のプロセス圧力である。また、ガス流量はエッチング時に流すプロセスガスの流量を示しており、マスフローコントローラーによって制御される。処理時間は、エッチングの処理が行われた時間を示している。
上記処理が施されたシリコンウエハーに対して、第一の除去液で20秒間パドルして洗浄した。表3中に第二のリンス液が記載された例については、第二のリンス液を用いてリンスした後、続いて、2000rpmの回転数で30秒間ウエハを回転させることにより、余剰の膜2を除去した。本処理は、上記工程Eに該当する。
また、表3中に第二の除去液が記載された例については、第二の除去液を用いて20秒間現像し、表3中に第三のリンス液が記載された例については、第三のリンス液を用いてリンスした後、4000rpmの回転数で30秒間ウエハを回転させることにより、パターン1を除去し、線幅36nmの1:1ラインアンドスペースのレジストパターンを得た。本処理は、上記工程Dに該当する。
<パターンの形成:液浸露光>
パターン1の形成方法を、以下の方法(液浸露光法)に変更した以外は、上記<パターンの形成:ドライ露光>と同様の手順に従って、レジストパターンを得た。なお、得られたレジストパターンは線幅22nmの1:1ラインアンドスペースのレジストパターンを得た。
(液浸露光法)
シリコンウエハー上に有機反射防止膜形成用のARC29SR(日産化学社製)を塗布し、205℃で60秒間ベークを行って、膜厚98nmの反射防止膜を形成した。その上に、上記のレジスト組成物(Ar−1〜Ar−14のいずれか)を塗布し、90℃で60秒間ベークを行い、膜厚60nmのレジスト膜(膜1)を形成した。
次いで、このレジスト膜に対し、線幅44nmの1:1ラインアンドスペースパターンの6%ハーフトーンマスクを通して、ArFエキシマレーザー液浸スキャナー(ASML社製XT1700i、NA1.20、Dipole、アウターシグマ0.981、インナーシグマ0.895、Y偏向)を用いて露光を行った。液浸液としては、超純水を使用した。その後、露光後のレジスト膜を95℃で、60秒間加熱した後、室温まで冷却させた。次いで下記表3に記載の第一の現像液を用いて20秒間パドルして現像し、表3中に第一のリンス液が記載された例については、下記表3に記載の第一のリンス液を用いて30秒間パドルしてリンスし、パターン1を形成した。
<パターンブリッジ欠陥評価>
上記で得られたパターン(スペーサーパターン)を走査型電子顕微鏡(日立社製S−4800)により観察し、下記の3段階評価を行った。
A:パターン間にブリッジが観察されなかった場合
B:パターン間にブリッジが僅かに観察された場合
C:パターン間にブリッジが散見された場合
<パターンのLWR評価>
得られたパターンにおいて、ラインパターンを走査型顕微鏡(日立社製S9280)で観察し、ラインパターンの長手方向のエッジ2μmの範囲の50ポイントについて、エッジがあるべき基準線からの距離を測定し、標準偏差を求め、3σを算出した。値が小さいほど良好な性能であることを示す。
また、以下の表3において、「スペーサー剤」欄の「Mw」は、スペーサー剤がS−1〜S−8及びS−15の場合はその分子量(一分子の質量)を、スペーサー剤がS−9〜S−14及びS−16の場合はその重量平均分子量を意図する。
表3における略号は、次の通りである。
TMAH:水酸化テトラメチルアンモニウム水溶液(濃度:2.38質量%)
MIBC:4−メチル−2−ペンタノール
PGMEA:プロピレングリコールモノメチルエーテルアセテート
EL:乳酸エチル
MAK:2−ヘプタノン
有機溶剤A:酢酸ブチルに対して、2質量%の割合で後述するスペーサー剤S−1を混ぜた溶剤。
〔スペーサー剤〕
表3で使用されたスペーサー剤を以下に示す。
なお、表3中、上記S−10に関しては分子量が異なる複数種を使用している。
表3中、「ArF dry」欄は、上記<パターンの形成:ドライ露光>により形成されたパターンの評価を示し、「ArF液浸」欄は、上記<パターンの形成:液浸露光>により形成されたパターンの評価を示す。
表3に示すように、本発明のパターン形成方法によれば、欠陥の少ないパターンが得られる。特に、膜形成成分の分子量が1000以上の場合、より優れた効果が得られることが確認された。また、スペーサー形成用組成物中の溶剤として、水の含有量が少ない系(溶剤として有機溶剤のみが使用される系)においては、LWRがより優れていた。
一方、クラスターイオンによるエッチングを実施していない比較例1〜5においては、所望の効果は得られなかった。
以上、実施例を説明したが、本発明がこれら実施例のみに限定されるわけではなく、例えば、以下のような態様(態様X及び態様Y)でもパターン形成が可能である。
態様X:実施例20〜24の工程Aで用いられる酢酸ブチル現像液中に、1質量%程度の含窒素塩基性化合物、例えば、トリオクチルアミンなどを添加してネガ型現像を行う態様
態様Y(EUV露光の態様):実施例において、ArFエキシマレーザーによる露光をEUV露光に換えた態様、更には、レジスト組成物中の樹脂として、前述の「特に、EUV露光または電子線露光の際に、好適に用いることができる樹脂」として紹介した樹脂を用いた態様。
(スペーサー形成用組成物の調製)
下記表4に示す成分を同表に示す溶剤に溶解させ全固形分濃度4質量%とし、それぞれを0.1μmのポアサイズを有するフィルターでろ過して、スペーサー形成用組成物(処理剤1〜23)を調製した。
〔樹脂〕
表4で使用された樹脂の組成比(モル比)、重量平均分子量及び分散度を以下に示す。
V−13: ポリビニルアセタール樹脂(積水化学工業社製、商品名「エスレックKW−3」)
V−15: N−ビニルピロリドンとN−ビニルイミダゾールとの共重合体(BASF社製、商品名「Sokalan HP56 K」)
[架橋成分1]
X−1: エチレングリコールジグリシジルエーテル(エポキシ基2個、商品名:エポライト4 0E、共栄社化学社製)
X−2: トリメチロールエタントリグリシジルエーテル(エポキシ基3個、商品名:エポライト100MF、共栄社化学社製)
X−3: ジメチロールプロパンジグリシジルエーテル(エポキシ基2個、商品名:エポライト1500NP、共栄社化学社製)
X−4: ペンタエリスリトールテトラグリシジルエーテル(エポキシ基4個、商品名:デナコールEX−411、ナガセケムテックス社製)
X−5: ジペンタエリスリトールヘキサキス(3−エチル−3−オキセタニルメチル)エーテル(オキセタニル基6個)
X−6: ニカラックMX−750(日本カーバイト社製、商品名)
X−7: ジペンタエリスリトールヘキサキス(3−エチル−3−オキセタニルメチル)エーテル
X−9: テトラ(ヒドロキシメチル)グリコールウリル(三井サイテック社製、商品名「サイメル1172」)
[架橋成分2]
XII−1: メトキシメチル化メラミン樹脂(商品名:サイメル300、日本サイテックス社製)
XII−2: メトキシメチル化メラミン樹脂(商品名:サイメル325、日本サイテックス社製)
〔添加剤〕
AD−1:トリエチルアミン
〔界面活性剤〕
W−1: メガファックF176(DIC(株)製)(フッ素系)
W−2: メガファックR08(DIC(株)製)(フッ素及びシリコン系)
W−3: ポリシロキサンポリマーKP−341(信越化学工業(株)製)(シリコン系)
W−4: PolyFox PF−6320(OMNOVA製)(フッ素系)
W−5: プライサーフ A210G(第一工業製薬(株)製)(リン酸エステル系)
スペーサー形成用組成物として、上記スペーサー形成用組成物(処理剤1〜23をそれぞれ)使用して、表4に記載のベーク温度及び時間に変更した以外は、実施例1と同様の手順に従ってパターン形成を行ったところ、いずれの態様においても実施例1と同様にパターンを形成できた。
10 基板
12 パターン1
14 膜2
16 相互作用膜

Claims (10)

  1. 基板上に、有機物を含むパターン1を形成する工程Aと、
    前記パターン1を覆う膜2を形成する工程Bと、
    前記膜2をクラスターイオンでエッチングして前記膜2の一部を除去し、前記パターン1の少なくとも一部を表出させる工程Cと、を含むパターン形成方法。
  2. 更に、前記工程Cの後に、前記膜2を残存させつつ、前記パターン1の少なくとも一部を除去する工程Dを含む、請求項1に記載のパターン形成方法。
  3. 前記工程Aが、感活性光線性又は感放射線性樹脂組成物を用いて前記基板上に膜1を形成する工程と、前記膜1に対して活性光線または放射線を照射する工程と、照射後の前記膜1を現像して前記パターン1を形成する工程とを含む、請求項1または2に記載のパターン形成方法。
  4. 前記感活性光線性又は感放射線性樹脂組成物が、酸の作用により極性が増大する樹脂を含む組成物である、請求項3に記載のパターン形成方法。
  5. 前記膜1の現像が、アルカリ水溶液を用いて実施される、請求項3または4に記載のパターン形成方法。
  6. 前記工程Bが、前記膜2の形成に用いられる組成物を前記パターン1上に塗布する工程を含む、請求項1〜5のいずれか1項に記載のパターン形成方法。
  7. 前記膜2の形成に用いられる組成物が、膜形成成分、及び、有機溶剤を含有する組成物である、請求項6に記載のパターン形成方法。
  8. 前記有機溶剤が、アルコール系溶剤、及び、エーテル系溶剤の少なくともいずれかを含む、請求項7に記載のパターン形成方法。
  9. 前記工程Dが、有機溶剤を含有する処理液により前記パターン1の少なくとも一部を除去する工程を含む、請求項2〜8のいずれか1項に記載のパターン形成方法。
  10. 請求項1〜9のいずれか1項のパターン形成方法を含む、電子デバイスの製造方法。
JP2014231475A 2013-12-13 2014-11-14 パターン形成方法、電子デバイスの製造方法 Active JP6126570B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014231475A JP6126570B2 (ja) 2013-12-13 2014-11-14 パターン形成方法、電子デバイスの製造方法
PCT/JP2014/080916 WO2015087689A1 (ja) 2013-12-13 2014-11-21 パターン形成方法、電子デバイスの製造方法
TW103141869A TW201523699A (zh) 2013-12-13 2014-12-03 圖案形成方法、電子元件的製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013258132 2013-12-13
JP2013258132 2013-12-13
JP2014231475A JP6126570B2 (ja) 2013-12-13 2014-11-14 パターン形成方法、電子デバイスの製造方法

Publications (2)

Publication Number Publication Date
JP2015132811A JP2015132811A (ja) 2015-07-23
JP6126570B2 true JP6126570B2 (ja) 2017-05-10

Family

ID=53371003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014231475A Active JP6126570B2 (ja) 2013-12-13 2014-11-14 パターン形成方法、電子デバイスの製造方法

Country Status (3)

Country Link
JP (1) JP6126570B2 (ja)
TW (1) TW201523699A (ja)
WO (1) WO2015087689A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI584061B (zh) 2014-08-27 2017-05-21 羅門哈斯電子材料有限公司 多重圖案的形成方法
JPWO2016093087A1 (ja) * 2014-12-09 2017-09-07 東京エレクトロン株式会社 パターン形成方法、ガスクラスターイオンビーム照射装置及びパターン形成装置
WO2016208299A1 (ja) * 2015-06-24 2016-12-29 富士フイルム株式会社 処理液及びパターン形成方法
JP6431472B2 (ja) * 2015-12-24 2018-11-28 東京エレクトロン株式会社 パターン形成方法
JP6908816B2 (ja) * 2016-02-12 2021-07-28 セントラル硝子株式会社 含フッ素単量体、それを用いた含フッ素重合体、それを用いた化学増幅型レジストおよびそれを用いたパターン形成方法
JP6776565B2 (ja) * 2016-03-15 2020-10-28 Jsr株式会社 親撥材を用いたパターン形成方法
JP6757626B2 (ja) * 2016-08-19 2020-09-23 東京応化工業株式会社 レジストパターン形成方法、及びパターン厚肉化用ポリマー組成物
JP6745167B2 (ja) * 2016-08-19 2020-08-26 東京応化工業株式会社 レジストパターン形成方法、及びパターン厚肉化用ポリマー組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639158B2 (ja) * 1989-08-02 1997-08-06 日本電気株式会社 エッチング方法およびエッチング装置
JP4004014B2 (ja) * 2000-03-28 2007-11-07 株式会社東芝 レジストパターンの形成方法
JP3816484B2 (ja) * 2003-12-15 2006-08-30 日本航空電子工業株式会社 ドライエッチング方法
JP2008502150A (ja) * 2004-06-03 2008-01-24 エピオン コーポレーション 改善された二重ダマシン集積構造およびその製造方法
JPWO2007105593A1 (ja) * 2006-03-13 2009-07-30 日本電気株式会社 フォトダイオード、およびその製造方法、ならびに光通信デバイスおよび光インタコネクションモジュール
US8642474B2 (en) * 2007-07-10 2014-02-04 Advanced Micro Devices, Inc. Spacer lithography
JP5254049B2 (ja) * 2008-02-15 2013-08-07 東京エレクトロン株式会社 パターン形成方法及び半導体装置の製造方法
JP5578829B2 (ja) * 2009-10-14 2014-08-27 キヤノン株式会社 3次元フォトニック結晶の作製方法および機能素子
JP5889568B2 (ja) * 2011-08-11 2016-03-22 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 酸化タングステン膜形成用組成物およびそれを用いた酸化タングステン膜の製造法

Also Published As

Publication number Publication date
JP2015132811A (ja) 2015-07-23
TW201523699A (zh) 2015-06-16
WO2015087689A1 (ja) 2015-06-18

Similar Documents

Publication Publication Date Title
JP6340304B2 (ja) パターン形成方法、及び電子デバイスの製造方法
JP6134619B2 (ja) パターン形成方法、及び、電子デバイスの製造方法
JP5909580B2 (ja) パターン形成方法、感電子線性又は感極紫外線性樹脂組成物、及び、レジスト膜、並びに、これらを用いた電子デバイスの製造方法
JP6126878B2 (ja) パターン形成方法、感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜及び電子デバイスの製造方法
JP6002705B2 (ja) パターン形成方法、感活性光線性又は感放射線性樹脂組成物、レジスト膜、及び、電子デバイスの製造方法
JP6031369B2 (ja) パターン形成方法、及び電子デバイスの製造方法
JP5728190B2 (ja) 感活性光線性又は感放射線性樹脂組成物、並びに、これを用いたレジスト膜及びパターン形成方法、
JP6126570B2 (ja) パターン形成方法、電子デバイスの製造方法
JP5865725B2 (ja) パターン形成方法、感活性光線性又は感放射線性樹脂組成物及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法
JP6209307B2 (ja) パターン形成方法、及びこれを用いた電子デバイスの製造方法
WO2015016089A1 (ja) パターン形成方法及びそれに用いられる表面処理剤、並びに、電子デバイスの製造方法及び電子デバイス
JP5719788B2 (ja) パターン形成方法、感活性光線性又は感放射線性樹脂組成物、及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法、及び電子デバイス
JP2013080004A (ja) パターン形成方法、感電子線性又は感極紫外線性樹脂組成物、及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法、及び電子デバイス
JP2014240942A (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、及び、パターン形成方法、並びに、これらを用いた電子デバイスの製造方法、及び、電子デバイス
JP2014026179A (ja) 感活性光線性又は感放射線性樹脂組成物、これを用いたレジスト膜、パターン形成方法、並びに、これらを用いる電子デバイスの製造方法、及び、電子デバイス
JP6175401B2 (ja) パターン形成方法、電子デバイス及びその製造方法
JP6116358B2 (ja) パターン形成方法及び電子デバイスの製造方法
WO2014192768A1 (ja) パターン形成方法、感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、電子デバイスの製造方法及び電子デバイス
JP2015125321A (ja) パターン形成方法、電子デバイスの製造方法、電子デバイス及び水系現像液

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170407

R150 Certificate of patent or registration of utility model

Ref document number: 6126570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250