JP6124900B2 - Substrate height correction method for substrate work equipment - Google Patents

Substrate height correction method for substrate work equipment Download PDF

Info

Publication number
JP6124900B2
JP6124900B2 JP2014532632A JP2014532632A JP6124900B2 JP 6124900 B2 JP6124900 B2 JP 6124900B2 JP 2014532632 A JP2014532632 A JP 2014532632A JP 2014532632 A JP2014532632 A JP 2014532632A JP 6124900 B2 JP6124900 B2 JP 6124900B2
Authority
JP
Japan
Prior art keywords
point
measurement
substrate
height
theoretical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014532632A
Other languages
Japanese (ja)
Other versions
JPWO2014033856A1 (en
Inventor
聖一 寺岡
聖一 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Publication of JPWO2014033856A1 publication Critical patent/JPWO2014033856A1/en
Application granted granted Critical
Publication of JP6124900B2 publication Critical patent/JP6124900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement

Description

本発明は、基板用作業機器を用いて基板に作業を施す際に、反りやうねりなどの変形が生じ得る基板の高さを補正する方法に関する。   The present invention relates to a method for correcting the height of a substrate that may cause deformation such as warpage or undulation when the substrate is worked using a substrate working device.

基板に所定の作業を施す基板用作業機器として、はんだ印刷機、部品実装機、リフロー機、および基板検査機などがあり、これらを基板搬送装置で連結して基板生産ラインを構築する場合が多い。このうち部品実装機は、基板を部品実装位置の基準高さに水平姿勢に保持する基板保持装置、および部品供給装置から採取した部品を保持された基板に実装する部品移載装置を備えている。部品移載装置は、上方から基板に接近し、基板が基準高さに存在するものとして部品実装作業を行う。ここで、基板に反りやうねりなどの変形が生じていると作業高さに誤差が生じるので、部品に衝撃ストレスが加わったり、部品実装作業が不安定になったりして、生産する基板の品質が低下するおそれが生じる。このおそれを解消するために、基板保持装置に保持された基板の複数点の高さを測定して変形状態を把握し、作業高さを補正する技術が開発されており、例えば特許文献1〜4に開示されている。   There are solder printing machines, component mounting machines, reflow machines, board inspection machines, etc., as board working machines that perform predetermined operations on boards, and these are often connected by a board transfer device to build a board production line. . Among these, the component mounting machine includes a substrate holding device that holds the substrate in a horizontal posture at the reference height of the component mounting position, and a component transfer device that mounts the component collected from the component supply device on the held substrate. . The component transfer apparatus approaches the substrate from above, and performs the component mounting operation assuming that the substrate exists at the reference height. Here, if the board is deformed, such as warping or waviness, an error will occur in the work height, so impact stress will be applied to the part or the part mounting work will become unstable, resulting in the quality of the board to be produced. May decrease. In order to eliminate this fear, a technique for measuring the height of a plurality of points of the substrate held by the substrate holding device to grasp the deformation state and correcting the working height has been developed. 4.

特許文献1の部品装着装置は、基板表面の部品装着基準面からのずれを測定する測定部と、前記ずれを用いて基板表面の反りの近似を行い装着高さの補正量を演算する演算処理部と、補正量に基づいて部品を装着する装着部とを有することを特徴としている。さらに、請求項3には、基板表面の反りを近似する曲面方程式として2次関数を用いることが開示されている。そして、装着高さを補正することにより、部品が基板に適正な圧力で過不足なく押し付けられて装着されるので、部品欠損や装着不良を防止でき、装着作業の信頼性を向上できる、と記載されている。   The component mounting apparatus disclosed in Patent Document 1 includes a measurement unit that measures a deviation of a substrate surface from a component placement reference surface, and an arithmetic process that calculates a correction amount of a mounting height by approximating warpage of the substrate surface using the deviation. And a mounting portion for mounting a component based on the correction amount. Further, in claim 3, it is disclosed that a quadratic function is used as a curved surface equation approximating the warpage of the substrate surface. And, by correcting the mounting height, the component is pressed and mounted on the board with appropriate pressure without excess and deficiency, so that component loss and mounting failure can be prevented and reliability of mounting work can be improved. Has been.

特許文献2の基板検査装置は、プリント基板もしくはプリント基板上の検査対象の高さを検出するレーザ変位センサおよび変位計測手段に加えて、レーザを透過しない計測位置を複数箇所指定する手段と、計測位置で検出した高さを基準として部品装着位置の高さを演算する手段と、を備えている。これにより、部品周りのパターンランドの有無や、パターンランド上のはんだの有無に関わらず、正確な基板高さを求めることができる、とされている。   In addition to the laser displacement sensor and the displacement measuring means for detecting the height of the printed circuit board or the inspection object on the printed board, the board inspection apparatus of Patent Document 2 includes means for specifying a plurality of measurement positions that do not transmit the laser, Means for calculating the height of the component mounting position based on the height detected at the position. Thereby, it is said that an accurate board height can be obtained regardless of the presence / absence of pattern lands around the component and the presence / absence of solder on the pattern lands.

特許文献3の電子部品の装着装置は、レーザーセンサで基板の表面高さを測定することにより基板の反りおよび凹凸を検出する基板測定手段と、装着された電子部品の高さを検出する装着電子部品測定手段を備えており、実施形態には格子状の測定箇所が例示されている。そして、一番目の基板で基板の表面高さ、電子部品の高さ、および電子部品の厚みの関係を確認することにより、二番目以降の基板で電子部品の装着高さの補正が精度よく行われ、生産効率が向上する、と記載されている。   The electronic component mounting apparatus disclosed in Patent Document 3 includes a substrate measuring unit that detects the warpage and unevenness of the substrate by measuring the surface height of the substrate with a laser sensor, and a mounting electron that detects the height of the mounted electronic component. A part measuring means is provided, and in the embodiment, a grid-like measurement point is illustrated. Then, by checking the relationship between the surface height of the substrate, the height of the electronic component, and the thickness of the electronic component on the first substrate, the mounting height of the electronic component can be accurately corrected on the second and subsequent substrates. It is described that production efficiency is improved.

特許文献4の回路基板に対する作業装置は、回路基板の作業面上の3つ以上の測定箇所および各測定箇所の近傍の複数の補助測定箇所について作業基準面からの測定変位量を測定する測定手段と、測定変位量が閾値の範囲内に収まっているときに測定箇所の測定変位量に基づいて作業面を曲面モデルにより想定する演算手段と、を備えている。さらに、請求項8には、回路基板の作業面を複数の領域に区画した区画作業面毎に曲面モデルによる想定を行う態様が開示されている。また、実施形態には、曲面モデルの方程式を2次関数で表す態様が開示されている。これにより、回路基板に段差やスリット、切欠き等の影響による不連続面があっても、作業品質を低下させない、と記載されている。   A working device for a circuit board disclosed in Patent Document 4 is a measuring unit that measures a measurement displacement amount from a work reference plane at three or more measurement points on a work surface of a circuit board and a plurality of auxiliary measurement points in the vicinity of each measurement point. And calculating means for assuming a work surface by a curved surface model based on the measured displacement amount at the measurement location when the measured displacement amount is within the threshold value range. Further, claim 8 discloses an aspect in which assumption is made by a curved surface model for each partitioned work surface obtained by partitioning the work surface of the circuit board into a plurality of regions. The embodiment discloses a mode in which the equation of the curved surface model is expressed by a quadratic function. Accordingly, it is described that even if there is a discontinuous surface due to a step, a slit, a notch or the like on the circuit board, the work quality is not deteriorated.

特開2000−299597号公報JP 2000-299597 A 特開2005−30793号公報JP 2005-30793 A 特開2010−186940号公報JP 2010-186940 A 国際公開2007/063763International Publication 2007/063763

ところで、特許文献1〜4に開示されるように、基板の高さを測定して基板の変形を2次関数などで近似して作業高さを補正する技術では、測定点数を増加してやればその分だけ高さ補正精度は向上する。例えば、基板の特定方向の断面形状を考えた場合、基板の中央が上方に突出する上反りやその逆の下反りの変形は、特定方向に並んだ3つの測定点の高さから近似することができ、4点以上の測定点を設定すれば高さ補正精度が向上する。また、凹凸が接合するうねり状の変形に対しては、4つ以上の測定点で高さを設定し、例えば3次関数を用いて近似することができる。しかしながら、測定点数を増加させると、高さ測定装置の移動および測定動作に多くの時間が必要となるため、その分だけ基板生産のスループットが低下する。   By the way, as disclosed in Patent Documents 1 to 4, in the technique of correcting the work height by measuring the height of the substrate and approximating the deformation of the substrate by a quadratic function or the like, if the number of measurement points is increased, The height correction accuracy is improved by that amount. For example, when considering the cross-sectional shape in a specific direction of the substrate, the deformation of the upper warp in which the center of the substrate protrudes upward and vice versa is approximated from the height of three measurement points aligned in the specific direction. If four or more measurement points are set, the height correction accuracy is improved. Further, for the undulation-like deformation in which the unevenness is joined, the height can be set at four or more measurement points and approximated using, for example, a cubic function. However, when the number of measurement points is increased, a lot of time is required for the movement and measurement operation of the height measuring apparatus, and the throughput of the substrate production is accordingly reduced.

一方、この種の基板はロット単位で量産され、同一ロット中の多数の基板は類似した変形状態を呈するのが一般的である。したがって、予め同一ロット中からサンプル基板を選出して変形状態の傾向を確認しておけば、測定点の点数および位置を適正化でき、かつ測定点数を絞り込んでも高さ補正精度を確保できると考えられる。これにより、基板量産時のスループットの向上が期待される。   On the other hand, this type of substrate is mass-produced on a lot basis, and a large number of substrates in the same lot generally exhibit a similar deformation state. Therefore, if a sample substrate is selected from the same lot and the tendency of the deformation state is confirmed in advance, the number and position of the measurement points can be optimized, and height correction accuracy can be secured even if the number of measurement points is narrowed down. It is done. This is expected to improve throughput during mass production of substrates.

また、基板の高さを非接触で測定するために特許文献2および3に例示されたレーザ変位センサが多用されるが、測定点の位置設定には制約がある。つまり、測定点は、レーザー光の多くが透過する基板素材面に設定することはできず、通常はレーザー光をよく反射する回路パターン上に限定して設定される。さらに、近年では部品の高密度実装化のために回路パターンが細線化されており、高さ測定を行える十分な広さを有する測定点の位置が限定されている。このような理由で、規則的な測定点の設定、例えば特許文献3に例示される格子状の測定箇所の設定を行えない場合が往々にして生じる。すると、基板の変形を表わす近似関数を求めるときに演算処理が複雑化および煩雑化し、かつ演算精度も低下しがちになる。   Further, in order to measure the height of the substrate in a non-contact manner, the laser displacement sensors exemplified in Patent Documents 2 and 3 are frequently used, but there are restrictions on the position setting of the measurement points. That is, the measurement point cannot be set on the substrate material surface through which most of the laser light is transmitted, and is usually set only on a circuit pattern that reflects the laser light well. Furthermore, in recent years, circuit patterns have been thinned in order to achieve high-density mounting of components, and the positions of measurement points having a sufficient width for height measurement are limited. For this reason, there are often cases where it is not possible to set regular measurement points, for example, grid-like measurement points exemplified in Patent Document 3. Then, when obtaining an approximate function representing the deformation of the substrate, the calculation processing becomes complicated and complicated, and the calculation accuracy tends to be lowered.

さらに、特許文献1および4に例示される基板の変形を2次関数で近似する技術は、必ずしも高精度であるとは限らない。例えば、前述した上反りや下反りの変形では基板は概ね球面状に変形すると考えられるので、特定方向の断面形状を2次関数よりも円弧で近似するほうが好もしい。また、凹凸が接合するうねり状の変形を2次関数や円弧で近似することはできず、より複雑な関数を用いるか、基板を複数の領域に分割してそれぞれの領域で変形を近似する必要がある。   Furthermore, the techniques for approximating the deformation of the substrate exemplified in Patent Documents 1 and 4 with a quadratic function are not necessarily highly accurate. For example, since it is considered that the substrate is deformed into a generally spherical shape by the above-described warping or downward warping deformation, it is preferable to approximate the cross-sectional shape in a specific direction with an arc rather than a quadratic function. In addition, it is not possible to approximate the wavy deformation where the concavities and convexities are joined by a quadratic function or an arc, and it is necessary to use a more complicated function or to divide the substrate into a plurality of regions and approximate the deformation in each region. There is.

なお、上述した高さ測定点数の増減に依存して高さ補正精度とスループットとが背反する問題点、測定点の位置設定の問題点、および変形を近似する関数の精度の問題点は、部品実装機の部品実装作業に限定されるものではない。例えば、部品実装機で部品を仮付けするために接着剤を塗布するとき、作業高さの誤差は塗布範囲のずれや塗布ムラの原因になる。また例えば、ディスペンサ装置やインクジェット装置を有する描画方式のはんだ印刷機でも、作業高さの誤差は描画範囲のずれやはんだの厚さムラの原因になる。   Note that the problems of height correction accuracy and throughput contradicting each other depending on the increase / decrease in the number of height measurement points described above, the problem of position setting of measurement points, and the problem of accuracy of functions approximating deformation are It is not limited to the component mounting work of the mounting machine. For example, when an adhesive is applied to temporarily attach a component with a component mounter, an error in work height causes a shift in the coating range and uneven coating. Further, for example, even in a drawing type solder printer having a dispenser device or an ink jet device, an error in the working height causes a shift in a drawing range and a solder thickness unevenness.

本発明は、上記背景技術の問題点に鑑みてなされたものであり、基板高さの測定点数を限定して基板生産のスループットの低下を抑制しつつ、高さ補正精度を高めた基板用作業機器の基板高さ補正方法を提供することを解決すべき課題とする。   The present invention has been made in view of the above-described problems of the background art, and the work for a substrate with improved height correction accuracy while limiting the number of measurement points of the substrate height to suppress the decrease in the throughput of substrate production. It is an object to be solved to provide a substrate height correction method for an apparatus.

上記課題を解決する請求項1に係る基板用作業機器の基板高さ補正方法の発明は、基板用作業機器の基板保持装置により基板を水平姿勢に保持し、高さ測定装置により前記基板上の複数の測定点の高さの測定値を測定する測定点高さ測定ステップと、一直線上に並んだ3つ以上の測定点に基づいて、前記基板の一直線方向の断面形状を滑らかな曲線で近似し、前記3つ以上の測定点の間に理論点を設定して、前記理論点の高さの理論値を前記滑らかな曲線を用いて算出する理論点高さ算出ステップと、一直線上に並んだ3つ以上の測定点と理論点との組合せまたは一直線上に並んだ3つ以上の理論点に基づいて、前記基板の一直線方向の断面形状を滑らかな曲線で近似し、前記測定点と前記理論点との間または前記理論点同士の間に新たな理論点を設定して、前記新たな理論点の高さの理論値を前記滑らかな曲線を用いて算出し、所望する数量の理論点および理論値が得られるまで新たな理論点の設定および理論値の算出を繰り返す理論点設定繰返しステップと、前記測定点の測定値および前記理論点の理論値を用いて、前記基板上の所望する作業点の高さの補正値を算出する作業点高さ補正ステップと、を有する。 An invention of a substrate height correcting method for a substrate working device according to claim 1 that solves the above-described problem is that a substrate is held in a horizontal posture by a substrate holding device of the substrate working device, and a substrate on the substrate by a height measuring device. Based on a measurement point height measurement step for measuring the measurement values of the heights of a plurality of measurement points and three or more measurement points arranged in a straight line, the cross-sectional shape in the straight line direction of the substrate is approximated by a smooth curve. and, the three or more sets of theoretical points between the measurement point, and the theoretical point height calculation step of calculating using said smooth curve the height of the theoretical value of the theoretical point, along the same line parallel to Based on a combination of three or more measurement points and theoretical points or three or more theoretical points arranged in a straight line, the straight line cross-sectional shape of the substrate is approximated by a smooth curve, and the measurement points and the theoretical points are approximated. New logic between theoretical points or between the theoretical points Set the point, calculate the theoretical value of the height of the new theoretical point using the smooth curve, and set the new theoretical point and the theoretical value until the desired number of theoretical points and theoretical values are obtained The theoretical point setting repetition step for repeating the calculation of the above, and the working point height correction for calculating the correction value of the desired working point height on the substrate using the measured value of the measuring point and the theoretical value of the theoretical point Steps.

請求項2に係る発明は、基板用作業機器の基板保持装置により基板を水平姿勢に保持し、高さ測定装置により前記基板上の複数の測定点の高さの測定値を測定する測定点高さ測定ステップと、一直線上に並んだ3つ以上の測定点に基づいて、前記基板の一直線方向の断面形状を滑らかな曲線で近似し、前記3つ以上の測定点の間に理論点を設定して、前記理論点の高さの理論値を前記滑らかな曲線を用いて算出する理論点高さ算出ステップと、前記測定点の測定値および前記理論点の理論値を用いて、前記基板上の所望する作業点の高さの補正値を算出する作業点高さ補正ステップと、を有し、特定の一直線に着目したとき並んだ3つ目の測定点が無い場合に前記理論点高さ算出ステップの前に、前記3つ目の測定点に代わる代用点を前記特定の一直線上に設定し、前記代用点の近傍の周りに3つの補助測定点を設定して前記代用点からの距離が小さいほど大きな重み値を付与し、前記高さ測定装置により前記3つの補助測定点の高さの補助測定値を測定し、各前記補助測定値に前記重み値を乗算した後に加算して算出した加重平均値を前記代用点の高さの代用測定値とする代用点高さ測定ステップをさらに有し、前記理論点高さ算出ステップで、前記代用点および前記代用測定値を前記3つ目の測定点および測定値として扱う。 According to a second aspect of the present invention, there is provided a measurement point height in which the substrate is held in a horizontal posture by the substrate holding device of the substrate working device, and the height measurement values of the plurality of measurement points on the substrate are measured by the height measurement device. Based on the measurement step and three or more measurement points arranged in a straight line, the cross-sectional shape in the straight line direction of the substrate is approximated by a smooth curve, and a theoretical point is set between the three or more measurement points. A theoretical point height calculating step of calculating the theoretical value of the theoretical point height using the smooth curve, and using the measured value of the measuring point and the theoretical value of the theoretical point on the substrate, A working point height correction step for calculating a correction value for the desired working point height, and the theoretical point height when there is no third measuring point arranged when focusing on a specific straight line. Prior to the calculation step, a substitute point to replace the third measurement point is determined as the special point. Is set on a straight line, and three auxiliary measurement points are set around the substitute point, and a larger weight is assigned as the distance from the substitute point is smaller. The substitute point height is obtained by measuring the auxiliary measurement value of the height of the measurement point, multiplying each auxiliary measurement value by the weight value, and adding the weighted average value to the substitute measurement value of the substitute point height. The theoretical point height calculating step treats the substitute point and the substitute measurement value as the third measurement point and measurement value.

請求項3に係る発明は、基板用作業機器の基板保持装置により基板を水平姿勢に保持し、高さ測定装置により前記基板上の複数の測定点の高さの測定値を測定する測定点高さ測定ステップと、一直線上に並んだ3つ以上の測定点に基づいて、前記基板の一直線方向の断面形状を滑らかな曲線で近似し、前記3つ以上の測定点の間に理論点を設定して、前記理論点の高さの理論値を前記滑らかな曲線を用いて算出する理論点高さ算出ステップと、前記測定点の測定値および前記理論点の理論値を用いて、前記基板上の所望する作業点の高さの補正値を算出する作業点高さ補正ステップと、を有し、前記理論点高さ算出ステップで、特定の一直線に着目したとき前記3つ以上の測定点の組合せが複数通りあって、特定の2つの測定点の間の断面形状を複数通りの滑らかな曲線で近似でき、かつ前記複数通りの滑らかな曲線が互いに一致しなかった場合に、前記複数通りの滑らかな曲線の間を通る平均的な曲線を求め、前記特定の2つの測定点の間の理論点の高さの理論値を前記平均的な曲線を用いて算出する。 According to a third aspect of the present invention, there is provided a measurement point height in which the substrate is held in a horizontal posture by the substrate holding device of the substrate working device, and the height measurement values of the plurality of measurement points on the substrate are measured by the height measurement device. Based on the measurement step and three or more measurement points arranged in a straight line, the cross-sectional shape in the straight line direction of the substrate is approximated by a smooth curve, and a theoretical point is set between the three or more measurement points. A theoretical point height calculating step of calculating the theoretical value of the theoretical point height using the smooth curve, and using the measured value of the measuring point and the theoretical value of the theoretical point on the substrate, A work point height correction step for calculating a correction value for a desired work point height of the desired point, and when the theoretical point height calculation step focuses on a specific straight line, the three or more measurement points Cross-section between two specific measurement points with multiple combinations Can be approximated by a plurality of smooth curves, and when the plurality of smooth curves do not coincide with each other, an average curve passing between the plurality of smooth curves is obtained, and the specific 2 The theoretical value of the height of the theoretical point between two measurement points is calculated using the average curve.

請求項4に係る発明は、基板用作業機器の基板保持装置により基板を水平姿勢に保持し、高さ測定装置により前記基板上の複数の測定点の高さの測定値を測定する測定点高さ測定ステップと、一直線上に並んだ3つ以上の測定点に基づいて、前記基板の一直線方向の断面形状を滑らかな曲線で近似し、前記3つ以上の測定点の間に理論点を設定して、前記理論点の高さの理論値を前記滑らかな曲線を用いて算出する理論点高さ算出ステップと、前記測定点の測定値および前記理論点の理論値を用いて、前記基板上の所望する作業点の高さの補正値を算出する作業点高さ補正ステップと、を有し、前記測定点高さ測定ステップで、前記基板保持装置により前記基板の特定箇所を基準高さに保持し、前記特定箇所に近い近傍点を前記測定点の一部に設定し、前記近傍点の高さの測定値は前記高さ測定装置による測定を行わずに前記基準高さとする。
請求項5に係る発明は、請求項2において、前記測定点高さ測定ステップで、前記基板保持装置により前記基板の特定箇所を基準高さに保持し、前記特定箇所に近い近傍点を前記補助測定点の一部に設定し、前記近傍点の高さの補助測定値は前記高さ測定装置による測定を行わずに前記基準高さとする。
According to a fourth aspect of the present invention, there is provided a measuring point height in which the substrate is held in a horizontal posture by the substrate holding device of the substrate working device and the height measurement values of the plurality of measuring points on the substrate are measured by the height measuring device. Based on the measurement step and three or more measurement points arranged in a straight line, the cross-sectional shape in the straight line direction of the substrate is approximated by a smooth curve, and a theoretical point is set between the three or more measurement points. A theoretical point height calculating step of calculating the theoretical value of the theoretical point height using the smooth curve, and using the measured value of the measuring point and the theoretical value of the theoretical point on the substrate, A working point height correction step for calculating a correction value for a desired working point height, and in the measuring point height measurement step, the substrate holding device sets a specific position of the substrate to a reference height. holding, a neighbor point closer to the specific part portion of the measuring points Set, measurement of the height of the near point and the reference height without measurement by the height measuring device.
According to a fifth aspect of the present invention, in the second aspect, in the measurement point height measurement step, the substrate holding device holds a specific location of the substrate at a reference height, and a nearby point close to the specific location is the auxiliary. It is set as a part of the measurement point, and the auxiliary measurement value of the height of the neighboring point is set as the reference height without performing the measurement by the height measuring device.

請求項6に係る発明は、基板用作業機器の基板保持装置により基板を水平姿勢に保持し、高さ測定装置により前記基板上の複数の測定点の高さの測定値を測定する測定点高さ測定ステップと、一直線上に並んだ3つ以上の測定点に基づいて、前記基板の一直線方向の断面形状を滑らかな曲線で近似し、前記3つ以上の測定点の間に理論点を設定して、前記理論点の高さの理論値を前記滑らかな曲線を用いて算出する理論点高さ算出ステップと、前記測定点の測定値および前記理論点の理論値を用いて、前記基板上の所望する作業点の高さの補正値を算出する作業点高さ補正ステップと、を有し、前記測定点高さ測定ステップにおける前記基板上の複数の測定点を予め決定しておく測定点決定ステップをさらに有し、前記測定点決定ステップは、同一ロット中の多数の前記基板からサンプル基板を選出し、前記サンプル基板上の多数のサンプル測定点の高さであるサンプル測定値を測定するサンプル測定ステップと、前記多数のサンプル測定点を基準点と比較点とに分け、前記基準点のサンプル測定値を用いて前記比較点の高さの推定値を算出する比較点算出ステップと、前記比較点における前記サンプル測定値と前記推定値との相関性を比較し、前記相関性が不足であると判断したときに前記基準点を変更しまたは増加させて前記比較点算出ステップに戻り、前記相関性が過剰であると判断したときに前記基準点を減少させて前記比較点算出ステップに戻り、前記相関性が妥当であると判断したときに前記基準点を前記測定点に決定する妥当性判断ステップと、を含む。 According to a sixth aspect of the present invention, there is provided a measurement point height in which the substrate is held in a horizontal posture by the substrate holding device of the substrate working device, and the height measurement values of the plurality of measurement points on the substrate are measured by the height measurement device. Based on the measurement step and three or more measurement points arranged in a straight line, the cross-sectional shape in the straight line direction of the substrate is approximated by a smooth curve, and a theoretical point is set between the three or more measurement points. A theoretical point height calculating step of calculating the theoretical value of the theoretical point height using the smooth curve, and using the measured value of the measuring point and the theoretical value of the theoretical point on the substrate, They desired a working point height correction step of calculating a correction value of the height of the working point which has a pre-Symbol predetermined to keep measuring a plurality of measurement points on the substrate at the measurement point height measurement step of A point determination step, wherein the measurement point determination step comprises: Elected sample substrate from a number of the substrate in the same lot, a sample measuring step of measuring the sample measurements is the height of the large number of samples measurement point on the sample substrate, a reference point the number of sample measurement points And a comparison point calculation step for calculating an estimated value of the height of the comparison point using the sample measurement value of the reference point, and a correlation between the sample measurement value and the estimation value at the comparison point When the correlation is determined to be insufficient, the reference point is changed or increased to return to the comparison point calculation step, and when the correlation is determined to be excessive, the reference point And a return to the comparison point calculation step, and a validity determination step of determining the reference point as the measurement point when it is determined that the correlation is appropriate.

請求項7に係る発明は、請求項6において、前記妥当性判断ステップで、各前記比較点の前記サンプル測定値から前記推定値を減算して差分値を求め、いずれかの差分値が所定の許容値を超過したときに前記相関性が不足であると判断し、全ての差分値が前記許容値よりも大幅に下回ったときに前記相関性が過剰であると判断し、前記全ての差分値が前記許容値を下回りかつ前記基準点を減らすことが難しいときに前記相関性が妥当であると判断する。 The invention according to claim 7 is the invention according to claim 6 , wherein, in the validity determination step, a difference value is obtained by subtracting the estimated value from the sample measurement value of each comparison point, and any one of the difference values is a predetermined value. It is determined that the correlation is insufficient when an allowable value is exceeded, and it is determined that the correlation is excessive when all difference values are significantly lower than the allowable value, and all the difference values are determined. Is less than the tolerance and it is difficult to reduce the reference point, it is determined that the correlation is appropriate.

請求項8に係る発明は、請求項6または7において、前記比較点算出ステップで、前記基準点およびそのサンプル測定値を前記測定点および前記測定値とみなし、前記比較点および前記推定値を前記作業点および前記補正値とみなして、前記理論点高さ算出ステップおよび前記作業点高さ補正ステップを行う。 The invention according to claim 8 is the invention according to claim 6 or 7 , wherein in the comparison point calculation step, the reference point and the sample measurement value thereof are regarded as the measurement point and the measurement value, and the comparison point and the estimated value are is regarded as working points and the correction value, it performs the theoretical point height calculation step and the working point height correction step.

請求項9に係る発明は、請求項6〜8のいずれか一項において、前記妥当性判断ステップで、前記サンプル測定値、前記推定値、および前記サンプル測定値から前記推定値を減算して求めた差分値の少なくとも一種からなるデータ群のうち一種以上を、値の大きさに応じ色分けまたは記号分けして表示する。
請求項10に係る発明は、請求項1〜9のいずれか一項において、前記作業点高さ補正ステップで、前記測定点および前記理論点を頂点とする多数の三角形領域の組合せによって前記基板を分割し、かつ各前記三角形領域では前記基板が平面であると近似し、前記作業点が含まれる前記三角形領域を用いて前記作業点の高さの補正値を算出する。
請求項11に係る発明は、請求項1〜10のいずれか一項において、前記理論点高さ算出ステップで、一直線上に並んだ3つの測定点に基づいて、前記断面形状を円弧で近似する。
The invention according to claim 9 is obtained by subtracting the estimated value from the sample measured value, the estimated value, and the sample measured value in the validity determination step according to any one of claims 6 to 8. One or more data groups consisting of at least one difference value are displayed in different colors or symbols according to the magnitude of the values.
The invention according to claim 10 is the work point height correction step according to any one of claims 1 to 9, wherein the substrate is formed by a combination of a large number of triangular regions having the measurement point and the theoretical point as vertices. Dividing and approximating that the substrate is a plane in each of the triangular regions, the height correction value of the working point is calculated using the triangular region including the working point.
The invention according to an eleventh aspect is the one according to any one of the first to tenth aspects, wherein in the theoretical point height calculation step, the cross-sectional shape is approximated by an arc based on three measurement points arranged in a straight line. .

請求項1に係る基板用作業機器の基板高さ補正方法の発明では、一直線上に並んだ3つ以上の測定点に基づいて基板の断面形状を滑らかな曲線で近似し、測定点の間に理論点を設定してその高さの理論値を算出し、測定点の測定値および理論点の理論値を用いて所望する作業点の高さの補正値を算出する。したがって、測定点の測定値のみを用いて作業点の補正値を算出する従来技術と比較すると、より多数の測定点および理論点に基づいて高さ補正を行えるため、高さ補正精度を向上できる。また、高さ測定装置を移動させる実測定を測定点のみに限定し、実測定よりも短時間で行える演算処理により理論点の高さの理論値を算出するようにしたので、高さ補正の所要時間は従来技術から大幅には増加しない。したがって、基板生産のスループットの低下を抑制できる。   In the invention of the substrate height correction method for a substrate working device according to claim 1, the cross-sectional shape of the substrate is approximated by a smooth curve based on three or more measurement points arranged in a straight line, and between the measurement points. A theoretical point is set and a theoretical value of the height is calculated, and a desired correction value of the height of the working point is calculated using the measured value of the measuring point and the theoretical value of the theoretical point. Therefore, compared with the prior art that calculates the correction value of the work point using only the measurement value of the measurement point, the height correction accuracy can be improved because the height correction can be performed based on a larger number of measurement points and theoretical points. . In addition, the actual measurement of moving the height measurement device is limited to only the measurement point, and the theoretical value of the theoretical point height is calculated by an arithmetic process that can be performed in a shorter time than the actual measurement. The time required does not increase significantly from the prior art. Accordingly, it is possible to suppress a decrease in the throughput of substrate production.

さらに、理論点設定繰返しステップで所望する数量の理論点および理論値を得るので、高さ補正精度を顕著に向上できる。また、新たな理論点の設定およびその高さの理論値の算出は全て演算処理によって行い、高さ測定装置を用いた実測定を追加する必要はないので、高さ補正の所要時間は大幅には増加せず、基板生産のスループットの低下を抑制できる。 Furthermore, since the desired number of theoretical points and theoretical values are obtained in the theoretical point setting repetition step, the height correction accuracy can be significantly improved. In addition, the setting of a new theoretical point and the calculation of the theoretical value of the height are all performed by arithmetic processing, and it is not necessary to add actual measurement using a height measuring device, so the time required for height correction is greatly increased. The increase in the substrate production throughput can be suppressed.

請求項2に係る発明では、特定の一直線に着目したとき並んだ3つ目の測定点が無い場合に、代用点を特定の一直線上に設定し、周りの3つの補助測定点の高さの加重平均値を代用測定値として、3つ目の測定点に代える。したがって、基板の構造上の制約、例えば高さ測定を行える回路パターンの配置の制約により一直線上に3つ目の測定点を設定できない場合であっても、高さ補正精度を向上できる。 In the invention according to claim 2 , when there is no third measurement point arranged when focusing on a specific straight line, the substitute point is set on the specific straight line, and the height of the surrounding three auxiliary measurement points is set. The weighted average value is used as a substitute measurement value and is replaced with the third measurement point. Therefore, even when the third measurement point cannot be set on a straight line due to restrictions on the structure of the substrate, for example, restrictions on the arrangement of circuit patterns capable of measuring the height, the height correction accuracy can be improved.

請求項3に係る発明では、特定の2つの測定点の間の断面形状を近似した複数通りの滑らかな曲線が互いに一致しなかった場合に、特定の2つの測定点の間の理論点の高さの理論値を平均的な曲線を用いて算出する。これにより、特定の一直線上に4つ以上の測定点を設定して、単純な上反りや下反りよりも複雑な変形、例えば凹凸が接合するうねり状の変形などを精度よく近似できる。さらに、変形の様相が変化する領域、例えば凸変形領域から凹変形領域へと変化する途中の境界領域についても精度よく近似できる。 In the invention according to claim 3 , when a plurality of smooth curves approximating the cross-sectional shape between two specific measurement points do not coincide with each other, the height of the theoretical point between the two specific measurement points is high. The theoretical value is calculated using an average curve. Thereby, four or more measurement points are set on a specific straight line, and it is possible to accurately approximate a complicated deformation, such as a wavy deformation in which concave and convex portions are joined, rather than simple upward warping or downward warping. Furthermore, it is possible to accurately approximate a region where the aspect of deformation changes, for example, a boundary region in the middle of changing from a convex deformation region to a concave deformation region.

請求項4および請求項5に係る発明では、基板保持装置により基準高さに保持される基板の特定箇所に近い近傍点を測定点または補助測定点の一部に設定し、実測定を省略して基準高さを用いる。したがって、高さ測定装置を用いて測定を行う測定点または補助測定点の点数を削減でき、高さ補正の所要時間の増加を一層抑制して、基板生産のスループットの低下を一層抑制できる。 In the inventions according to claims 4 and 5 , a point near the specific location of the substrate held at the reference height by the substrate holding device is set as a measurement point or a part of the auxiliary measurement point, and actual measurement is omitted. Use the reference height. Therefore, it is possible to reduce the number of measurement points or auxiliary measurement points at which measurement is performed using the height measuring apparatus, further suppressing an increase in the time required for height correction, and further suppressing a decrease in substrate production throughput.

請求項6に係る発明では、基板上の複数の測定点を予め決定しておく測定点決定ステップをさらに有し、測定点決定ステップは、サンプル測定ステップ、比較点算出ステップ、および妥当性判断ステップを含んでいる。そして、サンプル測定ステップで、多数のサンプル測定点の高さを測定してサンプル基板の変形状態を予め精度よく確認しておき、比較点算出ステップおよび妥当性判断ステップで、仮決めした基準点からサンプル基板の変形を過不足のない精度で近似できるか否かを判断して測定点を決定する。したがって、同一ロット内で類似した変形状態の傾向を呈する多数の基板に対して、高さ測定点の点数を限定しつつ測定位置を適正化でき、基板の変形を十分な精度で近似できる。これにより、基板量産時の高さ測定点数を限定でき、基板生産のスループットが向上する。 The invention according to claim 6 further includes a measurement point determination step for determining a plurality of measurement points on the substrate in advance, and the measurement point determination step includes a sample measurement step, a comparison point calculation step, and a validity determination step. Is included. Then, in the sample measurement step, the heights of a large number of sample measurement points are measured to confirm the deformation state of the sample substrate in advance with accuracy, and from the temporarily determined reference points in the comparison point calculation step and the validity determination step. A measurement point is determined by judging whether or not the deformation of the sample substrate can be approximated with sufficient accuracy. Therefore, it is possible to optimize the measurement position while limiting the number of height measurement points for a large number of substrates exhibiting similar deformation states in the same lot, and to approximate the deformation of the substrate with sufficient accuracy. Thereby, the number of height measurement points at the time of substrate mass production can be limited, and the throughput of substrate production is improved.

請求項7に係る発明では、比較点のサンプル測定値から推定値を減算した差分値の大きさに基づいて、サンプル基板の変形の近似の相関性が妥当であるか否かを客観的に判断するので、量産時の高さ測定点の点数および測定位置を確実に適正化できる。また、近似の相関性の妥当の判断を自動化することができるので、作業者の手間が軽減される。 In the invention according to claim 7 , it is objectively determined whether or not the approximate correlation of the deformation of the sample substrate is appropriate based on the magnitude of the difference value obtained by subtracting the estimated value from the sample measurement value at the comparison point. Therefore, the number of height measurement points and the measurement position during mass production can be reliably optimized. In addition, since it is possible to automatically determine the appropriateness of the approximate correlation, the labor of the operator is reduced.

請求項8に係る発明では、比較点算出ステップで、請求項1〜7のいずれか一項に記載の理論点高さ算出ステップおよび作業点高さ補正ステップを行う。つまり、限られた基準点のサンプル測定値に基づいてサンプル基板の変形の近似を行うときに、基板量産時と同じ演算処理方法で比較点の推定値を算出する。これにより、測定点の妥当性判定を行うサンプル基板と量産時の多数の基板とで変形の近似方法が整合し、量産時の高さ測定点の点数を限定しても、基板の変形を確実に十分な精度で近似できる。 In the invention which concerns on Claim 8 , the theoretical point height calculation step and work point height correction step as described in any one of Claims 1-7 are performed at a comparison point calculation step. That is, when the deformation of the sample substrate is approximated based on the sample measurement values of the limited reference points, the estimated value of the comparison point is calculated by the same arithmetic processing method as that at the time of substrate mass production. As a result, the deformation approximation method is consistent between the sample substrate for determining the validity of measurement points and many substrates during mass production, and even if the number of height measurement points during mass production is limited, the substrate can be reliably deformed. Can be approximated with sufficient accuracy.

請求項9に係る発明では、妥当性判断ステップで、サンプル測定値、推定値、および差分値からなるデータ群のうち一種以上を、値の大きさに応じ色分けまたは記号分けして表示する。これにより、作業者が近似の相関性を判断する場合であっても、視覚的に容易に判定でき、煩雑で微妙な判定の手間が軽減される。
請求項10に係る発明では、測定点および理論点を頂点とする多数の三角形領域の組合せによって基板を分割し、作業点が含まれる三角形領域を平面で近似して作業点の高さの補正値を算出する。換言すれば、基板全体の変形を滑らかな断面曲線で近似しつつ、局所的には基板を平面と見なして、所望する作業点の高さ補正を行う。これにより、いたずらに演算処理を複雑化させることなく高さ補正精度を向上できる。かつ、高さ補正の所要時間の増加を抑制して、基板生産のスループットの低下を抑制できる。
請求項11に係る発明では、一直線上に並んだ3つの測定点に基づいて基板の断面形状を円弧で近似するので、発生頻度が比較的高い球面状の上反りや下反りの変形に対して、従来の2次関数で近似する技術よりも高さ補正精度が良好になる。
In the invention according to claim 9 , in the validity determination step, one or more of the data groups including the sample measurement value, the estimated value, and the difference value are displayed by color coding or symbol coding according to the magnitude of the value. Thereby, even when the operator determines the approximate correlation, the determination can be easily made visually, and the troublesome and delicate determination is reduced.
In the invention according to claim 10, the substrate is divided by a combination of a large number of triangular regions having the measurement points and the theoretical points as vertices, and the triangular region including the work points is approximated by a plane to correct the height of the work points. Is calculated. In other words, the deformation of the entire substrate is approximated by a smooth cross-sectional curve, and the height of the desired work point is corrected by locally regarding the substrate as a plane. Thereby, the height correction accuracy can be improved without complicating the arithmetic processing unnecessarily. In addition, an increase in the time required for height correction can be suppressed, and a decrease in throughput of substrate production can be suppressed.
In the invention according to the eleventh aspect, since the cross-sectional shape of the substrate is approximated by an arc based on the three measurement points arranged in a straight line, the deformation of the upper and lower warpage of the spherical surface having a relatively high occurrence frequency is obtained. Thus, the height correction accuracy is better than the conventional technique of approximating with a quadratic function.

第1〜第5実施形態の基板用作業機器の基板高さ補正方法を行う部品実装機の構成を説明する斜視図である。It is a perspective view explaining the structure of the component mounting machine which performs the board | substrate height correction method of the working apparatus for boards of 1st-5th embodiment. (1)はレーザー高さセンサの構成および高さ検出方式を模式的に説明する図であり、(2)は基板上の複数の測定点における測定例を模式的に例示説明する図である。(1) is a diagram schematically illustrating a configuration of a laser height sensor and a height detection method, and (2) is a diagram schematically illustrating a measurement example at a plurality of measurement points on a substrate. 第1実施形態の基板用作業機器の基板高さ補正方法を説明するフローチャートの図である。It is a figure of the flowchart explaining the board | substrate height correction method of the working apparatus for board | substrates of 1st Embodiment. 第1実施形態における測定点の配置の具体例を説明する基板の平面図である。It is a top view of the board | substrate explaining the specific example of arrangement | positioning of the measurement point in 1st Embodiment. 第1実施形態の理論点高さ算出ステップで行う演算処理を例示説明する図である。It is a figure which illustrates the arithmetic processing performed at the theoretical point height calculation step of 1st Embodiment. 第1実施形態で理論点高さ算出ステップが終了した時点における測定点および理論点の配置の具体例を説明する基板の平面図である。It is a top view of the board | substrate explaining the specific example of arrangement | positioning of the measurement point and theoretical point at the time of the theoretical point height calculation step being complete | finished in 1st Embodiment. 第1実施形態で理論点設定繰返しステップが終了した時点における測定点および理論点の配置の具体例を説明する基板の平面図である。It is a top view of the board | substrate explaining the specific example of arrangement | positioning of the measurement point and theoretical point at the time of the theoretical point setting repetition step being complete | finished in 1st Embodiment. 第1実施形態の作業点高さ補正ステップで行う演算処理を具体例で説明する図である。It is a figure explaining the arithmetic processing performed at the work point height correction step of 1st Embodiment by a specific example. 従来技術の高さ補正方法を例示説明する基板の平面図である。It is a top view of the board | substrate which illustrates and explains the height correction method of a prior art. 第2実施形態の基板用作業機器の基板高さ補正方法を説明するフローチャートの図である。It is a figure of the flowchart explaining the board | substrate height correction method of the working apparatus for board | substrates of 2nd Embodiment. 第2実施形態の代用点高さ測定ステップで行う演算処理内容を例示説明する図である。It is a figure which illustrates the calculation processing content performed at the substitute point height measurement step of 2nd Embodiment. 第2実施形態の代用点高さ測定ステップの応用形態を説明する図である。It is a figure explaining the application form of the substitute point height measurement step of 2nd Embodiment. 第3実施形態における測定点の配置の具体例を説明する基板の平面図である。It is a top view of the board | substrate explaining the specific example of arrangement | positioning of the measurement point in 3rd Embodiment. 第3実施形態の理論点高さ算出ステップで行う演算処理内容を例示説明する図である。It is a figure which illustrates the content of the arithmetic processing performed at the theoretical point height calculation step of 3rd Embodiment. 第4実施形態における測定点決定ステップの詳細を説明するフローチャートの図である。It is a figure of the flowchart explaining the detail of the measurement point determination step in 4th Embodiment. 第4実施形態で、サンプル測定ステップの測定結果を図式的に表示したサンプル基板の平面図である。In 4th Embodiment, it is a top view of the sample board | substrate which displayed the measurement result of the sample measurement step typically. 第4実施形態で、多数のサンプル測定点を基準点と比較点とに分けた状態を図式的に表示したサンプル基板の平面図である。In 4th Embodiment, it is a top view of the sample board | substrate which displayed typically the state which divided many sample measurement points into the reference point and the comparison point. 第4実施形態で、比較点における差分値を図式的に表示したサンプル基板の平面図である。In 4th Embodiment, it is a top view of the sample board | substrate which displayed the difference value in a comparison point graphically.

まず、本発明の第1〜第5実施形態の基板用作業機器の基板高さ補正方法を行う部品実装機1について、図1および図2を参考にして説明する。図1は、第1〜第5実施形態の基板用作業機器の基板高さ補正方法を行う部品実装機1の構成を説明する斜視図である。部品実装機1は、基板用作業機器に相当し、基板搬送装置2、部品供給装置3、部品移載装置4、および部品カメラ5が機台9に組み付けられて構成されている。部品移載装置4の実装ヘッド44には、本発明で用いる高さ測定装置に相当するレーザー高さセンサ6が設けられている。各装置2〜6は、図略の制御コンピュータから制御され、それぞれが所定の作業を行うようになっている。   First, a component mounter 1 that performs a board height correcting method for board working equipment according to first to fifth embodiments of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view illustrating a configuration of a component mounter 1 that performs a board height correcting method for a board working apparatus according to first to fifth embodiments. The component mounter 1 corresponds to a board working device, and is configured by assembling a substrate transport device 2, a component supply device 3, a component transfer device 4, and a component camera 5 on a machine base 9. The mounting head 44 of the component transfer device 4 is provided with a laser height sensor 6 corresponding to the height measuring device used in the present invention. Each of the devices 2 to 6 is controlled by a control computer (not shown), and each performs a predetermined operation.

基板搬送装置2は、第1および第2ガイドレール21、22、一対のコンベアベルト、およびクランプ装置などにより構成されている。第1および第2ガイドレール21、22は、機台9の上部中央を横断して搬送方向(X軸方向)に延在し、かつ互いに平行するように機台9に組み付けられている。第1および第2ガイドレール21、22の直下に、互いに平行に配置された一対のコンベアベルトが並設されている。コンベアベルトは、コンベア搬送面に基板Kを戴置した状態で搬送方向(X方向)に輪転して、基板Kを機台9の中央部に設定された部品実装位置に搬入および搬出する。   The substrate transfer device 2 includes first and second guide rails 21 and 22, a pair of conveyor belts, a clamp device, and the like. The first and second guide rails 21 and 22 extend in the transport direction (X-axis direction) across the upper center of the machine base 9 and are assembled to the machine base 9 so as to be parallel to each other. A pair of conveyor belts arranged in parallel to each other are arranged directly below the first and second guide rails 21 and 22. The conveyor belt rotates in the conveyance direction (X direction) with the substrate K placed on the conveyor conveyance surface, and carries the substrate K into and out of the component mounting position set at the center of the machine base 9.

また、機台9の中央部のコンベアベルトの下方の図には見えない位置に、本発明で用いる基板保持装置に相当するクランプ装置が設けられている。クランプ装置は、基板Kを押し上げて水平姿勢でクランプし、部品実装位置に位置決めする。このとき、基板Kの第1および第2ガイドレール21、22に近い2つの辺縁は、基準高さH0に保持される特定箇所になっている。基板Kに反りやうねりなどの変形が発生していないときには、基板Kの全体が基準高さH0に保持され、基板Kに変形が発生していると、基板Kの高さは位置に依存して基準高さH0から上下に変化する。   Further, a clamping device corresponding to the substrate holding device used in the present invention is provided at a position not visible in the figure below the conveyor belt at the center of the machine base 9. The clamp device pushes up the substrate K, clamps it in a horizontal posture, and positions it at the component mounting position. At this time, the two edges near the first and second guide rails 21 and 22 of the substrate K are specific places held at the reference height H0. When no deformation such as warpage or undulation occurs in the substrate K, the entire substrate K is held at the reference height H0. If the substrate K is deformed, the height of the substrate K depends on the position. The height changes from the reference height H0.

部品供給装置3はフィーダ方式の装置であり、部品実装機1の長手方向の前部(図1の左前側)に設けられている。部品供給装置3は、着脱可能な多数のカセット式フィーダ31がセットされて構成されている。カセット式フィーダ31は、本体32と、本体32の後部に設けられた供給リール33と、本体32の先端に設けられた部品取出部34とを備えている。供給リール33には多数の部品が所定ピッチで封入された細長いテープ(図示省略)が巻回保持され、このテープがスプロケット(図示省略)により所定ピッチで引き出され、部品が封入状態を解除されて部品取出部34に順次送り込まれるようになっている。   The component supply device 3 is a feeder-type device, and is provided at the front portion in the longitudinal direction of the component mounter 1 (left front side in FIG. 1). The component supply device 3 is configured with a large number of cassette-type feeders 31 that can be attached and detached. The cassette type feeder 31 includes a main body 32, a supply reel 33 provided at the rear part of the main body 32, and a component take-out part 34 provided at the tip of the main body 32. An elongated tape (not shown) in which a large number of parts are enclosed at a predetermined pitch is wound and held on the supply reel 33. This tape is pulled out at a predetermined pitch by a sprocket (not shown), and the part is released from the enclosed state. The components are sequentially fed into the component take-out unit 34.

部品移載装置4は、X軸方向およびY軸方向に移動可能なXYロボットタイプの装置である。部品移載装置4は、一対のY軸レール41、42、移動台43、実装ヘッド44、ノズルホルダ45、吸着ノズル47、基板カメラ46などにより構成されている。一対のY軸レール41、42は、機台9の長手方向の後部(図1の右奥側)から前部の部品供給装置3の上方にかけて配設されている。Y軸レール41、42上に、移動台43がY軸方向に移動可能に支持されている。移動台43には、実装ヘッド44がX軸方向に移動可能に設けられている。実装ヘッド44の前面にはノズルホルダ45が下向きに突設され、さらに、ノズルホルダ45には負圧を利用して部品を吸着採取および実装する吸着ノズル47が設けられている。また、実装ヘッド44の底面には、基板Kを撮像する基板カメラ46が下向きに設けられている。   The component transfer device 4 is an XY robot type device that can move in the X-axis direction and the Y-axis direction. The component transfer device 4 includes a pair of Y-axis rails 41 and 42, a moving table 43, a mounting head 44, a nozzle holder 45, a suction nozzle 47, a substrate camera 46, and the like. The pair of Y-axis rails 41 and 42 are arranged from the rear part in the longitudinal direction of the machine base 9 (the right back side in FIG. 1) to the upper part of the front part supply device 3. A movable table 43 is supported on the Y-axis rails 41 and 42 so as to be movable in the Y-axis direction. A mounting head 44 is provided on the moving table 43 so as to be movable in the X-axis direction. A nozzle holder 45 is provided on the front surface of the mounting head 44 so as to protrude downward. Further, the nozzle holder 45 is provided with a suction nozzle 47 for picking up and mounting components by using negative pressure. A substrate camera 46 that images the substrate K is provided on the bottom surface of the mounting head 44 so as to face downward.

部品移載装置4の実装ヘッド44は、2つのサーボモータにより水平2方向(XY方向)に駆動される。2つのサーボモータ、Y軸レール41、42、および移動台43などによりヘッド駆動機構が構成されている。さらに、吸着ノズル47は別のサーボモータにより上下方向に駆動される。これにより、吸着ノズル47は、部品供給装置3のカセット式フィーダ31から部品を吸着採取し、位置決めされた基板Kに上方から接近し、基板K上の実装ポイントに部品を実装する。実装ポイントは、作業高さの補正を行う本発明の作業点に相当しており、その位置はヘッド駆動機構上の平面座標系の座標値によって表され位置制御される。基板カメラ46は、位置決めされた基板Kのフィデューシャルマークを読み取り、基板Kの部品実装位置に対する位置誤差を検出する。これにより、基板K上の座標値が較正され、位置制御が正確に行われる。   The mounting head 44 of the component transfer device 4 is driven in two horizontal directions (XY directions) by two servo motors. A head drive mechanism is constituted by the two servo motors, the Y-axis rails 41 and 42, the moving table 43, and the like. Further, the suction nozzle 47 is driven in the vertical direction by another servo motor. As a result, the suction nozzle 47 picks up and picks up the component from the cassette type feeder 31 of the component supply device 3, approaches the positioned substrate K from above, and mounts the component on the mounting point on the substrate K. The mounting point corresponds to the working point of the present invention for correcting the working height, and the position is represented and controlled by the coordinate value of the plane coordinate system on the head driving mechanism. The board camera 46 reads the fiducial mark of the board K that has been positioned, and detects a position error of the board K relative to the component mounting position. Thereby, the coordinate value on the board | substrate K is calibrated and position control is performed correctly.

部品カメラ5は、基板搬送装置2と部品供給装置3との間の機台9の上面に、上向きに設けられている。部品カメラ5は、吸着ノズル47が部品供給装置3から基板K上に移動する途中で吸着採取されている部品の状態を撮像して検出するものである。部品カメラ5が部品の吸着位置や回転角のずれ、リードの曲がりなどを検出すると、必要に応じて部品実装動作が微調整され、実装が困難な部品は廃棄される。   The component camera 5 is provided upward on the upper surface of the machine base 9 between the substrate transfer device 2 and the component supply device 3. The component camera 5 captures and detects the state of a component that is picked up while the suction nozzle 47 moves from the component supply device 3 onto the substrate K. When the component camera 5 detects a component suction position, a rotation angle shift, a lead bend, or the like, the component mounting operation is finely adjusted as necessary, and components that are difficult to mount are discarded.

部品実装機1は、図略の制御コンピュータを備えている。制御コンピュータは、生産する基板の基板種と実装される部品種との対応関係を始めとする諸情報、基板カメラ46や部品カメラ5の撮像データ、および図略のセンサの検出情報などに基づいて、部品実装動作を制御する。また、制御コンピュータは、第1〜第3実施形態の基板高さ補正方法の実行を制御する。   The component mounting machine 1 includes a control computer (not shown). The control computer is based on various information including the correspondence between the board type of the board to be produced and the component type to be mounted, imaging data of the board camera 46 and the part camera 5, and detection information of a sensor (not shown). Control the component mounting operation. The control computer controls execution of the substrate height correction method of the first to third embodiments.

次に、レーザー高さセンサ6について説明する。レーザー高さセンサ6は、図1に示されるように、実装ヘッド44の底面に基板カメラ46と並んで下向きに取り付けられている。したがって、レーザー高さセンサ6は実装ヘッド44により移動される。図2の(1)はレーザー高さセンサ6の構成および高さ検出方式を模式的に説明する図であり、(2)は基板K上の複数の測定点における測定例を模式的に例示説明する図である。   Next, the laser height sensor 6 will be described. As shown in FIG. 1, the laser height sensor 6 is attached to the bottom surface of the mounting head 44 in a downward direction along with the substrate camera 46. Therefore, the laser height sensor 6 is moved by the mounting head 44. 2A is a diagram schematically illustrating the configuration of the laser height sensor 6 and the height detection method, and FIG. 2B schematically illustrates an example of measurement at a plurality of measurement points on the substrate K. It is a figure to do.

図2の(1)に示されるように、レーザー高さセンサ6は、隣接配置されたレーザー光照射部61および反射光検出部62を有している。レーザー光照射部61は、下方に配置された基板Kに向かって、レーザー光L1を下向きに照射する。レーザー光L1は基板Kの上面で反射され、斜めに反射した反射レーザー光L2が反射光検出部62に入射する。反射光検出部62は、反射レーザー光L2の検出位置の違いから、基板Kの高さHを検出する。図2の(1)では、基板Kが基準高さH0にあるときの反射レーザー光L2と、基板Kaが基準高さH0よりも上方の高さHaにあるときの反射レーザー光L3とが例示されている。   As shown in (1) of FIG. 2, the laser height sensor 6 includes a laser light irradiation unit 61 and a reflected light detection unit 62 that are arranged adjacent to each other. The laser beam irradiation unit 61 irradiates the laser beam L1 downward toward the substrate K disposed below. The laser beam L 1 is reflected on the upper surface of the substrate K, and the reflected laser beam L 2 reflected obliquely enters the reflected light detector 62. The reflected light detection unit 62 detects the height H of the substrate K from the difference in the detection position of the reflected laser light L2. In (1) of FIG. 2, the reflected laser beam L2 when the substrate K is at the reference height H0 and the reflected laser beam L3 when the substrate Ka is at a height Ha higher than the reference height H0 are illustrated. Has been.

また、図2の(2)に例示されるように、レーザー高さセンサ6は基板Kの複数の測定点で高さ測定を行う。図には、基板KのY軸方向の3箇所の測定点y1〜y3が例示されている。この場合、基板Kが変形していないと、3つの測定点y1〜y3で同じ基準高さH0が測定される。また、図中に破線で例示されるように、上反りに変形した基板Kbでは、各測定点y1〜y3でそれぞれ異なった高さH1〜H3が測定される。なお、測定点y1〜y3は例であって、所望する任意の点数の任意の測定点を座標値を用いて設定することができる。ただし、安定した高さ測定を行うために、レーザー光L1をよく反射する回路パターン上で、かつ一定以上の広さを有する位置に測定点を設定することが好ましい。   Further, as illustrated in (2) of FIG. 2, the laser height sensor 6 performs height measurement at a plurality of measurement points on the substrate K. In the figure, three measurement points y1 to y3 in the Y-axis direction of the substrate K are illustrated. In this case, if the substrate K is not deformed, the same reference height H0 is measured at the three measurement points y1 to y3. Further, as exemplified by broken lines in the figure, different heights H1 to H3 are measured at the measurement points y1 to y3 on the substrate Kb deformed upward. The measurement points y1 to y3 are examples, and any desired number of measurement points can be set using coordinate values. However, in order to perform stable height measurement, it is preferable to set a measurement point on a circuit pattern that reflects the laser beam L1 well and at a position having a certain width or more.

次に、第1実施形態の基板高さ補正方法について、図3〜図8を参考にして説明する。図3は、第1実施形態の基板用作業機器の基板高さ補正方法を説明するフローチャートの図である。第1実施形態の基板高さ補正方法は、測定点決定ステップS1、測定点高さ測定ステップS2、理論点高さ算出ステップS3、理論点設定繰返しステップS4、および作業点高さ補正ステップS5を有している。   Next, the substrate height correction method of the first embodiment will be described with reference to FIGS. FIG. 3 is a flowchart illustrating the substrate height correction method for the substrate working apparatus according to the first embodiment. The substrate height correction method of the first embodiment includes a measurement point determination step S1, a measurement point height measurement step S2, a theoretical point height calculation step S3, a theoretical point setting repetition step S4, and a work point height correction step S5. Have.

測定点決定ステップS1では、次の測定点高さ測定ステップS2における基板上の複数の測定点を予め決定しておく。測定点決定ステップS1は、後の第4および第5実施形態で説明する詳細なステップを踏むこともできるが、経験則に基づいて決定することができる。つまり、基板Kの大きさ、形状、厚さ、材質などの条件を考慮すれば、基板Kがどのように変形し、どの程度変形するかを概略予想できる。したがって、予想される変形を十分近似できる程度に、測定点の点数および位置を予め決定しておく。   In the measurement point determination step S1, a plurality of measurement points on the substrate in the next measurement point height measurement step S2 are determined in advance. The measurement point determination step S1 can be performed based on empirical rules, although detailed steps described in the fourth and fifth embodiments below can be taken. That is, if conditions such as the size, shape, thickness, and material of the substrate K are taken into consideration, it is possible to roughly predict how and how much the substrate K is deformed. Therefore, the number and position of the measurement points are determined in advance so that the expected deformation can be sufficiently approximated.

本第1実施形態では、図4に示される9点の測定点P1〜P9を基板K1上に設定する。図4は、第1実施形態における測定点P1〜P9の配置の具体例を説明する基板K1の平面図である。図示されるように、9点の測定点P1〜P9は、矩形形状の基板K1上に格子状に設定されている。測定点P5は基板K1の中央位置に設定され、それ以外の測定点P1〜P4、P6〜P9は、基板K1の辺縁から少し内側に入り込んだ位置に設定されている。各測定点P1〜P9は、基板K1の回路パターン上に設定され、レーザー高さセンサ6により安定した高さ測定が行われるようになっている。   In the first embodiment, nine measurement points P1 to P9 shown in FIG. 4 are set on the substrate K1. FIG. 4 is a plan view of the substrate K1 for explaining a specific example of the arrangement of the measurement points P1 to P9 in the first embodiment. As shown in the drawing, nine measurement points P1 to P9 are set in a grid pattern on a rectangular substrate K1. The measurement point P5 is set at the center position of the substrate K1, and the other measurement points P1 to P4 and P6 to P9 are set to positions slightly inward from the edge of the substrate K1. Each of the measurement points P1 to P9 is set on the circuit pattern of the substrate K1, and a stable height measurement is performed by the laser height sensor 6.

測定点高さ測定ステップS2では、クランプ装置により基板K1を水平姿勢に保持し、レーザー高さセンサ6により基板K1上の9点の測定点P1〜P9の高さの測定値を測定する。レーザー高さセンサ6は、2つのサーボモータにより駆動され、順次各測定点P1〜P9の上方に移動して、それぞれで高さの測定値を得る。なお、測定順序に制約は無いので、レーザー高さセンサ6の移動時間の総和が最短となる測定順序を選択することが好ましい。   In the measurement point height measurement step S2, the substrate K1 is held in a horizontal posture by the clamp device, and the measurement values of the nine measurement points P1 to P9 on the substrate K1 are measured by the laser height sensor 6. The laser height sensor 6 is driven by two servo motors, and sequentially moves above the respective measurement points P1 to P9 to obtain a height measurement value. In addition, since there is no restriction | limiting in a measurement order, it is preferable to select the measurement order from which the total of the movement time of the laser height sensor 6 becomes the shortest.

理論点高さ算出ステップS3では、一直線上に並んだ3つ以上の測定点に基づいて、基板の一直線方向の断面形状を滑らかな曲線で近似し、3つ以上の測定点の間に理論点を設定して、理論点の高さの理論値を前記滑らかな曲線を用いて算出する。図4の具体例では、基板K1の長辺に平行でそれぞれ3つの測定点を通る3本の直線、および基板K1の短辺に平行でそれぞれ3つの測定点を通る3本の直線について、合計で6回の演算処理を行う。   In the theoretical point height calculation step S3, the cross-sectional shape in a straight line direction of the substrate is approximated by a smooth curve based on three or more measurement points arranged on a straight line, and a theoretical point is obtained between the three or more measurement points. And the theoretical value of the theoretical point height is calculated using the smooth curve. In the specific example of FIG. 4, a total of three straight lines passing through three measurement points parallel to the long side of the substrate K1 and three straight lines passing through three measurement points parallel to the short side of the substrate K1. The calculation process is performed six times.

図5は、第1実施形態の理論点高さ算出ステップS3で行う演算処理を例示説明する図である。図5中で、大きな矢印は測定点を示し、小さな矢印は理論点を示している。また、図5では、基板K1の長辺に平行で中央の3点の測定点P4、P5、P6を通る直線L1(図4示)に着目したときを例示している。理論点高さ算出ステップS3で、まず、一直線上に並んだ3つの測定点に基づいて、基板の断面形状を円弧で近似する。つまり、測定点P4、P5、P6の高さの測定値h4、h5、h6から、基板K1の断面形状を円弧C1で近似する。ここで、基準高さH0をゼロとして測定値h4、h5、h6を正負の符号を付して表すと、測定値h4、h5、h6は3つとも正値で、かつ、h4<h6<h5となっている。したがって、基板K1には上反りの変形が発生しており、円弧C1の中心は基板K1の下方に求められる。   FIG. 5 is a diagram illustrating the calculation process performed in the theoretical point height calculation step S3 of the first embodiment. In FIG. 5, large arrows indicate measurement points, and small arrows indicate theoretical points. FIG. 5 illustrates the case where attention is paid to a straight line L1 (shown in FIG. 4) parallel to the long side of the substrate K1 and passing through the three central measurement points P4, P5, and P6. In the theoretical point height calculation step S3, first, the cross-sectional shape of the substrate is approximated by an arc based on three measurement points arranged in a straight line. That is, the cross-sectional shape of the substrate K1 is approximated by the arc C1 from the measured values h4, h5, h6 of the heights of the measurement points P4, P5, P6. Here, if the measured values h4, h5, and h6 are represented with positive and negative signs with the reference height H0 as zero, the measured values h4, h5, and h6 are all positive values, and h4 <h6 <h5. It has become. Therefore, the substrate K1 is warped and the center of the arc C1 is obtained below the substrate K1.

また、別の基板で下反りの変形が発生して、近似する円弧の中心が基板の上方に求められることも生じ得る。さらには、近似する円弧の半径が限りなく大きくなって、基板の断面形状が直線で近似されることも生じ得る。   In addition, a warping deformation may occur in another substrate, and an approximate arc center may be obtained above the substrate. Furthermore, the radius of the approximate arc can be increased without limit, and the cross-sectional shape of the substrate can be approximated by a straight line.

次に、測定点の間に理論点を設定する。具体例では、測定点P4と測定点P5との中間点に理論点Q45を設定し、測定点P5と測定点P6との中間点に理論点Q56を設定する。3番目に、理論点の高さの理論値を滑らかな曲線を用いて算出する。具体例では、理論点Q45および理論点Q56が円弧C1上に存在するものとして、それぞれの高さの理論値h45、h56を算出する。   Next, a theoretical point is set between the measurement points. In the specific example, a theoretical point Q45 is set at an intermediate point between the measurement point P4 and the measurement point P5, and a theoretical point Q56 is set at an intermediate point between the measurement point P5 and the measurement point P6. Third, the theoretical value of the theoretical point height is calculated using a smooth curve. In the specific example, the theoretical values h45 and h56 of the respective heights are calculated on the assumption that the theoretical point Q45 and the theoretical point Q56 exist on the arc C1.

同様に、他の5本の直線についても同じ演算処理を実施する。この結果、図6に示される12点の理論点Q12、Q23、Q45、Q56、Q78、Q89、Q14、Q47、Q25、Q58、Q36、Q69が設定される。さらに、それぞれの高さの理論値が算出される。図6は、第1実施形態で理論点高さ算出ステップS3が終了した時点における測定点P1〜P9および理論点Q12、Q23、……の配置の具体例を説明する基板K1の平面図である。   Similarly, the same calculation process is performed for the other five straight lines. As a result, twelve theoretical points Q12, Q23, Q45, Q56, Q78, Q89, Q14, Q47, Q25, Q58, Q36, and Q69 shown in FIG. 6 are set. Furthermore, the theoretical value of each height is calculated. 6 is a plan view of the substrate K1 for explaining a specific example of the arrangement of the measurement points P1 to P9 and the theoretical points Q12, Q23,... At the time when the theoretical point height calculating step S3 is completed in the first embodiment. .

理論点設定繰返しステップS4では、一直線上に並んだ3つ以上の測定点と理論点との組合せまたは一直線上に並んだ3つ以上の理論点に基づいて、基板の一直線方向の断面形状を滑らかな曲線で近似し、測定点と理論点との間または理論点同士の間に新たな理論点を設定して、新たな理論点の高さの理論値を滑らかな曲線を用いて算出し、所望する数量の理論点および理論値が得られるまで新たな理論点の設定および理論値の算出を繰り返す。本第1実施形態では、基板K1の短辺に平行で3つの理論点を通る2本の直線について、合計で2回の演算処理を行う。   In the theoretical point setting repetition step S4, the cross-sectional shape in a straight line direction of the substrate is smoothed based on a combination of three or more measurement points and theoretical points arranged in a straight line or three or more theoretical points arranged in a straight line. Approximate with a simple curve, set a new theoretical point between the measurement point and the theoretical point or between the theoretical points, calculate the theoretical value of the height of the new theoretical point using a smooth curve, The setting of a new theoretical point and the calculation of the theoretical value are repeated until the desired number of theoretical points and theoretical values are obtained. In the first embodiment, a total of two arithmetic processes are performed on two straight lines passing through three theoretical points parallel to the short side of the substrate K1.

具体例では、3点の理論点Q12、Q45、Q78を通る直線L2(図6示)に着目して、まず、各理論点Q12、Q45、Q78の高さの理論値から、基板K1の断面形状を円弧で近似する。次に、理論点Q12と理論点Q45との中間点に理論点Q15を設定し、理論点Q45と理論点Q78との中間点に理論点Q48を設定する。3番目に、理論点Q15および理論点Q48が近似した円弧上に存在するものとして、それぞれの高さの理論値を算出する。この演算処理の方法は、図5を用いて説明した測定点P4、P5、P6に基づく理論点高さ算出ステップS3の演算処理と同様である。   In the specific example, paying attention to the straight line L2 (shown in FIG. 6) passing through the three theoretical points Q12, Q45, and Q78, first, from the theoretical value of the height of each theoretical point Q12, Q45, and Q78, the cross section of the substrate K1. The shape is approximated by an arc. Next, a theoretical point Q15 is set at an intermediate point between the theoretical point Q12 and the theoretical point Q45, and a theoretical point Q48 is set at an intermediate point between the theoretical point Q45 and the theoretical point Q78. Third, the theoretical values of the respective heights are calculated assuming that the theoretical point Q15 and the theoretical point Q48 exist on the approximated arc. This calculation processing method is the same as the calculation processing in the theoretical point height calculation step S3 based on the measurement points P4, P5, and P6 described with reference to FIG.

3点の理論点Q23、Q56、Q89を通る直線L3(図6示)についても同じ演算処理を行い、理論点Q26および理論点Q59を設定し、それぞれの高さの理論値を算出する。ここまでの演算処理により、9点の測定点P1〜P9の測定値に基づいて、16点の理論点Q12、Q23、……の高さの理論値を算出できる。これにより、図7に示されるように、基板K1上の5×5の各格子点で高さが測定されあるいは算出されて既知になる。図7は、第1実施形態で理論点設定繰返しステップS4が終了した時点における測定点P1〜P9および理論点Q12、Q23、……の配置の具体例を説明する基板K1の平面図である。   The same calculation process is performed for the straight line L3 (shown in FIG. 6) passing through the three theoretical points Q23, Q56, and Q89, the theoretical point Q26 and the theoretical point Q59 are set, and the theoretical values of the respective heights are calculated. By the calculation processing so far, the theoretical values of the heights of the 16 theoretical points Q12, Q23,... Can be calculated based on the measured values of the 9 measurement points P1 to P9. As a result, as shown in FIG. 7, the height is measured or calculated at each 5 × 5 lattice point on the substrate K1 and becomes known. 7 is a plan view of the substrate K1 for explaining a specific example of the arrangement of the measurement points P1 to P9 and the theoretical points Q12, Q23,... At the time when the theoretical point setting repetition step S4 is completed in the first embodiment.

なお、理論点Q15の設定およびその高さの理論値の算出は、基板K1の対角線方向で3点の測定点P1、P5、P9を通る直線、あるいは基板K1の長辺に平行で3点の理論点Q14、Q25、Q36を通る直線に着目して行うこともできる。しかしながら、理論点Q12、Q45、Q78の相互間距離が最も短い基板K1の短辺に平行な直線L2に着目するほうが、近似の誤差を低減できて好ましい。   It should be noted that the theoretical point Q15 is set and the theoretical value of the height thereof is calculated in three lines parallel to the straight line passing through the three measurement points P1, P5 and P9 in the diagonal direction of the substrate K1 or the long side of the substrate K1. It can also be performed paying attention to straight lines passing through the theoretical points Q14, Q25, and Q36. However, it is preferable to pay attention to the straight line L2 parallel to the short side of the substrate K1 where the distance between the theoretical points Q12, Q45, and Q78 is the shortest because the approximation error can be reduced.

作業点高さ補正ステップS5では、測定点の測定値および理論点の理論値を用いて、基板上の所望する作業点の高さの補正値を算出する。本第1実施形態では、まず、測定点および理論点を頂点とする多数の三角形領域の組合せによって基板を分割し、かつ各三角形領域では基板が平面であると近似する。次に、作業点が含まれる三角形領域を用いて作業点の高さの補正値を算出する。   In the working point height correction step S5, a correction value for a desired working point height on the substrate is calculated using the measured value of the measuring point and the theoretical value of the theoretical point. In the first embodiment, first, the substrate is divided by a combination of a large number of triangular regions having the measurement points and the theoretical points as vertices, and it is approximated that the substrate is a plane in each triangular region. Next, a correction value for the height of the work point is calculated using a triangular area including the work point.

図8は、第1実施形態の作業点高さ補正ステップS5で行う演算処理を具体例で説明する図である。図8に示されるように、まず、9点の測定点P1〜P9および16点の理論点Q12、Q23、……を頂点とする32個の同形同大の三角形領域の組合せによって基板K1を分割する。ここで、各三角形領域では基板K1が平面であると近似するので、それぞれの平面を表す関数は、3頂点の座標値および高さから求められる。次に、作業点に相当する実装ポイントの座標値から、実装ポイントが含まれる三角形領域を特定する。最後に、実装ポイントが近似された平面上に存在するものとして、高さの補正値を算出することができる。   FIG. 8 is a diagram illustrating the calculation process performed in the work point height correction step S5 of the first embodiment with a specific example. As shown in FIG. 8, first, a substrate K1 is formed by a combination of 32 measurement points P1 to P9 and 16 theoretical points Q12, Q23,. To divide. Here, in each triangular area, it is approximated that the substrate K1 is a plane. Therefore, a function representing each plane is obtained from the coordinate values and heights of the three vertices. Next, a triangular area including the mounting point is specified from the coordinate value of the mounting point corresponding to the work point. Finally, the height correction value can be calculated on the assumption that the mounting point is on the approximated plane.

例えば、図8の実装ポイントW1は、測定点P4、理論点Q14、および理論点Q45を頂点とする三角形領域Δ1(便宜的にハッチング示)に含まれている。したがって、実装ポイントW1が三角形領域Δ1を近似した平面上に存在するものとして、高さの補正値Hw1を算出することができる。また例えば、図8の実装ポイントW2は、3点の理論点Q58、Q59、Q89を頂点とする三角形領域Δ2(便宜的にハッチング示)に含まれている。したがって、実装ポイントW2が三角形領域Δ2を近似した平面上に存在するものとして、高さの補正値Hw2を算出することができる。   For example, the mounting point W1 in FIG. 8 is included in a triangular area Δ1 (hatched for convenience) with the measurement point P4, the theoretical point Q14, and the theoretical point Q45 as vertices. Therefore, the height correction value Hw1 can be calculated on the assumption that the mounting point W1 exists on a plane approximating the triangular area Δ1. Further, for example, the mounting point W2 in FIG. 8 is included in a triangular area Δ2 (hatched for convenience) having three theoretical points Q58, Q59, and Q89 as vertices. Therefore, the height correction value Hw2 can be calculated on the assumption that the mounting point W2 exists on a plane that approximates the triangular area Δ2.

基板K1に実装する全ての部品の実装ポイントの高さの補正値を算出すると、作業点高さ補正ステップS5を終了する。この後、算出した高さの補正値を用いて、基板K1上の各実装ポイントに部品を実装する作業を行う。   When the correction values for the heights of the mounting points of all the components mounted on the board K1 are calculated, the work point height correction step S5 is terminated. Thereafter, the component is mounted on each mounting point on the board K1 using the calculated height correction value.

次に、第1実施形態の基板用作業機器の基板高さ補正方法の効果について、従来技術と比較して説明する。図9は、従来技術の高さ補正方法を例示説明する基板K9の平面図である。従来技術では、例えば9点の測定点P1〜P9でそれぞれ基板K9の高さを測定し、測定点P1〜P9を頂点とする三角形領域を平面で近似して作業点の高さを補正していた。図9の具体例で、基板K9は8個の三角形領域に分割されていた。   Next, the effect of the substrate height correcting method of the substrate working apparatus according to the first embodiment will be described in comparison with the prior art. FIG. 9 is a plan view of a substrate K9 illustrating a conventional height correction method. In the prior art, for example, the height of the substrate K9 is measured at nine measurement points P1 to P9, respectively, and the height of the work point is corrected by approximating a triangular region having the measurement points P1 to P9 as vertices on a plane. It was. In the specific example of FIG. 9, the substrate K9 is divided into eight triangular regions.

これに対して、第1実施形態の基板用作業機器の基板高さ補正方法では、一直線上に並んだ3点の測定点P4、P5、P6の中間点に理論点Q45、Q56を設定し、測定点P4、P5、P6に理論点Q45、Q56を加えて三角形領域を設定していた。図8の例では、9点の測定点P1〜P9に対して16点の理論点Q45、Q56を設定し、最終的に32個の三角形領域を設定していた。したがって、従来技術と比較すると、三角形領域の分割数が4倍になっており、三角形領域を平面で近似したときの誤差が小さくなって、高さ補正精度を向上できる。   On the other hand, in the substrate height correction method of the substrate working apparatus of the first embodiment, theoretical points Q45 and Q56 are set at the midpoints of the three measurement points P4, P5, and P6 aligned on a straight line, Triangular areas were set by adding theoretical points Q45 and Q56 to measurement points P4, P5 and P6. In the example of FIG. 8, 16 theoretical points Q45 and Q56 are set for 9 measurement points P1 to P9, and finally 32 triangular regions are set. Therefore, compared with the prior art, the number of divisions of the triangular area is four times, and the error when the triangular area is approximated by a plane is reduced, and the height correction accuracy can be improved.

また、レーザー高さセンサ6を移動させて行う測定点の点数は第1実施形態と従来技術とで9点と変わらず、理論点の高さの理論値は実測定よりも短時間で行える演算処理により算出するようにした。このため、高さ補正の所要時間は従来技術から大幅には増加しない。したがって、基板生産のスループットの低下を抑制できる。   In addition, the number of measurement points performed by moving the laser height sensor 6 is the same as that in the first embodiment and the conventional technology, and the theoretical value of the theoretical point height can be calculated in a shorter time than actual measurement. It was calculated by processing. For this reason, the time required for height correction does not increase significantly from the prior art. Accordingly, it is possible to suppress a decrease in the throughput of substrate production.

さらに、理論点高さ算出ステップS3および理論点設定繰返しステップS4では基板K1の変形を円弧C1で近似し、作業点高さ補正ステップS5では、三角形領域を平面で近似して作業点W1、W2の高さの補正値Hw1、Hw2を算出している。換言すれば、基板K1の全体の変形状態を滑らかな断面曲線で近似しつつ、局所的には基板K1を平面と見なして、所望する作業点の高さ補正を行う。これにより、いたずらに演算処理を複雑化させることなく高さ補正精度を向上できる。かつ、高さ補正の所要時間の増加を抑制して、基板生産のスループットの低下を抑制できる。   Further, in the theoretical point height calculation step S3 and the theoretical point setting repetition step S4, the deformation of the substrate K1 is approximated by an arc C1, and in the work point height correction step S5, the triangular area is approximated by a plane and the work points W1, W2 are approximated. Correction values Hw1 and Hw2 are calculated. In other words, the overall deformation state of the substrate K1 is approximated by a smooth sectional curve, and the substrate K1 is locally regarded as a plane, and the height of the desired work point is corrected. Thereby, the height correction accuracy can be improved without complicating the arithmetic processing unnecessarily. In addition, an increase in the time required for height correction can be suppressed, and a decrease in throughput of substrate production can be suppressed.

また、基板K1の断面形状を円弧C1で近似するので、発生頻度が比較的高い球面状の上反りや下反りに対して、従来の2次関数で近似する技術よりも高さ補正精度が良好になる。   In addition, since the cross-sectional shape of the substrate K1 is approximated by the arc C1, the height correction accuracy is better than the conventional technique of approximating with a quadratic function for the upper and lower warpage of the spherical surface having a relatively high occurrence frequency. become.

なお、基板K1の矩形形状の長辺の辺縁は、クランプ装置により基準高さH0に保持されている。したがって、測定点決定ステップS1で、長辺の辺縁から少し内側に入り込んだ6点の測定点P1〜P3、P7〜P9を辺縁に近い近傍点に変更設定すれば、測定点高さ測定ステップS2でレーザー高さセンサ6による測定を省略できる。この場合、6点の近傍点の高さの測定値は、保持された基準高さH0とする。   Note that the long edge of the rectangular shape of the substrate K1 is held at the reference height H0 by the clamp device. Accordingly, in the measurement point determination step S1, if the six measurement points P1 to P3 and P7 to P9 that are slightly inward from the long side edge are changed and set to neighboring points close to the edge, the measurement point height measurement is performed. In step S2, the measurement by the laser height sensor 6 can be omitted. In this case, the measured value of the height of the six neighboring points is the retained reference height H0.

この態様では、レーザー高さセンサ6を用いて測定を行う測定点の点数を9点から中央の3測定点P4、P5、P6のみに削減でき、高さ補正の所要時間の増加を一層抑制して、基板生産のスループットの低下を一層抑制できる。   In this aspect, the number of measurement points to be measured using the laser height sensor 6 can be reduced from 9 to only the three central measurement points P4, P5, and P6, and the increase in the time required for height correction is further suppressed. Thus, it is possible to further suppress a decrease in substrate production throughput.

また、理論点設定繰返しステップS4で、さらに多数回の演算処理を行って理論点の数量を増加させることができる。例えば、第1実施形態では、基板K1上の5×5の各格子点で高さを既知としたが、9×9の各格子点で高さが既知となるまで理論点の数量を増加させることができる。すると、作業点高さ補正ステップS5で用いる三角形領域の数量が一層増加し、個々の三角形領域の面積が一層小さくなるので、平面近似によって生じる誤差が削減される。   Further, in the theoretical point setting repetition step S4, the number of theoretical points can be increased by performing arithmetic processing a number of times. For example, in the first embodiment, the height is known at each 5 × 5 grid point on the substrate K1, but the number of theoretical points is increased until the height is known at each 9 × 9 grid point. be able to. Then, the number of triangular regions used in the work point height correction step S5 is further increased and the area of each triangular region is further reduced, so that errors caused by plane approximation are reduced.

この態様では、理論点設定繰返しステップS4で所望する数量の理論点および理論値を得るので、高さ補正精度を顕著に向上できる。また、新たな理論点の設定およびその高さの理論値の算出は全て演算処理によって行い、レーザー高さセンサ6を用いた実測定を追加する必要はないので、高さ補正の所要時間は大幅には増加せず、基板生産のスループットの低下を抑制できる。   In this aspect, since the desired number of theoretical points and theoretical values are obtained in the theoretical point setting repetition step S4, the height correction accuracy can be significantly improved. In addition, the setting of a new theoretical point and the calculation of the theoretical value of the height are all performed by calculation processing, and it is not necessary to add actual measurement using the laser height sensor 6, so the time required for height correction is greatly increased. However, the decrease in throughput of substrate production can be suppressed.

次に、第2実施形態の基板用作業機器の基板高さ補正方法について、図10〜図12を参考にして、第1実施形態と異なる点を主に説明する。図10は、第2実施形態の基板用作業機器の基板高さ補正方法を説明するフローチャートの図である。図10のフローチャートを図3の第1実施形態のそれと比較すれば分かるように、第2実施形態では、理論点高さ算出ステップS3Aの前に代用点高さ測定ステップS6が追加されている。第2実施形態では、例えば、図4に例示される格子状の9点の測定点の設定を想定しても、実際には所望する位置に回路パターンが無く想定通りに測定点を設定できない場合の対応策として、代用点高さ測定ステップS6をさらに有している。   Next, the substrate height correction method for the substrate working apparatus of the second embodiment will be described mainly with respect to differences from the first embodiment with reference to FIGS. 10 to 12. FIG. 10 is a flowchart illustrating a substrate height correction method for the substrate working apparatus according to the second embodiment. As can be seen by comparing the flowchart of FIG. 10 with that of the first embodiment of FIG. 3, in the second embodiment, a substitute point height measurement step S6 is added before the theoretical point height calculation step S3A. In the second embodiment, for example, even if it is assumed that nine grid measurement points illustrated in FIG. 4 are set, there is actually no circuit pattern at a desired position and measurement points cannot be set as expected. As a countermeasure for this, a substitute point height measurement step S6 is further included.

代用点高さ測定ステップS6では、一直線に並んだ3つ目の測定点を設定できない場合に、代用点および3つの補助測定点を設定し、代用点の高さの代用測定値を求める。図11は、第2実施形態の代用点高さ測定ステップS6で行う演算処理内容を例示説明する図である。図11の具体例で、2つの測定点PA、PBを通る直線L4に着目したとき、並んだ3つ目の測定点が無い場合、まず、代用点PCを直線L4上に設定し、代用点PCの近傍の周りに3つの補助測定点Pa1、Pa2、Pa3を設定する。このとき、3つの補助測定点Pa1、Pa2、Pa3は、回路パターン上で高さ測定を行え、かつ代用点PCに近い位置に設定する。さらに、3つの補助測定点Pa1、Pa2、Pa3を頂点とする三角形の内部に代用点PCが含まれることが好ましい。   In the substitute point height measurement step S6, when the third measurement point arranged in a straight line cannot be set, a substitute point and three auxiliary measurement points are set, and a substitute measurement value of the height of the substitute point is obtained. FIG. 11 is a diagram illustrating the contents of the arithmetic processing performed in the substitute point height measurement step S6 of the second embodiment. In the specific example of FIG. 11, when paying attention to the straight line L4 passing through the two measurement points PA and PB, if there is no third measurement point arranged side by side, first, the substitute point PC is set on the straight line L4. Three auxiliary measurement points Pa1, Pa2, and Pa3 are set around the vicinity of the PC. At this time, the three auxiliary measurement points Pa1, Pa2, and Pa3 are set to positions that can perform height measurement on the circuit pattern and are close to the substitute point PC. Further, it is preferable that the substitute point PC is included inside a triangle having the three auxiliary measurement points Pa1, Pa2, and Pa3 as vertices.

次に、3つの補助測定点Pa1、Pa2、Pa3に対して、代用点PCからの距離が小さいほど大きな重み値を付与する。重み値は、例えば、距離の逆数の平方根に比例した値とすることができ、これに限定されない。一般的に、代用点PCに近い補助測定点ほど代用点PCの高さに接近する場合が多く、大きな重み値を付与することが妥当になる。3番目に、レーザー高さセンサ6により3つの補助測定点Ap1、Ap2、Ap3の高さの補助測定値を測定する。4番目に、各補助測定値に前述した重み値を乗算した後に加算して加重平均値を算出し、これを代用点PCの高さの代用測定値とする。   Next, a larger weight value is assigned to the three auxiliary measurement points Pa1, Pa2, and Pa3 as the distance from the substitute point PC is smaller. The weight value can be a value proportional to the square root of the reciprocal of the distance, for example, and is not limited to this. In general, auxiliary measurement points closer to the substitute point PC often approach the height of the substitute point PC in many cases, and it is appropriate to assign a large weight value. Third, the auxiliary measurement values of the heights of the three auxiliary measurement points Ap1, Ap2, and Ap3 are measured by the laser height sensor 6. Fourth, each auxiliary measurement value is multiplied by the above-described weight value and added to calculate a weighted average value, which is used as a substitute measurement value for the height of the substitute point PC.

次の理論点高さ算出ステップS3Aでは、代用点PCおよび代用測定値を、測定点PA、PBに並ぶ3つ目の測定点および測定値として扱う。以降の理論点繰返しステップS4および作業点高さ補正ステップS5の演算処理内容は、第1実施形態と同様である。なお、図11で、直線L4上の測定点PA、PBから遠く離れた遠方位置に別の測定点PXが仮に存在しても、断面形状を近似したときの誤差が増大するおそれがある。したがって、遠方位置の測定点PXを一直線上に並ぶ3つ目の測定点には採用しない。   In the next theoretical point height calculation step S3A, the substitute point PC and the substitute measurement value are handled as the third measurement point and the measurement value arranged in the measurement points PA and PB. Subsequent calculation processing contents of the theoretical point repetition step S4 and the work point height correction step S5 are the same as those in the first embodiment. In FIG. 11, even if another measurement point PX exists at a distant position far away from the measurement points PA and PB on the straight line L4, there is a possibility that an error when the cross-sectional shape is approximated increases. Therefore, the distant measurement point PX is not adopted as the third measurement point aligned on a straight line.

図12は、第2実施形態の代用点高さ測定ステップS6の応用形態を説明する図である。図12で、2つの測定点PD、PEを通る直線L5に着目したとき、並んだ3つ目の測定点が無い場合、まず、代用点PFを直線L5上に設定し、代用点PFの近傍の周りに2つの補助測定点Pa4、Pa5を設定する。そして、2つ目の測定点PEを3番目の補助測定点に兼用する。このとき、代用点PFの高さの代用測定値は、2つの補助測定点Pa4、Pa5の補助測定値および測定点PEの測定値の加重平均値により算出できる。   FIG. 12 is a diagram illustrating an application form of the substitute point height measurement step S6 of the second embodiment. In FIG. 12, when paying attention to the straight line L5 passing through the two measurement points PD and PE, when there is no third measurement point arranged, first, the substitute point PF is set on the straight line L5, and the vicinity of the substitute point PF. Two auxiliary measurement points Pa4 and Pa5 are set around. The second measurement point PE is also used as the third auxiliary measurement point. At this time, the substitute measurement value of the height of the substitute point PF can be calculated by the weighted average value of the auxiliary measurement values of the two auxiliary measurement points Pa4 and Pa5 and the measurement value of the measurement point PE.

第2実施形態の基板用作業機器の基板高さ補正方法およびその応用形態では、基板の構造上の制約、例えば高さ測定を行える回路パターンの配置の制約により一直線上に3つ目の測定点を設定できない場合であっても、高さ補正精度を向上できる。   In the substrate height correcting method and its application mode of the substrate working apparatus according to the second embodiment, the third measurement point on a straight line due to restrictions on the structure of the substrate, for example, restrictions on the arrangement of circuit patterns capable of measuring the height. Even if it cannot be set, height correction accuracy can be improved.

次に、第3実施形態の基板用作業機器の基板高さ補正方法について、図13および図14を参考にして、第1および第2実施形態と異なる点を主に説明する。第3実施形態は、一直線上に4点以上の測定点を設定して、基板の断面形状を2通り以上の滑らかな曲線で近似できるときの方法である。図13は、第3実施形態における測定点P11〜P22の配置の具体例を説明する基板K2の平面図である。また、図14は、第3実施形態の理論点高さ算出ステップで行う演算処理内容を例示説明する図である。図14中で、大きな矢印は測定点を示し、小さな矢印は理論点を示している。   Next, the substrate height correction method for the substrate working apparatus of the third embodiment will be described mainly with respect to differences from the first and second embodiments with reference to FIGS. 13 and 14. The third embodiment is a method in which four or more measurement points are set on a straight line, and the cross-sectional shape of the substrate can be approximated by two or more smooth curves. FIG. 13 is a plan view of the substrate K2 for explaining a specific example of the arrangement of the measurement points P11 to P22 in the third embodiment. FIG. 14 is a diagram illustrating the contents of arithmetic processing performed in the theoretical point height calculating step of the third embodiment. In FIG. 14, large arrows indicate measurement points, and small arrows indicate theoretical points.

図13に示されるように、12点の測定点P11〜P22は、矩形形状の基板K2上に3×4の格子状に設定されている。ここで、基板K2の長辺に平行な中央の直線L6上には、4点の測定点P15〜P18が並び、それぞれ高さの測定値が求められている。したがって、理論点高さ算出ステップS3で、図14中の左寄りの3測定点P15、P16、P17と、右寄りの3測定点P16、P17、P18とでそれぞれ、基板K3の断面形状を円弧C2、C3で近似できる。   As shown in FIG. 13, twelve measurement points P11 to P22 are set in a 3 × 4 lattice pattern on a rectangular substrate K2. Here, four measurement points P15 to P18 are arranged on the central straight line L6 parallel to the long side of the substrate K2, and the measurement values of the heights are respectively obtained. Therefore, in the theoretical point height calculating step S3, the cross-sectional shape of the substrate K3 is set to the arc C2, at the three left measurement points P15, P16, P17 and the three right measurement points P16, P17, P18 in FIG. It can be approximated by C3.

図14で、3測定点P15、P16、P17に基づいて、上反りを示す円弧C2が求められている。一方、3測定点P16、P17、P18に基づいて、下反りを示す円弧C3が求められている。測定点P15と測定点P16との中間点に設定された理論点QLについては、第1実施形態と同様に理論点QLが円弧C2上に存在するものとして高さの理論値を算出する。また、測定点P17と測定点P18との中間点に設定された理論点QNについても、円弧C3上に存在するものとして高さの理論値を算出する。   In FIG. 14, an arc C <b> 2 indicating an upward warp is obtained based on the three measurement points P <b> 15, P <b> 16 and P <b> 17. On the other hand, based on the three measurement points P16, P17, and P18, an arc C3 indicating a downward warp is obtained. For the theoretical point QL set at the intermediate point between the measurement point P15 and the measurement point P16, the theoretical value of the height is calculated assuming that the theoretical point QL exists on the arc C2 as in the first embodiment. Further, the theoretical value of the height is calculated assuming that the theoretical point QN set at the intermediate point between the measurement point P17 and the measurement point P18 is on the arc C3.

しかしながら、測定点P16と測定点P17との間については、基板K2の断面形状が2通りの円弧C2、C3で近似されており、かつ、2通りの円弧C2、C3が互いに一致していない。このとき、第3実施形態の理論点高さ算出ステップでは、測定点P16と測定点P17との間について2通りの円弧C2、C3の間を通る平均的な曲線C4を求める。そして、測定点P16と測定点P17との中間点に設定された理論点QMについて、平均的な曲線C4上に存在するものとして高さの理論値を算出する。   However, between the measurement point P16 and the measurement point P17, the cross-sectional shape of the substrate K2 is approximated by two arcs C2 and C3, and the two arcs C2 and C3 do not coincide with each other. At this time, in the theoretical point height calculation step of the third embodiment, an average curve C4 passing between the two arcs C2 and C3 is obtained between the measurement point P16 and the measurement point P17. Then, a theoretical value of height is calculated for the theoretical point QM set at the intermediate point between the measurement point P16 and the measurement point P17, assuming that the theoretical point QM exists on the average curve C4.

平均的な曲線C4は、上反りと下反りで不一致となった場合には、簡易な直線で近似してもよい。つまり、上述の例では、測定点P16と測定点P17との間を直線で近似してもよい。また、平均的な曲線C4は、2通りの円弧C2、C3の中間高さを通る曲線とすることもでき、その他の近似方法を用いてもよい。このように、上反りと下反りとが接合した境界領域であっても、理論点QMを設定して高さの理論値を算出できる。   The average curve C4 may be approximated by a simple straight line when there is a mismatch between the upper and lower warps. In other words, in the above example, the measurement point P16 and the measurement point P17 may be approximated by a straight line. Further, the average curve C4 can be a curve passing through the intermediate height of the two arcs C2 and C3, and other approximation methods may be used. Thus, even in the boundary region where the upper warp and the lower warp are joined, the theoretical value of the height can be calculated by setting the theoretical point QM.

また、特定の2つの測定点の間が2通りの上反りの円弧で近似され、あるいは2通りの下反りの円弧で近似され、かつ円弧の半径が互いに一致していない場合には、第3実施形態の理論点高さ算出ステップを応用できる。この場合、例えば、2通りの円弧の半径の平均半径を求めて平均的な曲線を得ることができる。   In addition, when the two measurement points are approximated by two upward-curved arcs, or approximated by two downward-curved arcs, and the radii of the arcs do not coincide with each other, the third The theoretical point height calculation step of the embodiment can be applied. In this case, for example, an average curve can be obtained by obtaining an average radius of two types of arc radii.

第3実施形態の基板用作業機器の基板高さ補正方法およびその応用では、特定の一直線上に4つ以上の測定点を設定して、単純な上反りや下反りよりも複雑な変形、例えば凹凸が接合するうねり状の変形などを精度よく近似できる。さらには、変形の様相が変化する領域、例えば上述した測定点P16と測定点P17の間のように凸変形領域から凹変形領域へと変化する途中の境界領域についても精度よく近似できる。   In the substrate height correcting method and its application of the substrate working device according to the third embodiment, four or more measurement points are set on a specific straight line, and the deformation is more complicated than a simple upper warp or lower warp, for example, It is possible to accurately approximate the undulation-like deformation that the unevenness joins. Furthermore, it is possible to accurately approximate a region where the deformation state changes, for example, a boundary region in the middle of changing from the convex deformation region to the concave deformation region, such as between the measurement point P16 and the measurement point P17 described above.

次に、第4実施形態の基板用作業機器の基板高さ補正方法について、図15〜図18を参考にして説明する。第4実施形態では、基板のロット生産を開始する以前に、測定点決定ステップS1で詳細なステップを踏んで測定点を決定する。基板をロット単位で量産するとき、同一ロット中の多数の基板は類似した変形状態を呈するのが一般的である。したがって、予め同一ロット中からサンプル基板を選出して変形状態の傾向を確認しておけば、測定点の点数および位置を適正化でき、かつ測定点数を絞り込んでも高さ補正精度を確保できると考えられる。第4実施形態の測定点決定ステップS1は、この考え方に基づいている。   Next, a substrate height correcting method for a substrate working apparatus according to the fourth embodiment will be described with reference to FIGS. In the fourth embodiment, before starting the lot production of the substrate, the measurement points are determined by taking detailed steps in the measurement point determination step S1. When a substrate is mass-produced in lot units, a large number of substrates in the same lot generally exhibit a similar deformation state. Therefore, if a sample substrate is selected from the same lot and the tendency of the deformation state is confirmed in advance, the number and position of the measurement points can be optimized, and height correction accuracy can be secured even if the number of measurement points is narrowed down. It is done. The measurement point determination step S1 of the fourth embodiment is based on this concept.

図15は、第4実施形態における測定点決定ステップS1の詳細を説明するフローチャートの図である。第4実施形態において、測定点決定ステップS1は、サンプル測定ステップS11、比較点算出ステップ、および妥当性判断ステップを含んでいる。図15のフローチャートで、ステップS12およびステップS13は比較点算出ステップに相当し、ステップS14〜ステップS18は妥当性判断ステップに相当している。   FIG. 15 is a flowchart illustrating the details of the measurement point determination step S1 in the fourth embodiment. In the fourth embodiment, the measurement point determination step S1 includes a sample measurement step S11, a comparison point calculation step, and a validity determination step. In the flowchart of FIG. 15, steps S12 and S13 correspond to comparison point calculation steps, and steps S14 to S18 correspond to validity determination steps.

サンプル測定ステップS11では、同一ロット中の多数の基板からサンプル基板を選出し、サンプル基板上の多数のサンプル測定点の高さであるサンプル測定値を測定する。このステップS11は、実測によりサンプル基板の変形状態を高精度で確認し、同一ロット中の基板の変形の傾向を把握することを目的としている。したがって、サンプル測定点の点数は、サンプル基板の変形状態を確実に確認できるだけの多数とすることが好ましい。サンプル測定点の位置は、特に限定されないが、以降の演算処理を簡略化するために格子状の配置とすることが好ましい。なお、測定自体は、部品実装機1のレーザー高さセンサ6を用いて実施することができ、部品実装機1の外部で別の高さ測定装置を用いて実施してもよい。   In the sample measurement step S11, a sample substrate is selected from a large number of substrates in the same lot, and sample measurement values that are the heights of a large number of sample measurement points on the sample substrate are measured. The purpose of this step S11 is to confirm the deformation state of the sample substrate with high accuracy by actual measurement and grasp the tendency of the deformation of the substrate in the same lot. Therefore, it is preferable that the number of sample measurement points is large enough to reliably confirm the deformation state of the sample substrate. The position of the sample measurement point is not particularly limited, but is preferably a grid-like arrangement in order to simplify subsequent calculation processing. Note that the measurement itself can be performed using the laser height sensor 6 of the component mounting machine 1, or may be performed using another height measuring device outside the component mounting machine 1.

図16は、第4実施形態で、サンプル測定ステップS11の測定結果を図式的に表示したサンプル基板KSの平面図である。図示される測定例では、矩形のサンプル基板KS上に5×5の格子状の25点のサンプル測定点が設定されている。各サンプル測定点のサンプル測定値は、値の大きさに応じ、記号分けして表示されている。具体的に、サンプル測定値の小さな値が白丸で表示され、サンプル測定値の中程度の値が二重丸で表示され、サンプル測定値の大きな値が黒丸で表示されている。つまり、白丸のサンプル測定点に対して二重丸のサンプル測定点は高く、黒丸のサンプル測定点はさらに高いことが表示されている。図16の測定例では、サンプル基板KSの短辺に平行する直線L7において、サンプル基板KSの断面形状が上反りであることが分かる。なお、部品実装機1に設けられたカラー方式の表示装置によりサンプル測定値を色分けして表示することもでき、あるいは、サンプル測定値の数値自体を一覧表示してもよい。   FIG. 16 is a plan view of the sample substrate KS schematically showing the measurement result of the sample measurement step S11 in the fourth embodiment. In the illustrated measurement example, 25 sample measurement points in a 5 × 5 grid are set on a rectangular sample substrate KS. The sample measurement value at each sample measurement point is displayed by being divided into symbols according to the magnitude of the value. Specifically, a small value of the sample measurement value is displayed as a white circle, a medium value of the sample measurement value is displayed as a double circle, and a large value of the sample measurement value is displayed as a black circle. That is, it is displayed that the double circle sample measurement point is higher than the white circle sample measurement point, and the black circle sample measurement point is higher. In the measurement example of FIG. 16, it can be seen that the cross-sectional shape of the sample substrate KS is warped in a straight line L7 parallel to the short side of the sample substrate KS. Note that the sample measurement values can be displayed in different colors on a color display device provided in the component mounting machine 1, or the numerical values of the sample measurement values themselves may be displayed as a list.

次のステップS12では、多数のサンプル測定点を基準点と比較点とに分けて、基準点を初期設定する。基準点は、仮決めであって固定されておらず、以降の演算処理で逐次変更されるものである。基準点の初期設定方法に特別な制約は無く、例えば、多数のサンプル測定点を一つ置きに選択する。   In the next step S12, a large number of sample measurement points are divided into reference points and comparison points, and the reference points are initialized. The reference points are provisional decisions and are not fixed, but are sequentially changed in the subsequent arithmetic processing. There is no particular restriction on the initial setting method of the reference points. For example, many sample measurement points are selected every other point.

図17は、第4実施形態で、多数のサンプル測定点を基準点と比較点とに分けた状態を図式的に表示したサンプル基板KSの平面図である。図示される具体例では、基準点は、25点のサンプル測定点の一つ置きに9点が選択され、当初の記号がそのまま表示されている。また、残りの16点は比較点とされ、白丸、二重丸、および黒丸はそれぞれ、白三角形、二重三角形、および黒三角形に変更表示されている。   FIG. 17 is a plan view of the sample substrate KS schematically showing a state in which a large number of sample measurement points are divided into reference points and comparison points in the fourth embodiment. In the illustrated example, nine reference points are selected for every other 25 sample measurement points, and the original symbols are displayed as they are. The remaining 16 points are used as comparison points, and white circles, double circles, and black circles are changed to white triangles, double triangles, and black triangles, respectively.

次のステップS13では、基準点のサンプル測定値を用いて比較点の高さの推定値を算出する。つまり、比較点の高さが未知であると仮定し、基準点のサンプル測定値のみを用いて比較点の高さを推定する。このとき、基板量産時に作業点の高さを推定して補正する方法と同じ演算処理方法を用いることが好ましい。第4実施形態では、基準点およびそのサンプル測定値を測定点および測定値とみなし、比較点およびその推定値を装着ポイントおよび補正値とみなして、第1実施形態の理論点高さ算出ステップS3、理論点設定繰返しステップS4、および作業点高さ補正ステップS5を行う。   In the next step S13, an estimated value of the height of the comparison point is calculated using the sample measurement value of the reference point. In other words, assuming that the height of the comparison point is unknown, the height of the comparison point is estimated using only the sample measurement value of the reference point. At this time, it is preferable to use the same arithmetic processing method as the method of estimating and correcting the height of the work point during the mass production of the substrate. In the fourth embodiment, the reference point and the sample measurement value thereof are regarded as the measurement point and the measurement value, the comparison point and the estimated value thereof are regarded as the attachment point and the correction value, and the theoretical point height calculation step S3 of the first embodiment is performed. Then, the theoretical point setting repetition step S4 and the working point height correction step S5 are performed.

次のステップS14では、比較点におけるサンプル測定値とステップS13で推定した推定値との相関性を把握する。具体的には、比較点におけるサンプル測定値から推定値を減算して差分値を求める。図18は、第4実施形態で、比較点における差分値を図式的に表示したサンプル基板KSの平面図である。図示される具体例では、基準点は白丸で表示され、比較点は四角形で表示されている。さらに、比較点を表示する四角形は、差分値の大小に対応して記号分けされている。なお、比較点の差分値は、色分けして表示することもでき、あるいは数値自体を一覧表示してもよい。   In the next step S14, the correlation between the sample measured value at the comparison point and the estimated value estimated in step S13 is grasped. Specifically, the difference value is obtained by subtracting the estimated value from the sample measurement value at the comparison point. FIG. 18 is a plan view of the sample substrate KS schematically showing the difference value at the comparison point in the fourth embodiment. In the illustrated example, the reference points are displayed as white circles, and the comparison points are displayed as squares. Furthermore, the quadrangle that displays the comparison points is divided into symbols corresponding to the magnitudes of the difference values. Note that the difference values of the comparison points can be displayed in different colors, or the numerical values themselves can be displayed as a list.

次のステップS15では、把握した相関性の妥当性を評価する。具体的には、差分値を所定の許容値と大小比較して判定する。所定の許容値は、基板の高さ誤差が部品実装の作業品質に影響を及ぼさない範囲を考慮し、マージンを見込んで設定する。一般的に、許容される基板の高さ誤差の限界は2mm程度ある。しかしながら、同一ロット中の多数の基板が類似した変形の傾向を示しても変形の絶対値は変化し、また、作業点の高さ補正で測定誤差や近似誤差が生じる。このため、所定の許容値は、2mmよりもかなり小さく設定することが好ましい。   In the next step S15, the validity of the grasped correlation is evaluated. Specifically, the difference value is determined by comparing with a predetermined allowable value. The predetermined allowable value is set in consideration of a margin in consideration of a range in which the board height error does not affect the work quality of component mounting. In general, the limit of the allowable substrate height error is about 2 mm. However, even if a large number of substrates in the same lot show a similar deformation tendency, the absolute value of the deformation changes, and a measurement error or an approximation error occurs due to the height correction of the work point. For this reason, it is preferable to set the predetermined allowable value considerably smaller than 2 mm.

ステップS15で、差分値が所定の許容値を超過したときに相関性が不足であると判断し、ステップS16に進む。ステップS16では、基準点を変更しまたは増加させてステップS13に戻る。   In step S15, it is determined that the correlation is insufficient when the difference value exceeds a predetermined allowable value, and the process proceeds to step S16. In step S16, the reference point is changed or increased, and the process returns to step S13.

図18に示される具体例で、白の四角形は差分値が許容値以内である妥当点を表示し、二重の四角形は差分値が許容値をわずかに超過した非妥当点を表示し、黒の四角形は差分値が許容値を大幅に超過した非妥当点を表示している。したがって、3点の非妥当点が存在することで相関性が不足であると判断され、ステップS16に進むことになる。そして、ステップS16で、非妥当点を無くすように基準点を変更または増加させて、ステップS13に戻る。   In the specific example shown in FIG. 18, a white square indicates a valid point where the difference value is within the allowable value, and a double square indicates an invalid point where the difference value slightly exceeds the allowable value. The squares in (2) indicate the invalid points where the difference value greatly exceeded the allowable value. Therefore, it is determined that the correlation is insufficient due to the presence of three invalid points, and the process proceeds to step S16. In step S16, the reference point is changed or increased so as to eliminate the invalid point, and the process returns to step S13.

また、ステップS15で、全ての差分値が許容値よりも大幅に下回ったときに相関性が過剰であると判断し、ステップS17に進む。ステップS17では、基準点を減少させてステップS13に戻る。そして、ステップS15で、全ての差分値が許容値を下回りかつ基準点を減らすことが難しいときに相関性が妥当であると判断し、ステップS18に進む。ステップS18では、相関性が妥当であると判断したときの基準点を測定点に決定して、測定点決定ステップS1を終了する。   In step S15, it is determined that the correlation is excessive when all the difference values are significantly lower than the allowable value, and the process proceeds to step S17. In step S17, the reference point is decreased and the process returns to step S13. In step S15, when all the difference values are below the allowable value and it is difficult to reduce the reference points, it is determined that the correlation is appropriate, and the process proceeds to step S18. In step S18, the reference point when it is determined that the correlation is appropriate is determined as the measurement point, and the measurement point determination step S1 is terminated.

ステップS15で判定に迷うときは、基準点の設定を変更してステップS13〜ステップS15を繰り返して行い、近似の相関性が妥当であるか否かを確実に判断する。非妥当点を無くす確実な方法は、当該のサンプル測定点を比較点から基準点に設定変更することである。しかしながら、基準点を増加させることは、測定点数を絞り込むという目標に反するので、できるだけ少ない基準点の設定で相関性が妥当となるように、或る程度の試行錯誤を繰り返すことが好ましい。   When the determination is lost in step S15, the setting of the reference point is changed and steps S13 to S15 are repeated to reliably determine whether or not the approximate correlation is appropriate. A reliable way to eliminate the invalid point is to change the sample measurement point from the comparison point to the reference point. However, increasing the reference points is contrary to the goal of narrowing down the number of measurement points. Therefore, it is preferable to repeat a certain amount of trial and error so that the correlation is appropriate with as few reference points as possible.

なお、所定の許容値を設定して差分値と比較する方法を採用することで、制御コンピュータによる自動演算処理を行えるが、これに限定されない。例えば、図16〜図18の表示に基づいて、作業者が相関性の妥当を判断してもよい。   It should be noted that automatic calculation processing by the control computer can be performed by adopting a method in which a predetermined allowable value is set and compared with the difference value, but is not limited thereto. For example, the operator may determine the validity of the correlation based on the displays of FIGS.

第4実施形態で、測定点決定ステップS1により測定点を決定した以降は、第1実施形態で説明した測定点高さ測定ステップS2から作業点高さ補正ステップS5までを実施する。これに限定されず、測定点決定ステップS1の次に、図9で説明した従来技術の高さ補正方法を実施することもできる。   In the fourth embodiment, after the measurement point is determined in the measurement point determination step S1, the process from the measurement point height measurement step S2 to the work point height correction step S5 described in the first embodiment is performed. The present invention is not limited to this, and the conventional height correction method described with reference to FIG. 9 can be performed after the measurement point determination step S1.

第4実施形態の基板用作業機器の基板高さ補正方法によれば、サンプル基板の変形状態を予め精度よく確認しておき、これを十分な精度で近似できるようにできるだけ少ない点数の測定点を決定する。したがって、同一ロット内で類似した変形の傾向を呈する多数の基板に対して、高さ測定点の点数を限定しつつ測定位置を適正化でき、基板の変形を十分な精度で近似できる。これにより、基板量産時の高さ測定点数を限定でき、基板生産のスループットが向上する。   According to the substrate height correction method of the substrate working apparatus of the fourth embodiment, the deformation state of the sample substrate is confirmed in advance with high accuracy, and as few measurement points as possible are approximated with sufficient accuracy. decide. Therefore, it is possible to optimize the measurement position while limiting the number of height measurement points for a large number of substrates exhibiting similar deformation tendencies within the same lot, and the deformation of the substrate can be approximated with sufficient accuracy. Thereby, the number of height measurement points at the time of substrate mass production can be limited, and the throughput of substrate production is improved.

さらに、比較点のサンプル測定値から推定値を減算した差分値の大きさに基づいて、サンプル基板の変形の近似の相関性が妥当であるか否かを客観的に判断するので、量産時の高さ測定点の点数および測定位置を確実に適正化できる。また、相関性の妥当の判断を自動化することができるので、作業者の手間が軽減される。   Furthermore, based on the magnitude of the difference value obtained by subtracting the estimated value from the sample measurement value at the comparison point, it is objectively determined whether or not the approximate correlation of the deformation of the sample substrate is appropriate. The number of height measurement points and the measurement position can be reliably optimized. In addition, since it is possible to automatically determine the appropriateness of the correlation, the labor of the operator is reduced.

加えて、比較点算出ステップで限られた基準点のサンプル測定値に基づいてサンプル基板の変形の近似を行うときに、基板量産時と同じ演算処理方法で比較点の推定値を算出する。これにより、測定点の妥当性判定を行うサンプル基板と量産時の多数の基板とで変形状態の近似方法が整合し、量産時の高さ測定点の点数を限定しても、基板の変形を確実に十分な精度で近似できる。   In addition, when the deformation of the sample substrate is approximated based on the sample measurement value of the reference point limited in the comparison point calculation step, the estimated value of the comparison point is calculated by the same arithmetic processing method as in the substrate mass production. As a result, the deformation method approximation method is consistent between the sample substrate for determining the validity of measurement points and many substrates at the time of mass production, and even if the number of height measurement points at the time of mass production is limited, the deformation of the substrate Can be approximated with sufficient accuracy.

また、妥当性判断ステップ(ステップS14〜S19)で、サンプル測定値、推定値、および差分値からなるデータ群のうち一種以上を、値の大きさに応じ色分けまたは記号分けして表示する。これにより、作業者が近似の相関性を判断する場合であっても、視覚的に容易に判定でき、煩雑で微妙な判定の手間が軽減される。   In addition, in the validity determination step (steps S14 to S19), one or more of the data group consisting of the sample measurement value, the estimated value, and the difference value is displayed by being color-coded or symbol-coded according to the magnitude of the value. Thereby, even when the operator determines the approximate correlation, the determination can be easily made visually, and the troublesome and delicate determination is reduced.

なお、サンプル測定ステップS11は、部品実装機1の外部で実施することもできる。さらに、測定点決定ステップS1中の詳細ステップS11〜S18を必ずしも部品実装機1の制御コンピュータで実行制御する必要は無く、別のコンピュータを用いてもよい。このとき、部品実装機1のレーザー高さセンサ6とは測定方式が異なる別の高さ測定装置を用いることもできる。また、基板生産ライン内の部品実装機1を用いずにオフラインで実施できるので、生産作業に影響を与えることがない。加えて、多数のサンプル測定点の測定に十分な時間をかけることで、サンプル基板の変形状態を極めて高精度に確認することができる。   The sample measurement step S11 can also be performed outside the component mounter 1. Furthermore, it is not always necessary to execute and control the detailed steps S11 to S18 in the measurement point determination step S1 by the control computer of the component mounting machine 1, and another computer may be used. At this time, another height measuring device having a different measurement method from the laser height sensor 6 of the component mounting machine 1 can be used. Moreover, since it can carry out offline without using the component mounting machine 1 in a board | substrate production line, it does not affect production work. In addition, the deformation state of the sample substrate can be confirmed with extremely high accuracy by taking a sufficient time to measure a large number of sample measurement points.

なお、各実施形態の作業点高さ補正ステップS5で、三角形領域を平面で近似する以外の補正方法を用いることもできる。この場合にも、理論点の高さの理論値を実測値と同様に扱うことで高さ補正精度を向上できる。また、高さ測定装置はレーザー高さセンサ6に限定されず、他の測定方式のセンサを用いてもよい。本発明は、その他にも様々な応用や変形が可能である。   In addition, in the work point height correction step S5 of each embodiment, a correction method other than approximating the triangular area with a plane can be used. Also in this case, the height correction accuracy can be improved by treating the theoretical value of the height of the theoretical point in the same manner as the actual measurement value. Further, the height measuring device is not limited to the laser height sensor 6, and a sensor of another measuring method may be used. Various other applications and modifications are possible for the present invention.

本発明の基板用作業機器の基板高さ補正方法は、部品実装機の部品実装作業に利用でき、部品実装機で基板に接着材を塗布する作業にも利用できる。さらに、本発明の基板用作業機器の基板高さ補正方法は、ディスペンサ装置やインクジェット装置を有する描画方式のはんだ印刷機で、基板にクリーム状はんだを滴下する作業や液状はんだを射出する作業に利用できる。   The board height correcting method for a board working device according to the present invention can be used for a component mounting work of a component mounting machine, and can also be used for a work of applying an adhesive to a board with the component mounting machine. Furthermore, the substrate height correction method of the substrate working apparatus according to the present invention is used for a drawing type solder printing machine having a dispenser device or an ink jet device and for dropping cream solder onto the substrate or injecting liquid solder. it can.

1:部品実装機(基板用作業機器)
2:基板搬送装置 3:部品供給装置 4:部品移載装置
5:部品カメラ 6:レーザー高さセンサ(高さ測定装置)
9:機台
L1:レーザー光 L2、L3:反射レーザー光
K、Ka、Kb、K1、K2、K9:基板 KS:サンプル基板
H0:基準高さ Ha、H1、H2、H3:高さ
P1〜P9、P11〜P22、PA、PB、PD、PE、PX:測定点
PC、PF:代用点 Pa1〜Pa5:補助測定点
Q12〜Q89、QL、QM、QN:理論点
L1〜L7:直線 C1〜C3:円弧 C4:平均的な曲線
W1、W2:実装ポイント(作業点) Δ1、Δ2:三角形領域
1: Component mounting machine (PCB work equipment)
2: substrate transfer device 3: component supply device 4: component transfer device 5: component camera 6: laser height sensor (height measurement device)
9: Machine stand L1: Laser light L2, L3: Reflected laser light K, Ka, Kb, K1, K2, K9: Substrate KS: Sample substrate H0: Reference height Ha, H1, H2, H3: Height P1 to P9 , P11 to P22, PA, PB, PD, PE, PX: measurement point PC, PF: substitute point Pa1 to Pa5: auxiliary measurement point Q12 to Q89, QL, QM, QN: theoretical points L1 to L7: straight lines C1 to C3 : Arc C4: Average curve W1, W2: Mounting point (working point) Δ1, Δ2: Triangle area

Claims (11)

基板用作業機器の基板保持装置により基板を水平姿勢に保持し、高さ測定装置により前記基板上の複数の測定点の高さの測定値を測定する測定点高さ測定ステップと、
一直線上に並んだ3つ以上の測定点に基づいて、前記基板の一直線方向の断面形状を滑らかな曲線で近似し、前記3つ以上の測定点の間に理論点を設定して、前記理論点の高さの理論値を前記滑らかな曲線を用いて算出する理論点高さ算出ステップと、
一直線上に並んだ3つ以上の測定点と理論点との組合せまたは一直線上に並んだ3つ以上の理論点に基づいて、前記基板の一直線方向の断面形状を滑らかな曲線で近似し、前記測定点と前記理論点との間または前記理論点同士の間に新たな理論点を設定して、前記新たな理論点の高さの理論値を前記滑らかな曲線を用いて算出し、所望する数量の理論点および理論値が得られるまで新たな理論点の設定および理論値の算出を繰り返す理論点設定繰返しステップと、
前記測定点の測定値および前記理論点の理論値を用いて、前記基板上の所望する作業点の高さの補正値を算出する作業点高さ補正ステップと、
を有する基板用作業機器の基板高さ補正方法。
A measurement point height measurement step of holding the substrate in a horizontal posture by the substrate holding device of the substrate working device, and measuring the measured values of the plurality of measurement points on the substrate by the height measurement device,
Based on three or more measurement points arranged on a straight line, the cross-sectional shape in a straight line direction of the substrate is approximated by a smooth curve, and a theoretical point is set between the three or more measurement points. A theoretical point height calculating step of calculating a theoretical value of the height of the point using the smooth curve;
Based on a combination of three or more measurement points and theoretical points arranged on a straight line or three or more theoretical points arranged on a straight line, the cross-sectional shape in a straight line direction of the substrate is approximated by a smooth curve, A new theoretical point is set between the measurement point and the theoretical point or between the theoretical points, and the theoretical value of the height of the new theoretical point is calculated using the smooth curve, and desired A theoretical point setting iteration step that repeats setting a new theoretical point and calculating a theoretical value until a theoretical point and a theoretical value of the quantity are obtained;
Using the measurement value of the measurement point and the theoretical value of the theoretical point, a work point height correction step for calculating a correction value for a desired work point height on the substrate;
A substrate height correcting method for a substrate working device having
基板用作業機器の基板保持装置により基板を水平姿勢に保持し、高さ測定装置により前記基板上の複数の測定点の高さの測定値を測定する測定点高さ測定ステップと、
一直線上に並んだ3つ以上の測定点に基づいて、前記基板の一直線方向の断面形状を滑らかな曲線で近似し、前記3つ以上の測定点の間に理論点を設定して、前記理論点の高さの理論値を前記滑らかな曲線を用いて算出する理論点高さ算出ステップと、
前記測定点の測定値および前記理論点の理論値を用いて、前記基板上の所望する作業点の高さの補正値を算出する作業点高さ補正ステップと、を有し、
特定の一直線に着目したとき並んだ3つ目の測定点が無い場合に前記理論点高さ算出ステップの前に、前記3つ目の測定点に代わる代用点を前記特定の一直線上に設定し、前記代用点の近傍の周りに3つの補助測定点を設定して前記代用点からの距離が小さいほど大きな重み値を付与し、前記高さ測定装置により前記3つの補助測定点の高さの補助測定値を測定し、各前記補助測定値に前記重み値を乗算した後に加算して算出した加重平均値を前記代用点の高さの代用測定値とする代用点高さ測定ステップをさらに有し、
前記理論点高さ算出ステップで、前記代用点および前記代用測定値を前記3つ目の測定点および測定値として扱う基板用作業機器の基板高さ補正方法。
A measurement point height measurement step of holding the substrate in a horizontal posture by the substrate holding device of the substrate working device, and measuring the measured values of the plurality of measurement points on the substrate by the height measurement device,
Based on three or more measurement points arranged on a straight line, the cross-sectional shape in a straight line direction of the substrate is approximated by a smooth curve, and a theoretical point is set between the three or more measurement points. A theoretical point height calculating step of calculating a theoretical value of the height of the point using the smooth curve;
Using a measurement value of the measurement point and a theoretical value of the theoretical point, a work point height correction step of calculating a correction value of a desired work point height on the substrate,
When there is no third measurement point arranged when focusing on a specific straight line, a substitute point to replace the third measurement point is set on the specific straight line before the theoretical point height calculation step. , Three auxiliary measurement points are set around the substitute point and a larger weight value is assigned as the distance from the substitute point is smaller, and the height measurement device determines the height of the three auxiliary measurement points. A substitute point height measurement step is further provided in which a weighted average value obtained by measuring auxiliary measurement values, multiplying each auxiliary measurement value by the weight value, and adding the weight values is used as a substitute measurement value of the substitute point height. And
A substrate height correction method for a substrate working apparatus that treats the substitute point and the substitute measurement value as the third measurement point and measurement value in the theoretical point height calculation step.
基板用作業機器の基板保持装置により基板を水平姿勢に保持し、高さ測定装置により前記基板上の複数の測定点の高さの測定値を測定する測定点高さ測定ステップと、
一直線上に並んだ3つ以上の測定点に基づいて、前記基板の一直線方向の断面形状を滑らかな曲線で近似し、前記3つ以上の測定点の間に理論点を設定して、前記理論点の高さの理論値を前記滑らかな曲線を用いて算出する理論点高さ算出ステップと、
前記測定点の測定値および前記理論点の理論値を用いて、前記基板上の所望する作業点の高さの補正値を算出する作業点高さ補正ステップと、を有し、
前記理論点高さ算出ステップで、
特定の一直線に着目したとき前記3つ以上の測定点の組合せが複数通りあって、特定の2つの測定点の間の断面形状を複数通りの滑らかな曲線で近似でき、かつ前記複数通りの滑らかな曲線が互いに一致しなかった場合に、前記複数通りの滑らかな曲線の間を通る平均的な曲線を求め、前記特定の2つの測定点の間の理論点の高さの理論値を前記平均的な曲線を用いて算出する基板用作業機器の基板高さ補正方法。
A measurement point height measurement step of holding the substrate in a horizontal posture by the substrate holding device of the substrate working device, and measuring the measured values of the plurality of measurement points on the substrate by the height measurement device,
Based on three or more measurement points arranged on a straight line, the cross-sectional shape in a straight line direction of the substrate is approximated by a smooth curve, and a theoretical point is set between the three or more measurement points. A theoretical point height calculating step of calculating a theoretical value of the height of the point using the smooth curve;
Using a measurement value of the measurement point and a theoretical value of the theoretical point, a work point height correction step of calculating a correction value of a desired work point height on the substrate,
In the theoretical point height calculating step,
When paying attention to a specific straight line, there are a plurality of combinations of the three or more measurement points, the cross-sectional shape between the two specific measurement points can be approximated by a plurality of smooth curves, and the plurality of smooth points An average curve passing between the plurality of smooth curves, and a theoretical value of a theoretical point height between the two specific measurement points is calculated as the average value. Substrate height correction method for a substrate working device, which is calculated using a typical curve.
基板用作業機器の基板保持装置により基板を水平姿勢に保持し、高さ測定装置により前記基板上の複数の測定点の高さの測定値を測定する測定点高さ測定ステップと、
一直線上に並んだ3つ以上の測定点に基づいて、前記基板の一直線方向の断面形状を滑らかな曲線で近似し、前記3つ以上の測定点の間に理論点を設定して、前記理論点の高さの理論値を前記滑らかな曲線を用いて算出する理論点高さ算出ステップと、
前記測定点の測定値および前記理論点の理論値を用いて、前記基板上の所望する作業点の高さの補正値を算出する作業点高さ補正ステップと、を有し、
前記測定点高さ測定ステップで、
前記基板保持装置により前記基板の特定箇所を基準高さに保持し、前記特定箇所に近い近傍点を前記測定点の一部に設定し、前記近傍点の高さの測定値は前記高さ測定装置による測定を行わずに前記基準高さとする基板用作業機器の基板高さ補正方法。
A measurement point height measurement step of holding the substrate in a horizontal posture by the substrate holding device of the substrate working device, and measuring the measured values of the plurality of measurement points on the substrate by the height measurement device,
Based on three or more measurement points arranged on a straight line, the cross-sectional shape in a straight line direction of the substrate is approximated by a smooth curve, and a theoretical point is set between the three or more measurement points. A theoretical point height calculating step of calculating a theoretical value of the height of the point using the smooth curve;
Using a measurement value of the measurement point and a theoretical value of the theoretical point, a work point height correction step of calculating a correction value of a desired work point height on the substrate,
In the measuring point height measuring step,
The substrate holding device holds the specific location of the substrate at a reference height, sets a nearby point close to the specific location as a part of the measurement point, and the measured value of the height of the nearby point is the height measurement. A method for correcting a substrate height of a work apparatus for a substrate, wherein the reference height is set without performing measurement by an apparatus.
請求項2において、前記測定点高さ測定ステップで、
前記基板保持装置により前記基板の特定箇所を基準高さに保持し、前記特定箇所に近い近傍点を前記補助測定点の一部に設定し、前記近傍点の高さの補助測定値は前記高さ測定装置による測定を行わずに前記基準高さとする基板用作業機器の基板高さ補正方法。
In claim 2 , in the measurement point height measurement step,
It said retaining certain portion of the substrate by the substrate holding device in reference height, set the neighbor point closer to the specific position in the part of the previous SL auxiliary measurement point, auxiliary measurements of the height of the neighboring points A method for correcting a substrate height of a substrate working apparatus that uses the reference height without performing measurement by the height measuring device.
基板用作業機器の基板保持装置により基板を水平姿勢に保持し、高さ測定装置により前記基板上の複数の測定点の高さの測定値を測定する測定点高さ測定ステップと、
一直線上に並んだ3つ以上の測定点に基づいて、前記基板の一直線方向の断面形状を滑らかな曲線で近似し、前記3つ以上の測定点の間に理論点を設定して、前記理論点の高さの理論値を前記滑らかな曲線を用いて算出する理論点高さ算出ステップと、
前記測定点の測定値および前記理論点の理論値を用いて、前記基板上の所望する作業点の高さの補正値を算出する作業点高さ補正ステップと、を有し、
記測定点高さ測定ステップにおける前記基板上の複数の測定点を予め決定しておく測定点決定ステップをさらに有し、前記測定点決定ステップは、
同一ロット中の多数の前記基板からサンプル基板を選出し、前記サンプル基板上の多数のサンプル測定点の高さであるサンプル測定値を測定するサンプル測定ステップと、
前記多数のサンプル測定点を基準点と比較点とに分け、前記基準点のサンプル測定値を用いて前記比較点の高さの推定値を算出する比較点算出ステップと、
前記比較点における前記サンプル測定値と前記推定値との相関性を比較し、前記相関性が不足であると判断したときに前記基準点を変更しまたは増加させて前記比較点算出ステップに戻り、前記相関性が過剰であると判断したときに前記基準点を減少させて前記比較点算出ステップに戻り、前記相関性が妥当であると判断したときに前記基準点を前記測定点に決定する妥当性判断ステップと、を含む基板用作業機器の基板高さ補正方法。
A measurement point height measurement step of holding the substrate in a horizontal posture by the substrate holding device of the substrate working device, and measuring the measured values of the plurality of measurement points on the substrate by the height measurement device,
Based on three or more measurement points arranged on a straight line, the cross-sectional shape in a straight line direction of the substrate is approximated by a smooth curve, and a theoretical point is set between the three or more measurement points. A theoretical point height calculating step of calculating a theoretical value of the height of the point using the smooth curve;
Using a measurement value of the measurement point and a theoretical value of the theoretical point, a work point height correction step of calculating a correction value of a desired work point height on the substrate,
Further comprising a plurality of pre-determined measurement points determined step advance a measurement point on the substrate before Symbol measurement point height measurement step, the measurement point determination step,
Elected sample substrate from a number of the substrate in the same lot, a sample measuring step of measuring the sample measurements is the height of the large number of samples measurement point on the sample substrate,
A comparison point calculating step of dividing the multiple sample measurement points into a reference point and a comparison point, and calculating an estimated value of the height of the comparison point using the sample measurement value of the reference point;
Compare the correlation between the sample measurement value and the estimated value at the comparison point, and when the correlation is determined to be insufficient, change or increase the reference point and return to the comparison point calculation step, When it is determined that the correlation is excessive, the reference point is decreased and the process returns to the comparison point calculation step. When the correlation is determined to be appropriate, the reference point is determined as the measurement point. A substrate height correction method for a substrate working device, comprising: a sex determination step.
請求項6において、前記妥当性判断ステップで、
各前記比較点の前記サンプル測定値から前記推定値を減算して差分値を求め、いずれかの差分値が所定の許容値を超過したときに前記相関性が不足であると判断し、全ての差分値が前記許容値よりも大幅に下回ったときに前記相関性が過剰であると判断し、前記全ての差分値が前記許容値を下回りかつ前記基準点を減らすことが難しいときに前記相関性が妥当であると判断する基板用作業機器の基板高さ補正方法。
In claim 6 , in the validity determination step,
Subtracting the estimated value from the sample measurement value at each comparison point to obtain a difference value, and determining that the correlation is insufficient when any difference value exceeds a predetermined allowable value, It is determined that the correlation is excessive when a difference value is significantly below the tolerance, and the correlation is when all the difference values are below the tolerance and it is difficult to reduce the reference point. The board height correction method of the board work equipment which judges that is appropriate.
請求項6または7において、前記比較点算出ステップで、前記基準点およびそのサンプル測定値を前記測定点および前記測定値とみなし、前記比較点および前記推定値を前記作業点および前記補正値とみなして、前記理論点高さ算出ステップおよび前記作業点高さ補正ステップを行う基板用作業機器の基板高さ補正方法。 8. The comparison point calculation step according to claim 6 , wherein the reference point and the sample measurement value thereof are regarded as the measurement point and the measurement value, and the comparison point and the estimated value are regarded as the working point and the correction value. Te, substrate height correction method of the working device substrate for performing the theoretical point height calculation step and the working point height correction step. 請求項6〜8のいずれか一項において、前記妥当性判断ステップで、前記サンプル測定値、前記推定値、および前記サンプル測定値から前記推定値を減算して求めた差分値の少なくとも一種からなるデータ群のうち一種以上を、値の大きさに応じ色分けまたは記号分けして表示する基板用作業機器の基板高さ補正方法。 In any one of Claims 6-8 , it consists of at least 1 type of the difference value calculated | required by subtracting the said estimated value from the said sample measured value, the said estimated value, and the said sample measured value in the said validity judgment step. A substrate height correction method for a substrate working device that displays one or more data groups in a color-coded or symbol-coded manner according to the magnitude of the value. 請求項1〜9のいずれか一項において、前記作業点高さ補正ステップで、前記測定点および前記理論点を頂点とする多数の三角形領域の組合せによって前記基板を分割し、かつ各前記三角形領域では前記基板が平面であると近似し、前記作業点が含まれる前記三角形領域を用いて前記作業点の高さの補正値を算出する基板用作業機器の基板高さ補正方法。 10. The substrate according to claim 1 , wherein in the working point height correction step, the substrate is divided by a combination of a large number of triangular regions having the measurement points and the theoretical points as vertices, and each of the triangular regions. in approximates the substrate is planar, substrate height correction method of a substrate for a working device for calculating a correction value of the height of the working point by using the triangular area in which the working point is included. 請求項1〜10のいずれか一項において、前記理論点高さ算出ステップで、一直線上に並んだ3つの測定点に基づいて、前記断面形状を円弧で近似する基板用作業機器の基板高さ補正方法。 The substrate height of the working apparatus for a substrate according to any one of claims 1 to 10 , wherein in the theoretical point height calculation step, the cross-sectional shape is approximated by an arc based on three measurement points arranged in a straight line. Correction method.
JP2014532632A 2012-08-29 2012-08-29 Substrate height correction method for substrate work equipment Active JP6124900B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/071853 WO2014033856A1 (en) 2012-08-29 2012-08-29 Method for correcting height of substrate for substrate working device

Publications (2)

Publication Number Publication Date
JPWO2014033856A1 JPWO2014033856A1 (en) 2016-08-08
JP6124900B2 true JP6124900B2 (en) 2017-05-10

Family

ID=50182706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014532632A Active JP6124900B2 (en) 2012-08-29 2012-08-29 Substrate height correction method for substrate work equipment

Country Status (2)

Country Link
JP (1) JP6124900B2 (en)
WO (1) WO2014033856A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220007558A1 (en) * 2018-11-21 2022-01-06 Fuji Corporation Component mounting device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6357187B2 (en) * 2016-03-31 2018-07-11 キヤノン株式会社 Conveying apparatus, lithographic apparatus, and article manufacturing method
EP3634099B1 (en) * 2017-05-24 2023-03-15 Fuji Corporation Measurement position determination device
CN111434202B (en) * 2017-12-07 2021-06-22 雅马哈发动机株式会社 Work device for mounted object
JP7417865B2 (en) * 2020-06-12 2024-01-19 パナソニックIpマネジメント株式会社 Component mounting equipment and component mounting method
JP7446169B2 (en) 2020-06-26 2024-03-08 キヤノントッキ株式会社 Substrate transfer device, substrate processing system, substrate transfer method, electronic device manufacturing method, program and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299597A (en) * 1999-04-12 2000-10-24 Sony Corp Apparatus and method for mounting component
JP2005030793A (en) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd Substrate inspection device and inspection method
JP2006019469A (en) * 2004-07-01 2006-01-19 Hitachi Communication Technologies Ltd Method and apparatus of packaging electronic part
CN101317502B (en) * 2005-11-29 2011-02-16 松下电器产业株式会社 Working device and working method for circuit board
JP2007266334A (en) * 2006-03-29 2007-10-11 Hitachi High-Tech Instruments Co Ltd Electronic component mounting method and apparatus
JP5387540B2 (en) * 2010-10-27 2014-01-15 パナソニック株式会社 Electronic component mounting apparatus and work execution method for electronic component mounting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220007558A1 (en) * 2018-11-21 2022-01-06 Fuji Corporation Component mounting device
US11653485B2 (en) * 2018-11-21 2023-05-16 Fuji Corporation Component mounting device

Also Published As

Publication number Publication date
WO2014033856A1 (en) 2014-03-06
JPWO2014033856A1 (en) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6124900B2 (en) Substrate height correction method for substrate work equipment
KR101268230B1 (en) Working device and working method for circuit board
KR102108664B1 (en) Method for dispensing viscous material on an electronic substrate
US8156642B2 (en) Component mounting method
EP1671525B1 (en) Component mounting method and apparatus
JP6012742B2 (en) Work equipment
WO2012056617A1 (en) Electronic-parts mounting apparatus, and method of executing electronic-parts mounting work
KR20100130204A (en) Method and apparatus for dispensing material on a substrate
JP2012173504A (en) Coating method and coating apparatus
US20160150689A1 (en) Component holding state detection method and component mounting machine
JP2013080746A (en) Measuring method for electronic component mounting device
JP6439138B2 (en) Electronic component mounting system
JP2008277770A (en) Component mounting method
JP2008277772A (en) Method of manufacturing substrate
JP2005353750A (en) Maintenance and management apparatus for electronic component mounting apparatus
EP3322272B1 (en) Component mounting machine and component mounting assembly line
JP7319264B2 (en) Control method, electronic component mounting device
JPWO2019049278A1 (en) Screen printing machine
WO2023286245A1 (en) Production support system and production support method
JP4989199B2 (en) Electronic component mounting device
JP7142092B2 (en) Template making device and component mounting machine
JP6851292B2 (en) Component mounting accuracy measurement system and component mounting accuracy measurement method for component mounting machines
JPH04345445A (en) Error detecting device for feeder on printed board work device
JP6271580B2 (en) Inspection device
JP2006187736A (en) Paste coating machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170404

R150 Certificate of patent or registration of utility model

Ref document number: 6124900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250