JP6119998B2 - Electrostatic coating method and electrostatic coating device - Google Patents

Electrostatic coating method and electrostatic coating device Download PDF

Info

Publication number
JP6119998B2
JP6119998B2 JP2013238385A JP2013238385A JP6119998B2 JP 6119998 B2 JP6119998 B2 JP 6119998B2 JP 2013238385 A JP2013238385 A JP 2013238385A JP 2013238385 A JP2013238385 A JP 2013238385A JP 6119998 B2 JP6119998 B2 JP 6119998B2
Authority
JP
Japan
Prior art keywords
nozzle
needle
tip
liquid
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013238385A
Other languages
Japanese (ja)
Other versions
JP2015097985A (en
Inventor
航太 中平
航太 中平
晃宏 堀川
晃宏 堀川
俊文 名木野
俊文 名木野
修三 土田
修三 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013238385A priority Critical patent/JP6119998B2/en
Priority to TW103139556A priority patent/TWI569883B/en
Priority to KR1020140159864A priority patent/KR101735893B1/en
Priority to CN201410658869.5A priority patent/CN104646249B/en
Publication of JP2015097985A publication Critical patent/JP2015097985A/en
Application granted granted Critical
Publication of JP6119998B2 publication Critical patent/JP6119998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/06Ink jet characterised by the jet generation process generating single droplets or particles on demand by electric or magnetic field
    • B41J2/065Ink jet characterised by the jet generation process generating single droplets or particles on demand by electric or magnetic field involving the preliminary making of ink protuberances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • B05B5/10Arrangements for supplying power, e.g. charging power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • B05D1/265Extrusion coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/06Ink jet characterised by the jet generation process generating single droplets or particles on demand by electric or magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/06Ink jet characterised by the jet generation process generating single droplets or particles on demand by electric or magnetic field
    • B41J2002/061Ejection by electric field of ink or of toner particles contained in ink

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Description

本発明は、ノズル先端から様々な液体を電気的な力で細く引き伸ばし、基材上に微細なパターンを形成する静電塗布方法に関するものである。   The present invention relates to an electrostatic coating method in which various liquids are stretched thinly from an end of a nozzle with an electric force to form a fine pattern on a substrate.

従来から、微少な液滴を形成して、基板上に微細なパターンを塗布する方法として、例えば特許文献1に記載のような、静電吸引を利用する方法が知られている。
図12は特許文献1の方法を示している。
2. Description of the Related Art Conventionally, as a method for forming fine droplets and applying a fine pattern on a substrate, a method using electrostatic attraction as described in Patent Document 1, for example, is known.
FIG. 12 shows the method of Patent Document 1.

この方法は、ノズル2を塗布対象物4の表面に対向させて配置し、塗布対象物4とノズル2との間に電源部30からパルス電圧を印加して、ノズル先端3の液体1を静電気力によって塗布対象物4側に吸引して、液滴31を塗布対象物4に滴下している。   In this method, the nozzle 2 is disposed so as to face the surface of the application object 4, and a pulse voltage is applied between the application object 4 and the nozzle 2 from the power supply unit 30 to electrostatically discharge the liquid 1 at the nozzle tip 3. The droplet 31 is dropped on the coating object 4 by being sucked by the force toward the coating object 4 side.

特許文献2は塗布対象物への塗布ではないが、ニードルを利用して、均一な粒径を有する微小液滴を溶液中に吐出する方法も知られている。特許文献2では特許文献1のような静電力は使用されていない。   Although patent document 2 is not application | coating to an application | coating target object, the method of discharging the micro droplet which has a uniform particle size in a solution using a needle is also known. In patent document 2, the electrostatic force like patent document 1 is not used.

特開2001−038911号公報JP 2001-038911 A 特開2006−320795号公報JP 2006-320795 A

特許文献2の技術を利用してニードルの先端に付着した溶液を塗布対象物へ塗布しようとした場合には次のようになる。
図13(a)に示すように、ノズル2内に配置されたニードル32が、図13(b)に示すように、先端がノズル先端3から突き出すまで下降する。その際、ニードル32の先端には、ノズル2内の液体1の液滴33が微少量付着した状態になる。その後、図13(c)に示すようにニードル32は先端に付着した液滴33が塗布対象物4に接触するまで下降させる。これにより、ニードル32の先端に付着した液滴33を塗布対象物4に塗布できる。
When the solution attached to the tip of the needle is applied to the application object using the technique of Patent Document 2, the following occurs.
As shown in FIG. 13A, the needle 32 disposed in the nozzle 2 is lowered until the tip protrudes from the nozzle tip 3 as shown in FIG. 13B. At this time, a very small amount of the liquid 1 droplet 33 in the nozzle 2 is attached to the tip of the needle 32. Thereafter, as shown in FIG. 13C, the needle 32 is lowered until the droplet 33 attached to the tip contacts the application target 4. Thereby, the droplet 33 attached to the tip of the needle 32 can be applied to the application target 4.

しかしながら、従来法である図12および考えられる図13に示す方法では、塗布対象物4の表面に微細な直線パターンを塗布によって形成する場合には、その塗布結果のエッジの直線性が悪く、パターン幅が均一な塗布を実現できないという問題がある。   However, in the conventional method shown in FIG. 12 and the conceivable method shown in FIG. 13, when a fine linear pattern is formed on the surface of the coating object 4 by coating, the edge linearity of the coating result is poor, and the pattern There is a problem that uniform application of the width cannot be realized.

この場合の塗布状態を、図14に示す。
図14(a)は、微少液滴を連続的に塗布した直後の状態を示す。この塗布された液滴の乾燥が完了した状態を図14(b)に示す。このように、塗布後の乾燥段階で隣り合う液滴同士のレベリングが進行するものの、液滴として塗布した跡が残るため、エッジの直線性を得ることは困難になる。これは、吐出された微少液滴は表面積が広く、ノズル2から吐出されて塗布対象物4に到達する前に乾燥が促進されるため、塗布対象物4に到達後のレベリングが困難となるためである。
The application state in this case is shown in FIG.
FIG. 14A shows a state immediately after the minute droplets are continuously applied. FIG. 14B shows a state where drying of the applied droplets is completed. Thus, although the leveling of adjacent droplets progresses in the drying stage after coating, since traces applied as droplets remain, it becomes difficult to obtain edge linearity. This is because the discharged fine droplets have a large surface area, and drying is promoted before reaching the application target 4 after being discharged from the nozzle 2, so that it becomes difficult to level after reaching the application target 4. It is.

このようなことから、エッジの直線性が高く、パターン幅の均一な塗布を実現するには、液滴を繋ぎ合わせるのではなく、液滴を途切れさせることなく連続的に塗布することが望ましいと考えられる。   For this reason, in order to achieve a high edge linearity and uniform pattern width application, it is desirable to apply the liquid continuously without interrupting the liquid droplets, rather than joining the liquid droplets together. Conceivable.

そこで、静電気力で液滴吸引する原理を利用しつつ図15に示すようなノズル2の先端に液溜り34を形成して、塗布対象物4の表面に液体1を連続的に塗布することが考えられるが、液溜り34による連続的な塗布をする際には、静電力による液溜り34の伸縮を伴う塗布の始終端形成に時間を要するため、タクトタイムが増加すると共に、塗布状態が乱れやすいという問題がある。   Therefore, a liquid reservoir 34 is formed at the tip of the nozzle 2 as shown in FIG. 15 while utilizing the principle of sucking droplets by electrostatic force, and the liquid 1 can be continuously applied to the surface of the application target 4. Although it is conceivable, when continuous application is performed by the liquid reservoir 34, it takes time to form the start and end of the application accompanying expansion and contraction of the liquid reservoir 34 due to electrostatic force, so that the tact time is increased and the application state is disturbed. There is a problem that it is easy.

液溜り8による液体1の連続的な塗布を行う場合の、塗布始端における液溜り34の形成状態を、図16(a)〜(d)に示す。
図16(a)は液体1を入れたノズル2への電圧印加前の状態を示す。
FIGS. 16A to 16D show the formation state of the liquid reservoir 34 at the application start end when the liquid 1 is continuously applied by the liquid reservoir 8.
FIG. 16A shows a state before voltage application to the nozzle 2 containing the liquid 1.

次ぎに、ノズル2と塗布対象物4の間に電圧を印加すると図16(b)(c)のように、静電気力によって液溜り34が塗布対象物4の側へ伸び、図16(c)のように塗布対象物4へ到達前の不安定な液溜り34の状態を経て、最終的に図16(d)のように液溜り34が塗布対象物4へ到達する。   Next, when a voltage is applied between the nozzle 2 and the coating object 4, as shown in FIGS. 16 (b) and 16 (c), the liquid reservoir 34 extends toward the coating object 4 by electrostatic force, and FIG. 16 (c). As shown in FIG. 16D, the liquid pool 34 finally reaches the coating target 4 as shown in FIG. 16D after passing through the unstable liquid pool 34 before reaching the coating target 4.

このような静電気力による吸引では、図16(c)の不安定な状態から図16(d)の安定な状態への移行に時間を要するため、塗布するためのノズル2と塗布対象物4との相対的な移動を開始するタイミング制御が非常に難しくなると共に、液溜り34が塗布対象物4に到達する位置が狙いと異なるということが生じる。その結果、図17(a)に示すように塗布始端に必要以上の量の液体1を塗布してしまい、線幅に太り35が生じてしまったり、逆に図17(b)に示すように液体1の塗布量が不足し途切れ36が生じるという問題がある。   In such suction by electrostatic force, since it takes time to shift from the unstable state of FIG. 16C to the stable state of FIG. 16D, the nozzle 2 for coating and the coating object 4 It becomes very difficult to control the timing of starting the relative movement of the liquid and the position at which the liquid reservoir 34 reaches the application target 4 is different from the target. As a result, as shown in FIG. 17 (a), an excessive amount of the liquid 1 is applied to the application start end, resulting in a thickening 35 in the line width, and conversely as shown in FIG. 17 (b). There is a problem that the application amount of the liquid 1 is insufficient and a break 36 occurs.

図18(a)〜(d)は、塗布終端における液溜り34の縮小状態を示す。
このように、液体1を入れたノズル2への電圧印加停止前(図18(a))に対して、電圧印加停止の直後(図18(b))においても液溜り34が保持する残留電荷の影響により、すぐには塗布対象物4から切り離されず、不安定に保持されるという状態を経て、最終的に液溜り34は図18(c)(d)のように切り離される。
FIGS. 18A to 18D show a reduced state of the liquid reservoir 34 at the application end.
As described above, the residual charge held by the liquid reservoir 34 immediately after the voltage application is stopped (FIG. 18B) as compared to before the voltage application is stopped to the nozzle 2 containing the liquid 1 (FIG. 18A). Under the influence of the above, the liquid reservoir 34 is finally separated as shown in FIGS. 18C and 18D through a state where it is not immediately separated from the application object 4 but is held unstable.

このような静電気力による吸引では、電圧の印加を停止した後も、図18(b)の不安定な状態が続くため、塗布を終了するためのノズル2と塗布対象物4との相対的な移動を停止するタイミング制御が非常に難しくなると共に、液溜り34が塗布対象物4と切り離される位置が狙いと異なるということが生じていた。その結果、図19(a)に示すように、塗布終端に必要以上の液体1を塗布してしまい、線幅に太り35が生じてしまったり、逆に、図19(b)に示すように液体1の塗布量が不足して途切れ36が生じるという問題がある。   In such suction by electrostatic force, since the unstable state of FIG. 18B continues even after the application of voltage is stopped, the relative relationship between the nozzle 2 and the application object 4 for finishing the application is continued. The timing control for stopping the movement becomes very difficult, and the position at which the liquid reservoir 34 is separated from the application target 4 is different from the target. As a result, as shown in FIG. 19 (a), an excessive amount of liquid 1 is applied to the end of application, resulting in a thickening 35 in the line width, and conversely, as shown in FIG. 19 (b). There is a problem in that the application amount of the liquid 1 is insufficient and a break 36 occurs.

本発明は、始終端形成に時間を要することなく、かつ形状の乱れがなく、エッジの直線性が高く、パターン幅の均一な塗布を実現する静電塗布方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an electrostatic coating method that does not require time for formation of the start and end points, does not disturb the shape, has high edge linearity, and realizes uniform pattern width coating.

本発明の静電塗布方法は、液体が収容されたノズルのノズル先端を塗布対象物に対向させて配置し、前記液体と前記塗布対象物の間に塗布時に電位差を印加して前記ノズル先端に前記塗布対象物の側に向かって伸びる液溜まりを形成するとともに、前記塗布時に、前記ノズルの中に配置されたニードルの先端を後退した位置から前進した位置に移動して前記ニードルの先端を前記液溜まりに突出させて、前記液溜まりの先端を前記塗布対象物に接触させて、前記液溜まりの先端を前記塗布対象物に接触させた後、前記ニードルの先端を前記ノズルから突出させた状態で前記塗布対象物と前記ノズルを水平方向に相対的に移動し、前記塗布対象物に前記液体を連続的に塗布することを特徴とする。 In the electrostatic coating method of the present invention, a nozzle tip of a nozzle containing a liquid is disposed so as to face an object to be coated, and a potential difference is applied between the liquid and the object to be coated at the time of coating to the nozzle tip. A liquid reservoir extending toward the application object side is formed, and at the time of application, the tip of the needle disposed in the nozzle is moved from the retracted position to the advanced position to move the tip of the needle A state in which the tip of the liquid pool is brought into contact with the object to be coated, the tip of the liquid pool is brought into contact with the object to be coated, and then the tip of the needle is projected from the nozzle. the object to be coated and the nozzle is relatively moved in the horizontal direction, it characterized that you continuously applying the liquid to the object to be coated in.

本発明の静電塗布装置は、ノズル内の液体と塗布対象物の間に電位差を印加することで前記液体を前記ノズルから引き出して塗布対象物に塗布する静電塗布装置であって、前記液体と前記塗布対象物間に所定の電圧を印加する電源部と、前記ノズルの中で上下運動可能なニードルと、前記ニードルを上下駆動するニードル駆動部と、塗布時に、前記ノズル先端に前記塗布対象物の側に向かって伸びる前記液体の液溜まりを形成するように前記電源部を制御するとともに、前記ニードルの先端を後退した位置から前進した位置に移動して前記ニードルの先端を前記液溜まりに突出させるように前記ニードル駆動部を運転して、前記液溜まりの先端を前記塗布対象物に接触させた後、前記ニードルの先端を前記ノズルから突出させた状態で前記塗布対象物と前記ノズルを水平方向に相対的に移動し、前記塗布対象物に前記液体を連続的に塗布する制御部とを有することを特徴とする。 The electrostatic coating apparatus of the present invention is an electrostatic coating apparatus that applies a potential difference between a liquid in a nozzle and an application target to draw the liquid from the nozzle and apply the liquid to the application target. And a power supply unit that applies a predetermined voltage between the application target, a needle that can move up and down in the nozzle, a needle drive unit that drives the needle up and down, and the application target at the tip of the nozzle during application The power supply unit is controlled so as to form a liquid pool of liquid that extends toward the object side, and the tip of the needle is moved from the retracted position to the advanced position so that the tip of the needle becomes the liquid pool. driving the needle driving unit so as to protrude, after the leading end of the liquid reservoir is brought into contact with the object to be coated, the coating of the tip of the needle in a state of protruding from the nozzle Relatively moving the nozzle and the object in the horizontal direction, and having a said coating you continuously applying the liquid to the object control unit.

本発明の静電塗布方法によれば、電位差を印加してノズル先端に塗布対象物の側に向かって伸びる液溜まりを形成するとともに、ノズルの中に配置されたニードルの先端を液溜まりに突出させて、液溜まりの先端を塗布対象物に接触させるので、ノズル先端の液溜りの応答性を高めることができ、塗布の始終端における乱れを防止することができると共に、タクトタイムの短縮を実現できる。更に、連続的に液体を塗布できるため、直線性の高いパターンを精密に形成することができる。   According to the electrostatic coating method of the present invention, a potential difference is applied to form a liquid reservoir extending toward the object to be coated at the tip of the nozzle, and the tip of a needle disposed in the nozzle projects into the liquid reservoir. Since the tip of the liquid reservoir is brought into contact with the object to be applied, the responsiveness of the liquid reservoir at the nozzle tip can be improved, disturbance at the start and end of application can be prevented, and the tact time can be shortened. it can. Furthermore, since a liquid can be continuously applied, a highly linear pattern can be formed accurately.

本発明の実施の形態における静電塗布装置の概略図Schematic of an electrostatic coating apparatus in an embodiment of the present invention (a)〜(c)は同実施の形態における塗布始端における塗布フロー図(A)-(c) is the application | coating flow figure in the application | coating start end in the embodiment (a)〜(c)は同実施の形態における塗布終端における塗布フロー図(A)-(c) The application | coating flow figure in the application | coating termination | terminus in the embodiment 同実施の形態における静電塗布装置のノズル先端の条件1の場合の拡大断面図The expanded sectional view in the case of condition 1 of the nozzle tip of the electrostatic coating device in the embodiment 条件1におけるニードルの接触角θ1〜θ3を示す拡大図Enlarged view showing needle contact angles θ1 to θ3 in condition 1 本発明の条件1〜条件8の塗布結果の説明図Explanatory drawing of the application result of Condition 1 to Condition 8 of the present invention 同実施の形態における静電塗布装置のノズル先端の条件3の場合の拡大断面図The expanded sectional view in the case of condition 3 of the nozzle tip of the electrostatic coating device in the embodiment 条件3におけるニードルの接触角θ4、θ5を示す拡大図Enlarged view showing needle contact angles θ4 and θ5 under condition 3 同実施の形態における静電塗布装置のノズル先端の条件5の場合の拡大断面図The expanded sectional view in the case of condition 5 of the nozzle tip of the electrostatic coating device in the embodiment 同実施の形態における静電塗布装置のノズル先端の条件7の場合の拡大断面図The expanded sectional view in the case of condition 7 of the nozzle tip of the electrostatic coating device in the embodiment 条件7の場合のニードルの接触角θ6、θ7を示す拡大図Enlarged view showing needle contact angles θ6 and θ7 under condition 7 パルス電圧による静電吸引による特許文献1の説明図Explanatory drawing of patent document 1 by electrostatic attraction by pulse voltage (a)〜(c)は特許文献2を参考にした場合の塗布フロー図(A) to (c) are application flow charts in reference to Patent Document 2. (a)(b)は図13の塗布フローで塗布した場合の問題点の説明図(A) (b) is explanatory drawing of the problem at the time of apply | coating with the application | coating flow of FIG. 特許文献1による静電気力で伸ばした液溜りによる連続的な塗布状態の図The figure of the continuous application state by the liquid pool extended by the electrostatic force by patent document 1 (a)〜(d)は特許文献1の液溜りによる塗布始端における液溜り形成状態の図(A)-(d) is a figure of the liquid pool formation state in the application start end by the liquid pool of patent document 1 (a)(b)は特許文献1による塗布始端における塗布不良の平面図(A) (b) is a top view of application failure by the application start end by patent documents 1 (a)〜(d)は特許文献1による塗布終端における液溜り形成状態の図(A)-(d) is the figure of the liquid pool formation state in the application | coating termination | terminus by patent document 1. FIG. (a)(b)は特許文献1による塗布終端における塗布不良の平面図(A) (b) is a top view of application failure in application termination by patent documents 1

以下、本発明の静電塗布方法を、実施の形態の静電塗布装置に基づいて説明する。
図1〜図3は本発明の静電塗布方法を実現する静電塗布装置を示す。
図1において静電塗布装置は次のように構成されている。
Hereinafter, the electrostatic coating method of the present invention will be described based on the electrostatic coating apparatus of the embodiment.
1 to 3 show an electrostatic coating apparatus for realizing the electrostatic coating method of the present invention.
In FIG. 1, the electrostatic coating apparatus is configured as follows.

液体1を入れたノズル2は、ノズル先端3を塗布対象物4に対向して配置されている。液体1と塗布対象物4の間には、電源部5によって電圧が印加されている。ノズル2の内部には、上下移動可能なニードル6が配置されている。ノズル2の内部には液体供給部7から液体1が供給されている。   The nozzle 2 containing the liquid 1 is disposed with the nozzle tip 3 facing the application target 4. A voltage is applied between the liquid 1 and the application object 4 by the power supply unit 5. Inside the nozzle 2, a needle 6 that can move up and down is arranged. The liquid 1 is supplied from the liquid supply unit 7 into the nozzle 2.

なお、絶縁材料で形成されたノズル2を使用する場合には、ノズル2を介して電圧を印加できないため、ノズル2の内部の液体1に接触する電極板8を設け、電極板8を介して電源部5から電圧が印加されている。ノズル2を導電材料で形成した場合には、ノズル2を介して電圧を印加することができるので、電極板8は無くてもよい。   In addition, when using the nozzle 2 formed of an insulating material, since a voltage cannot be applied through the nozzle 2, an electrode plate 8 that contacts the liquid 1 inside the nozzle 2 is provided, and the electrode plate 8 A voltage is applied from the power supply unit 5. When the nozzle 2 is formed of a conductive material, a voltage can be applied through the nozzle 2, so that the electrode plate 8 may be omitted.

ノズル2は、ノズル駆動部9によって保持されて塗布対象物4に対する上下位置の移動制御が行われる。
ニードル6は、ニードル駆動部10によって保持されて上下位置が制御されている。
The nozzle 2 is held by the nozzle drive unit 9 and the movement control of the vertical position with respect to the application target 4 is performed.
The needle 6 is held by the needle drive unit 10 and its vertical position is controlled.

ステージ11は、塗布対象物4を吸着保持するとともに、塗布時に塗布対象物4を水平方向に移動させるステージ駆動部12により位置制御されている。
塗布対象物4とノズル2に収容されている液体1との間には、電源部5によって電圧が印加されている。ノズル駆動部9、ニードル駆動部10、ステージ駆動部12は、制御部13によって運転が制御されている。
The stage 11 is position-controlled by a stage drive unit 12 that holds the application object 4 by suction and moves the application object 4 in the horizontal direction during application.
A voltage is applied between the application object 4 and the liquid 1 contained in the nozzle 2 by the power supply unit 5. The operation of the nozzle drive unit 9, the needle drive unit 10, and the stage drive unit 12 is controlled by the control unit 13.

なお、塗布時にノズル2と塗布対象物4を水平方向に相対的に移動させるためにステージ駆動部12を設けたが、ノズル2を水平方向に移動させるノズル水平駆動部(図示せず)と、ステージ駆動部12のうちの少なくとも一方を設けて、ノズル2と塗布対象物4を塗布時に水平方向に相対的に移動させることもできる。   The stage driving unit 12 is provided to relatively move the nozzle 2 and the coating object 4 in the horizontal direction during application, but a nozzle horizontal driving unit (not shown) that moves the nozzle 2 in the horizontal direction; It is also possible to provide at least one of the stage driving units 12 and relatively move the nozzle 2 and the coating object 4 in the horizontal direction during coating.

図2(a)〜(c)は塗布始端での塗布フロー図を示す。図2(a)は塗布始端での電圧印加前、図2(b)は塗布始端での電圧印加直後、図2(c)は塗布始端での液体の塗布対象物到達時を示す。図3(a)は塗布終端での定常塗布時、図3(b)は塗布終端でのニードル上昇途中、図3(c)は塗布終端でのニードル移動完了時を示す。   2A to 2C show application flow diagrams at the application start end. 2A shows a state before voltage application at the coating start end, FIG. 2B shows a state immediately after voltage application at the coating start end, and FIG. 2C shows a time when the liquid reaches the coating target at the coating start end. FIG. 3A shows a steady application at the application end, FIG. 3B shows the needle rising at the application end, and FIG. 3C shows a completion of needle movement at the application end.

この塗布フローに基づいて説明する。
図2(a)では、ステージ11上に塗布対象物4を載置し、塗布開始位置にノズル2を位置合わせする。このときニードル6の先端は、ノズル先端3よりもノズル2の内部に位置するようにニードル駆動部10によって位置制御されている。
This will be described based on this application flow.
In FIG. 2A, the application object 4 is placed on the stage 11, and the nozzle 2 is aligned with the application start position. At this time, the position of the tip of the needle 6 is controlled by the needle drive unit 10 so as to be positioned inside the nozzle 2 rather than the nozzle tip 3.

次に、ノズル先端3と塗布対象物4間の隙間を所望の距離になるようにノズル駆動部9によってノズル2の高さを制御する。
図2(b)と図2(c)では、電源部5により、液体1と塗布対象物4の間に電圧を印加すると共に、ニードル6をニードル駆動部10によって塗布対象物4側に、先端がノズル先端3よりも塗布対象物4の側の所望の位置に到達するまで下降させる。
Next, the height of the nozzle 2 is controlled by the nozzle drive unit 9 so that the gap between the nozzle tip 3 and the coating object 4 becomes a desired distance.
In FIG. 2B and FIG. 2C, a voltage is applied between the liquid 1 and the application object 4 by the power supply unit 5 and the needle 6 is moved to the application object 4 side by the needle drive unit 10. Is lowered until it reaches a desired position on the side of the application object 4 with respect to the nozzle tip 3.

これにより、液体1が静電気力により塗布対象物4の側に吸引されることに加えて、ニードル6の下降に伴い、ノズル先端3における液溜り14の中央部を選択的に塗布対象物4側に伸ばすことが可能になり、液溜り14が塗布対象物4側へ伸びていく過程における塗布対象物4到達前の不安定な状態にある時間を大幅に短縮できる。   Thereby, in addition to the liquid 1 being sucked by the electrostatic force toward the application target 4, the center of the liquid reservoir 14 at the nozzle tip 3 is selectively applied to the application target 4 side as the needle 6 descends. Thus, it is possible to greatly shorten the time during which the liquid reservoir 14 is in an unstable state before reaching the coating object 4 in the process of extending the liquid reservoir 14 toward the coating object 4.

その結果、塗布するためのノズル2と塗布対象物4との相対的な移動を開始するタイミング制御が容易になると共に、液溜り14が塗布対象物4に到達する位置が狙い通りに着弾可能となる。これにより、塗布始端においても、線幅の太りや途切れが生じることなく、精密な塗布が実現できるという効果が得られる。また、始端における塗布に要する時間が短縮できるため、生産タクトの短縮を実現できるという効果が得られる。   As a result, timing control for starting relative movement between the nozzle 2 for application and the application object 4 is facilitated, and the position at which the liquid reservoir 14 reaches the application object 4 can be landed as intended. Become. Thereby, the effect that precise application | coating can be implement | achieved is obtained, without the thickening of a line | wire width and a discontinuity occurring also in the application | coating start end. In addition, since the time required for coating at the start end can be shortened, an effect that the production tact can be shortened can be obtained.

その後、細く伸ばされた液溜り14が塗布対象物4に到達した後、所望のタイミングでノズル2と塗布対象物4を水平方向に相対的に移動させ、塗布していく。
この場合のノズル2と塗布対象物4の相対的な移動を開始するタイミングは、事前の実験で確認しておくことで、容易に安定した塗布を再現できる。これは、ニードル6の下降により、ノズル先端3における液溜り14の中央部を選択的に塗布対象物4側に伸ばすことで液溜り14が塗布対象物4側へ伸びていく過程における塗布対象物4に到達前の不安定な状態にある時間を大幅に短縮できることによる効果である。
Thereafter, after the thinly stretched liquid reservoir 14 reaches the application target 4, the nozzle 2 and the application target 4 are relatively moved in the horizontal direction at a desired timing and applied.
In this case, the timing at which the relative movement between the nozzle 2 and the coating object 4 is started can be easily reproduced by confirming in advance experiments. This is because the liquid reservoir 14 extends toward the application target 4 by selectively extending the central portion of the liquid reservoir 14 at the nozzle tip 3 toward the application target 4 by the lowering of the needle 6. This is because the time in the unstable state before reaching 4 can be greatly shortened.

定常状態で塗布している図3(a)の状態から、塗布終端位置においては、図3(b)(c)のように、所望のタイミングで電源部5により液体1と塗布対象物4の間に印加した電圧を停止すると共に、ニードル6をノズル2側に、先端がノズル先端3よりも内側の所望の位置に到達するまで上昇させる。   From the state of FIG. 3A applied in a steady state to the application end position, as shown in FIGS. 3B and 3C, the liquid 1 and the application object 4 are applied by the power source unit 5 at a desired timing. The voltage applied in the meantime is stopped, and the needle 6 is raised toward the nozzle 2 until the tip reaches a desired position inside the nozzle tip 3.

このようにニードル6が上昇するに伴い、ノズル先端3における液溜り14の中央部を選択的にノズル2の側に引き戻すことが可能となり、電圧印加の停止直後においても液溜り14が保持する残留電荷の影響により塗布対象物4から切り離されず、不安定に保持される時間を大幅に短縮することができる。その結果、塗布を終了するためのノズル2と塗布対象物4との相対的な移動を停止するタイミング制御が容易になると共に、液溜り14が塗布対象物4から切り離される位置が狙い通りとなる。   Thus, as the needle 6 is raised, the central portion of the liquid reservoir 14 at the nozzle tip 3 can be selectively pulled back to the nozzle 2 side, and the residual retained by the liquid reservoir 14 immediately after the voltage application is stopped. It is possible to greatly reduce the time during which the coating object 4 is not separated from the coating object 4 due to the influence of electric charges and is kept unstable. As a result, the timing control for stopping the relative movement between the nozzle 2 and the application target 4 for ending application is facilitated, and the position at which the liquid reservoir 14 is separated from the application target 4 becomes as intended. .

これにより、塗布終端においても、線幅の太りや途切れが生じることなく、精密な塗布が実現できるという効果が得られる。また、終端における塗布に要する時間が短縮できるため、生産タクトの短縮を実現できるという効果が得られる。   As a result, even at the end of application, there is an effect that precise application can be realized without causing an increase in line width or interruption. In addition, since the time required for coating at the end can be shortened, an effect that the production tact can be shortened can be obtained.

この場合の電源部5を停止しニードル6を上昇させるタイミングは、事前の実験で確認しておくことで、容易に安定した塗布を再現できる。これは、ニードル6の上昇により、ノズル先端3における液溜り14の中央部を選択的にノズル2の側に引き戻すことが可能となり、電圧印加の停止直後においても液溜り14が保持する残留電荷の影響により塗布対象物4から切り離されず、不安定に保持される時間を大幅に短縮することができることによる効果である。   In this case, the timing of stopping the power supply unit 5 and raising the needle 6 can be easily reproduced by confirming in advance experiments. This is because the central portion of the liquid reservoir 14 at the nozzle tip 3 can be selectively pulled back to the nozzle 2 side by raising the needle 6, and the residual charge held by the liquid reservoir 14 immediately after the voltage application is stopped. This is because the time that is not separated from the application object 4 due to the influence and is kept unstable can be greatly shortened.

以上のように、本発明によれば、ニードル6の上下動作によりノズル先端の液溜りの応答性を高めることができ、塗布の始終端における乱れを防止することができると共に、タクトタイムの短縮を実現できる。更に、連続的に液体を塗布できるため、直線性の高いパターンを精密に形成することができる。   As described above, according to the present invention, the responsiveness of the liquid pool at the tip of the nozzle can be improved by the vertical movement of the needle 6, the disturbance at the start and end of application can be prevented, and the tact time can be shortened. realizable. Furthermore, since a liquid can be continuously applied, a highly linear pattern can be formed accurately.

条件1〜条件8に基づいて、上記の静電塗布装置を詳細に説明する。
− 条件1 −
図1に示した静電塗布装置を用いて微細な直線パターンの塗布を実施した。条件1の詳細は次の通りである。
Based on Conditions 1 to 8, the above electrostatic coating apparatus will be described in detail.
Condition 1 −
Application of a fine linear pattern was performed using the electrostatic coating apparatus shown in FIG. The details of Condition 1 are as follows.

ここでノズル2はガラス製で、図4に示すように先端内径15が200μmのものを用いた。液体1には、中心粒径200nmのナノAgインク16を用いた。このナノAgインクの固形分濃度は80wt%、インクの粘度は1500mPa・sのものを用いた。ニードル6はタングステン製で、直径17が50μmで一定の丸棒を用いた。塗布対象物4には厚み1.7mmのガラス基板を用いた。ノズル先端面18と塗布対象物4との距離を400μmとした。図5に示したようにノズル先端面18におけるナノAgインク16の接触角θ1を20°、ニードル側面16におけるナノAgインク16の接触角θ2を15°、ニードル先端19におけるナノAgインク16の接触角θ3を15°とした。   Here, the nozzle 2 is made of glass and has a tip inner diameter 15 of 200 μm as shown in FIG. As the liquid 1, nano Ag ink 16 having a central particle diameter of 200 nm was used. The nano Ag ink used was a solid content concentration of 80 wt% and the ink viscosity was 1500 mPa · s. The needle 6 was made of tungsten, and a constant round bar having a diameter 17 of 50 μm was used. A glass substrate having a thickness of 1.7 mm was used as the coating object 4. The distance between the nozzle tip surface 18 and the coating object 4 was 400 μm. As shown in FIG. 5, the contact angle θ 1 of the nano Ag ink 16 on the nozzle tip surface 18 is 20 °, the contact angle θ 2 of the nano Ag ink 16 on the needle side surface 16 is 15 °, and the contact of the nano Ag ink 16 on the needle tip 19. The angle θ3 was 15 °.

非塗布時に、ノズル先端面18からノズル2の内部に向けて500μmの位置にニードル先端面19を保持し、塗布時はノズル先端面18から塗布対象物4側に向けて200μmの位置にニードル先端面19を保持した。ここで、ノズル先端面18におけるノズル2の内壁とニードル側面20との隙間21は75μmとなり、ニードル6の直径17の50μmよりも大きな値とした。また、ニードル6の移動速度は15mm/sとし、電源部5は1.5kVの直流電圧を印加した。このときノズル2側を+とした。   When not applied, the needle tip surface 19 is held at a position of 500 μm from the nozzle tip surface 18 toward the inside of the nozzle 2, and at the time of coating, the needle tip is positioned at a position of 200 μm from the nozzle tip surface 18 toward the application target 4. Surface 19 was held. Here, the gap 21 between the inner wall of the nozzle 2 and the needle side surface 20 on the nozzle tip surface 18 is 75 μm, which is larger than 50 μm of the diameter 17 of the needle 6. The moving speed of the needle 6 was 15 mm / s, and the power supply unit 5 applied a DC voltage of 1.5 kV. At this time, the nozzle 2 side was set to +.

塗布始端において、電圧を印加すると同時にニードル6の下降を開始し、電圧印加から100ms後にノズル2と塗布対象物4の相対移動(速度50mm/s)を開始した。塗布終端においては、塗布終了位置に到達する100ms前に電圧印加を停止すると共に、ニードル6の上昇を開始した。その際の上昇速度は15mm/sとした。   At the application start end, the needle 6 started to descend simultaneously with the application of voltage, and the relative movement (velocity 50 mm / s) of the nozzle 2 and the application object 4 was started 100 ms after the voltage application. At the end of application, voltage application was stopped 100 ms before reaching the application end position, and the needle 6 started to rise. The rising speed at that time was 15 mm / s.

このようにして、線幅8μm、塗布厚み0.5μm、塗布長さ100mmの塗布を30本形成し、塗布端から20mmの範囲の塗布始端と塗布終端の状態について評価した。その結果を図6に示す。   In this way, 30 coatings having a line width of 8 μm, a coating thickness of 0.5 μm, and a coating length of 100 mm were formed, and the states of the coating start end and the coating end within a range of 20 mm from the coating end were evaluated. The result is shown in FIG.

なお、図6の始端・終端の線幅の評価指標は、8μm±3%の範囲に全てのサンプルが入っていれば○、一箇所でも入らないサンプルがあれば×とした。途切れに関しては、全てのサンプルで途切れが無ければ○、1箇所でも途切れが発生すれば×とした。始終端の塗布位置精度については、狙いの位置に対する位置のズレ量が、全てのサンプルで100μm以内であれば○、一箇所でも100μmを超えるズレが生じていれば×とした。始端・終端の線幅については、
8μm±2.8%の範囲に全てのサンプルが入っていれば○○
8μm±2.5%の範囲に全てのサンプルが入っていれば○○○
8μm±2.3%の範囲に全てのサンプルが入っていれば○○○○
8μm±2.0%の範囲に全てのサンプルが入っていれば○○○○○
とした。後に説明する条件2〜条件8、および比較例1についても条件1と同じ基準で評価した結果を図6に合わせて示す。
Note that the evaluation index of the line width at the start and end in FIG. 6 is “◯” if all the samples are in the range of 8 μm ± 3%, and “X” if there is a sample that is not even in one place. With respect to the interruption, it was evaluated as “◯” if there was no interruption in all the samples, and “x” if interruption occurred even at one location. With respect to the application position accuracy at the start and end, the position deviation amount with respect to the target position was evaluated as “◯” if it was within 100 μm for all the samples, and “X” if there was a deviation exceeding 100 μm even at one location. For line widths at the start and end,
If all samples are in the range of 8μm ± 2.8%
If all samples are in the range of 8μm ± 2.5%
If all samples are in the range of 8μm ± 2.3%
If all samples are in the range of 8μm ± 2.0% ○○○○○
It was. FIG. 6 also shows the results of evaluation performed on conditions 2 to 8 described later and Comparative Example 1 based on the same criteria as in Condition 1.

− 比較例1 −
比較例1として、図15で示した従来法による静電力のみによる液溜りの伸縮を伴う方法で塗布した。
− Comparative Example 1 −
As Comparative Example 1, coating was performed by a method involving expansion and contraction of a liquid reservoir only by an electrostatic force according to the conventional method shown in FIG.

この比較例1のノズル2は、ガラス製でノズル先端の内径が200μmのものを用いた。液体1としては、中心粒径200nmのナノAgインクを用いた。このナノAgインクの固形分濃度は80wt%、インクの粘度は1500mPa・sのものを用いた。塗布対象物4は厚み1.7mmのガラス基板を用いた。ノズル先端面と塗布対象物4との距離を400μmとした。ノズル先端面でのナノAgインクの接触角θ1は20°とした。電源部5は1.5kVの直流電圧(ノズル側に+)を印加した。塗布始端において、電圧印加から100ms後にノズル2と塗布対象物4の相対移動(速度50mm/s)を開始した。塗布終端においては、塗布終了位置に到達する100ms前に電圧印加を停止した。   The nozzle 2 of this comparative example 1 was made of glass and had an inner diameter of 200 μm at the nozzle tip. As the liquid 1, nano Ag ink having a central particle diameter of 200 nm was used. The nano Ag ink used was a solid content concentration of 80 wt% and the ink viscosity was 1500 mPa · s. As the coating object 4, a glass substrate having a thickness of 1.7 mm was used. The distance between the nozzle tip surface and the coating object 4 was 400 μm. The contact angle θ1 of the nano Ag ink at the nozzle tip surface was 20 °. The power supply unit 5 applied a DC voltage of 1.5 kV (+ on the nozzle side). At the coating start end, relative movement (speed 50 mm / s) between the nozzle 2 and the coating object 4 was started 100 ms after voltage application. At the end of application, voltage application was stopped 100 ms before reaching the application end position.

従来法による比較例1の静電塗布では、電圧印加前に対して、電圧印加直後から静電気力により液溜り14が塗布対象物4側へ伸び、塗布対象物4到達前の液溜り14が不安定な状態を経て、最終的に液溜り14が塗布対象物4へ到達する。従来の静電気力による吸引では、液溜り14の塗布対象物4到達前の不安定な状態から安定な状態への移行に時間を要するため、塗布するためのノズル2と塗布対象物4との相対的な移動を開始するタイミング制御が非常に難しくなると共に、液溜り14が塗布対象物4に到達する位置が狙いと異なるということが生じた。その結果、塗布始端に必要以上の量を塗布してしまい、線幅に太りが生じてしまったり、逆に塗布量が不足し途切れるという問題が生じた。   In the electrostatic coating of Comparative Example 1 according to the conventional method, the liquid reservoir 14 extends toward the coating object 4 due to electrostatic force immediately after the voltage application, and the liquid reservoir 14 before reaching the coating object 4 is not applied. Through a stable state, the liquid reservoir 14 finally reaches the application target 4. In the suction by the conventional electrostatic force, since it takes time to shift from the unstable state before the liquid reservoir 14 reaches the application target 4 to the stable state, the relative relationship between the nozzle 2 for application and the application target 4 is relatively long. As a result, it is very difficult to control the timing for starting the movement, and the position at which the liquid reservoir 14 reaches the application target 4 is different from the target. As a result, a problem arises in that an unnecessarily large amount is applied to the starting end of the coating and the line width becomes thick, or conversely, the coating amount is insufficient and is interrupted.

塗布終端においては、電圧印加の停止直後においても液溜り14が保持する残留電荷の影響により、すぐには塗布対象物4から切り離されず、不安定に保持されるという状態を経て、最終的に液溜り14が切り離された。このように従来の静電気力による吸引では、電圧印加を停止した後も不安定な状態が続くため、塗布を終了するためのノズル2と塗布対象物4との相対的な移動を停止するタイミング制御が非常に難しくなると共に、液溜り14が塗布対象物4と切り離される位置が狙いと異なるということが生じた。その結果、塗布終端に必要以上の量を塗布してしまい、線幅に太りが生じてしまったり、逆に塗布量が不足し途切れに繋がるという問題が生じた。   At the end of application, even after the application of voltage is stopped, due to the influence of the residual charge held by the liquid reservoir 14, the liquid is not separated immediately from the application object 4 but is held unstable, and finally the liquid is supplied. The reservoir 14 was cut off. In this way, in the conventional suction by electrostatic force, an unstable state continues even after the voltage application is stopped, and therefore, timing control for stopping the relative movement between the nozzle 2 and the coating object 4 for finishing the coating. As a result, the position where the liquid reservoir 14 is separated from the coating object 4 is different from the target. As a result, a more amount than necessary was applied to the application end, resulting in a problem that the line width was thickened, or conversely, the application amount was insufficient, leading to interruptions.

これに対して、条件1では、塗布始端においてニードル6が下降するに伴い、ノズル先端における液溜り14の中央部を選択的に塗布対象物4側に伸ばすことが可能になり、液溜り14が塗布対象物4側へ伸びていく過程における塗布対象物4到達前の不安定な状態である時間を大幅に短縮することができる。その結果、塗布するためのノズル2と塗布対象物4との相対的な移動を開始するタイミング制御が容易になると共に、液溜り14が塗布対象物4に到達する位置が狙い通りに着弾可能となる。これにより、塗布始端においても、線幅の太りや途切れが生じることなく、精密な塗布が実現できた。   On the other hand, under the condition 1, as the needle 6 descends at the application start end, the central portion of the liquid reservoir 14 at the nozzle tip can be selectively extended to the application object 4 side. It is possible to greatly reduce the time that is an unstable state before reaching the coating object 4 in the process of extending toward the coating object 4 side. As a result, timing control for starting relative movement between the nozzle 2 for application and the application object 4 is facilitated, and the position at which the liquid reservoir 14 reaches the application object 4 can be landed as intended. Become. As a result, precise coating could be realized without increasing the line width or interruption at the coating start end.

また、始端における塗布に要する時間が短縮できるため、生産タクトの短縮を実現できる。
また、ノズル先端面18におけるナノAgインク16の接触角θ1がニードル側面20における接触角θ2およびニードル先端面19における接触角θ3よりも大きいことで、静電気力およびニードル6の下降によりノズル2から引き出された液溜り14がノズル先端面18に濡れ広がることを防止でき、ニードル先端面19に液溜り14を保持することが可能になる。その結果、液溜り14の伸縮の高速化が実現できると共に、液溜り14が途切れることなく安定した連続塗布が実現できる。
In addition, since the time required for coating at the starting end can be shortened, production tact can be shortened.
Further, since the contact angle θ1 of the nano Ag ink 16 on the nozzle tip surface 18 is larger than the contact angle θ2 on the needle side surface 20 and the contact angle θ3 on the needle tip surface 19, it is pulled out from the nozzle 2 due to electrostatic force and the needle 6 descending. Thus, the liquid reservoir 14 can be prevented from spreading on the nozzle tip surface 18, and the liquid reservoir 14 can be held on the needle tip surface 19. As a result, the expansion and contraction of the liquid reservoir 14 can be speeded up, and stable continuous application can be realized without the liquid reservoir 14 being interrupted.

また、塗布終端において、ニードル6が上昇するに伴い、ノズル先端における液溜り14の中央部を選択的にノズル側に引き戻すことが可能となり、電圧印加停止直後においても液溜り14が保持する残留電荷の影響により塗布対象物4から切り離されず、不安定に保持される時間を大幅に短縮することができる。その結果、塗布を終了するためのノズル2と塗布対象物4との相対的な移動を停止するタイミング制御が容易になると共に、液溜り14が塗布対象物4から切り離される位置が狙い通りとなる。これにより、塗布終端においても、線幅の太りや途切れが生じることなく、精密な塗布が実現できた。また、終端における塗布に要する時間が短縮できるため、生産タクトの短縮を実現できる。   Further, at the end of application, as the needle 6 rises, the central portion of the liquid reservoir 14 at the tip of the nozzle can be selectively pulled back to the nozzle side, and the residual charge held by the liquid reservoir 14 immediately after the voltage application is stopped. It is possible to significantly reduce the time that is not separated from the coating object 4 due to the influence of the above and is held unstable. As a result, the timing control for stopping the relative movement between the nozzle 2 and the application target 4 for ending application is facilitated, and the position at which the liquid reservoir 14 is separated from the application target 4 becomes as intended. . As a result, even at the end of coating, precise coating can be realized without causing the line width to increase or break. Further, since the time required for coating at the end can be shortened, the production tact can be shortened.

− 条件2 −
条件1ではθ1=20°、θ2=15°、θ3=15°であったが、この条件2では、θ3=10°に変更しただけでその他は条件1と同じである。また、条件1と同様の指標を用いた塗布始終端の状態の評価結果を、図6に示す。
Condition 2 −
In Condition 1, θ1 = 20 °, θ2 = 15 °, and θ3 = 15 °. However, in Condition 2, the rest is the same as Condition 1 except that θ3 = 10 °. Moreover, the evaluation result of the state of the application | coating start / end using the parameter | index similar to the conditions 1 is shown in FIG.

条件2では、θ1>θ2>θ3であって、ニードル先端面19の接触角が最も低いため、ニードル先端面19における液溜り14の伸縮の速度が、条件1の場合と比べて高速化が実現でき、液溜り14が途切れることなく安定した連続塗布が実現できる。   In condition 2, θ1> θ2> θ3 and the contact angle of the needle tip surface 19 is the lowest, so that the speed of expansion / contraction of the liquid reservoir 14 on the needle tip surface 19 is higher than in the case of condition 1. In addition, stable continuous application can be realized without the liquid reservoir 14 being interrupted.

また、ニードル先端面19が最も接触角が低いため、塗布終端において、条件1と比べてニードル先端面19から液溜り14を切り離す際の応答性向上することができる。その結果、塗布を終了するためのノズル2と塗布対象物4との相対的な移動を停止するタイミング制御が容易になると共に、液溜り14が塗布対象物4から切り離される位置が狙い通りとなる。これにより、塗布終端においても、線幅の太りや途切れが生じることなく、精密な塗布が実現できた。また、終端における塗布に要する時間が短縮できるため、生産タクトの短縮を実現できる。   Further, since the needle tip surface 19 has the lowest contact angle, it is possible to improve the responsiveness at the time of separating the liquid reservoir 14 from the needle tip surface 19 at the end of application compared to the condition 1. As a result, the timing control for stopping the relative movement between the nozzle 2 and the application target 4 for ending application is facilitated, and the position at which the liquid reservoir 14 is separated from the application target 4 becomes as intended. . As a result, even at the end of coating, precise coating can be realized without causing the line width to increase or break. Further, since the time required for coating at the end can be shortened, the production tact can be shortened.

− 条件3 −
条件2では、ニードル6は、ノズル2の内部に位置する部分も図4のようにノズル2の外部に突出した部分も、ニードル側面20のナノAgインク16に対する接触角は同じ15°であったが、この条件3では、図7と図8に示すように、塗布時にノズル先端面18よりも塗布対象物4の側に出ているニードル6の側面の接触角が異なる2つの領域22,23を有している。ノズル側の領域22の接触角θ4は15°、ニードル6の先端側の領域23の接触角θ5は13°とした。その他条件は条件2と同様の内容とした。条件1と同様の指標を用いた塗布始終端の状態の評価結果を図6に示す。
Condition 3 −
In condition 2, the contact angle of the needle side surface 20 with respect to the nano Ag ink 16 was the same 15 ° in both the portion located inside the nozzle 2 and the portion protruding outside the nozzle 2 as shown in FIG. However, under this condition 3, as shown in FIGS. 7 and 8, two regions 22 and 23 having different contact angles on the side surfaces of the needles 6 that are located closer to the application object 4 than the nozzle tip surface 18 at the time of application. have. The contact angle θ4 of the region 22 on the nozzle side was 15 °, and the contact angle θ5 of the region 23 on the tip side of the needle 6 was 13 °. The other conditions were the same as those in condition 2. FIG. 6 shows the evaluation results of the coating start / end state using the same index as in Condition 1.

この条件3では、ニードル先端面19が最も接触角が低いため、条件1と比べてニードル先端面19に液溜り14を保持できる効果が向上できる。加えて、塗布時にノズル先端面18よりも塗布対象物4側に出ているニードル6側面部において、ノズル側の領域22の接触角θ4をニードル6の先端側の領域23の接触角θ5以上とすることで、条件2の場合と比べてノズル先端にナノAgインク16を保持できる効果が向上できる。その結果、液溜り14の伸縮の高速化が実現できると共に、液溜り14が途切れることなく安定した連続塗布が実現できる。   Under this condition 3, since the needle tip surface 19 has the lowest contact angle, the effect that the liquid reservoir 14 can be held on the needle tip surface 19 can be improved as compared with the condition 1. In addition, the contact angle θ4 of the nozzle-side region 22 is greater than or equal to the contact angle θ5 of the region 23 on the tip side of the needle 6 in the side surface portion of the needle 6 that protrudes closer to the application object 4 than the nozzle tip surface 18 during application. As a result, the effect of holding the nano Ag ink 16 at the nozzle tip can be improved as compared with the case of Condition 2. As a result, the expansion and contraction of the liquid reservoir 14 can be speeded up, and stable continuous application can be realized without the liquid reservoir 14 being interrupted.

また、ニードル先端面19が最も接触角が低いため、条件1と比べてニードル先端面19に液溜り14を保持できる効果が向上することから、塗布終端において液溜り14を切り離す際の応答性が向上する。   Further, since the needle tip surface 19 has the lowest contact angle, the effect of holding the liquid reservoir 14 on the needle tip surface 19 is improved as compared with the condition 1. Therefore, the responsiveness when separating the liquid reservoir 14 at the end of application is improved. improves.

加えて、塗布時にノズル先端面18よりも塗布対象物4側に出ているニードル側面部のノズル側の領域22において、ノズル側の領域22の接触角θ4を先端側の領域23の接触角θ5以上とすることで、条件2の場合と比べてニードル先端面19にナノAgインク16を保持する効果が向上できる。その結果、塗布を終了するためのノズル2と塗布対象物4との相対的な移動を停止するタイミング制御が容易になると共に、液溜り14が塗布対象物4から切り離される位置が狙い通りとなる。これにより、塗布終端においても、線幅の太りや途切れが生じることなく、精密な塗布が実現できた。また、終端における塗布に要する時間が短縮できるため、生産タクトの短縮を実現できる。   In addition, the contact angle θ4 of the nozzle-side region 22 is changed to the contact angle θ5 of the tip-side region 23 in the nozzle-side region 22 of the side surface of the needle that protrudes closer to the application target 4 than the nozzle tip surface 18 during application. By setting it as the above, the effect which hold | maintains the nano Ag ink 16 on the needle front end surface 19 can be improved compared with the case of the condition 2. As a result, the timing control for stopping the relative movement between the nozzle 2 and the application target 4 for ending application is facilitated, and the position at which the liquid reservoir 14 is separated from the application target 4 becomes as intended. . As a result, even at the end of coating, precise coating can be realized without causing the line width to increase or break. Further, since the time required for coating at the end can be shortened, the production tact can be shortened.

この条件3では、θ2=θ4であったが、θ2>θ4とすることで、θ2=θ4の場合と比べて、ノズル内部からノズル先端に形成される液溜り14への安定した液供給が可能となる。その結果、液溜り14が途切れることなく安定した連続塗布が実現できる。   Under this condition 3, θ2 = θ4, but by setting θ2> θ4, stable liquid supply from the inside of the nozzle to the liquid reservoir 14 formed at the tip of the nozzle is possible compared to the case of θ2 = θ4. It becomes. As a result, stable continuous application can be realized without the liquid reservoir 14 being interrupted.

− 条件4 −
条件3では、ニードル6はθ4=15°、θ5=13°、θ3=10°であり、θ5>θ3であったが、この条件4ではθ5=θ3に設定した。その他の条件は条件3と同じとした。
Condition 4 −
In condition 3, the needle 6 was θ4 = 15 °, θ5 = 13 °, θ3 = 10 °, and θ5> θ3. In this condition 4, θ5 = θ3 was set. Other conditions were the same as Condition 3.

ここで、液体塗布時にノズル先端面18よりも塗布対象物4側に出ているニードル側面部のノズル側の領域22の接触角θ4は15°、ニードル6の先端側の領域23の接触角θ5は接触角θ4より接触角の小さい10°とした。また、条件1と同様の指標を用いた塗布始終端の状態の評価結果を図6に示す。   Here, when the liquid is applied, the contact angle θ4 of the nozzle side region 22 of the side surface of the needle that protrudes closer to the application target 4 than the nozzle tip surface 18 is 15 °, and the contact angle θ5 of the region 23 on the tip side of the needle 6. Is 10 °, which is smaller than the contact angle θ4. Moreover, the evaluation result of the state of the application | coating start / end using the parameter | index similar to the conditions 1 is shown in FIG.

この条件4の静電塗布では、ニードル先端面19が最も接触角が低いため、条件1と比べてニードル先端面19に液溜り14を保持できる効果が向上できる。加えて、塗布時にノズル先端面18よりも塗布対象物4側に出ているニードル側面部の先端側の領域23の接触角θ5をニードル先端面の接触角θ3と等しくすることで、条件3と比べてノズル先端にナノAgインク16を保持できる効果が向上できる。その結果、液溜り14の伸縮の高速化が実現できると共に、液溜り14が途切れることなく安定した連続塗布が実現できる。   In the electrostatic application of condition 4, since the needle tip surface 19 has the lowest contact angle, the effect that the liquid reservoir 14 can be held on the needle tip surface 19 can be improved as compared with condition 1. In addition, by making the contact angle θ5 of the tip side region 23 of the side surface of the needle that protrudes closer to the application target 4 than the nozzle tip surface 18 during application equal to the contact angle θ3 of the needle tip surface, In comparison, the effect of holding the nano Ag ink 16 at the nozzle tip can be improved. As a result, the expansion and contraction of the liquid reservoir 14 can be speeded up, and stable continuous application can be realized without the liquid reservoir 14 being interrupted.

また、塗布終端において、ニードル先端面19が最も接触角が低いため、条件1と比べてニードル先端面19に液溜り14を保持できる効果が向上できることから、液溜り14を切り離す際の応答性向上に繋げることができる。加えて、塗布時にノズル先端面15よりも塗布対象物4側に出ているニードル側面部の先端側の領域23の接触角θ5をニードル先端面の接触角θ3と等しくすることで、条件3と比べてノズル先端にナノAgインク16を保持できる効果が向上できる。その結果、塗布を終了するためのノズル2と塗布対象物4との相対的な移動を停止するタイミング制御が容易になると共に、液溜り14が塗布対象物4から切り離される位置が狙い通りとなる。これにより、塗布終端においても、線幅の太りや途切れが生じることなく、精密な塗布が実現できた。また、終端における塗布に要する時間が短縮できるため、生産タクトの短縮を実現できる。   In addition, since the needle tip surface 19 has the lowest contact angle at the application end, the effect of holding the liquid reservoir 14 on the needle tip surface 19 can be improved as compared with Condition 1, and thus the responsiveness when separating the liquid reservoir 14 is improved. Can be connected. In addition, by making the contact angle θ5 of the region 23 on the tip side of the needle side surface portion that protrudes closer to the application object 4 than the nozzle tip surface 15 at the time of application equal to the contact angle θ3 of the needle tip surface, In comparison, the effect of holding the nano Ag ink 16 at the nozzle tip can be improved. As a result, the timing control for stopping the relative movement between the nozzle 2 and the application target 4 for ending application is facilitated, and the position at which the liquid reservoir 14 is separated from the application target 4 becomes as intended. . As a result, even at the end of coating, precise coating can be realized without causing the line width to increase or break. Further, since the time required for coating at the end can be shortened, the production tact can be shortened.

− 条件5 −
上記の各条件のニードル6は、先端まで直径が一定の丸棒を用いていたが、この条件5では、図9に示すようにニードル6の先端部がテーパー形状に形成されている点が上記の各条件の場合とは異なっている。
Condition 5 −
The needle 6 under each of the above conditions used a round bar with a constant diameter up to the tip, but under this condition 5, the tip of the needle 6 is formed in a tapered shape as shown in FIG. It is different from the case of each condition.

この条件5のニードル6の先端部にはニードル先端から20mmの範囲にニードル径が50μmから25μmとなるニードルテーパー部24が形成されている。条件1と同様の指標を用いた塗布始終端の状態の評価結果を図6に示す。   A needle taper portion 24 having a needle diameter of 50 μm to 25 μm is formed in the range of 20 mm from the needle tip at the tip of the needle 6 under the condition 5. FIG. 6 shows the evaluation results of the coating start / end state using the same index as in Condition 1.

この条件5では、ニードルテーパー部24を設けているため、条件1の場合と比べて、ノズル先端におけるナノAgインク16の流動抵抗増加を抑制することが可能となり、塗布時にノズル内部からノズル先端に形成される液溜り14への安定した液供給が可能となる。その結果、液溜り14の伸縮の高速化が実現できると共に、液溜り14が途切れることなく安定した連続塗布が実現できる。   In this condition 5, since the needle taper portion 24 is provided, it is possible to suppress an increase in the flow resistance of the nano Ag ink 16 at the nozzle tip as compared with the condition 1, and from the inside of the nozzle to the nozzle tip at the time of application. A stable liquid supply to the liquid reservoir 14 to be formed becomes possible. As a result, the expansion and contraction of the liquid reservoir 14 can be speeded up, and stable continuous application can be realized without the liquid reservoir 14 being interrupted.

また、ニードルテーパー部24を設けているため、塗布終端において条件1の場合と比べてノズル先端におけるナノAgインク16の流動抵抗増加を抑制することが可能となり、非塗布時に、ノズル2の先端よりも内部側にニードルテーパー部24の開始位置P1が位置するように、制御部13によってニードル駆動部10を運転することによって、液溜り14を切り離す際の応答性向上に繋げることができる。その結果、塗布を終了するためのノズル2と塗布対象物4との相対的な移動を停止するタイミング制御が容易になると共に、液溜り14が塗布対象物4から切り離される位置が狙い通りとなる。これにより、塗布終端においても、線幅の太りや途切れが生じることなく、精密な塗布が実現できた。また、終端における塗布に要する時間が短縮できるため、生産タクトの短縮を実現できる。   Further, since the needle taper portion 24 is provided, it is possible to suppress an increase in the flow resistance of the nano Ag ink 16 at the nozzle tip as compared with the condition 1 at the application end, and from the tip of the nozzle 2 at the time of non-application. In addition, by operating the needle driving unit 10 by the control unit 13 so that the start position P1 of the needle taper portion 24 is located on the inner side, it is possible to improve the responsiveness when the liquid reservoir 14 is separated. As a result, the timing control for stopping the relative movement between the nozzle 2 and the application target 4 for ending application is facilitated, and the position at which the liquid reservoir 14 is separated from the application target 4 becomes as intended. . As a result, even at the end of coating, precise coating can be realized without causing the line width to increase or break. Further, since the time required for coating at the end can be shortened, the production tact can be shortened.

− 条件6 −
条件5では、ニードル6の側面部のナノAgインクの接触角がθ2=15°、ニードル先端面19のナノAgインクの接触角がθ3=15°であったが、この条件6では、ニードル先端面19の接触角θ3を10°とした。その他の条件は条件5と同じとした。また、条件1と同様の指標を用いた塗布始終端の状態の評価結果を図6に示す。
Condition 6 −
Under condition 5, the contact angle of nano Ag ink on the side surface of the needle 6 was θ2 = 15 °, and the contact angle of nano Ag ink on the needle tip surface 19 was θ3 = 15 °. The contact angle θ3 of the surface 19 was 10 °. Other conditions were the same as Condition 5. Moreover, the evaluation result of the state of the application | coating start / end using the parameter | index similar to the conditions 1 is shown in FIG.

この条件6では、ニードル先端面19が最も接触角が低いため、条件5の場合と比べてニードル先端面19に液溜り14を保持できる効果が向上できる。その結果、液溜り14の伸縮の高速化が実現できると共に、液溜り14が途切れることなく安定した連続塗布が実現できる。   Under this condition 6, since the needle tip surface 19 has the lowest contact angle, the effect of holding the liquid reservoir 14 on the needle tip surface 19 can be improved as compared with the case of condition 5. As a result, the expansion and contraction of the liquid reservoir 14 can be speeded up, and stable continuous application can be realized without the liquid reservoir 14 being interrupted.

また、ニードル先端面19が最も接触角が低いため、条件5の場合と比べて、塗布終端において、ニードル先端面19に液溜り14を保持できる効果が向上できることから、液溜り14を切り離す際の応答性向上に繋げることができる。その結果、塗布を終了するためのノズル2と塗布対象物4との相対的な移動を停止するタイミング制御が容易になると共に、液溜り14が塗布対象物4から切り離される位置が狙い通りとなる。これにより、塗布終端においても、線幅の太りや途切れが生じることなく、精密な塗布が実現できた。また、終端における塗布に要する時間が短縮できるため、生産タクトの短縮を実現できる。   Further, since the needle tip surface 19 has the lowest contact angle, the effect of holding the liquid reservoir 14 on the needle tip surface 19 can be improved at the end of application as compared with the case of Condition 5, so that the liquid reservoir 14 can be separated. This can lead to improved responsiveness. As a result, the timing control for stopping the relative movement between the nozzle 2 and the application target 4 for ending application is facilitated, and the position at which the liquid reservoir 14 is separated from the application target 4 becomes as intended. . As a result, even at the end of coating, precise coating can be realized without causing the line width to increase or break. Further, since the time required for coating at the end can be shortened, the production tact can be shortened.

− 条件7 −
条件5と条件6では、ニードルテーパー部24のナノAgインクの接触角は単一であったが、この条件7では、図10に示すように、液体塗布時にノズル先端面18よりも塗布対象物4側に出ているニードル6の側面部に、ナノAgインクの接触角が異なる領域25,26を形成したことだけが異なっている。その他の条件は条件6と同じとした。
− Condition 7 −
In condition 5 and condition 6, the contact angle of the nano Ag ink of the needle taper portion 24 was single, but in condition 7, as shown in FIG. The only difference is that the regions 25 and 26 having different contact angles of the nano Ag ink are formed on the side surface of the needle 6 protruding to the 4 side. Other conditions were the same as condition 6.

ここでは図11に示すように、ノズル側の領域25の接触角はθ6=15°、ニードル先端側の領域26の接触角はθ7=13°とした。条件1と同様の指標を用いた塗布始終端の状態の評価結果を図6に示す。   Here, as shown in FIG. 11, the contact angle of the nozzle-side region 25 is θ6 = 15 °, and the contact angle of the needle-tip region 26 is θ7 = 13 °. FIG. 6 shows the evaluation results of the coating start / end state using the same index as in Condition 1.

この条件7では、ニードル先端面19が最も接触角が低いため、条件5の場合と比べてニードル先端に液溜り14を保持できる効果が向上できる。加えて、塗布時にノズル先端面18よりも塗布対象物4側に出ているニードルテーパー部24において、ノズル側の領域25の接触角θ6を先端側の領域26の接触角θ7以上とすることで、条件6の場合と比べてニードル先端面19にナノAgインク16を保持できる効果が向上できる。その結果、液溜り14の伸縮の高速化が実現できると共に、液溜り14が途切れることなく安定した連続塗布が実現できる。   Under this condition 7, the needle tip surface 19 has the lowest contact angle, so that the effect of holding the liquid reservoir 14 at the needle tip can be improved as compared with the condition 5. In addition, the contact angle θ6 of the nozzle-side region 25 is set to be equal to or larger than the contact angle θ7 of the tip-side region 26 in the needle taper portion 24 protruding from the nozzle tip surface 18 to the application target 4 side during application. Compared to the condition 6, the effect of holding the nano Ag ink 16 on the needle tip surface 19 can be improved. As a result, the expansion and contraction of the liquid reservoir 14 can be speeded up, and stable continuous application can be realized without the liquid reservoir 14 being interrupted.

また、ニードル先端面19が最も接触角が低いため、塗布終端においては、条件5の場合と比較してニードル先端面19に液溜り14を保持できる効果が向上できることから、液溜り14を切り離す際の応答性向上に繋げることができる。加えて、塗布時にノズル先端面15よりも塗布対象物4側に出ているニードルテーパー部24において、ノズル側の領域25の接触角θ6を先端側の領域26の接触角θ7以上とすることで、条件6の場合と比べてニードル先端面19にナノAgインク16を保持できる効果が向上できる。その結果、塗布を終了するためのノズル2と塗布対象物4との相対的な移動を停止するタイミング制御が容易になると共に、液溜り14が塗布対象物4から切り離される位置が狙い通りとなる。これにより、塗布終端においても、線幅の太りや途切れが生じることなく、精密な塗布が実現できた。また、終端における塗布に要する時間が短縮できるため、生産タクトの短縮を実現できる。   In addition, since the needle tip surface 19 has the lowest contact angle, the effect of holding the liquid reservoir 14 on the needle tip surface 19 can be improved at the end of application compared to the condition 5, so that the liquid reservoir 14 can be separated. Can improve the responsiveness. In addition, the contact angle θ6 of the nozzle-side region 25 is set to be equal to or larger than the contact angle θ7 of the tip-side region 26 in the needle taper portion 24 protruding from the nozzle tip surface 15 to the application target 4 side during application. Compared to the condition 6, the effect of holding the nano Ag ink 16 on the needle tip surface 19 can be improved. As a result, the timing control for stopping the relative movement between the nozzle 2 and the application target 4 for ending application is facilitated, and the position at which the liquid reservoir 14 is separated from the application target 4 becomes as intended. . As a result, even at the end of coating, precise coating can be realized without causing the line width to increase or break. Further, since the time required for coating at the end can be shortened, the production tact can be shortened.

− 条件8 −
条件7では、θ6=15°、θ7=13°であったが、この条件8では、θ6=15°、θ7=10°とした。その他の条件は条件7と同じとした。また、条件1と同様の指標を用いた塗布始終端の状態の評価結果を図6に示す。
− Condition 8 −
In Condition 7, θ6 = 15 ° and θ7 = 13 °. However, in Condition 8, θ6 = 15 ° and θ7 = 10 °. Other conditions were the same as condition 7. Moreover, the evaluation result of the state of the application | coating start / end using the parameter | index similar to the conditions 1 is shown in FIG.

この条件8では、ニードル先端面19が最も接触角が低いため、条件5と比べてニードル先端に液溜り14を保持できる効果が向上できる。加えて、塗布時にノズル先端面18よりも塗布対象物4側に出ているニードルテーパー部の先端側の領域26の接触角θ7をニードル先端面19の接触角θ3と等しくすることで、条件7の場合と比べてノズル先端にナノAgインク16を保持できる効果が向上できる。その結果、液溜り14の伸縮の高速化が実現できると共に、液溜り14が途切れることなく安定した連続塗布が実現できる。   Under this condition 8, the needle tip surface 19 has the lowest contact angle, so that the effect of holding the liquid reservoir 14 at the needle tip can be improved as compared with the condition 5. In addition, by making the contact angle θ7 of the region 26 on the tip side of the needle taper portion that protrudes closer to the application target 4 than the nozzle tip surface 18 at the time of application equal to the contact angle θ3 of the needle tip surface 19, Condition 7 As compared with the case of, the effect of holding the nano Ag ink 16 at the nozzle tip can be improved. As a result, the expansion and contraction of the liquid reservoir 14 can be speeded up, and stable continuous application can be realized without the liquid reservoir 14 being interrupted.

また、ニードル先端面19が最も接触角が低いため、塗布終端において、条件5の場合と比べてニードル先端に液溜り14を保持できる効果が向上できる。加えて、塗布時にノズル先端面18よりも塗布対象物4側に出ているニードルテーパー部24の先端側の領域26の接触角θ7をニードル先端面19の接触角θ3と等しくすることで、条件7の場合と比べてノズル先端にナノAgインク16を保持できる効果が向上できる。その結果、塗布を終了するためのノズル2と塗布対象物4との相対的な移動を停止するタイミング制御が容易になると共に、液溜り14が塗布対象物4から切り離される位置が狙い通りとなる。これにより、塗布終端においても、線幅の太りや途切れが生じることなく、精密な塗布が実現できた。また、終端における塗布に要する時間が短縮できるため、生産タクトの短縮を実現できる。   Further, since the needle tip surface 19 has the lowest contact angle, the effect of holding the liquid reservoir 14 at the tip of the needle can be improved at the end of application compared to the case of Condition 5. In addition, by making the contact angle θ7 of the region 26 on the distal end side of the needle taper portion 24 protruding to the application object 4 side from the nozzle distal end surface 18 during application equal to the contact angle θ3 of the needle distal end surface 19, Compared to the case of No. 7, the effect of holding the nano Ag ink 16 at the nozzle tip can be improved. As a result, the timing control for stopping the relative movement between the nozzle 2 and the application target 4 for ending application is facilitated, and the position at which the liquid reservoir 14 is separated from the application target 4 becomes as intended. . As a result, even at the end of coating, precise coating can be realized without causing the line width to increase or break. Further, since the time required for coating at the end can be shortened, the production tact can be shortened.

本発明は、高速かつ連続的に直線性の高いパターンを精密に形成することを可能とするため、例えば、有機ELやプラズマディスプレイ、液晶ディスプレイ、タッチパネル、回路基板、半導体、太陽電池、リチウム2次電池などのデバイスを生産する印刷製造工程に適用できる。   The present invention makes it possible to accurately form a pattern with high linearity at high speed and continuously. For example, organic EL, plasma display, liquid crystal display, touch panel, circuit board, semiconductor, solar cell, lithium secondary The present invention can be applied to a printing manufacturing process for producing a device such as a battery.

1 液体
2 ノズル
3 ノズル先端
4 塗布対象物
5 電源部
6 ニードル
7 液体供給部
8 電極板
9 ノズル駆動部
10 ニードル駆動部
11 ステージ
12 ステージ駆動部
13 制御部
14 ノズル先端の液溜り
15 ノズル先端でのノズル内径
16 ナノAgインク
17 ノズル先端でのニードル直径
18 ノズル先端面
19 ニードル先端面
20 ニードル側面
21 ノズル先端面におけるノズル内壁とニードル側面との隙間
22 ノズル先端面よりも突出しているニードルの側面における接触角θ4の領域
23 ノズル先端面よりも突出しているニードルの側面における接触角θ5の領域
24 ニードルテーパー部
25 ニードルテーパー部の側面部におけるノズル側の接触角θ6の領域
26 ニードルテーパー部の側面部における先端側の接触角θ7の領域
DESCRIPTION OF SYMBOLS 1 Liquid 2 Nozzle 3 Nozzle tip 4 Application object 5 Power supply part 6 Needle 7 Liquid supply part 8 Electrode plate 9 Nozzle drive part 10 Needle drive part 11 Stage 12 Stage drive part 13 Control part 14 Liquid reservoir 15 at the nozzle tip Nozzle inner diameter of 16 Nano Ag ink 17 Needle diameter at nozzle tip 18 Nozzle tip surface 19 Needle tip surface 20 Needle side surface 21 Clearance 22 between nozzle inner wall and needle side surface at nozzle tip surface Side surface of needle protruding beyond nozzle tip surface Region 23 of the contact angle θ4 in the region 24 of the contact angle θ5 on the side surface of the needle protruding from the nozzle tip surface 24 Needle taper portion 25 Region of the contact angle θ6 on the nozzle side in the side surface portion of the needle taper portion Side surface of the needle taper portion Of the contact angle θ7 on the front end side

Claims (9)

液体が収容されたノズルのノズル先端を塗布対象物に対向させて配置し、前記液体と前記塗布対象物の間に塗布時に電位差を印加して前記ノズル先端に前記塗布対象物の側に向かって伸びる液溜まりを形成するとともに、前記塗布時に、前記ノズルの中に配置されたニードルの先端を後退した位置から前進した位置に移動して前記ニードルの先端を前記液溜まりに突出させて、前記液溜まりの先端を前記塗布対象物に接触させて、前記液溜まりの先端を前記塗布対象物に接触させた後、前記ニードルの先端を前記ノズルから突出させた状態で前記塗布対象物と前記ノズルを水平方向に相対的に移動し、前記塗布対象物に前記液体を連続的に塗布す
静電塗布方法。
A nozzle tip of a nozzle in which a liquid is stored is arranged to face an application object, a potential difference is applied between the liquid and the application object at the time of application, and the nozzle tip is directed to the application object side. The liquid reservoir is formed to extend, and at the time of application, the tip of the needle disposed in the nozzle is moved from the retracted position to the advanced position so that the tip of the needle protrudes into the liquid reservoir. The tip of the reservoir is brought into contact with the object to be coated, the tip of the liquid reservoir is brought into contact with the object to be coated, and then the tip of the needle is protruded from the nozzle and the object to be coated and the nozzle are moved. relatively moved in the horizontal direction, the electrostatic coating how to continuously apply the liquid to the object to be coated.
塗布終了時に、電位差を前記塗布時よりも小さくするとともに前記ニードルの先端を前記ノズル先端よりも前記ノズルの内部に後退させる
請求項1に記載の静電塗布方法。
2. The electrostatic coating method according to claim 1, wherein at the end of coating, the potential difference is made smaller than that at the time of coating and the tip of the needle is moved back into the nozzle from the tip of the nozzle.
ノズル内の液体と塗布対象物の間に電位差を印加することで前記液体を前記ノズルから引き出して塗布対象物に塗布する静電塗布装置であって、
前記液体と前記塗布対象物間に所定の電圧を印加する電源部と、
前記ノズルの中で上下運動可能なニードルと、
前記ニードルを上下駆動するニードル駆動部と、
塗布時に、前記ノズル先端に前記塗布対象物の側に向かって伸びる前記液体の液溜まりを形成するように前記電源部を制御するとともに、前記ニードルの先端を後退した位置から前進した位置に移動して前記ニードルの先端を前記液溜まりに突出させるように前記ニードル駆動部を運転して、前記液溜まりの先端を前記塗布対象物に接触させた後、前記ニードルの先端を前記ノズルから突出させた状態で前記塗布対象物と前記ノズルを水平方向に相対的に移動し、前記塗布対象物に前記液体を連続的に塗布する制御部とを有する
静電塗布装置。
An electrostatic coating apparatus that draws the liquid from the nozzle by applying a potential difference between the liquid in the nozzle and the coating object, and coats the coating object.
A power supply unit for applying a predetermined voltage between the liquid and the application target;
A needle that can move up and down in the nozzle;
A needle drive section for driving the needle up and down;
At the time of application, the power supply unit is controlled so as to form a liquid pool of the liquid extending toward the application target at the tip of the nozzle, and the tip of the needle is moved from the retracted position to the advanced position. The needle drive unit is operated so that the tip of the needle protrudes into the liquid reservoir, the tip of the liquid reservoir is brought into contact with the application object, and then the tip of the needle is protruded from the nozzle. the nozzle and the object to be coated is relatively moved in a horizontal direction in a state, an electrostatic coating apparatus having said you continuously applying the liquid to the object to be coated control unit.
前記制御部を、前記液体の非塗布時に、前記ニードルを先端が前記ノズル内部に位置するまで上昇させるように構成した
請求項3に記載の静電塗布装置。
The electrostatic coating apparatus according to claim 3, wherein the control unit is configured to raise the needle until the tip is located inside the nozzle when the liquid is not applied.
前記ニードルは、先端に向かい次第に細くなるテーパー部を有する
請求項3または4に記載の静電塗布装置。
The electrostatic coating apparatus according to claim 3, wherein the needle has a tapered portion that gradually becomes thinner toward a tip.
前記制御部を、前記液体の非塗布時に、前記ノズルの先端よりも内部側に前記ニードルの前記テーパー部の開始位置が位置するように前記ニードル駆動部を運転するように構成した
請求項5に記載の静電塗布装置。
6. The controller according to claim 5, wherein the control unit is configured to operate the needle driving unit so that a start position of the tapered portion of the needle is located on an inner side of a tip of the nozzle when the liquid is not applied. The electrostatic coating apparatus as described.
前記ノズルの先端の端面における前記液体の接触角をθ1、前記ニードルの側面における前記液体の接触角をθ2、前記ニードルの先端における前記液体の接触角をθ3としたとき、θ1>θ2及びθ1>θ3であることを特徴とする
請求項5または6に記載の静電塗布装置。
When the contact angle of the liquid at the end surface of the tip of the nozzle is θ1, the contact angle of the liquid at the side of the needle is θ2, and the contact angle of the liquid at the tip of the needle is θ3, θ1> θ2 and θ1> The electrostatic coating apparatus according to claim 5 or 6, wherein θ3.
前記液体の塗布時に前記ノズルの先端よりも前記塗布対象物の側に出ている部分において、前記ニードルの側面の前記液体の接触角がθ2である領域よりも、前記ニードルの先端の側に前記液体の接触角がθ4である領域を有し、θ2≧θ4であることを特徴とする
請求項7に記載の静電塗布装置。
In the portion of the liquid that is applied to the application object side from the tip of the nozzle when the liquid is applied, the side of the needle is closer to the tip of the needle than the region where the contact angle of the liquid is θ2. The electrostatic coating apparatus according to claim 7, wherein the electrostatic coating apparatus has a region where the contact angle of the liquid is θ4, and θ2 ≧ θ4.
前記液体の塗布時の前記ノズルの先端において、前記ニードルの直径よりも前記ノズルの内壁と前記ニードルの外壁との隙間の方が大きいことを特徴とする
請求項3〜8のいずれかに記載の静電塗布装置。
9. The gap between the inner wall of the nozzle and the outer wall of the needle is larger than the diameter of the needle at the tip of the nozzle when the liquid is applied. Electrostatic coating device.
JP2013238385A 2013-11-19 2013-11-19 Electrostatic coating method and electrostatic coating device Active JP6119998B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013238385A JP6119998B2 (en) 2013-11-19 2013-11-19 Electrostatic coating method and electrostatic coating device
TW103139556A TWI569883B (en) 2013-11-19 2014-11-14 Electrostatic coating method and electrostatic coating device
KR1020140159864A KR101735893B1 (en) 2013-11-19 2014-11-17 Electrostatic application method and electrostatic application apparatus
CN201410658869.5A CN104646249B (en) 2013-11-19 2014-11-18 Electrostatic coating processes and electrostatic coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013238385A JP6119998B2 (en) 2013-11-19 2013-11-19 Electrostatic coating method and electrostatic coating device

Publications (2)

Publication Number Publication Date
JP2015097985A JP2015097985A (en) 2015-05-28
JP6119998B2 true JP6119998B2 (en) 2017-04-26

Family

ID=53238180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013238385A Active JP6119998B2 (en) 2013-11-19 2013-11-19 Electrostatic coating method and electrostatic coating device

Country Status (4)

Country Link
JP (1) JP6119998B2 (en)
KR (1) KR101735893B1 (en)
CN (1) CN104646249B (en)
TW (1) TWI569883B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101903712B1 (en) * 2016-05-12 2018-11-30 참엔지니어링(주) Forming apparatus for pattern line
JP6835506B2 (en) * 2016-09-01 2021-02-24 Ntn株式会社 Liquid coating unit and liquid coating device
CN106807590B (en) * 2016-12-13 2019-06-25 芜湖市天申新材料科技有限公司 A kind of flow controllable wrapping paper glue drop shower device
KR20180083529A (en) * 2017-01-13 2018-07-23 주식회사 프로텍 Printing apparatus for printed electronics
JP6937466B2 (en) * 2018-02-26 2021-09-22 パナソニックIpマネジメント株式会社 Coating method and coating equipment and parts manufacturing method
CN110513565B (en) * 2019-07-10 2020-11-24 上海理工大学 Petroleum pipeline anticorrosive material repairing device and using method thereof
WO2021182613A1 (en) * 2020-03-13 2021-09-16 Ntn株式会社 Liquid material application unit, liquid material application device, and liquid material application method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266721A (en) * 1979-09-17 1981-05-12 Ppg Industries, Inc. Spray application of coating compositions utilizing induction and corona charging means
JPH10157163A (en) * 1996-12-05 1998-06-16 Hitachi Ltd Ink jet recorder
JP4191330B2 (en) * 1999-08-03 2008-12-03 浜松ホトニクス株式会社 Microdroplet forming method and microdroplet forming apparatus
GB2377707B (en) * 2001-04-26 2004-10-20 Thk Co Ltd Microarraying head and microarrayer
JP3975272B2 (en) * 2002-02-21 2007-09-12 独立行政法人産業技術総合研究所 Ultrafine fluid jet device
JP2004160672A (en) * 2002-11-08 2004-06-10 Noritsu Koki Co Ltd Electrostatic liquid ejector
JP3680855B2 (en) * 2003-03-31 2005-08-10 財団法人北九州産業学術推進機構 Electrostatically attracting droplet nozzle and method for producing the same
JP4820982B2 (en) * 2005-05-17 2011-11-24 国立大学法人電気通信大学 Micro droplet ejection apparatus and method
JP2007007949A (en) * 2005-06-29 2007-01-18 Fujifilm Holdings Corp Active energy curing ink jet recorder and its recording method
US8770496B2 (en) * 2008-03-10 2014-07-08 Finishing Brands Holdings Inc. Circuit for displaying the relative voltage at the output electrode of an electrostatically aided coating material atomizer
US9162249B2 (en) * 2008-10-01 2015-10-20 Panasonic Intellectual Property Management Co., Ltd. Paste dispenser for applying paste containing fillers using nozzle with pin and application method using the same
JP2011131490A (en) * 2009-12-24 2011-07-07 Canon Finetech Inc Liquid discharer and recorder

Also Published As

Publication number Publication date
CN104646249A (en) 2015-05-27
KR101735893B1 (en) 2017-05-24
CN104646249B (en) 2017-08-11
JP2015097985A (en) 2015-05-28
KR20150058022A (en) 2015-05-28
TWI569883B (en) 2017-02-11
TW201519959A (en) 2015-06-01

Similar Documents

Publication Publication Date Title
JP6119998B2 (en) Electrostatic coating method and electrostatic coating device
JP2018505074A (en) Multi-nozzle print head
US9770865B2 (en) Apparatus and method for forming three-dimensional pattern using electrojetting
TW202039091A (en) Induced electrohydrodynamic jet printing apparatus
JP5012641B2 (en) Liquid application method
KR20020028829A (en) A coating method
KR101692237B1 (en) Manufacturing method of three-dimensional structures using the electrohydrodynamic jet printing apparatus
JP2018536777A (en) Electrospinning pattern forming device
JP6122670B2 (en) Electrospray apparatus and electrospray method
US20230202106A1 (en) Apparatuses, systems and methods for electrohydrodynamic (ehd) material deposition
JP4930506B2 (en) Liquid discharge head and liquid discharge method
JP6430882B2 (en) Coating apparatus and coating method using the same
JP2010224338A (en) Device and method for manufacturing sealing structure
CN104985266B (en) Nano impression cylinder mould preparation device and preparation method
CN114889333B (en) Regulation and control method and device for eliminating bubble defects in jet printing process
KR101692585B1 (en) Electrostatic coating method and electrostatic coating apparatus
JP2015098018A (en) Electrostatic coating method and electrostatic coating apparatus
JP2019063698A (en) Liquid discharge nozzle
KR20130058835A (en) Apparatus and method for treating substrate
JP2007129071A (en) Bump and apparatus of manufacturing same
JP2023551788A (en) Electrospinning/writing system and corresponding method
JP2018134566A (en) Electrospray device and electrospray method
CN103857198B (en) The forming method of wiring circuit
JP2019063699A (en) Liquid discharge nozzle
KR101264158B1 (en) Capacitive droplet ejection apparatus having slit structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170314

R151 Written notification of patent or utility model registration

Ref document number: 6119998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151