JP6116395B2 - 光給電型センシングシステム - Google Patents

光給電型センシングシステム Download PDF

Info

Publication number
JP6116395B2
JP6116395B2 JP2013127400A JP2013127400A JP6116395B2 JP 6116395 B2 JP6116395 B2 JP 6116395B2 JP 2013127400 A JP2013127400 A JP 2013127400A JP 2013127400 A JP2013127400 A JP 2013127400A JP 6116395 B2 JP6116395 B2 JP 6116395B2
Authority
JP
Japan
Prior art keywords
light intensity
optical
power
transmission
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013127400A
Other languages
English (en)
Other versions
JP2015001925A (ja
Inventor
重元 廣田
重元 廣田
神藤 高広
高広 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2013127400A priority Critical patent/JP6116395B2/ja
Publication of JP2015001925A publication Critical patent/JP2015001925A/ja
Application granted granted Critical
Publication of JP6116395B2 publication Critical patent/JP6116395B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

本発明は、光を用いて遠隔のセンサに給電する光給電型センシングシステムに関し、より詳細には、経年使用で生じる劣化などに対する動作信頼性を向上した光給電型センシングシステムに関する。
光給電型センシングシステムは、検出対象の状態を検出するセンサが監視場所から遠隔して配設され、かつセンサ電源が近傍で確保されない場合に適用される。検出対象としては、気象観測や水質管理に関する諸量などを例示できる。光給電型センシングシステムは、光を用いて監視場所からセンサに給電し、かつセンサから出力される検出信号も光信号に変換して監視場所に伝送する場合が多い。したがって、光給電型センシングシステムは、落雷や電磁誘導、電気ノイズなどの影響を受けやすい屋外への適用効果が大きい。この種の光給電型センシングシステムの一技術例が特許文献1に開示されている。
特許文献1の光給電型センシングシステムは、光電力変換器およびセンサを備えたセンサユニットと、光エネルギーを供給する光源および光データを受光する受光器を備えた測定装置とを有し、複数の光ファイバー、遮光機構、および判定回路などを組み込んで構成している。これにより、給電電力が従来よりも増加し、センサを精度よく安定に駆動できる、とされている。光給電型センシングシステムを経年使用すると、電力や電気信号を光に変換する電気光変換部や逆方向の光電気変換部が劣化して、給電性能や信号伝送特性が低下しがちである。また、経年使用によって光ファイバーの光伝達特性が低下するおそれがあり、特に環境の厳しい屋外使用では劣化が進みがちである。このような性能低下に対応する関連技術の一例が特許文献2の請求項4に開示されている。
特許文献2の請求項4の電力・信号伝送装置は、受信局および送信局で構成されており、実施形態の説明によると受信局と送信局の間は光ファイバーで結ばれている。そして、受信局は、パルスまたは交流信号からなる受信信号を直流電力に変換する整流器と、受信信号から意味のある信号列を復元する復調器とを備え、さらに、受信信号のレベルを監視する電圧監視回路相当と、該電圧監視回路相当の出力を送信局に帰還通知する駆動回路とを備えている。一方、送信局は、帰還通知された受信局での受信信号のレベルに応じてパルスまたは交流信号の電力を制御する。これにより、S/N(信号対雑音比)がよく、長期間使用しても信号検出性能が低下せず、さらに、電圧監視回路相当を設けて帰還制御するようにしたので安定した動作が得られる、とされている。
特許第4851330号公報 特開2001−111486号公報
ところで、特許文献2の技術例では、電圧監視回路相当を設けて帰還制御することにより、送信局から受信局への給電性能および信号伝送特性の低下を監視できる点は好ましい。しかしながら、逆方向の受信局から送信局への信号伝送特性が大きく低下した場合に、帰還通知信号が送信局に到達せず帰還制御が機能しない。このため、動作不安定のおそれは解消されない。例えば、共通の光ファイバーを用いて異なる波長の光を双方向に伝達する構成では、経年使用による光ファイバーの光伝達特性の低下は双方向に作用する。このため、双方向の光をともに増強することが好ましいが、特許文献2の技術では、送信局から受信局への単方向しか増強できない。
上記した光給電型センシングシステムの経年劣化への対応策として、推奨されるメンテナンスサイクルに基づいて定期的なメンテナンスを行うことが一般的になっている。メンテナンスでは、例えば、特許文献2の送信局と受信局との間や、特許文献1の測定装置とセンサユニットとの間の光伝達特性を確認して、光のパワー(送出光強度)を調整する作業を行うことになり、実施頻度に応じてメンテナンスコストが増大する。さらに、劣化傾向が進展すると定期的なメンテナンスで所定の性能を維持できず、頻繁なメンテナンスが必要となるため、寿命と判断して光給電型センシングシステムを更新する場合も生じる。
本発明は、上記背景技術の問題点に鑑みてなされたものであり、双方向の送出光強度を調整する機能を付与して動作信頼性を向上するとともに、メンテナンスサイクルを延長してメンテナンスコストを低減し、さらにはシステムの長寿命化に資する光給電型センシングシステムを提供することを解決すべき課題とする。
上記課題を解決する請求項1に係る光給電型センシングシステムの発明は、電力を光に変換して送出する給電変換部、前記光の送出光強度を制御する給電制御部、ならびに光信号を受信して電気信号に変換する受信変換部を有する給電装置と、前記光を受け取って受電電力に変換する受電変換部、前記光の受取光強度を検出するとともに前記受取光強度の値が所定閾値未満に低下した状態を判定して光強度警報を発する光強度監視部、前記受電電力によって動作し検出対象の状態に応じた検出信号を出力するセンサ部、ならびに前記受取光強度の値および前記光強度警報の少なくとも一方と前記検出信号とを前記光信号に変換して送信する送信変換部を有する受電装置と、前記給電装置と前記受電装置とを結んで前記光および前記光信号を伝達する光伝達手段とを備え、前記給電制御部は、前記電気信号に含まれる前記受取光強度の値が前記所定閾値未満に低下した場合または前記電気信号に前記光強度警報が含まれる場合に前記光の送出光強度を増強し、前記受電装置は、前記光強度警報が所定時間にわたって継続したときに前記光信号の送信光強度を増強する送信制御部をさらに有する。
これによれば、受電装置の光強度監視部は、給電用の光の受取光強度を検出し、その値が低下した状態を判定して光強度警報を発する。受取光強度の値および光強度警報の少なくとも一方は、センサ部の検出信号とともに光信号に変換されて給電装置に伝達される。また、受電装置の送信制御部は、光強度警報が所定時間にわたって継続したときに、光信号の送信光強度を増強する。このため、仮に光伝達手段で双方向の光伝達特性が低下していても良好な信号伝送性能が確保され、光信号が給電装置に伝送される。したがって、給電装置の受信変換部で光信号を電気信号に変換して、センサ部の元の検出信号を確実に得ることができる。さらに、電気信号に含まれる受取光強度の値または光強度警報に基づいて、給電制御部は光の送出光強度を増強するので、受取光強度の低下を補償して良好な給電性能を維持できる。つまり、双方向の光のパワー(送出光強度)を増強することにより、センシングおよび光給電の動作信頼性がともに向上する。
また、経年使用により給電変換部や受電変換部の変換性能が低下し、あるいは光伝達手段の光伝達特性が低下して受取光強度の値が低下した場合に、双方向の送出光強度を自動で増強するので、光のパワーを調整するメンテナンスが必要となるのは稀である。したがって、メンテナンスサイクルを延長してメンテナンスコストを低減できる。さらには、経年劣化により頻繁なメンテナンスが必要になってシステムの寿命と判断するケースが減少するので、システムの長寿命化に資することができる。
請求項2に係る発明は、請求項1において、前記送信制御部は、前記受取光強度の値が前記所定閾値に不足する不足量の大小に応じて前記光信号の送信光強度の増強量を調整する。
これによれば、経年劣化により給電用の光の受取光強度の不足量が大きいときに、光信号の送信光強度の増強量を大きくできる。このため、仮に光伝達手段で双方向の光伝達特性が大きく低下していても、不足量を補償するように光信号の送信光強度を増強でき、光信号は確実に給電装置に伝達される。したがって、センシングおよび光給電の動作信頼性がともに向上する。
請求項3に係る発明は、請求項1または2において、前記送信変換部は、前記光信号の送信光強度の値を前記光信号に変換して送信する。
これによれば、給電装置側で、給電用の光の送出光強度および受取光強度、ならびに光通信用の光信号の送信光強度を把握でき、さらに受信変換部で光信号の受信光強度を容易に把握できる。つまり、監視員が受電装置まで赴かずとも給電装置側で双方向の光伝達特性を定量的に把握して、経年劣化度の評価や劣化発生部位の推定などを行えるので、メンテナンスを効率化できる。
請求項4に係る発明は、請求項1〜3のいずれか一項において、前記給電変換部が送出する光はレーザー光であり、前記光伝達手段は、2芯光ファイバーケーブル、あるいは、両端に前記レーザー光と前記光信号とを分離する光分離部を有する1芯双方向光ファイバーケーブルである。
これによれば、給電用にレーザー光および光ファイバーケーブルを用いるので、伝達損失を低減して高い効率で光給電することができる。また、光信号も光ファイバーケーブルで伝達されるので、信号伝送特性が安定する。さらに、レーザー光と光信号とを異なる波長として光分離部を有する態様では、光ファイバーケーブルを1芯として細径化でき、材料コストや敷設コストを低減できる。
第1実施形態の光給電型センシングシステムの全体構成を示す構成ブロック図である。 第1実施形態において、受電装置から給電装置への光通信で使用する送信データおよび受信データのデータ構造を例示説明する図である。(A)は、検出信号、受取光強度、および送信光強度の3量を一括して伝送する場合のデータ構造の例を示し、(B)および(C)は、(A)に代えて使用するデータ構造のセットの例を示している。 第1実施形態における給電装置の状態遷移図である。 第1実施形態における受電装置の状態遷移図である。 第1実施形態における給電装置の処理フロー図である。 第1実施形態における受電装置の処理フロー図である。 第2実施形態の光給電型センシングシステムの全体構成を示す構成ブロック図である。
本発明の第1実施形態の光給電型センシングシステム1について、図1〜図6を参考にして説明する。図1は、第1実施形態の光給電型センシングシステム1の全体構成を示す構成ブロック図である。図示されるように、光給電型センシングシステム1は、給電装置2、受電装置3、および光ファイバーケーブル4で構成されている。光給電型センシングシステム1は、給電装置2から受電装置3へ光給電し、受電装置3側のセンサ部34で検出対象の状態を検出して得られる検出信号Sdのデータを給電装置2へ光通信し、給電装置2側で検出対象の状態を把握するシステムである。図中の太い矢印はパワーの流れを示し、細い矢印は信号および情報の流れを示している。
給電装置2は、レーザーダイオード21、フォトダイオード22、受信回路部23、および給電コントローラ25を含むメインコントローラ24などで構成されている。レーザーダイオード21は、電力を給電周波数fp、送出光強度Psのレーザー光に変換して、光ファイバーケーブル4の第1ファイバー線41の一端41Sに送出する。レーザーダイオード21は、本発明の給電変換部に相当する。フォトダイオード22は、光ファイバーケーブル4の第2ファイバー線42の一端42Rから後述する光信号を受信し、電気信号に変換して受信回路部23に出力する。フォトダイオード22は、本発明の受信変換部に相当する。受信回路部23は、受け取った電気信号を情報化して受信データDrとし、メインコントローラ24に出力する。
メインコントローラ24は、受け取った受信データDrに含まれる受電装置3側のセンサ部34の検出信号Sdのデータに対して所定の処理を施す。所定の処理として、検出信号Sdのデータをメモリ部に記憶する処理や、表示部に表示する処理や、上位装置に転送する処理を例示でき、これらに限定されない。メインコントローラ24には、CPU、メモリ部、表示部、入力部、および通信インターフェース部を有してソフトウェアで動作する電子制御装置を用いることができる。また、メインコントローラ24および受信回路部23を一体品としてもよい。
メインコントローラ24に含まれる給電コントローラ25は、光通信で受け取った受信データDrに含まれ受電装置3側の光強度監視部32の受取光強度Prの値または光強度警報Almに基づいて、レーザーダイオード21の送出光強度Psを制御する。本第1実施形態で、給電コントローラ25は、受取光強度Prの変動の許容範囲の上限となる上限閾値PuPおよび下限となる所定閾値Pdwnを予め保持している。そして、給電コントローラ25は、受取光強度Prが上限閾値Pupを超過すると送出光強度Psを低減し、受取光強度Prが所定閾値Pdwn未満に低下すると送出光強度Psを増強する。給電コントローラ25は、本発明の給電制御部に相当する。
受電装置3は、フォトダイオード31、光強度監視部32、受電回路部33、センサ部34、送信コントローラ36を含んだ送信回路部35、およびレーザーダイオード37などで構成されている。フォトダイオード31は、光ファイバーケーブル4の第1ファイバー線41の他端41Rからレーザー光を受け取って受電電力に変換し、受電回路部33に出力する。フォトダイオード31は、本発明の受電変換部に相当する。光強度監視部32は、フォトダイオード31が受け取ったレーザー光の受取光強度Prを検出する。光強度監視部32は、さらに、受取光強度Prの値が予め設定された所定閾値Pdwn未満に低下した状態を判定して光強度警報Almを発する。光強度監視部32は、受取光強度Prの値および光強度警報Almを送信回路部35に出力する。
受電回路部33は、受け取った受電電力に整流や電圧安定化などの処理を行って、安定した電源電圧Eを生成する。電源電圧Eは、動作電源として光強度監視部32、センサ部34、および送信回路部35に供給される。センサ部34は、検出対象の状態を検出して、状態に応じた検出信号Sdを送信回路部35に出力する。検出信号Sdの形態はアナログ信号およびディジタル信号のいずれでもよい。センサ部34の検出対象として、気象観測や水質管理に関する諸量、振動や衝撃などの物理量、侵入検出や近接検出などを例示でき、検出対象に特別な制約はない。
送信回路部35は、光強度監視部32から受け取った受取光強度Prの値および光強度警報Almの少なくとも一方と、センサ部34から受け取った検出信号Sdとをデータ化して送信データDsとし、レーザーダイオード37に出力する。レーザーダイオード37は、受け取った送信データDsを通信周波数fc、送信光強度Qsの光信号に変換して、光ファイバーケーブル4の第2ファイバー線42の他端42Sに送信する。レーザーダイオード37は、本発明の送信変換部に相当する。送信回路部35に含まれる送信コントローラ36は、光強度警報Almが予め設定した所定時間にわたって継続したときに、光信号の送信光強度Qsを増強する。送信コントローラ36は、本発明の送信制御部に相当する。送信回路部35および送信コントローラ36には、CPU、メモリ部、および入出力部を有してソフトウェアで動作する電子制御装置を用いることができる。
光ファイバーケーブル4は、本発明の光伝達手段に相当し、第1ファイバー線41および第2ファイバー線42の2芯で構成されている。第1ファイバー線41は、その一端41S側のレーザーダイオード21から他端41R側のフォトダイオード31へとレーザー光を伝達する光給電の用途に用いられる。第2ファイバー線42は、その他端42S側のレーザーダイオード37から一端42R側のフォトダイオード22へと光信号を伝達する光通信の用途に用いられる。光ファイバーケーブル4には、保護層やシースを有する一般的なものを使用できる。また、3芯以上の光ファイバーケーブルを採用して、1芯を光通信の用途とし、他の芯を光給電の用途に使用してもよい。
なお、第1実施形態は、1台の給電装置2および1台の受電装置3が対向する1:1システムであるが、1台の給電装置2に複数台の受電装置3が対向する1:nシステムを採用することもできる。1:nシステムでは、給電装置2の受信回路部23およびメインコントローラ24は複数台の受電装置3に対して共通にでき、レーザーダイオード21およびフォトダイオード22は受電装置3と同数必要になる。
次に、受電装置3から給電装置2への光通信で使用するデータ構造について説明する。図2は、第1実施形態において、受電装置3から給電装置2への光通信で使用する送信データDsおよび受信データDrのデータ構造を例示説明する図である。図2の(A)は、センサ部34の検出信号Sd、光強度監視部32が検出した受取光強度Pr、および送信コントローラ36が制御する送信光強度Qsの3量を一括して伝送する場合のデータ構造の例を示している。また、図2の(B)および(C)は、(A)に代えて使用するデータ構造のセットの例を示している。
図2の(A)〜(C)のデータ構造で、共通に用いられる先頭の「SOF」は、Start of Frame(データの始まり)を意味し、共通に用いられる末尾の「EOF」は、End of Frame(データの終わり)を意味している。「SOF」および「EOF」は、データの区切りを見分けるために使用する。図2の(A)のデータ構造の2番目の「センサID」は、前述した1:nシステムで複数台の受電装置3のいずれかを特定するデータである。(A)のデータ構造の3番目は、センサ部34の検出信号Sdのデータである。検出信号Sdの物理的な表記単位は、検出対象に合わせて適宜選定する。
さらに、図2の(A)のデータ構造の4番目は、光強度監視部32が検出した受取光強度Prのデータである。受取光強度Prの表記単位には、例えばdBm(1ミリワットを基準とするデシベル値)を使用でき、これに限定されない。(A)のデータ構造の5番目は、送信コントローラ36が制御する送信光強度Qsのデータである。送信光強度Qsの表記方法は、例えば、標準値をレベル0で表記し、増強したときには増強の段階に合わせてレベル1、レベル2、……、レベルMAXと順次高いレベルを表記する。
また、図2の(A)のデータ構造に代えて、(B)および(C)のデータ構造を併用するようにしてもよい。(B)のデータ構造は常時使用し、(C)のデータ構造は光強度監視部32が光強度警報Almを発しているときに(B)と併せて使用する。(B)のデータ構造の2番目の「SENSOR」は、センサ部34の検出信号Sdのデータが次の3番目にあることを示すものである。(B)のデータ構造の4番目は、光強度監視部32が検出した受取光強度Prのデータである。一方、(C)のデータ構造の2番目の「ERROR」は、光強度警報Almを発している状態を示すものである。(C)のデータ構造の3番目は、光強度監視部32が検出した受取光強度Prのデータであり、4番目は、光強度監視部32で監視に用いている所定閾値Pjのデータである。
次に、上述のように構成された第1実施形態の光給電型センシングシステム1の動作について、給電装置2と受電装置3とに分け、状態遷移図および処理フロー図を用いて説明する。図3は、第1実施形態における給電装置2の状態遷移図であり、図4は受電装置3の状態遷移図である。図3および図4では、楕円で装置状態を示し、矢印で状態遷移を示し、矢印の近くの矩形に状態遷移条件を示す。また、図5は、第1実施形態における給電装置2の処理フロー図であり、図6は、受電装置3の処理フロー図である。
給電装置2は、図3に示されるように、正常状態S1、増強過渡状態S2、低減過渡状態S3、および故障状態S4の4状態を遷移する。正常状態S1は、レーザーダイオード21から光給電を行い、かつ、フォトダイオード22で光信号を受信してメインコントローラ24が受信データDrを受け取っている状態である。正常状態S1で、受信データDrに含まれる受取光強度Prの値が上限閾値Pupと所定閾値Pdwnの範囲内にあるとき、矢印M1に示されるように、給電装置2は正常状態S1を維持する。
正常状態S1で受取光強度Prの値が所定閾値Pdwn未満に低下し、または光信号を受信できなくなると、矢印M2に示されるように、給電装置2は増強過渡状態S2に遷移する。増強過渡状態S2は、フォトダイオード21の送出光強度Psを増強して、所定の増強時間t1の経過を待つ状態である。増強時間t1は、送出光強度Psを増強したことで過渡的に変化するシステム1の光給電状況および光通信状況が安定するまで待つ時間である。送出光強度Psの増強量は、予め定められた一定量としてもよいが、受取光強度Prの値が所定閾値Pdwnに不足する不足量(=Pdwn−Pr)の大小に応じて可変に調整するようにしてもよい。増強過渡状態S2に遷移してから増強時間t1が経過すると、矢印M3に示されるように、給電装置2は正常状態S1に遷移する。
正常状態S1で受取光強度Prの値が上限閾値Pupを超過すると、矢印M4に示されるように、給電装置2は低減過渡状態S3に遷移する。低減過渡状態S3は、フォトダイオード31の送出光強度Psを低減して、所定の低減時間t1の経過を待つ状態である。低減時間t1は、送出光強度Psを低減したことで過渡的に変化するシステム1の光給電状況および光通信状況が安定するまで待つ時間である。本第1実施形態で、低減時間t1は増強過渡状態S2の増強時間t1に等しいが、必ずしも等しく設定する必要はない。送出光強度Psの低減量は、増強量と同様に、一定量でも可変調整量でもよい。低減過渡状態S3に遷移してから低減時間t1が経過すると、矢印M5に示されるように、給電装置2は正常状態S1に遷移する。
正常状態S1で受取光強度Prの値が所定閾値Pdwn未満に低下し、かつ送出光強度Psが既に性能上の上限値まで増強されている場合、給電装置2は増強過渡状態S2に遷移せずに矢印M1で正常状態を維持する。また、正常状態S1で光信号を受信できなくなり、かつ送出光強度Psが既に性能上の上限値まで増強されている場合、矢印M6に示されるように、給電装置2は故障状態S4に遷移する。故障状態S4は、光給電を停止してメンテナンスを待つ状態である。故障状態S4で、給電装置2は、レーザーダイオード21の送出光強度Psをゼロに落として光給電を停止し、所定の故障時処理を行う。故障時処理として、表示部に故障を表示して監視員に報知する処理や、上位装置に故障を通報する処理を例示でき、これらに限定されない。
受電装置3は、図4に示されるように、正常状態S11、光強度低下確認状態S12、増強過渡状態S13、および停止状態S14の4状態を遷移する。正常状態S11は、光給電により電源電圧Eが確保され、送信回路部35が送信データDsを出力して光信号を送信している状態である。正常状態S11で、光強度監視部32の受取光強度Prの値が上限閾値Pupと所定閾値Pdwnの範囲内にあるとき、矢印M11に示されるように、受電装置3は正常状態S11を維持する。
正常状態S1で受取光強度Prの値が所定閾値Pdwn未満に低下して光強度警報Almが発生すると、矢印M12に示されるように、受電装置3は光強度低下確認状態S12に遷移する。光強度低下確認状態S12は、受取光強度Prの低下が一過性であるか、それとも所定時間t2を超えた継続性を有するかを判別および確認している状態である。所定時間t2が経過する以前に受取光強度Prの値が所定閾値Pdwn以上に復帰すると、矢印M13に示されるように、受電装置3は正常状態S11に遷移する。所定時間t2が経過しても受取光強度Prの低下が継続していると、矢印M14に示されるように、受電装置3は増強過渡状態S13に遷移する。
増強過渡状態S13は、レーザーダイオード37の送信光強度Qsを増強して、所定の増強時間t3の経過を待つ状態である。増強時間t3は、送信光強度Qsを増強したことで過渡的に変化するシステム1の光通信状況および光給電状況が安定するまで待つ時間である。送信光強度Qsの増強量は、予め定められた一定量としてもよいが、受取光強度Prの値が所定閾値Pdwnに不足する不足量(=Pdwn−Pr)の大小に応じて可変に調整することが好ましい。増強過渡状態S13に遷移してから増強時間t3が経過すると、矢印M15に示されるように、受電装置3は光強度低下確認状態S12に遷移する。また、増強過渡状態S13で送信光強度Qsの増強量が性能上の上限値(レベルMAX)まで増強された場合は、矢印M16に示されるように、受電装置3は正常状態S11に遷移する。
正常状態S11で受取光強度Prの値が所定閾値Pdwn未満に低下し、かつ送信光強度Qsが既に性能上の上限値(レベルMAX)まで増強されている場合、受電装置3は光強度低下確認状態S12に遷移せずに矢印M11で正常状態を維持する。また、正常状態S11で受取光強度Prの値が上限閾値Pupを超過すると、矢印M17に示されるように、受電装置3は増強過渡状態S13に遷移する。これは、光信号の伝送特性が大きく低下して、受取光強度Prが過大になっていながらもその旨を光通信で給電装置2側に伝達できていない場合を想定した対応策である。
正常状態S11で、電源電圧Eが動作保証電圧未満に低下すると、矢印M18に示されるように、受電装置3は停止状態S14に遷移する。光強度低下確認状態S12および増強過渡状態S13でも同様に、電源電圧Eが動作保証電圧未満に低下すると、矢印M19および矢印M20に示されるように、受電装置3は停止状態S14に遷移する。停止状態S14は、受電装置3の制御機能自体は活きており、センシングや光通信などの機能を停止した状態である。停止状態S14で、電源電圧Eが動作保証電圧以上に復帰すると、矢印M21に示されるように、受電装置3は正常状態S11に遷移する.このとき、送信コントローラ36は、送信光強度Qsを標準値(レベル0)に戻す。
なお、電源電圧Eの低下が顕著であると、受電装置3は制御機能自体を喪失して、物理的に停止する。この場合も、電源電圧Eが動作保証電圧以上に復帰すると、受電装置3は再始動して正常状態S11になる。
次に、図5の処理フロー図で、給電装置2は、プロセスP1でレーザーダイオード21からレーザー光を送出して光給電を開始する。光給電の開始後に或る程度の時間が経過して通常であれば受電装置3が始動した後に、給電装置2は、プロセスP2で光信号の受信処理を開始する。次にプロセスP3で、光信号を受信しているか否か判定し、受信していればプロセスP4に進む。プロセスP4で、受信データDrに含まれる受取光強度Prの値が所定閾値Pdwn未満に低下しているか否か判定し、低下していなければプロセスP5に進む。プロセスP5で、受取光強度Prの値が上限閾値Pupを超過しているか否か判定し、超過していなければプロセスP3に戻る。光給電型センシングシステム1が良好に動作しているとき、給電装置2は、プロセスP3〜プロセスP5を繰り返す。プロセスP3〜プロセスP5の繰り返し処理は、図3の状態遷移図で矢印M1の状態遷移により正常状態S1を維持することに相当する。
プロセスP3で受信不可のときプロセスP6に進み、送出光強度Psが上限値か否か判定し、上限値でなければプロセスP7に進む。プロセスP7では、増強時間t1を計時するt1タイマを始動させる。次にプロセスP8で送出光強度Psを増強し、プロセスP9で増強時間t1の経過を待つ。そして、増強時間t1が経過するとプロセスP3に戻る(※5のフロー)。プロセスP6〜プロセスP9の処理は、状態遷移図の矢印M2の状態遷移、増強過渡状態S2、および矢印M3の状態遷移に相当する。
プロセスP6で送出光強度Psが上限値であると、プロセスP10に進んで故障時処理を行い、処理フローを終了する。プロセスP6およびプロセスP10の処理は、状態遷移図の矢印M6の状態遷移、および故障状態S4に相当する。
プロセスP4で受取光強度Prが低下しているとき、プロセスP11に進んで(※6のフロー)、送出光強度Psが上限値か否か判定する。そして、送出光強度Psが上限値であれば直ちにプロセスP3に戻り、そうでなければ(※7のフロー)前述のプロセスP7〜プロセスP9を実施してからプロセスP3に戻る。プロセスP4からプロセスP11に進み直ちにプロセスP3に戻る処理は、状態遷移図の矢印M1の状態遷移に相当する。また、プロセスP4からプロセスP11に進みプロセスP7〜プロセスP9を実施してからプロセスP3に戻る処理は、状態遷移図の矢印M2の状態遷移、増強過渡状態S2、および矢印M3の状態遷移に相当する。
プロセスP5で、受取光強度Prの値が上限閾値Pupを超過しているとき、プロセスP12に進む。プロセスP12では、低減時間t1を計時するt1タイマを始動させる。次にプロセスP13で送出光強度Psを低減し、プロセスP14で低減時間t1の経過を待つ。そして、低減時間t1が経過するとプロセスP3に戻る(※5のフロー)。プロセスP12〜プロセスP14の処理は、状態遷移図の矢印M4の状態遷移、低減過渡状態S2、および矢印M5の状態遷移に相当する。
次に、図6の処理フロー図で、受電装置3は、プロセスP31で光給電が開始され、フォトダイオード31がレーザー光を受け取り、受電回路部33が電源電圧Eを生成すると始動する。これにより、センサ部34は検出対象の検出を開始して検出信号Sdを出力し、光強度監視部32は受取光強度Prの検出および監視を開始する。また、送信コントローラ36は、光信号の送信光強度Qsを標準値(レベル0)に設定する。次にプロセスP32で、送信回路部35が動作を開始して、光信号の送信処理を開始する。
次にプロセスP33で、電源電圧Eが動作保証電圧未満に低下しているか否か判定し、低下していなければプロセスP34に進む。プロセスP34で、受取光強度Prの値が所定閾値Pdwn未満に低下しているか否か判定し、低下していなければプロセスP35に進む。プロセスP35で、受取光強度Prの値が上限閾値Pupを超過しているか否か判定し、超過していなければプロセスP33に戻る。光給電型センシングシステム1が良好に動作しているとき、受電装置3は、プロセスP33〜プロセスP35を繰り返す。プロセスP33〜プロセスP35の繰り返し処理は、状態遷移図で矢印M11の状態遷移により正常状態S1を維持することに相当する。
プロセスP33で電源電圧Eが動作保証電圧未満に低下しているとき、プロセスP36に進む。プロセスP36で、受電装置3は一時的に光信号の送信処理を一時的に中断し、プロセスP37に進んで電源電圧Eの復帰を待つ。そして、電源電圧Eが復帰すると、プロセスP31に戻る。プロセスP36からプロセスP37を経てプロセスP31に戻る処理は、状態遷移図の矢印M18の状態遷移、停止状態S14、および矢印M21の状態遷移に相当する。
プロセスP34で受取光強度Prが低下しているとき、プロセスP38に進んで、送信光強度Qsが上限値(レベルMAX)か否か判定する。そして、送信光強度Qsが上限値であれば直ちにプロセスP33に戻り(※1のフロー)、そうでなければプロセスP39に進む。プロセスP34からプロセスP38に進み直ちにプロセスP33に戻る処理は、状態遷移図の矢印M11の状態遷移に相当する。
プロセスP39では、所定時間t2を計時するt2タイマを始動させる。次にプロセスP40で、受取光強度Prが所定閾値Pdwn以上に復帰したか否か判定し、復帰していればプロセスP33に戻る(※1のフロー)。プロセスP34からプロセスP38〜プロセスP40を実施してプロセスP33に戻る処理は、状態遷移図の矢印M12の状態遷移、光強度低下確認状態S12、および矢印M13の状態遷移に相当する。
プロセスP40で、受取光強度Prが所定閾値Pdwn以上に復帰していなければ、プロセスP41に進み、確認時間t2が経過したか否か判定する。確認時間t2が経過していなければプロセスP42に進み、経過していればプロセスP43に進む(※2のフロー)。プロセスP42で、電源電圧Eが動作保証電圧未満に低下していればプロセスP36に合流し(※3のフロー)、低下していなければプロセスP40〜プロセスP42を繰り返す。プロセスP41からプロセスP43に進む処理は、状態遷移図の矢印M14の状態遷移に相当する。また、プロセスP42からプロセスP36に合流する処理は、状態遷移図の矢印M19の状態遷移に相当する。さらに、プロセスP40〜プロセスP42を繰り返す処理は、状態遷移図の光強度低下確認状態S12に相当する。
プロセスP35で受取光強度Prが上限閾値Pupを超過しているとき、ならびに、プロセスP41で確認時間t2が経過しているときは、プロセスP43に進む。プロセスP43では、送信光強度Qsが上限値(レベルMAX)か否か判定する。そして、送信光強度Qsが上限値であれば直ちにプロセスP33に戻り(※1のフロー)、そうでなければプロセスP44に進む。プロセスP35からプロセスP43に進む処理は、状態遷移図の矢印M17の状態遷移に相当する。また、プロセスP43から直ちにプロセスP33に戻る処理は、状態遷移図の矢印M16の状態遷移に相当する。
プロセスP44では、増強時間t3を計時するt3タイマを始動させる。次にプロセスP45で送信光強度Qsを増強し、プロセスP46で増強時間t3の経過を待つ。そして、増強時間t3が経過する以前はプロセスP47に進んで、電源電圧Eが動作保証電圧未満に低下しているか否か判定する。電源電圧Eが低下していればプロセスP36に合流し(※3のフロー)、そうでなければプロセスP46およびプロセスP47を繰り返す。プロセスP46で増強時間t3が経過すると、プロセスP39に合流する。プロセスP44およびプロセスP45の処理は、状態遷移図の増強過渡状態S13に相当する。また、プロセスP47からプロセスP36に合流する処理は、状態遷移図の矢印M20の状態遷移に相当する。さらに、プロセスP46からプロセスP39に合流する処理は、状態遷移図の矢印M15の状態遷移に相当する。
次に、第1実施形態の光給電型センシングシステム1の作用および効果について説明する。光給電型センシングシステム1が良好に動作しているとき、受電装置3の受取光強度Prは、上限閾値Pupと所定閾値Pdwnの間で安定する。これにより、給電装置2は正常状態S1で動作し、受電装置3も正常状態S11で動作する。ところが、光給電型センシングシステム1を経年にわたって使用すると、各部に劣化の生じるおそれがある。
例えば、給電装置2のレーザーダイオード21、受電装置3のフォトダイオード31、および光ファイバーケーブル4の第1ファイバー線41のいずれかが劣化すると、受電装置3の受取光強度Prが低下して動作不安定に陥るおそれが生じる。これに対して、第1実施形態では、センサ部34の検出信号Dsに併せて受取光強度Prの値を光信号で送信するようにしている。したがって、給電装置2の給電コントローラ25は、受取光強度Prの低下量に合わせてレーザーダイオード21の送出光強度Psを自動で適正に増強することができる。また、給電コントローラ25は、何らかの原因で受取光強度Prが増大したときに送出光強度Psを自動で適正に低減することができる。
さらに、光ファイバーケーブル4の光給電用の第1ファイバー線41が劣化したときに、光通信用の第2ファイバー線42も同程度劣化する場合が往々にして発生する。これに対して、第1実施形態では、受電装置3のレーザーダイオード37の送信光強度Qsを増強するので、確実に光通信を行うことができる。これにより、受取光強度Prの値を確実に受電装置2に伝送して、送出光強度Psを適正量だけ増強できる。
一方、送信光強度Qsの増強機能を有さない構成では、光通信用の第2ファイバー線42が劣化すると、その分だけ光通信性能が低下する。このため、受電装置3で受取光強度Prの低下を検出できても、この低下情報が受電装置2側に伝送されない場合が生じ得る。この場合、給電コントローラ25で送出光強度Psを増強制御するときに、増強量を適正に設定することが極めて難しい。
第1実施形態の光給電型センシングシステム1は、電力をレーザー光に変換して送出するレーザーダイオード21(給電変換部)、レーザー光の送出光強度Psを制御する給電コントローラ25(給電制御部)、ならびに光信号を受信して電気信号に変換するフォトダイオード22(受信変換部)を有する給電装置2と、レーザー光を受け取って受電電力に変換するフォトダイオード31(受電変換部)、レーザー光の受取光強度Prを検出するとともに受取光強度Prの値が所定閾値Pdwn未満に低下した状態を判定して光強度警報Almを発する光強度監視部32、受電電力によって動作し検出対象の状態に応じた検出信号Sdを出力するセンサ部34、ならびに受取光強度Prの値および光強度警報Almの少なくとも一方と検出信号Sdとを光信号に変換して送信するレーザーダイオード37(送信変換部)を有する受電装置3と、給電装置2と受電装置3とを結んでレーザー光および光信号を伝達する光ファイバーケーブル4(光伝達手段)とを備え、給電コントローラ25(給電制御部)は、電気信号に含まれる受取光強度Prの値が所定閾値Pdwn未満に低下した場合または電気信号に光強度警報Almが含まれる場合にレーザー光の送出光強度Psを増強し、受電装置3は、光強度警報Almが所定時間t2にわたって継続したときに光信号の送信光強度Qsを増強する送信コントローラ36(送信制御部)をさらに有する。
これによれば、受電装置3の光強度監視部32は、レーザー光の受取光強度Prを検出し、その値が低下した状態を判定して光強度警報Almを発する。受取光強度Prの値および光強度警報Almの少なくとも一方は、センサ部34の検出信号Dsとともに光信号に変換されて給電装置2に伝達される。また、受電装置3の送信コントローラ36は、光強度警報Almが所定時間にわたって継続したときに、光信号の送信光強度Qsを増強する。このため、仮に光ファイバーケーブル4で双方向の光伝達特性が低下していても良好な信号伝送性能が確保され、光信号が給電装置2に伝送される。したがって、給電装置2のフォトダイオード22で光信号を電気信号に変換して、センサ部34の元の検出信号Sdを確実に得ることができる。さらに、電気信号に含まれる受取光強度Prの値または光強度警報Almに基づいて、給電コントローラ25はレーザー光の送出光強度Psを増強するので、受取光強度Prの低下を補償して良好な給電性能を維持できる。つまり、双方向の光のパワー(送出光強度Ps、送信光強度Qs)を増強することにより、センシングおよび光給電の動作信頼性がともに向上する。
また、経年使用によりレーザーダイオード21やフォトダイオード31が低下し、あるいは光ファイバーケーブル4の第1ファイバー線41の光伝達特性が低下して受取光強度Prの値が低下した場合に、双方向の送出光強度Psおよび送信光強度Qsを自動で増強するので、光のパワーを調整するメンテナンスが必要となるのは稀である。したがって、メンテナンスサイクルを延長してメンテナンスコストを低減できる。さらには、経年劣化により頻繁なメンテナンスが必要になってシステム1の寿命と判断するケースが減少するので、システム1の長寿命化に資することができる。
さらに、第1実施形態の光給電型センシングシステム1で、送信コントローラ36は、受取光強度Psの値が所定閾値Pdwnに不足する不足量の大小に応じて光信号の送信光強度Qsの増強量を調整することができる。
これによれば、経年劣化によりレーザー光の受取光強度Prの不足量が大きいときに、光信号の送信光強度Qsの増強量を大きくできる。このため、仮に光ファイバーケーブル4で双方向の光伝達特性が大きく低下していても、不足量を補償するように光信号の送信光強度Qsを増強でき、光信号は確実に給電装置2に伝達される。したがって、センシングおよび光給電の動作信頼性がともに向上する。
さらに、第1実施形態の光給電型センシングシステム1で、レーザーダイオード37は、光信号の送信光強度Qsの値を光信号に変換して送信する。
これによれば、給電装置3側で、レーザー光の送出光強度Psおよび受取光強度Pr、ならびに光通信用の光信号の送信光強度Qsを把握でき、さらにフォトダイオード22で光信号の受信光強度を容易に把握できる。つまり、監視員が受電装置3まで赴かずとも給電装置2側で双方向の光伝達特性を定量的に把握して、経年劣化度の評価や劣化発生部位の推定などを行えるので、メンテナンスを効率化できる。
さらに、第1実施形態の光給電型センシングシステム1で、レーザーダイオード21が送出する光はレーザー光であり、光ファイバーケーブル4は2芯光ファイバーケーブルである。
これによれば、給電用にレーザー光および光ファイバーケーブルの第1ファイバー線41を用いるので、伝達損失を低減して高い効率で光給電することができる。また、光信号も光ファイバーケーブル4の第2ファイバー線42で伝達されるので、信号伝送特性が安定する。
次に、第2実施形態の光給電型センシングシステム1Aについて、第1実施形態と異なる点を主に説明する。図7は、第2実施形態の光給電型センシングシステム1Aの全体構成を示す構成ブロック図である。第2実施形態で、光ファイバーケーブル4Aが第1実施形態と異なり、給電装置2および受電装置3の構成は第1実施形態と同じである。
第2実施形態において、光ファイバーケーブルは、1芯の光ファイバー線43の両端にWDMプリズム45、46を有する1芯双方向光ファイバーケーブル4Aである。WDMプリズム45、46は、Wavelength Division Multiplexing プリズム(波長分割多重プリズム)であり、レーザー光と光信号とを分離する本発明の光分離部に相当する。WDMプリズム45、46が光を分離する原理は、光波長多重通信に用いるWDM分光器と変わらない。したがって、レーザー光の給電周波数fpと光信号の通信周波数fcとは異なる値とする必要がある。なお、図7に示されたWDMプリズム45、46は模式的な形状であり、実形状は異なる。
給電装置2側の給電WDMプリズム45は、レーザーダイオード21から送出されたレーザー光を光ファイバー線43の一端43Sに導くとともに、光ファイバー線43の他端43Rから一端43Sに伝達してきた光信号をフォトダイオード22に導く。受電装置3側の受電WDMプリズム46は、光ファイバー線43の一端43Sから他端43Rに伝達してきたレーザー光をフォトダイオード31に導くとともに、レーザーダイオード37から送出された光信号を光ファイバー線43の他端43Rに導く。
第2実施形態の光給電型センシングシステム1Aの動作および作用は、第1実施形態と同様であるので、説明は省略する。第2実施形態の光給電型センシングシステム1Aで、レーザーダイオード21(給電変換部)が送出する光はレーザー光であり、光伝達手段は、両端にレーザー光と光信号とを分離するWDMプリズム45、46(光分離部)を有する1芯双方向光ファイバーケーブル4Aである。これによれば、光ファイバーケーブルを1芯として細径化でき、材料コストや敷設コストを低減できる。
なお、第1および第2実施形態において、受電装置3から給電装置2への光通信で受取光強度Prの値を伝送しているが、光強度警報Almのみを伝送してもよい。この態様では、給電コントローラ25は、受信データDrに光強度警報Almが含まれると、送出光強度Psを増強する。さらに、光強度監視部22で、受取光強度Prの値が所定閾値Pdwnに不足する不足量の大小に応じて、複数のランクの光強度警報を選択的に発するようにしてもよい。この態様では、光強度警報のランクに応じて、給電コントローラ25は送出光強度Psの増強量を段階的に適正に調整でき、送信コントローラ36は送信光強度Qsの増強量を段階的に適正に調整できる。
また、光伝達手段は、光ファイバーケーブル4、4Aに限定されず、光が通過する空間であってもよい。つまり、本発明は、無線光給電および無線光通信を用いた光給電型センシングシステムでも実施できる。本発明は、その他様々な変形や応用が可能である。
1、1A:光給電型センシングシステム
2:給電装置
21:レーザーダイオード(給電変換部) 22:フォトダイオード(受信変換部)
23:受信回路部 24:メインコントローラ
25:給電コントローラ(給電制御部)
3:受電装置
31:フォトダイオード(受電変換部) 32:光強度監視部
33:受電回路部 34:センサ部 35:送信回路部
36:送信コントローラ(送信制御部) 37:レーザーダイオード(送信変換部)
4、4A:光ファイバーケーブル(光伝達手段)
45:給電WDMプリズム(光分離部) 46:受電WDMプリズム(光分離部)
Ps:送出光強度 Pr:受取光強度 Qs:送信光強度
Alm:光強度警報 Ds:送信データ Dr:受信データ

Claims (4)

  1. 電力を光に変換して送出する給電変換部、前記光の送出光強度を制御する給電制御部、ならびに光信号を受信して電気信号に変換する受信変換部を有する給電装置と、
    前記光を受け取って受電電力に変換する受電変換部、前記光の受取光強度を検出するとともに前記受取光強度の値が所定閾値未満に低下した状態を判定して光強度警報を発する光強度監視部、前記受電電力によって動作し検出対象の状態に応じた検出信号を出力するセンサ部、ならびに前記受取光強度の値および前記光強度警報の少なくとも一方と前記検出信号とを前記光信号に変換して送信する送信変換部を有する受電装置と、
    前記給電装置と前記受電装置とを結んで前記光および前記光信号を伝達する光伝達手段とを備え、
    前記給電制御部は、前記電気信号に含まれる前記受取光強度の値が前記所定閾値未満に低下した場合または前記電気信号に前記光強度警報が含まれる場合に前記光の送出光強度を増強し、
    前記受電装置は、前記光強度警報が所定時間にわたって継続したときに前記光信号の送信光強度を増強する送信制御部をさらに有する光給電型センシングシステム。
  2. 請求項1において、前記送信制御部は、前記受取光強度の値が前記所定閾値に不足する不足量の大小に応じて前記光信号の送信光強度の増強量を調整する光給電型センシングシステム。
  3. 請求項1または2において、前記送信変換部は、前記光信号の送信光強度の値を前記光信号に変換して送信する光給電型センシングシステム。
  4. 請求項1〜3のいずれか一項において、
    前記給電変換部が送出する光はレーザー光であり、
    前記光伝達手段は、2芯光ファイバーケーブル、あるいは、両端に前記レーザー光と前記光信号とを分離する光分離部を有する1芯双方向光ファイバーケーブルである光給電型センシングシステム。
JP2013127400A 2013-06-18 2013-06-18 光給電型センシングシステム Active JP6116395B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013127400A JP6116395B2 (ja) 2013-06-18 2013-06-18 光給電型センシングシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127400A JP6116395B2 (ja) 2013-06-18 2013-06-18 光給電型センシングシステム

Publications (2)

Publication Number Publication Date
JP2015001925A JP2015001925A (ja) 2015-01-05
JP6116395B2 true JP6116395B2 (ja) 2017-04-19

Family

ID=52296392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127400A Active JP6116395B2 (ja) 2013-06-18 2013-06-18 光給電型センシングシステム

Country Status (1)

Country Link
JP (1) JP6116395B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583928B2 (ja) * 2017-07-25 2019-10-02 Necプラットフォームズ株式会社 ネットワーク接続装置およびネットワーク接続装置給電方法
JP6998164B2 (ja) * 2017-09-15 2022-01-18 株式会社日立製作所 光給電システム
JP6878514B2 (ja) * 2019-07-22 2021-05-26 京セラ株式会社 受電装置及び光ファイバー給電システム
JP7345309B2 (ja) * 2019-08-02 2023-09-15 京セラ株式会社 光ファイバー給電システム
JP7239421B2 (ja) * 2019-08-02 2023-03-14 京セラ株式会社 光ファイバー給電システム及び光ファイバー給電システムの給電側データ通信装置
US11438063B2 (en) 2019-10-24 2022-09-06 Kyocera Corporation Powered device and power sourcing equipment of optical power supply system, and optical power supply system
JP6889226B2 (ja) * 2019-10-24 2021-06-18 京セラ株式会社 光給電システムの受電装置及び給電装置並びに光給電システム
JP6889227B2 (ja) * 2019-10-28 2021-06-18 京セラ株式会社 光給電システムの受電装置及び給電装置並びに光給電システム
JP7060638B2 (ja) * 2020-03-16 2022-04-26 京セラ株式会社 光給電システムの受電装置及び光給電システム
WO2023223417A1 (ja) * 2022-05-17 2023-11-23 日本電信電話株式会社 通信装置、光給電システム及び光給電方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278222A (ja) * 1985-06-03 1986-12-09 Nippon Denzai Kogyo Kenkyusho:Kk 伝送制御装置
JPH0814501B2 (ja) * 1989-07-29 1996-02-14 株式会社東芝 光給電型信号処理装置
JP2006282108A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp 車輪情報取得装置

Also Published As

Publication number Publication date
JP2015001925A (ja) 2015-01-05

Similar Documents

Publication Publication Date Title
JP6116395B2 (ja) 光給電型センシングシステム
JP4665528B2 (ja) 光信号伝送装置
US20130230314A1 (en) Method for controlling optical power and extinction ratio over entire temperature range
US6798567B2 (en) Method and apparatus for controlling power transients in an optical communication system
US20100178050A1 (en) Signal transmitter, signal receiver, and signal transmission system
KR101285825B1 (ko) 광전력전송장치를 이용한 송전 철탑 전력 공급 시스템 및 방법, 광전력전송장치를이용한 데이터 송수신 방법
US11765803B2 (en) LED drive circuit
WO2001080384A1 (fr) Module optique parallele et dispositif de traitement d'informations
CN1180283C (zh) 包括双控制回路的光衰减器
US20220365581A1 (en) Optical power supply system
EP3772195B1 (en) Power over fiber system and power-supplying-side data communication device of power over fiber system
CN1207855C (zh) 波长色散补偿模块以及包含它的光传输系统
CN114094722B (zh) 光纤供电系统
US11411660B2 (en) Powered device, power sourcing equipment and power over fiber system
US12027883B2 (en) Optical power supply system with adjustment of feed light supply based on electric power consumption
CN105471497B (zh) 开环模式并行光模块寿命预测方法和装置
KR100961078B1 (ko) 전원공급장치 및 그 제어방법
JP2015115657A (ja) 光伝送システムおよび受信端局装置
JP6488529B2 (ja) 光給電型水位計
JP2004179733A (ja) 光電気複合通信システムに用いられる光信号供給用光源の光量調整装置
US10855379B2 (en) Communication device and communication system
US9583911B2 (en) Optical amplifier
EP2180341B1 (en) Radiation monitor and method for confirming operation of the same
JP2006197447A (ja) 光送信器における常時発光防止回路
CN114556735A (zh) 光纤供电系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R150 Certificate of patent or registration of utility model

Ref document number: 6116395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250