JP6113496B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP6113496B2
JP6113496B2 JP2012283627A JP2012283627A JP6113496B2 JP 6113496 B2 JP6113496 B2 JP 6113496B2 JP 2012283627 A JP2012283627 A JP 2012283627A JP 2012283627 A JP2012283627 A JP 2012283627A JP 6113496 B2 JP6113496 B2 JP 6113496B2
Authority
JP
Japan
Prior art keywords
electrolyte
secondary battery
lithium
lithium secondary
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012283627A
Other languages
Japanese (ja)
Other versions
JP2014127370A (en
Inventor
平田 和久
和久 平田
慎弥 柴田
慎弥 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2012283627A priority Critical patent/JP6113496B2/en
Publication of JP2014127370A publication Critical patent/JP2014127370A/en
Application granted granted Critical
Publication of JP6113496B2 publication Critical patent/JP6113496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム遷移金属複合酸化物を正極活物質として含有する正極、リチウムイオンを吸蔵・放出可能な負極活物質を含有する負極、非水電解液及び溶媒を用いたリチウム二次電池に関する。   The present invention relates to a positive electrode containing a lithium transition metal composite oxide as a positive electrode active material, a negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions, a non-aqueous electrolyte and a lithium secondary battery using a solvent.

リチウム二次電池は、高エネルギー密度を有するため、移動体通信機器用電源、携帯用情報端末用電源等として利用され、端末の普及と共にその市場が急速に伸びており、安全性の確保、サイクル特性、ハイレート特性及びエネルギー密度の向上、低温特性、高温保存特性等の改良を目的として、さまざまな研究がなされている。   Lithium secondary batteries have high energy density, so they are used as power sources for mobile communication devices, power sources for portable information terminals, etc., and the market is growing rapidly with the spread of terminals. Various studies have been conducted for the purpose of improving characteristics, high rate characteristics, energy density, low temperature characteristics, high temperature storage characteristics, and the like.

近年では、電子機器の小型化・軽量化又は電動自動車の開発に伴って、大容量、高出力のリチウム二次電池の開発が望まれており、例えば、リチウム二次電池の非水電解液に難燃性液体としてイオン性液体を使用することが検討されている。   In recent years, along with the downsizing and weight reduction of electronic devices or the development of electric vehicles, development of large capacity, high output lithium secondary batteries has been desired. For example, for non-aqueous electrolytes of lithium secondary batteries The use of ionic liquids as flame retardant liquids has been studied.

特許文献1には、リチウム塩を含む非水電解液と、難黒鉛化性炭素の負極を含むリチウム二次電池が開示されているが、満足できるサイクル特性ではない。
特許文献2には、リチウム塩を含む非水電解液を架橋性ポリマーで固体化した電解質を有するリチウム電池が開示されているが、溶媒の固体化によりサイクル特性が十分でない。
特許文献3には、リチウム塩を含むイオン性液体であるリチウム二次電池が開示されているが、サイクル特性が満足できるものではない。
特許文献4には、イオン性液体を使用したリチウム二次電池に、有機繊維及びガラス繊維等の繊維からなる不織布であって、その空隙率が70%以上であるものを使用することが開示されており、電池の出力特性及びサイクル特性の改善を目的としている。
特許文献5には、リチウム塩を含む非水電解質液及びSi−Cコンポジットを負極活物質として含む負極を用いたリチウム二次電池が開示されており、高い容量保持率の改善を目的としている。
特許文献6には、リチウム含有リン酸化合物の正極活物質を用いた正極と、鎖状エーテル及び環状カーボネートを含有する非水系電解液とを用いた非水系電解液電池が開示されているが、かかる組み合わせではサイクル特性が十分でない。
特許文献7には、非水電解液中に複数の電解質を使用した二次電池モジュールが、数十Vの電圧下の過充電でも安全な性質を呈することが開示されている。
Patent Document 1 discloses a lithium secondary battery including a non-aqueous electrolyte containing a lithium salt and a negative electrode of non-graphitizable carbon, but is not a satisfactory cycle characteristic.
Patent Document 2 discloses a lithium battery having an electrolyte obtained by solidifying a nonaqueous electrolytic solution containing a lithium salt with a crosslinkable polymer, but the cycle characteristics are not sufficient due to solidification of the solvent.
Patent Document 3 discloses a lithium secondary battery that is an ionic liquid containing a lithium salt, but the cycle characteristics are not satisfactory.
Patent Document 4 discloses that a lithium secondary battery using an ionic liquid is a non-woven fabric made of fibers such as organic fibers and glass fibers, and has a porosity of 70% or more. The purpose is to improve battery output characteristics and cycle characteristics.
Patent Document 5 discloses a lithium secondary battery using a non-aqueous electrolyte solution containing a lithium salt and a negative electrode containing a Si—C composite as a negative electrode active material, and aims to improve high capacity retention.
Patent Document 6 discloses a non-aqueous electrolyte battery using a positive electrode using a positive electrode active material of a lithium-containing phosphate compound and a non-aqueous electrolyte containing a chain ether and a cyclic carbonate. Such a combination does not have sufficient cycle characteristics.
Patent Document 7 discloses that a secondary battery module using a plurality of electrolytes in a non-aqueous electrolyte exhibits safe properties even when overcharged under a voltage of several tens of volts.

特開2009−26542号公報JP 2009-26542 A 特開2009−277413号公報JP 2009-277413 A 特開2007−207675号公報JP 2007-207675 A 特開2010−287380号公報JP 2010-287380 A 特開2010−97922号公報JP 2010-97922 A 特開2011−96643号公報JP 2011-96643 A 特開2011−82033号公報JP 2011-82033 A

以上のように種々の検討が行われている中で、例えば、炭素の負極とイオン性液体の組み合わせを用いたリチウム二次電池は、有機溶媒系の電池と比較すると内部抵抗が高く、出力特性が不十分であり、サイクル特性及びハイレート特性等が不十分であるという問題があった。これらの課題があるため、現段階ではイオン性液体を用いたリチウムイオン電池は実用化されていない。   In various studies as described above, for example, a lithium secondary battery using a combination of a carbon negative electrode and an ionic liquid has higher internal resistance and output characteristics than an organic solvent battery. There is a problem that the cycle characteristics and the high rate characteristics are insufficient. Because of these problems, a lithium ion battery using an ionic liquid has not been put into practical use at this stage.

本発明は上記の様な事情に着目してなされたものであって、本発明の目的は、改善されたサイクル特性、ハイレート特性及び低温特性を有するリチウム二次電池を提供することにある。また、本発明の目的は、未充電状態での金属成分溶出が抑制されたリチウム二次電池を提供することにある。   The present invention has been made paying attention to the above situation, and an object of the present invention is to provide a lithium secondary battery having improved cycle characteristics, high rate characteristics, and low temperature characteristics. Another object of the present invention is to provide a lithium secondary battery in which elution of metal components in an uncharged state is suppressed.

本発明者らは、リチウム二次電池において、非水電解液中に特定の電解質を用いることにより、電極上に被膜が形成され、内部抵抗の上昇を抑制し、放電電圧を高い値に維持させうると同時に、特定の溶媒を用いることにより、該溶媒が電圧印加時に分解しにくく安定となることを見出して、本発明を完成するに至った。   In the lithium secondary battery, the present inventors use a specific electrolyte in the non-aqueous electrolyte so that a film is formed on the electrode, suppressing an increase in internal resistance, and maintaining the discharge voltage at a high value. At the same time, by using a specific solvent, it was found that the solvent is difficult to be decomposed and stable when a voltage is applied, and the present invention has been completed.

すなわち、本発明のリチウム二次電池は、
一般式 LixNiaCobMncdyで表され、元素MはAl、Si、Zr、Ti、Fe、Mg及びVからなる群より選ばれる少なくとも1種の元素であり、0.9≦(a+b+c+d)≦1.1、1.0≦x≦1.3、0<a≦0.8、0≦b≦0.5、0≦c≦0.5、0≦d≦0.5、1.9≦y≦2.1であるリチウム遷移金属複合酸化物を正極活物質として含有する正極、
リチウムイオンを吸蔵・放出可能な負極活物質を含有する負極、及び
非水電解液を備えたリチウム二次電池であって、
上記非水電解液が、電解質(1)として
一般式(1);(XSO2)(X’SO2)N-Li+
(X、X’は、フッ素原子、炭素数1〜6のアルキル基又は炭素数1〜6のフルオロアルキル基を表し、X、X’の少なくとも一方はフッ素原子である。)で表される化合物、及びカーボネート系溶媒を含むことを特徴とする。
That is, the lithium secondary battery of the present invention is
Is represented by the general formula Li x Ni a Co b Mn c M d O y, element M is at least one element Al, Si, Zr, Ti, Fe, selected from the group consisting of Mg and V, 0. 9 ≦ (a + b + c + d) ≦ 1.1, 1.0 ≦ x ≦ 1.3, 0 <a ≦ 0.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.5, 0 ≦ d ≦ 0. 5, a positive electrode containing a lithium transition metal composite oxide satisfying 1.9 ≦ y ≦ 2.1 as a positive electrode active material,
A lithium secondary battery comprising a negative electrode containing a negative electrode active material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte,
The non-aqueous electrolyte is the general formula (1); (XSO 2 ) (X′SO 2 ) N Li + as the electrolyte (1).
(X and X ′ represent a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms, and at least one of X and X ′ is a fluorine atom). And a carbonate-based solvent.

前記非水電解液が、電解質としてさらに電解質(2)を含み、前記電解質(2)が、
LiPFe(Cm2m+16-e(0≦e≦6、1≦m≦2)、
LiBFf(Cn2n+14-f(0≦f≦4、1≦n≦2)、及び
LiAsF6からなる群より選ばれる少なくとも1種のリチウム塩であることが好ましい。
The non-aqueous electrolyte further includes an electrolyte (2) as an electrolyte, and the electrolyte (2)
LiPF e (C m F 2m + 1 ) 6-e (0 ≦ e ≦ 6, 1 ≦ m ≦ 2),
LiBF f (C n F 2n + 1 ) 4-f (0 ≦ f ≦ 4, 1 ≦ n ≦ 2) and at least one lithium salt selected from the group consisting of LiAsF 6 are preferred.

このとき、前記非水電解液中に含まれる電解質(1)の濃度が、電解質(1)と電解質(2)との合計量に対して30〜99.9mol%であることが好ましい。   At this time, it is preferable that the density | concentration of the electrolyte (1) contained in the said non-aqueous electrolyte is 30-99.9 mol% with respect to the total amount of electrolyte (1) and electrolyte (2).

前記電解質(2)がLiPF6である態様、前記カーボネート系溶媒が環状カーボネート類を含む態様は、いずれも本発明の好ましい実施態様である。 The embodiment in which the electrolyte (2) is LiPF 6 and the embodiment in which the carbonate solvent contains a cyclic carbonate are preferred embodiments of the present invention.

上記一般式(1)で表される化合物が、リチウムビス(フルオロスルホニル)イミドであることが好ましい。   The compound represented by the general formula (1) is preferably lithium bis (fluorosulfonyl) imide.

本発明によれば、改善されたサイクル特性、ハイレート特性及び低温特性を有するリチウム二次電池を提供することができる。また、未充電状態での金属成分溶出が抑制されたリチウム二次電池を提供することができる。   According to the present invention, it is possible to provide a lithium secondary battery having improved cycle characteristics, high rate characteristics, and low temperature characteristics. In addition, it is possible to provide a lithium secondary battery in which elution of metal components in an uncharged state is suppressed.

図1は、本発明のリチウム二次電池によるサイクル特性の改善を示す図である(横軸はサイクル数、縦軸は放電保持率を示す)。FIG. 1 is a diagram showing the improvement of cycle characteristics by the lithium secondary battery of the present invention (the horizontal axis indicates the number of cycles, and the vertical axis indicates the discharge retention rate). 図2は、25℃における本発明のリチウム二次電池によるハイレート特性の改善を示す図である(横軸は容量、縦軸は電圧を示す)。FIG. 2 is a diagram showing improvement in high rate characteristics by the lithium secondary battery of the present invention at 25 ° C. (the horizontal axis indicates capacity, and the vertical axis indicates voltage). 図3は、−30℃における本発明のリチウム二次電池によるハイレート特性及び低温特性の改善を示す図である(横軸は容量、縦軸は電圧を示す)。FIG. 3 is a graph showing improvement in high rate characteristics and low temperature characteristics by the lithium secondary battery of the present invention at −30 ° C. (the horizontal axis indicates capacity and the vertical axis indicates voltage).

<リチウム二次電池>
本発明のリチウム二次電池は、
一般式 LixNiaCobMncdyで表され、元素MはAl、Si、Zr、Ti、Fe、Mg及びVからなる群より選ばれる少なくとも1種の元素であり、0.9≦(a+b+c+d)≦1.1、1.0≦x≦1.3、0<a≦0.8、0≦b≦0.5、0≦c≦0.5、0≦d≦0.5、1.9≦y≦2.1であるリチウム遷移金属複合酸化物を正極活物質として含有する正極、
リチウムイオンを吸蔵・放出可能な負極活物質を含有する負極、及び
非水電解液を備えたリチウム二次電池であって、
上記非水電解液が、電解質(1)として
一般式(1);(XSO2)(X’SO2)N-Li+
(X、X’は、フッ素原子、炭素数1〜6のアルキル基又は炭素数1〜6のフルオロアルキル基を表し、X、X’の少なくとも一方はフッ素原子である。)で表される化合物、及びカーボネート系溶媒を含むところに特徴を有する。
かかるリチウム二次電池によれば、非水電解液が電解質(1)を含むと、低温または常温下でも電極上に被膜を形成し、電解液の劣化を抑制するため、内部抵抗の上昇が抑えられ、放電電圧を高い値に維持することができる。また、非水電解液がカーボネート系溶媒を含むと、該溶媒が電圧印加時に分解しにくく安定性を向上させることができる。さらに、非水電解液がさらに電解質(2)を含むと、集電体の腐食が抑制できるため、リチウムイオン電池のサイクル特性を向上させることができる。
<Lithium secondary battery>
The lithium secondary battery of the present invention is
Is represented by the general formula Li x Ni a Co b Mn c M d O y, element M is at least one element Al, Si, Zr, Ti, Fe, selected from the group consisting of Mg and V, 0. 9 ≦ (a + b + c + d) ≦ 1.1, 1.0 ≦ x ≦ 1.3, 0 <a ≦ 0.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.5, 0 ≦ d ≦ 0. 5, a positive electrode containing a lithium transition metal composite oxide satisfying 1.9 ≦ y ≦ 2.1 as a positive electrode active material,
A lithium secondary battery comprising a negative electrode containing a negative electrode active material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte,
The non-aqueous electrolyte is the general formula (1); (XSO 2 ) (X′SO 2 ) N Li + as the electrolyte (1).
(X and X ′ represent a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms, and at least one of X and X ′ is a fluorine atom). And a carbonate-based solvent.
According to such a lithium secondary battery, when the non-aqueous electrolyte contains the electrolyte (1), a film is formed on the electrode even at a low temperature or normal temperature, and the deterioration of the electrolyte is suppressed. The discharge voltage can be maintained at a high value. In addition, when the non-aqueous electrolyte contains a carbonate-based solvent, the solvent is hardly decomposed when a voltage is applied, and the stability can be improved. Furthermore, when the non-aqueous electrolyte further contains the electrolyte (2), corrosion of the current collector can be suppressed, and thus the cycle characteristics of the lithium ion battery can be improved.

<正極>
以下に、本発明のリチウム二次電池に使用される正極について説明する。
<Positive electrode>
Below, the positive electrode used for the lithium secondary battery of this invention is demonstrated.

<正極活物質>
本発明のリチウム二次電池において、正極活物質は、一般式 LixNiaCobMncdyで表され、元素MはAl、Si、Zr、Ti、Fe、Mg及びVからなる群より選ばれる少なくとも1種の元素であり、0.9≦(a+b+c+d)≦1.1、1.0≦x≦1.3、0<a≦0.8、0≦b≦0.5、0≦c≦0.5、0≦d≦0.5、1.9≦y≦2.1であるリチウム遷移金属複合酸化物を含有する。かかるリチウム遷移金属複合酸化物は、電子伝導性が高く、サイクル特性及びハイレート特性が高いため正極活物質として好適に使用される。前記リチウム遷移金属複合酸化物は、単独又は2種以上を併用して使用することができる。
<Positive electrode active material>
In the lithium secondary battery of the present invention, the positive electrode active material is represented by the general formula Li x Ni a Co b Mn c M d O y, the element M consists of Al, Si, Zr, Ti, Fe, Mg and V At least one element selected from the group, 0.9 ≦ (a + b + c + d) ≦ 1.1, 1.0 ≦ x ≦ 1.3, 0 <a ≦ 0.8, 0 ≦ b ≦ 0.5, A lithium transition metal composite oxide satisfying 0 ≦ c ≦ 0.5, 0 ≦ d ≦ 0.5, and 1.9 ≦ y ≦ 2.1 is contained. Such a lithium transition metal composite oxide is suitably used as a positive electrode active material because of its high electronic conductivity, high cycle characteristics and high rate characteristics. The lithium transition metal composite oxide can be used alone or in combination of two or more.

前記一般式において0.9≦(a+b+c+d)≦1.1であり、リチウム二次電池が好適な特性を呈する観点から、好ましくは0.95≦(a+b+c+d)≦1.05であり、より好ましくは(a+b+c+d)=1.0である。   In the general formula, 0.9 ≦ (a + b + c + d) ≦ 1.1, and from the viewpoint that the lithium secondary battery exhibits suitable characteristics, preferably 0.95 ≦ (a + b + c + d) ≦ 1.05, and more preferably (A + b + c + d) = 1.0.

前記一般式において1.0≦x≦1.3であり、好ましくは1.0≦x≦1.2、より好ましくは1.0≦x≦1.1、さらに好ましくはx=1である。xが1.0未満であると実質的な容量低下を招くおそれがあり、xが1.3より大きいと、初回の不可逆容量が増えて効率が低下するおそれがある。   In the above general formula, 1.0 ≦ x ≦ 1.3, preferably 1.0 ≦ x ≦ 1.2, more preferably 1.0 ≦ x ≦ 1.1, and further preferably x = 1. If x is less than 1.0, the capacity may be substantially reduced, and if x is greater than 1.3, the initial irreversible capacity may increase and efficiency may be reduced.

前記一般式において0<a≦0.8であり、好ましくは0<a≦0.7、より好ましくは0<a≦0.6、さらに好ましくは0<a≦0.5である。aが0であると酸化物の充電時の熱安定性が低下するおそれがあり、aが0.8より大きいと、正極活物質の容量低下に繋がるおそれがある。   In the general formula, 0 <a ≦ 0.8, preferably 0 <a ≦ 0.7, more preferably 0 <a ≦ 0.6, and still more preferably 0 <a ≦ 0.5. If a is 0, the thermal stability during charging of the oxide may be reduced, and if a is greater than 0.8, the capacity of the positive electrode active material may be reduced.

前記一般式において0≦b≦0.5であり、好ましくは0≦b≦0.45、より好ましくは0≦b≦0.4である。bが0.5より大きいと、正極活物質の容量低下に繋がるおそれがある。   In the above general formula, 0 ≦ b ≦ 0.5, preferably 0 ≦ b ≦ 0.45, and more preferably 0 ≦ b ≦ 0.4. If b is larger than 0.5, the capacity of the positive electrode active material may be reduced.

前記一般式において0≦c≦0.5であり、好ましくは0≦c≦0.45であり、より好ましくは0≦c≦0.4である。cが0.5より大きいと、正極活物質の容量低下に繋がるおそれがある。   In the general formula, 0 ≦ c ≦ 0.5, preferably 0 ≦ c ≦ 0.45, and more preferably 0 ≦ c ≦ 0.4. When c is larger than 0.5, the capacity of the positive electrode active material may be reduced.

前記一般式において0≦d≦0.5であり、好ましくは0≦d≦0.4であり、より好ましくは0≦d≦0.3であり、さらに好ましくは0≦d≦0.2であり、より一層好ましくは0≦d≦0.1であり、さらに一層好ましくはd=0である。前記一般式において1.9≦y≦2.1であり、好ましくは1.9≦y≦2.0であり、より好ましくはy=2である。   In the above general formula, 0 ≦ d ≦ 0.5, preferably 0 ≦ d ≦ 0.4, more preferably 0 ≦ d ≦ 0.3, and further preferably 0 ≦ d ≦ 0.2. Yes, more preferably 0 ≦ d ≦ 0.1, and even more preferably d = 0. In the above general formula, 1.9 ≦ y ≦ 2.1, preferably 1.9 ≦ y ≦ 2.0, and more preferably y = 2.

前記一般式 LixNiaCobMncdyで表されるリチウム遷移金属複合酸化物としては、LiNi1/3Co1/3Mn1/32、LiNi0.5Co0.3Mn0.22、LiNi0.5Co0.2Mn0.32等が挙げられる。 Examples of the lithium transition metal composite oxide represented by the general formula Li x Ni a Co b Mn c M d O y include LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiNi 0.5 Co 0.3 Mn 0.2 O. 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 .

前記一般式 LixNiaCobMncdyで表されるリチウム遷移金属複合酸化物の正極活物質の表面に、特定の物質をドープおよび/または表面にコーティングさせてもよく、ドープおよび/または表面にコーティングに用いられる物質としては、Al、Si、Zr、Ti、Fe、Mg及びV等が挙げられる。 Wherein the general formula Li x Ni a Co b Mn c M d O surface of the positive electrode active material of lithium transition metal composite oxide represented by y, may also be coated with a specific material doped and / or surface-doped Examples of substances used for coating on the surface include Al, Si, Zr, Ti, Fe, Mg, and V.

前記正極活物質は、前記LixNiaCobMncdyで表されるリチウム遷移金属複合酸化物を主成分とする。正極活物質は、LixNiaCobMncdyで表されるリチウム遷移金属複合酸化物を、好ましくは50〜100質量%、より好ましくは70〜100質量%、さらに好ましくは90〜100質量%含有する。 The positive electrode active material is mainly composed of a lithium transition metal composite oxide represented by the Li x Ni a Co b Mn c M d O y . The positive electrode active material, the Li x Ni a Co b Mn c lithium transition metal composite oxide represented by M d O y, preferably from 50 to 100 wt%, more preferably 70 to 100 wt%, more preferably 90 Contains ~ 100% by mass.

本発明において、正極活物質として、本発明の効果を奏する限り、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、LiAPO4(A=Fe、Mn、Ni、Co)等のオリビン構造を有する化合物、遷移金属を複数取り入れた固溶材料(電気化学的に不活性な層状のLi2MnO3と、電気化学的に活性な層状のLiMO2(M=Co、Ni、Fe等の遷移金属)との固溶体)等を用いてもよい。これらを単独で使用してもよく、複数組み合わせて使用してもよい。 In the present invention, as a positive electrode active material, a compound having an olivine structure such as lithium cobaltate, lithium nickelate, lithium manganate, LiAPO 4 (A = Fe, Mn, Ni, Co), as long as the effects of the present invention are exhibited. Solid solution materials incorporating a plurality of transition metals (electrochemically inactive layered Li 2 MnO 3 and electrochemically active layered LiMO 2 (transition metals such as M = Co, Ni, Fe)) (Solid solution) or the like may be used. These may be used alone or in combination.

前記正極活物質は、当業者に公知の製造方法により製造されたものであればよく、製造方法としては、例えばリチウム原料、マンガン原料、ニッケル原料、コバルト原料及びこれらの酸化物原料等を混合し、湿式粉砕した後、造粒乾燥させ、焼成し、必要に応じて分級する方法等が挙げられる。   The positive electrode active material only needs to be manufactured by a manufacturing method known to those skilled in the art. Examples of the manufacturing method include mixing a lithium raw material, a manganese raw material, a nickel raw material, a cobalt raw material, and an oxide raw material thereof. Examples thereof include a method of performing wet pulverization, granulating and drying, baking, and classifying as necessary.

正極は、正極活物質、導電助剤、結着剤及び分散用溶媒等を含む正極活物質組成物が正極集電体に担持されているものであり、通常シート状である。
正極の製造方法は、例えば、正極集電体に正極活物質組成物をドクターブレード法等で塗工したり、浸漬した後に、乾燥する方法;正極活物質組成物を混練成形し乾燥して得たシートを正極集電体に導電性接着剤を介して接合し、プレス、乾燥する方法;液状潤滑剤を添加した正極活物質組成物を正極集電体上に成形した後、液状潤滑剤を除去し、次いで一軸又は多軸方向に延伸する方法等が挙げられる。
The positive electrode is a sheet in which a positive electrode active material composition containing a positive electrode active material, a conductive additive, a binder, a dispersing solvent, and the like is supported on a positive electrode current collector.
The method for producing the positive electrode is, for example, a method in which the positive electrode active material composition is applied to the positive electrode current collector by the doctor blade method or the like and dried after being immersed; the positive electrode active material composition is kneaded, molded and dried. A method of joining the sheet to the positive electrode current collector via a conductive adhesive, pressing and drying; forming a positive electrode active material composition to which a liquid lubricant has been added on the positive electrode current collector; The method of removing and then extending | stretching to a uniaxial or multiaxial direction etc. is mentioned.

正極集電体の材料としては特に限定されず、例えば、アルミニウム、アルミニウム合金、チタン等の導電性金属を用いることができる。中でも、薄膜に加工しやすく、安価であるという観点から、アルミニウムが好ましい。   The material of the positive electrode current collector is not particularly limited, and for example, a conductive metal such as aluminum, an aluminum alloy, or titanium can be used. Among these, aluminum is preferable from the viewpoint of being easily processed into a thin film and being inexpensive.

導電助剤としては、アセチレンブラック、カーボンブラック、グラファイト、金属粉末材料、単層カーボンナノチューブ、多層カーボンナノチューブ、気相法炭素繊維等が挙げられる。   Examples of the conductive assistant include acetylene black, carbon black, graphite, metal powder material, single-walled carbon nanotube, multi-walled carbon nanotube, and vapor grown carbon fiber.

結着剤(バインダー)としては、ポリビニリデンフロライド(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレンやそれらの共重合体等のフッ素系樹脂;スチレン−ブタジエンゴム(SBR)、ニトリルブタジエンゴム等の合成ゴム;ポリアミドイミド等のポリアミド系樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリ(メタ)アクリル系樹脂;ポリアクリル酸;カルボキシメチルセルロース(CMC)等のセルロース系樹脂等が挙げられる。これらの結着剤は単独で使用してもよく、複数種を混合して使用してもよい。また、これらの結着剤は溶媒に溶けた状態であっても、溶媒に分散した状態であっても構わない。   As binder (binder), fluorocarbon resins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyhexafluoropropylene and copolymers thereof; styrene-butadiene rubber (SBR), nitrile Synthetic rubber such as butadiene rubber; Polyamide resin such as polyamideimide; Polyolefin resin such as polyethylene and polypropylene; Poly (meth) acrylic resin; Polyacrylic acid; Cellulose resin such as carboxymethylcellulose (CMC) . These binders may be used alone or in combination of two or more. These binders may be dissolved in a solvent or dispersed in a solvent.

導電助剤及び結着剤の配合量は、電池の使用目的(出力重視、エネルギー重視等)、イオン伝導性等を考慮して適宜調整することができる。   The blending amounts of the conductive auxiliary agent and the binder can be appropriately adjusted in consideration of the intended use of the battery (emphasis on output, importance on energy, etc.), ion conductivity, and the like.

正極を製造する際にして、正極活物質組成物に用いられる溶媒としては、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、テトラヒドロフラン、アセトン、エタノール、酢酸エチル、水等が挙げられる。   Examples of the solvent used in the positive electrode active material composition when producing the positive electrode include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, tetrahydrofuran, acetone, ethanol, ethyl acetate, water and the like.

<非水電解液>
<一般式(1)で表される化合物(以下電解質(1)ともいう)>
本発明のリチウム二次電池中の非水電解液は、一般式(1);(XSO2)(X’SO2)N-Li+で表される化合物{式中X、X’は、フッ素原子、炭素数1〜6のアルキル基又は炭素数1〜6のフルオロアルキル基を表し、X、X’の少なくとも一方はフッ素原子である。}(電解質(1))を含むことを特徴とする。上記一般式(1)で表される化合物を電解質中に含むことにより、低温または常温下でも電極上に被膜が形成され、電極の劣化及び非水電解液の分解を抑制することができ、内部抵抗の上昇を抑制し、放電電圧を高い値に維持させることができる。また、未充電状態で20℃で1ヶ月保管した後でも集電体及び正極活物質からの金属成分溶出を抑制することもできる。また、非水電解液は、電解質(1)、カーボネート系溶媒を必須とし、さらに後述の電解質(2)を含んでもよいが、イオン性液体に通常使用されるトリエチルアンモニウム、エチルメチルイミダゾリウム、ブチルメチルイミダゾリウム、1−メチル−1−プロピルピロリジニウム、メチルプロピルピペリジニウム等は含まないことが好ましい。なお、電解質(1)は、後述の電解質(2)よりも導電性及び熱分解温度が高いものを使用してもよく、カーボネート系溶媒と併用した場合に低温でも室温と同様な導電性を示すものであればよい。
<Non-aqueous electrolyte>
<Compound represented by general formula (1) (hereinafter also referred to as electrolyte (1))>
The non-aqueous electrolyte in the lithium secondary battery of the present invention is a compound represented by the general formula (1); (XSO 2 ) (X′SO 2 ) N Li + , wherein X and X ′ are fluorine An atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms is represented, and at least one of X and X ′ is a fluorine atom. } (Electrolyte (1)). By including the compound represented by the general formula (1) in the electrolyte, a film is formed on the electrode even at a low temperature or normal temperature, and the deterioration of the electrode and the decomposition of the nonaqueous electrolytic solution can be suppressed. The rise in resistance can be suppressed and the discharge voltage can be maintained at a high value. Moreover, the elution of metal components from the current collector and the positive electrode active material can be suppressed even after storage at 20 ° C. for one month in an uncharged state. In addition, the non-aqueous electrolytic solution essentially includes an electrolyte (1) and a carbonate-based solvent, and may further include an electrolyte (2) described later, but triethylammonium, ethylmethylimidazolium, butyl, which are usually used for ionic liquids. Methyl imidazolium, 1-methyl-1-propylpyrrolidinium, methylpropylpiperidinium and the like are preferably not included. The electrolyte (1) may have a conductivity and a thermal decomposition temperature higher than those of the electrolyte (2) described later. When used in combination with a carbonate-based solvent, the electrolyte (1) exhibits conductivity similar to room temperature even at low temperatures. Anything is acceptable.

上記一般式(1)中、X、X’は、フッ素原子、炭素数1〜6のアルキル基又は炭素数1〜6のフルオロアルキル基を表し、X、X’の少なくとも一方はフッ素原子である。炭素数1〜6のアルキル基としては、直鎖状のアルキル基であることが好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基が挙げられる。炭素数1〜6のフルオロアルキル基としては、上記アルキル基が有する水素原子の一部又は全部がフッ素原子で置換されたものが挙げられ、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基等が挙げられる。上記アルキル基又はフルオロアルキル基の中でも、トリフルオロメチル基、ペンタフルオロエチル基が好ましい。一般式(1)で表される好ましい化合物としては、リチウムビス(フルオロスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、リチウム(フルオロスルホニル)(メチルスルホニル)イミド、リチウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミド、リチウム(フルオロスルホニル)(エチルスルホニル)イミドが挙げられる。一般式(1)で表されるより好ましい化合物はリチウムビス(フルオロスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、リチウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミドであり、さらに好ましくはリチウムビス(フルオロスルホニル)イミド(LiFSI)である。   In the general formula (1), X and X ′ represent a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms, and at least one of X and X ′ is a fluorine atom. . The alkyl group having 1 to 6 carbon atoms is preferably a linear alkyl group, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, and a hexyl group. Examples of the fluoroalkyl group having 1 to 6 carbon atoms include those in which some or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms, such as a fluoromethyl group, a difluoromethyl group, and a trifluoromethyl group. , Fluoroethyl group, difluoroethyl group, trifluoroethyl group, pentafluoroethyl group and the like. Of the alkyl group or fluoroalkyl group, a trifluoromethyl group and a pentafluoroethyl group are preferable. Preferred compounds represented by the general formula (1) include lithium bis (fluorosulfonyl) imide, lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide, lithium (fluorosulfonyl) (methylsulfonyl) imide, lithium (fluorosulfonyl) ) (Pentafluoroethylsulfonyl) imide, lithium (fluorosulfonyl) (ethylsulfonyl) imide. More preferable compounds represented by the general formula (1) are lithium bis (fluorosulfonyl) imide, lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide, lithium (fluorosulfonyl) (pentafluoroethylsulfonyl) imide, Lithium bis (fluorosulfonyl) imide (LiFSI) is preferred.

本発明のリチウム二次電池中の非水電解液において、電解質(1)は主たる電解質としてもよいし、他の電解質を主たる電解質としてもよいが、他の電解質を主たる電解質とする場合は、後述する電解質(2)を主たる電解質としてもよい。ハイレート特性、サイクル特性及び低温特性を改善する観点から、電解質(1)を主たる電解質として使用する方が好ましい。また、「主たる電解質」は、非水電解液中に含まれる全ての電解質含有量のうち、少なくとも50mol%以上であるものを意味する。   In the nonaqueous electrolytic solution in the lithium secondary battery of the present invention, the electrolyte (1) may be a main electrolyte, or another electrolyte may be a main electrolyte. However, when other electrolyte is a main electrolyte, it will be described later. The electrolyte (2) to be used may be the main electrolyte. From the viewpoint of improving high rate characteristics, cycle characteristics, and low temperature characteristics, it is preferable to use the electrolyte (1) as a main electrolyte. In addition, the “main electrolyte” means at least 50 mol% or more of the total electrolyte content contained in the nonaqueous electrolytic solution.

本発明のリチウム二次電池中の非水電解液中の一般式(1)で表される化合物(電解質(1))の濃度は、電解質(1)を主たる電解質とする場合は、0.1mol/L以上、飽和濃度以下であることが好ましい。より好ましくは0.1mol/L〜2.5mol/Lであり、さらに好ましくは0.3mol/L〜2mol/L、特に好ましくは0.4mol/L〜1.5mol/Lであり、最も好ましくは0.5mol/L〜1.2mol/Lである。電解質(1)の濃度が高すぎると非水電解液の粘度が高くなって電気伝導度が低下し、電池性能が充分に発現しないおそれがあり、電解質(1)の濃度が低いと、イオン量が少なくなる傾向があり、電解液の電気伝導度が不十分となるおそれがある。電解質(1)以外の電解質を主たる電解質とする場合は、電解質(1)の濃度は、好ましくは0.01mol/L〜2mol/L、より好ましくは0.05mol/L〜1mol/L、さらに好ましくは0.1mol/L〜0.7mol/Lである。電解質(1)の濃度が0.01mol/L未満である場合は、電極上の被膜形成が充分でなく、所望の電池性能が得られないおそれがある。電解質(1)の濃度が2mol/Lを超える場合は非水電解液の粘度が高くなり電気伝導度が低下し電池性能が充分に発揮できないおそれがある。   The concentration of the compound (electrolyte (1)) represented by the general formula (1) in the non-aqueous electrolyte in the lithium secondary battery of the present invention is 0.1 mol when the electrolyte (1) is the main electrolyte. / L or more and the saturation concentration or less is preferable. More preferably, it is 0.1 mol / L to 2.5 mol / L, further preferably 0.3 mol / L to 2 mol / L, particularly preferably 0.4 mol / L to 1.5 mol / L, most preferably 0.5 mol / L to 1.2 mol / L. If the concentration of the electrolyte (1) is too high, the viscosity of the non-aqueous electrolyte is increased and the electric conductivity may be lowered, and the battery performance may not be sufficiently exhibited. If the concentration of the electrolyte (1) is low, the amount of ions There is a tendency that the electric conductivity of the electrolytic solution becomes insufficient. When an electrolyte other than the electrolyte (1) is used as the main electrolyte, the concentration of the electrolyte (1) is preferably 0.01 mol / L to 2 mol / L, more preferably 0.05 mol / L to 1 mol / L, and even more preferably. Is 0.1 mol / L to 0.7 mol / L. When the concentration of the electrolyte (1) is less than 0.01 mol / L, film formation on the electrode is not sufficient, and desired battery performance may not be obtained. When the concentration of the electrolyte (1) exceeds 2 mol / L, the viscosity of the non-aqueous electrolyte is increased and the electric conductivity is lowered, and the battery performance may not be sufficiently exhibited.

電解質(1)は、市販品を使用してもよく、従来公知の方法により合成したものを用いてもよい。   As the electrolyte (1), a commercially available product may be used, or one synthesized by a conventionally known method may be used.

<電解質(2)>
本発明のリチウム二次電池においては、前記非水電解液が、電解質としてさらに電解質(2)を含み、前記電解質(2)が、
LiPFe(Cm2m+16-e(0≦e≦6、1≦m≦2)、
LiBFf(Cn2n+14-f(0≦f≦4、1≦n≦2)、及び
LiAsF6からなる群より選ばれる少なくとも1種のリチウム塩であることが好ましい。
<Electrolyte (2)>
In the lithium secondary battery of the present invention, the non-aqueous electrolyte further includes an electrolyte (2) as an electrolyte, and the electrolyte (2)
LiPF e (C m F 2m + 1 ) 6-e (0 ≦ e ≦ 6, 1 ≦ m ≦ 2),
LiBF f (C n F 2n + 1 ) 4-f (0 ≦ f ≦ 4, 1 ≦ n ≦ 2) and at least one lithium salt selected from the group consisting of LiAsF 6 are preferred.

LiPFe(Cm2m+16-eにおいて、e=6であることが好ましく、LiBFf(Cn2n+14-fにおいて、f=4であることが好ましい。これらの電解質(2)は、電解液中での解離定数が大きく、また、後述する溶媒と溶媒和し難いアニオンを生成するものである。具体的には、前記電解質(2)は、LiPF6、LiBF4、及びLiAsF6からなる群より選ばれる少なくとも1種のリチウム塩であることが好ましい。これらの中でも、LiPF6、LiBF4が好ましく、LiPF6がより好ましい。前記電解質(2)は、単独で又は2種以上を組み合わせて用いてもよい。 In LiPF e (C m F 2m + 1 ) 6-e , e = 6 is preferable, and in LiBF f (C n F 2n + 1 ) 4-f , f = 4 is preferable. These electrolytes (2) have large dissociation constants in the electrolytic solution and generate anions that are difficult to solvate with the solvent described later. Specifically, the electrolyte (2) is preferably at least one lithium salt selected from the group consisting of LiPF 6 , LiBF 4 , and LiAsF 6 . Among these, LiPF 6 and LiBF 4 are preferable, and LiPF 6 is more preferable. The electrolyte (2) may be used alone or in combination of two or more.

前記電解質(2)は、電解液中での解離定数が大きく、適度な電気伝導率を示し、集電体の劣化も抑制することができる。前記電解質(2)は、電解質(1)と併用すると、電気伝導率をさらに高め、リチウム二次電池の性能を向上させることができる。   The electrolyte (2) has a large dissociation constant in the electrolytic solution, exhibits an appropriate electrical conductivity, and can suppress deterioration of the current collector. When the electrolyte (2) is used in combination with the electrolyte (1), the electrical conductivity can be further increased and the performance of the lithium secondary battery can be improved.

本発明のリチウム二次電池の非水電解液においては、電解質(2)は主たる電解質として使用されてもよいが、ハイレート特性、サイクル特性及び低温特性を改善する観点から、電解質(1)を主たる電解質として使用する方が好ましい。
電解質(2)が主たる電解質となる場合は、非水電解液中の電解質(2)の濃度は0.1mol/L以上、飽和濃度以下であることが好ましい。非水電解液中の電解質(2)の濃度は、より好ましくは0.1mol/L〜2.5mol/L、さらに好ましくは0.3mol/L〜2mol/L、特に好ましくは0.4mol/L〜1.5mol/L、最も好ましくは0.5mol/L〜1.2mol/Lである。電解質(2)の濃度が高すぎると、非水電解液の粘度が高くなって電気伝導度が低下し、電池性能が充分に発現しないおそれがあり、電解質(2)の濃度が低いと、イオン量が少なくなる傾向があり、電解液の電気伝導度が不十分となるおそれがある。
In the non-aqueous electrolyte of the lithium secondary battery of the present invention, the electrolyte (2) may be used as a main electrolyte. From the viewpoint of improving high rate characteristics, cycle characteristics and low temperature characteristics, the electrolyte (1) is mainly used. It is preferable to use it as an electrolyte.
When the electrolyte (2) is the main electrolyte, the concentration of the electrolyte (2) in the nonaqueous electrolytic solution is preferably 0.1 mol / L or more and not more than the saturation concentration. The concentration of the electrolyte (2) in the nonaqueous electrolytic solution is more preferably 0.1 mol / L to 2.5 mol / L, still more preferably 0.3 mol / L to 2 mol / L, and particularly preferably 0.4 mol / L. ˜1.5 mol / L, most preferably 0.5 mol / L to 1.2 mol / L. If the concentration of the electrolyte (2) is too high, the viscosity of the non-aqueous electrolyte is increased and the electrical conductivity may be lowered, and the battery performance may not be sufficiently exhibited. If the concentration of the electrolyte (2) is low, The amount tends to decrease, and the electric conductivity of the electrolytic solution may be insufficient.

電解質(2)以外を主たる電解質とする場合は、非水電解液中の電解質(2)の濃度は、好ましくは0.01mol/L〜2mol/L、より好ましくは0.05mol/L〜1mol/L、さらに好ましくは0.1mol/L〜0.5mol/Lである。電解質(2)の濃度が0.01mol/L未満である場合は、電極上の被膜形成が充分でなく、所望の電池性能が得られないおそれがある。電解質(2)の濃度が2mol/Lを超える場合は非水電解液の粘度が高くなり電気伝導度が低下し電池性能が充分に発揮できないおそれがある。   When the main electrolyte other than the electrolyte (2) is used, the concentration of the electrolyte (2) in the non-aqueous electrolyte is preferably 0.01 mol / L to 2 mol / L, more preferably 0.05 mol / L to 1 mol / L. L, more preferably 0.1 mol / L to 0.5 mol / L. When the concentration of the electrolyte (2) is less than 0.01 mol / L, film formation on the electrode is not sufficient, and desired battery performance may not be obtained. When the concentration of the electrolyte (2) exceeds 2 mol / L, the viscosity of the non-aqueous electrolyte is increased and the electric conductivity is lowered, and the battery performance may not be sufficiently exhibited.

また、非水電解液中の電解質(1)と電解質(2)の濃度は、電解質(1)と電解質(2)の濃度の合計として、好ましくは0.8mol/L〜2.5mol/L、より好ましくは1.0mol/L〜2.0mol/L、さらに好ましくは1.0mol/L〜1.5mol/Lである。   The concentration of the electrolyte (1) and the electrolyte (2) in the nonaqueous electrolytic solution is preferably 0.8 mol / L to 2.5 mol / L as the total concentration of the electrolyte (1) and the electrolyte (2), More preferably, they are 1.0 mol / L-2.0 mol / L, More preferably, they are 1.0 mol / L-1.5 mol / L.

前記非水電解液中に含まれる電解質(1)の濃度は、サイクル特性、ハイレート特性及び低温特性の改善の観点から、電解質(1)と電解質(2)との合計量に対して好ましくは30〜99.9mol%である。下限はより好ましくは40mol%以上、さらに好ましくは50mol%以上である。かかる範囲であると、低温または常温下でも電極上に被膜が形成され、電極の劣化及び非水電解液の分解を抑制することができ、内部抵抗の上昇を抑制し、放電電圧を高い値に維持させることができ、結果として、サイクル特性、ハイレート特性および低温特性を改善することができる。   The concentration of the electrolyte (1) contained in the non-aqueous electrolyte is preferably 30 with respect to the total amount of the electrolyte (1) and the electrolyte (2) from the viewpoint of improving cycle characteristics, high rate characteristics, and low temperature characteristics. ˜99.9 mol%. The lower limit is more preferably 40 mol% or more, and still more preferably 50 mol% or more. Within such a range, a film is formed on the electrode even at a low temperature or at a normal temperature, so that the deterioration of the electrode and the decomposition of the non-aqueous electrolyte can be suppressed, the increase in internal resistance is suppressed, and the discharge voltage is increased to a high value. As a result, cycle characteristics, high rate characteristics, and low temperature characteristics can be improved.

前記非水電解液中に含まれる電解質(2)の濃度は、サイクル特性、ハイレート特性及び低温特性の改善の観点から、電解質(1)と電解質(2)との合計量に対して好ましくは0.1〜70mol%、上限はより好ましくは70mol%以下、さらに好ましくは60mol%以下、より一層好ましくは50mol%以下である。   The concentration of the electrolyte (2) contained in the non-aqueous electrolyte is preferably 0 with respect to the total amount of the electrolyte (1) and the electrolyte (2) from the viewpoint of improving cycle characteristics, high rate characteristics and low temperature characteristics. The upper limit is more preferably 70 mol% or less, still more preferably 60 mol% or less, and still more preferably 50 mol% or less.

<カーボネート系溶媒>
本発明の非水電解液において、上記電解質類を溶解させる溶媒としては、従来、非水電解液に使用されている種々の非水溶媒のカーボネート系溶媒を使用することができる。かかるカーボネート系溶媒は、特許文献2のようにポリマーの固体化の溶媒として使用するものではなく、単に電解質を溶解させ、電解質の溶解性を高めるものであればよい。カーボネート系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート等の環状カーボネート類;フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート等のフッ素含有環状カーボネート類;ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類;2−フルオロプロピルメチルカーボネート、エチル2−フルオロエチルカーボネート等のフッ素含有鎖状カーボネート類等が挙げられる。これらのカーボネート系溶媒は、電圧印加時に分解しにくく安定であるため好適に使用できる。なかでも、熱安定性の観点から、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート等の環状カーボネート類及びジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類が好ましく、電極に対する化学的、電気化学的安定性、熱安定性及び溶媒の比誘電率の観点から、エチレンカーボネートを含むことがより好ましい。
なお、上記カーボネート系溶媒は単独で使用してもよく、電極に対する化学的、電気化学的安定性、熱安定性及び溶媒の比誘電率の観点から、2種以上を混合して使用することが好ましい。
<Carbonate solvent>
In the nonaqueous electrolytic solution of the present invention, as the solvent for dissolving the electrolytes, carbonate solvents of various nonaqueous solvents conventionally used in nonaqueous electrolytic solutions can be used. Such a carbonate-based solvent is not used as a solvent for solidifying the polymer as in Patent Document 2, but may be any solvent that simply dissolves the electrolyte and enhances the solubility of the electrolyte. Examples of carbonate solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and chloroethylene carbonate; fluorine-containing cyclics such as fluoroethylene carbonate, 4,4-difluoroethylene carbonate, and 4,5-difluoroethylene carbonate. Carbonates; chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; and fluorine-containing chain carbonates such as 2-fluoropropyl methyl carbonate and ethyl 2-fluoroethyl carbonate. These carbonate solvents can be suitably used because they are stable and resistant to decomposition when a voltage is applied. Among these, from the viewpoint of thermal stability, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and chloroethylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate are preferable. From the viewpoint of electrochemical stability, thermal stability, and relative dielectric constant of the solvent, it is more preferable to contain ethylene carbonate.
In addition, the said carbonate type solvent may be used independently, and it may be used in mixture of 2 or more types from a viewpoint of the chemical and electrochemical stability with respect to an electrode, thermal stability, and the dielectric constant of a solvent. preferable.

本発明の非水電解液におけるカーボネート系溶媒の濃度は、好ましくは70質量%〜95質量%、より好ましくは75質量%〜95質量%、さらに好ましくは80質量%〜90質量%である。   The concentration of the carbonate solvent in the nonaqueous electrolytic solution of the present invention is preferably 70% by mass to 95% by mass, more preferably 75% by mass to 95% by mass, and further preferably 80% by mass to 90% by mass.

<添加剤>
本発明のリチウム二次電池の非水電解液にはサイクル特性及びハイレート特性の改善や安全性の向上のため、電解質(1)、カーボネート系溶媒、任意に電解質(2)以外に添加剤を含んでいても良い。添加剤としては、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、メチルビニレンカーボネート(MVC)、エチルビニレンカーボネート(EVC)等の不飽和結合を有する環状カーボネート類;トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート及びエリスリタンカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、メタンスルホン酸メチル、ブサルファン、スルホラン、スルホレン、ジメチルスルホン、テトラメチルチウラムモノスルフィド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、N−メチルスクシイミド等の含窒素化合物;モノフルオロリン酸塩、ジフルオロリン酸塩等のリン酸塩;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物等が挙げられる。非水電解液にこれらの添加剤を用いる場合、その濃度としては0.1質量%〜10質量%であることが好ましい。
<Additives>
The non-aqueous electrolyte of the lithium secondary battery of the present invention contains an additive in addition to the electrolyte (1), the carbonate-based solvent, and optionally the electrolyte (2) in order to improve cycle characteristics, high rate characteristics, and safety. You can leave. As additives, cyclic carbonates having an unsaturated bond such as vinylene carbonate (VC), vinyl ethylene carbonate (VEC), methyl vinylene carbonate (MVC), ethyl vinylene carbonate (EVC); trifluoropropylene carbonate, phenylethylene carbonate And carbonate compounds such as erythritan carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic acid Carboxylic anhydrides such as anhydrides and phenylsuccinic anhydrides; ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methyl methanesulfonate, busulfan, sulfo Sulfur-containing compounds such as lan, sulfolene, dimethylsulfone, tetramethylthiuram monosulfide; 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2- Nitrogen-containing compounds such as imidazolidinone and N-methylsuccinimide; phosphates such as monofluorophosphate and difluorophosphate; hydrocarbon compounds such as heptane, octane and cycloheptane. When these additives are used in the non-aqueous electrolyte, the concentration is preferably 0.1% by mass to 10% by mass.

<負極>
負極は、負極活物質、分散用溶媒、結着剤、増粘剤及び必要に応じて導電助剤等を含む負極活物質組成物が負極集電体に担持されているものであり、通常シート状である。
<Negative electrode>
The negative electrode is a sheet in which a negative electrode active material composition containing a negative electrode active material, a dispersing solvent, a binder, a thickener, and a conductive auxiliary agent, if necessary, is supported on a negative electrode current collector. Is.

負極集電体の材料としては、銅、鉄、ニッケル、銀、ステンレス鋼等の導電性金属を用いることができるが、薄膜に加工しやすいという観点から、銅が好ましい。   As a material for the negative electrode current collector, a conductive metal such as copper, iron, nickel, silver, and stainless steel can be used, but copper is preferable from the viewpoint of easy processing into a thin film.

負極活物質としては、従来公知のリチウム二次電池で使用される負極活物質を用いることができ、リチウムイオンを吸蔵・放出可能なものであればよい。具体的には、グラファイト、人造黒鉛、天然黒鉛等の黒鉛材料、石炭・石油ピッチから作られるメソフェーズ焼成体、難黒鉛化性炭素等の炭素材料、Si、Si合金、SiO等のシリコン系負極材料、Sn合金等のSn系負極材料、リチウム金属、リチウム−アルミニウム合金等のリチウム合金を用いることができる。   As a negative electrode active material, the negative electrode active material used with a conventionally well-known lithium secondary battery can be used, What is necessary is just what can occlude / release lithium ion. Specifically, graphite materials such as graphite, artificial graphite, natural graphite, mesophase fired bodies made from coal / petroleum pitch, carbon materials such as non-graphitizable carbon, silicon-based negative electrode materials such as Si, Si alloy, and SiO Sn-based negative electrode materials such as Sn alloy, and lithium alloys such as lithium metal and lithium-aluminum alloy can be used.

なお、負極の製造方法は正極の製造方法と同様の方法を採用することができる。負極に使用し得る導電助剤、結着剤、材料分散用の溶媒等は、正極で用いられるものと同様のものを用いることができる。   In addition, the manufacturing method of a negative electrode can employ | adopt the method similar to the manufacturing method of a positive electrode. As the conductive auxiliary agent, binder, material dispersing solvent and the like that can be used for the negative electrode, the same materials as those used for the positive electrode can be used.

また、負極活物質組成物の作製に増粘剤を用いてもよい。増粘剤としては、例えばポリエチレングリコール類、セルロース類、ポリアクリルアミド類、ポリ(メタ)アクリレート類等が挙げられるが、これらの中でも、ポリエチレングリコール類、カルボキシメチルセルロース(CMC)等のセルロース類及びポリ(メタ)アクリレート類等が好ましく、好適な粘性を付与でき、かつ分散性も良好であるカルボキシメチルセルロース(CMC)が特に好ましい。   Moreover, you may use a thickener for preparation of a negative electrode active material composition. Examples of the thickener include polyethylene glycols, celluloses, polyacrylamides, poly (meth) acrylates, etc. Among these, celluloses such as polyethylene glycols, carboxymethyl cellulose (CMC), and poly ( (Meth) acrylates and the like are preferable, and carboxymethyl cellulose (CMC) that can impart a suitable viscosity and has good dispersibility is particularly preferable.

<セパレータ>
セパレータは正負極を隔てるように配置されるものである。セパレータとしては、特に制限されるべきものではなく、従来公知のものを用いることができる。例えば、非水電解液を吸収・保持するポリマーからなる多孔性シート(例えば、ポリオレフィン系微多孔質セパレータやセルロース系セパレータ等)、不織布セパレータ、多孔質金属体等が挙げられる。中でも、有機溶媒に対して化学的に安定であるという性質を持つポリオレフィン系微多孔質セパレータが好適である。
<Separator>
The separator is disposed so as to separate the positive and negative electrodes. The separator is not particularly limited, and a conventionally known separator can be used. For example, a porous sheet (for example, a polyolefin-based microporous separator or a cellulose-based separator) made of a polymer that absorbs and holds a non-aqueous electrolyte, a nonwoven fabric separator, a porous metal body, and the like can be given. Among these, a polyolefin microporous separator having a property of being chemically stable with respect to an organic solvent is preferable.

上記多孔性シートの材質は、ポリエチレン、ポリプロピレン、ポリプロピレン/ポリエチレン/ポリプロピレンの3層構造を有する積層体等が挙げられる。   Examples of the material of the porous sheet include polyethylene, polypropylene, and a laminate having a three-layer structure of polypropylene / polyethylene / polypropylene.

上記不織布セパレータの材質は、例えば、綿、レーヨン、アセテート、ナイロン、ポリエステル、ポリプロピレン、ポリエチレン、ポリイミド、アラミド、ガラス等が挙げられ、非水電解液層に要求される機械強度等に応じて単独又は混合して用いる。   Examples of the material of the nonwoven fabric separator include cotton, rayon, acetate, nylon, polyester, polypropylene, polyethylene, polyimide, aramid, glass, and the like, depending on the mechanical strength required for the nonaqueous electrolyte layer or the like. Used by mixing.

本発明に係るリチウム二次電池は、正極と負極とが、非水電解液が含浸されているセパレーターを介して、ケースに収納された構造を有している。本発明に係るリチウム二次電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等のいずれであってもよい。   The lithium secondary battery according to the present invention has a structure in which a positive electrode and a negative electrode are housed in a case via a separator impregnated with a non-aqueous electrolyte. The shape of the lithium secondary battery according to the present invention is arbitrary, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

1.非水電解液の調製
非水電解液調製例1
一般式(1)で表される化合物(電解質(1))としてリチウムビス(フルオロスルホニル)イミド(LiFSI、従来公知の方法により合成したもの)0.37g(2mmol)、電解質(2)としてヘキサフルオロリン酸リチウム(LiPF6、キシダ化学株式会社製、LBGグレード)1.52g(10mmol)を10mLのメスフラスコに測り取り、エチレンカーボネート(EC)(キシダ化学株式会社製、LBGグレード)の溶媒でメスアップして非水電解液1を調製した。
1. Nonaqueous Electrolyte Preparation Nonaqueous Electrolyte Preparation Example 1
0.37 g (2 mmol) of lithium bis (fluorosulfonyl) imide (LiFSI, synthesized by a conventionally known method) as the compound represented by the general formula (1) (electrolyte (1)), hexafluoro as the electrolyte (2) 1.52 g (10 mmol) of lithium phosphate (LiPF 6 , manufactured by Kishida Chemical Co., Ltd., LBG grade) is weighed into a 10 mL volumetric flask and measured with a solvent of ethylene carbonate (EC) (manufactured by Kishida Chemical Co., Ltd., LBG grade). The nonaqueous electrolyte solution 1 was prepared.

非水電解液調製例2
電解質(1)として前出のLiFSI 1.14g(6mmol)、電解質(2)として前出のLiPF6 0.91g(6mmol)を用いたこと以外は、非水電解液調製例1と同様にして非水電解液2を調製した。
Non-aqueous electrolyte preparation example 2
The same procedure as in Nonaqueous Electrolyte Preparation Example 1 except that 1.14 g (6 mmol) of LiFSI described above was used as the electrolyte (1) and 0.91 g (6 mmol) of LiPF 6 was used as the electrolyte (2). A nonaqueous electrolytic solution 2 was prepared.

非水電解液調製例3
電解質(1)として前出のLiFSI 1.9g(10mmol)、電解質(2)として前出のLiPF6 0.3g(2mmol)を用いたこと以外は、非水電解液調製例1と同様にして非水電解液3を調製した。
Non-aqueous electrolyte preparation example 3
Except for using LiFSI 1.9 g (10 mmol) as the electrolyte (1) and LiPF 6 0.3 g (2 mmol) as the electrolyte (2), the same as in Nonaqueous Electrolyte Preparation Example 1 A nonaqueous electrolytic solution 3 was prepared.

非水電解液調製例4
電解質(1)として前出のLiFSI 1.50g(8mmol)、電解質(2)として前出のLiPF6 0.3g(2mmol)を用いたこと以外は、非水電解液調製例1と同様にして非水電解液4を調製した。
Nonaqueous electrolyte preparation example 4
Except that 1.50 g (8 mmol) of the above LiFSI was used as the electrolyte (1) and 0.3 g (2 mmol) of the above LiPF 6 as the electrolyte (2), the same procedure as in Nonaqueous Electrolyte Preparation Example 1 was used. A non-aqueous electrolyte solution 4 was prepared.

非水電解液調製例5
電解質(1)として前出のLiFSI 1.71g(9mmol)、電解質(2)として前出のLiPF6 0.15g(1mmol)を用いたこと以外は、非水電解液調製例1と同様にして非水電解液5を調製した。
Nonaqueous electrolyte preparation example 5
The same procedure as in Nonaqueous Electrolyte Preparation Example 1, except that 1.71 g (9 mmol) of LiFSI described above was used as the electrolyte (1) and 0.15 g (1 mmol) of LiPF 6 was used as the electrolyte (2). A nonaqueous electrolytic solution 5 was prepared.

非水電解液調製例6
電解質(1)を用いず、電解質(2)として前出のLiPF6 1.8g(12mmol)を用いたこと以外は非水電解液調製例1と同様にして非水電解液6を調製した。
Nonaqueous electrolyte preparation example 6
A non-aqueous electrolyte solution 6 was prepared in the same manner as in the non-aqueous electrolyte preparation example 1, except that the electrolyte (1) was not used and the above-described LiPF 6 1.8 g (12 mmol) was used as the electrolyte (2).

2.ラミネートセルの作製と試験前の充放電
LiNi1/3Co1/3Mn1/32、PVDF、アセチレンブラックを96:5:4の比率で混錬し、NMP溶剤で希釈して固形分60%でスラリー化して、アルミ箔上に塗工し、乾燥させた後、ロールプレス機で一定密度になるまでプレスして作製した正極シート1枚と、人造黒鉛、SBR、CMCを97:1.5:1.5の比率で混錬し、純水希釈することにより固形分48%でスラリー化して、銅箔上に塗工し、乾燥させた後、ロールプレス機で一定密度になるまでプレスして作製した負極シート1枚とを対向するように積層し、その間に1枚のポリオレフィン系セパレータ(ポリエチレン製20μm)を挟んだ。2枚のアルミニウムラミネートフィルムで正極及び負極のシートを挟み込み、アルミニウムラミネートフィルム内を各非水電解液1〜6で満たし、真空状態で密閉することにより、ラミネートセルを作製した。
2. Preparation of laminate cell and charge / discharge before test LiNi 1/3 Co 1/3 Mn 1/3 O 2 , PVDF, acetylene black were kneaded at a ratio of 96: 5: 4, diluted with NMP solvent, and solid content Slurried at 60%, coated on aluminum foil, dried, then pressed to a constant density with a roll press machine, and 97: 1 artificial graphite, SBR, and CMC Kneaded at a ratio of 5: 1.5, diluted with pure water to make a slurry with a solid content of 48%, coated on copper foil, dried, and then until a constant density with a roll press One negative electrode sheet produced by pressing was laminated so as to face each other, and one polyolefin separator (20 μm made of polyethylene) was sandwiched therebetween. A laminate cell was produced by sandwiching the positive and negative electrode sheets with two aluminum laminate films, filling the aluminum laminate film with each of the non-aqueous electrolytes 1 to 6 and sealing in a vacuum state.

3.サイクル特性試験
非水電解液4〜6を用いた各ラミネート型リチウム電池について、前記充放電試験装置を用いて、30℃において充放電速度0.2C(定電流モード)で、4.2Vまで充電し、3.0Vまで放電して、サイクル試験を行った。各充放電後には10分の充放電休止時間を設けた。結果を図1に示す。
3. Cycle characteristics test Each laminated lithium battery using non-aqueous electrolytes 4 to 6 is charged to 4.2 V at a charge / discharge rate of 0.2 C (constant current mode) at 30 ° C. using the charge / discharge test apparatus. Then, the battery was discharged to 3.0 V and a cycle test was conducted. A charge / discharge pause time of 10 minutes was provided after each charge / discharge. The results are shown in FIG.

図1の結果から、LiFSIとLiPF6を併用した例とLiFSIを用いなかった例と比べると、LiFSIとLiPF6を併用した例は、サイクル特性が向上していることが分かる。これは、LiFSIを非水電解液中に含むと、電極上に被膜が形成され、電極の劣化及び溶媒の分解を防止するためであると考えられ、さらにLiPF6を用いると集電体の劣化も抑制されるためであると考えられる。 From the results of FIG. 1, it can be seen that the cycle characteristics are improved in the example using LiFSI and LiPF 6 in comparison with the example using LiFSI and LiPF 6 in combination with the example using no LiFSI. When LiFSI is included in the non-aqueous electrolyte, a film is formed on the electrode, which is considered to prevent electrode deterioration and solvent decomposition, and when LiPF 6 is used, current collector deterioration. It is thought that this is because of the suppression.

4.ハイレート特性及び低温特性試験
非水電解液1〜3及び6を用いた各ラミネート型リチウム電池について、前記充放電試験装置を用いて、25℃において充電速度0.2C(定電流モード)で1サイクル4.2Vまで充電後、3.0Vまで放電し、この時の放電容量を100%とした。各充放電後には10分の充放電休止時間を設けた。さらに温度を−30℃または25℃において放電速度を0.5C、1.0C及び2.0Cとする以外は上記と同じ条件で放電を行い、容量に対する電圧を測定した。結果を図2及び3に示す。
4). High rate characteristic and low temperature characteristic test For each of the laminated lithium batteries using the non-aqueous electrolytes 1 to 3 and 1 cycle, the charge / discharge test apparatus is used, and the charge rate is 0.2 C (constant current mode) at 1 cycle. After charging to 4.2 V, the battery was discharged to 3.0 V, and the discharge capacity at this time was 100%. A charge / discharge pause time of 10 minutes was provided after each charge / discharge. Furthermore, discharge was performed under the same conditions as described above except that the temperature was −30 ° C. or 25 ° C. and the discharge rate was 0.5 C, 1.0 C, and 2.0 C, and the voltage with respect to the capacity was measured. The results are shown in FIGS.

図2及び3の結果から、LiFSIとLiPF6を併用した例とLiFSIを用いなかった例と比べると、LiFSIとLiPF6を併用した例は、ハイレート特性が向上していることを示す。これは、LiFSIを非水電解液中に含むと、常温または低温下でも電極上に被膜が形成され、電極の劣化及び溶媒の分解を抑制し、内部抵抗の上昇を抑制し、放電電圧を高い値に維持させるためであると考えられる。また、LiPF6とLiFSIとを添加した場合、LiPF6の量とLiFSIの量が同じであるか、又はLiPF6の量がLiFSIの量よりも少ないとハイレート特性が向上していることがわかる。これは、適切なLiFSIの量であれば、伝導率が向上するためであると考えられる。さらに、図3の結果によれば、ハイレート特性のみならず低温特性も改善できることが分かる。 From the results of FIGS. 2 and 3, as compared with the example using no examples and LiFSI in combination with LiFSI and LiPF 6, an example in which a combination of LiFSI and LiPF 6 indicates that the high rate characteristics are improved. This is because when LiFSI is included in the nonaqueous electrolyte, a film is formed on the electrode even at room temperature or low temperature, suppressing deterioration of the electrode and decomposition of the solvent, suppressing increase in internal resistance, and increasing discharge voltage. This is considered to maintain the value. It can also be seen that when LiPF 6 and LiFSI are added, if the amount of LiPF 6 is the same as the amount of LiFSI, or the amount of LiPF 6 is less than the amount of LiFSI, the high rate characteristics are improved. This is considered to be because the conductivity is improved if the amount of LiFSI is appropriate. Furthermore, it can be seen from the results of FIG. 3 that not only the high rate characteristics but also the low temperature characteristics can be improved.

5.未充電状態での20℃で1ヶ月保管後の非水電解液のICP測定(金属成分溶出試験)
下記表1に示す非水電解液を用いて作製した各ラミネート型リチウム電池を、未充電状態で20℃で1ヶ月保管した後に、取り出した。それぞれの電池作製に用いた非水電解液について超純水にて1%濃度に希釈してICP測定を行った(測定装置:株式会社島津製作所製 ICP発光分析装置 ICPE−9000)。その結果を表1に示す。
5. ICP measurement of non-aqueous electrolyte after storage for 1 month at 20 ° C in an uncharged state (metal component elution test)
Each laminated lithium battery produced using the non-aqueous electrolyte shown in Table 1 below was stored in an uncharged state at 20 ° C. for 1 month, and then taken out. Each non-aqueous electrolyte used for battery preparation was diluted to 1% with ultrapure water and subjected to ICP measurement (measuring device: ICP emission analyzer ICPE-9000 manufactured by Shimadzu Corporation). The results are shown in Table 1.

表1によれば、LiFSIを含む場合、集電体のAl、正極活物質のCo、Mn成分溶出が抑制されていることが分かる。また、LiFSIの濃度がより高い場合に、金属成分溶出がより抑制されていることが分かる。これは、LiFSIにより電極上に被膜が形成され、Al、Co、Mn等の金属成分溶出を抑制しているためと考えられる。従って、本発明のリチウム二次電池を用いれば、未充電状態で20℃で1ヶ月保管してもリチウム二次電池の性能を保持できる。   According to Table 1, when LiFSI is included, it can be seen that elution of Al of the current collector, Co and Mn components of the positive electrode active material is suppressed. Moreover, when the density | concentration of LiFSI is higher, it turns out that metal component elution is suppressed more. This is considered to be because a film is formed on the electrode by LiFSI and the elution of metal components such as Al, Co, and Mn is suppressed. Therefore, if the lithium secondary battery of the present invention is used, the performance of the lithium secondary battery can be maintained even when stored at 20 ° C. for one month in an uncharged state.

Claims (6)

一般式 LixNiaCobMncdyで表され、元素MはAl、Si、Zr、Ti、Fe、Mg及びVからなる群より選ばれる少なくとも1種の元素であり、0.9≦(a+b+c+d)≦1.1、1.0≦x≦1.3、0<a≦0.8、0≦b≦0.5、0≦c≦0.5、0≦d≦0.5、1.9≦y≦2.1であるリチウム遷移金属複合酸化物を正極活物質として含有する正極、
リチウムイオンを吸蔵・放出可能な負極活物質を含有する負極、及び
非水電解液を備えたリチウム二次電池であって、
前記非水電解液が、電解質(1)として
一般式(1);(XSO2)(X’SO2)N-Li+
(X、X’は、フッ素原子、炭素数1〜6のアルキル基又は炭素数1〜6のフルオロアルキル基を表し、X、X’の少なくとも一方はフッ素原子である。)で表される化合物、及びカーボネート系溶媒を含み、
前記非水電解液が、電解質としてさらに電解質(2)を含み、前記電解質(2)が、
LiPFe(Cm2m+16−e(0≦e≦6、1≦m≦2)、
LiBFf(Cn2n+14−f(0≦f≦4、1≦n≦2)、及び
LiAsF6からなる群より選ばれる少なくとも1種のリチウム塩であり、
前記非水電解液中に含まれる電解質(1)の濃度が、電解質(1)と電解質(2)との合計量に対して30〜99.9mol%であり、
前記非水電解液中の一般式(1)で表される化合物(電解質(1))の濃度が、0.1mol/L〜2.5mol/Lであり、
前記非水電解液中の電解質(2)の濃度が0.01mol/L〜2mol/Lであることを特徴とするリチウム二次電池。
Is represented by the general formula Li x Ni a Co b Mn c M d O y, element M is at least one element Al, Si, Zr, Ti, Fe, selected from the group consisting of Mg and V, 0. 9 ≦ (a + b + c + d) ≦ 1.1, 1.0 ≦ x ≦ 1.3, 0 <a ≦ 0.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.5, 0 ≦ d ≦ 0. 5, a positive electrode containing a lithium transition metal composite oxide satisfying 1.9 ≦ y ≦ 2.1 as a positive electrode active material,
A lithium secondary battery comprising a negative electrode containing a negative electrode active material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte,
The non-aqueous electrolyte is the general formula (1); (XSO 2 ) (X′SO 2 ) N Li + as the electrolyte (1).
(X and X ′ represent a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms, and at least one of X and X ′ is a fluorine atom). And a carbonate-based solvent,
The non-aqueous electrolyte further includes an electrolyte (2) as an electrolyte, and the electrolyte (2)
LiPF e (C m F 2m + 1 ) 6-e (0 ≦ e ≦ 6, 1 ≦ m ≦ 2),
LiBF f (C n F 2n + 1 ) 4−f (0 ≦ f ≦ 4, 1 ≦ n ≦ 2), and at least one lithium salt selected from the group consisting of LiAsF 6 ,
The concentration of the electrolyte (1) contained in the nonaqueous electrolytic solution, Ri 30~99.9Mol% der on the total amount of the electrolyte (1) and the electrolyte (2),
The concentration of the compound represented by the general formula (1) (electrolyte (1)) in the non-aqueous electrolyte is 0.1 mol / L to 2.5 mol / L,
The lithium secondary battery, wherein the concentration of the electrolyte (2) in the non-aqueous electrolyte is 0.01 mol / L to 2 mol / L.
前記電解質(2)がLiPF6である請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1 wherein the electrolyte (2) is LiPF 6. 前記カーボネート系溶媒が環状カーボネート類を含む請求項1または2に記載のリチウム二次電池。 The lithium secondary battery according to claim 1 or 2 wherein the carbonate-based solvent comprises a cyclic carbonate. 鎖状カーボネート類をさらに含む請求項1〜3のいずれかに記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 3, further comprising a chain carbonate. 前記一般式(1)で表される化合物が、リチウムビス(フルオロスルホニル)イミドである請求項1〜のいずれかに記載のリチウム二次電池。 The compound represented by the general formula (1) is a lithium secondary battery according to any one of claims 1 to 4, which is a lithium bis (fluorosulfonyl) imide. 前記負極が、黒鉛材料、カルボキシメチルセルロース及びスチレン−ブタジエンゴムを含む請求項1〜のいずれかに記載のリチウム二次電池。 The negative electrode, the graphite material, carboxymethyl cellulose and styrene - lithium secondary battery according to any one of claims 1 to 5 including a butadiene rubber.
JP2012283627A 2012-12-26 2012-12-26 Lithium secondary battery Active JP6113496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012283627A JP6113496B2 (en) 2012-12-26 2012-12-26 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012283627A JP6113496B2 (en) 2012-12-26 2012-12-26 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2014127370A JP2014127370A (en) 2014-07-07
JP6113496B2 true JP6113496B2 (en) 2017-04-12

Family

ID=51406700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012283627A Active JP6113496B2 (en) 2012-12-26 2012-12-26 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6113496B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101802018B1 (en) 2014-09-26 2017-11-27 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
US11437646B2 (en) 2014-09-26 2022-09-06 Lg Energy Solution, Ltd. Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR101797290B1 (en) * 2014-09-26 2017-12-12 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
JP6895085B2 (en) 2015-03-16 2021-06-30 日本電気株式会社 Power storage device
JP6549420B2 (en) * 2015-06-04 2019-07-24 東ソー・ファインケム株式会社 Nonaqueous electrolyte and nonaqueous secondary battery using the same
JP6606702B2 (en) * 2015-07-17 2019-11-20 エス・イー・アイ株式会社 Lithium secondary battery
JP6931966B2 (en) * 2015-08-21 2021-09-08 株式会社日本触媒 Lithium ion secondary battery
JP6931965B2 (en) * 2015-08-21 2021-09-08 株式会社日本触媒 Lithium ion secondary battery
JP6975525B2 (en) * 2015-10-02 2021-12-01 株式会社日本触媒 Lithium ion secondary battery
US20190173123A1 (en) * 2016-05-26 2019-06-06 Nec Corporation Lithium ion secondary battery
WO2018066110A1 (en) * 2016-10-06 2018-04-12 Nec Corporation Spacer Included Electrodes Structure and Its Application for High Energy Density and Fast Chargeable Lithium Ion Batteries
WO2018138865A1 (en) * 2017-01-27 2018-08-02 Nec Corporation Silicone ball containing electrode and lithium ion battery including the same
WO2023039748A1 (en) * 2021-09-15 2023-03-23 宁德新能源科技有限公司 Electrochemical device and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847675B2 (en) * 2002-10-23 2011-12-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery and electrolyte used therefor
JP5125559B2 (en) * 2008-02-04 2013-01-23 株式会社Gsユアサ Non-aqueous electrolyte battery and manufacturing method thereof
JP5678539B2 (en) * 2009-09-29 2015-03-04 三菱化学株式会社 Non-aqueous electrolyte battery
JP2011082033A (en) * 2009-10-07 2011-04-21 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery module
BR112013027300A2 (en) * 2011-04-26 2019-09-24 Ube Industries non-aqueous electrolyte solution, electric storage device thereof, and cyclic sulfonic acid ester compound
JP6483943B2 (en) * 2012-06-26 2019-03-13 株式会社日本触媒 Lithium secondary battery

Also Published As

Publication number Publication date
JP2014127370A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP6113496B2 (en) Lithium secondary battery
JP6353564B2 (en) Electrolytic solution and lithium ion secondary battery provided with the same
JP6296597B2 (en) Lithium ion secondary battery
JP6398985B2 (en) Lithium ion secondary battery
JP6483943B2 (en) Lithium secondary battery
JP6183472B2 (en) Non-aqueous electrolyte secondary battery and its assembled battery
EP2840641A1 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
JP6018820B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
JP6304746B2 (en) Lithium ion secondary battery
JP5357517B2 (en) Lithium ion secondary battery
JP2014203748A (en) Nonaqueous electrolytic solution for lithium ion secondary batteries, and lithium ion secondary battery having the same
JP2013084590A (en) Laminated alkali metal battery
JP2017069164A (en) Lithium ion secondary battery
WO2016068033A1 (en) Lithium-ion secondary cell
JP2017041425A (en) Lithium ion secondary battery
JP6592256B2 (en) Lithium ion secondary battery
JP2022029448A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery comprising nonaqueous electrolyte
JP2013145732A (en) Lithium secondary battery
JP2017073251A (en) Lithium ion secondary battery
TWI622199B (en) Lithium secondary battery
JP5848587B2 (en) Lithium secondary battery
JP2011071017A (en) Lithium secondary battery
JP2015153525A (en) Electrolyte and secondary battery using the same
JP2015037068A (en) Positive electrode for lithium ion battery, and lithium ion secondary battery
JP2017041426A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170315

R150 Certificate of patent or registration of utility model

Ref document number: 6113496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150