JP2011071017A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2011071017A
JP2011071017A JP2009222418A JP2009222418A JP2011071017A JP 2011071017 A JP2011071017 A JP 2011071017A JP 2009222418 A JP2009222418 A JP 2009222418A JP 2009222418 A JP2009222418 A JP 2009222418A JP 2011071017 A JP2011071017 A JP 2011071017A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009222418A
Other languages
Japanese (ja)
Other versions
JP5749882B2 (en
Inventor
Nobuhiro Ogiwara
信宏 荻原
Hiroshi Sawada
博 佐和田
Gen Sasaki
厳 佐々木
Osamu Hiruta
修 蛭田
Mamoru Mizutani
守 水谷
Hiroyuki Nakano
広幸 中野
Yuichi Ito
勇一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009222418A priority Critical patent/JP5749882B2/en
Publication of JP2011071017A publication Critical patent/JP2011071017A/en
Application granted granted Critical
Publication of JP5749882B2 publication Critical patent/JP5749882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To achieve both high energy density and high durability against high temperature when a positive electrode active material containing an iron lithium phosphate compound is used. <P>SOLUTION: A lithium secondary battery 10 includes: a positive electrode sheet 13 in which a positive electrode active material 12 is formed in a current collector 11; a negative electrode sheet 18 in which a negative electrode active material 17 is formed on a surface of the current collector 14; and a nonaqueous electrolytic solution 20 to fill between the positive electrode sheet 13 and the negative electrode sheet 18. As for this lithium secondary battery, the iron lithium phosphate compound is contained in the positive electrode active material 12, and in the negative electrode active material 17, amorphous carbon (for example, easily-graphitizable carbon) is contained within a range of 20 wt.% or more and 40 wt.% or less, and graphite is contained within a range of 80 wt.% or less and 60 wt.% or more. The specific surface area A of the negative electrode active material 17 is formed by 2.38 m<SP>2</SP>/g or more and 3.40 m<SP>2</SP>/g or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウム二次電池に関する。   The present invention relates to a lithium secondary battery.

従来、主にリチウム二次電池の正極に用いられる活物質として、オリビン型構造を基本骨格とした鉄リン酸リチウム化合物(LiFePO4)を含有した活物質の研究が行われている。この材料は鉄やリンなどの安価な元素を主成分とするため、電池材料の低コスト化に寄与する材料として期待されている。また、温度を上げても酸素を放出しにくい性質のために、高温で電解液との反応性が低く、電池の信頼性向上に寄与する材料としても期待されている。しかしながら、この鉄リン酸リチウム化合物は、コバルトやニッケルなどを含有するものに比して電池容量が小さく、正極活物質中のFeが電解液中に溶出し負極で析出することなどがあり、サイクル耐久性が低いことがあることから、様々な改良が続けられている。例えば、オリビン型構造を基本骨格とした鉄リン酸リチウム化合物を正極活物質とし、黒鉛やチタン酸リチウムを負極活物質とし、電解質塩にリチウムビスオキサラトボレート(LiBOB)を用いたものが提案されている(例えば、非特許文献1参照)。このリチウム二次電池では、負極活物質としてチタン酸リチウムを用い、電解質塩にLiBOBを用いることにより、サイクル特性を向上させることができるとしている。 Conventionally, research has been conducted on an active material containing a lithium iron phosphate compound (LiFePO 4 ) having an olivine structure as a basic skeleton as an active material mainly used for a positive electrode of a lithium secondary battery. Since this material is mainly composed of an inexpensive element such as iron or phosphorus, it is expected as a material that contributes to reducing the cost of battery materials. In addition, since it is difficult to release oxygen even when the temperature is raised, it is expected to be a material that contributes to improving the reliability of the battery because of its low reactivity with the electrolyte at high temperatures. However, this lithium iron phosphate compound has a smaller battery capacity than those containing cobalt, nickel, etc., and Fe in the positive electrode active material may elute into the electrolyte and precipitate at the negative electrode. Due to the fact that durability may be low, various improvements continue. For example, a lithium iron phosphate compound having an olivine structure as a basic skeleton is used as a positive electrode active material, graphite or lithium titanate as a negative electrode active material, and lithium bisoxalatoborate (LiBOB) is used as an electrolyte salt. (For example, refer nonpatent literature 1). In this lithium secondary battery, the cycle characteristics can be improved by using lithium titanate as the negative electrode active material and LiBOB as the electrolyte salt.

Electrochemistry Communications7(2005)669−673Electrochemistry Communications 7 (2005) 669-673

しかしながら、上述の非特許文献1のリチウムイオン二次電池では、チタン酸リチウムを負極活物質として用いるため、電池電圧が1.8V程度となり、エネルギー密度が小さくなるという問題があった。また、エネルギー密度を高めようとして負極活物質として黒鉛を用いると、特に高温でのサイクル特性が低下することがあった。即ち、高エネルギー密度を有すると共に、高温耐久性の高い性能を有することが望まれていた。   However, in the lithium ion secondary battery of Non-Patent Document 1 described above, since lithium titanate is used as the negative electrode active material, there is a problem that the battery voltage is about 1.8 V and the energy density is reduced. Further, when graphite is used as the negative electrode active material in order to increase the energy density, the cycle characteristics particularly at high temperatures may be deteriorated. That is, it has been desired to have high energy density and high temperature durability.

本発明は、このような課題に鑑みなされたものであり、鉄リン酸リチウム化合物を含む正極活物質を用いたものにおいて、高エネルギー密度と高い高温耐久性とを有するリチウム二次電池を提供することを主目的とする。   This invention is made | formed in view of such a subject, and provides the lithium secondary battery which has a high energy density and high high-temperature durability in the thing using the positive electrode active material containing a lithium iron phosphate compound. The main purpose.

上述した目的を達成するために鋭意研究したところ、本発明者らは、鉄リン酸リチウム化合物を含む正極活物質を用いたリチウム二次電池において、黒鉛と易黒鉛化炭素となど結晶性の異なる複数の炭素材料を混合し、その比表面積を所定範囲としたところ高エネルギー密度と高い高温耐久性の性能とを両立することができることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-described object, the present inventors found that the lithium secondary battery using a positive electrode active material containing a lithium iron phosphate compound has different crystallinity such as graphite and graphitizable carbon. When a plurality of carbon materials are mixed and the specific surface area is within a predetermined range, it has been found that both high energy density and high high temperature durability can be achieved, and the present invention has been completed.

即ち、本発明のリチウム二次電池は、リチウムを吸蔵・放出可能な鉄リン酸リチウム化合物を含む正極活物質を有する正極と、結晶性の異なる少なくとも2種類以上の炭素材料が混合された負極活物質を有し、該負極活物質の比表面積をA(m2/g)としたときに、2.38≦A≦3.40を満たす負極と、前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、を備えたものである。 That is, the lithium secondary battery of the present invention includes a positive electrode having a positive electrode active material containing a lithium iron phosphate compound capable of occluding and releasing lithium and a negative electrode active material in which at least two types of carbon materials having different crystallinity are mixed. A negative electrode satisfying 2.38 ≦ A ≦ 3.40, and the positive electrode and the negative electrode, when the specific surface area of the negative electrode active material is A (m 2 / g) And an ion conductive medium that conducts lithium ions.

本発明のリチウム二次電池は、高エネルギー密度と高い高温耐久性とを有するものとすることができる。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、一般的に充放電サイクルにおいて、正極活物質である鉄リン酸化合物から鉄が溶出し、この溶出したFeが負極上に析出又は付着することがあり、負極活物質の機能が低下することがある。これに対して、本発明では、複数の結晶性の異なる炭素材料が混合されており、且つその比表面積が好適な範囲にあるため、溶出したFeの負極上への析出・付着を抑制することができると推察される。   The lithium secondary battery of the present invention can have high energy density and high high temperature durability. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, in general, in a charge / discharge cycle, iron is eluted from an iron phosphate compound, which is a positive electrode active material, and this eluted Fe may be deposited or deposited on the negative electrode, which reduces the function of the negative electrode active material. There is. On the other hand, in the present invention, a plurality of carbon materials having different crystallinities are mixed and the specific surface area is in a suitable range, so that precipitation and adhesion of eluted Fe on the negative electrode is suppressed. It is inferred that

本発明のリチウム二次電池10の一例を示す模式図。The schematic diagram which shows an example of the lithium secondary battery 10 of this invention. 黒鉛及び易黒鉛化炭素のX線回折測定結果。X-ray diffraction measurement results of graphite and graphitizable carbon. 黒鉛及び易黒鉛化炭素のラマン分光測定結果。Results of Raman spectroscopic measurement of graphite and graphitizable carbon. 実施例2及び比較例1,4の放電曲線。The discharge curve of Example 2 and Comparative Examples 1 and 4. FIG.

本発明のリチウム二次電池は、リチウムを吸蔵・放出可能な鉄リン酸リチウム化合物を含む正極活物質を有する正極と、結晶性の異なる少なくとも2種類以上の炭素材料が混合された負極活物質を有し、この負極活物質の比表面積をA(m2/g)としたときに、2.38≦A≦3.40を満たす負極と、正極と負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、を備えている。 The lithium secondary battery of the present invention includes a positive electrode having a positive electrode active material containing a lithium iron phosphate compound capable of inserting and extracting lithium, and a negative electrode active material in which at least two types of carbon materials having different crystallinity are mixed. When the specific surface area of the negative electrode active material is A (m 2 / g), lithium ions are conducted by being interposed between the negative electrode satisfying 2.38 ≦ A ≦ 3.40 and the positive electrode and the negative electrode. An ion conducting medium.

本発明のリチウム二次電池の正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質に含まれる鉄リン酸リチウム化合物は、基本組成がLiFePO4で表される化合物としてもよく、このFeサイトに他の成分、例えば、Mn,Ni,Coなどを添加したものとしてもよい。また、この鉄リン酸リチウム化合物は、オリビン型構造の単相であることが好ましい。オリビン型構造とは、酸素の六方最密充填を基本とし、その4面体サイトにリンが、八面体サイトにリチウムとFeとがそれぞれ位置する構造であり、このような構造は安定性が高いため好ましい。このオリビン型構造の鉄リン酸リチウム化合物を正極活物質としてリチウム二次電池に用いると、酸素を放出しにくいため、安全性に優れたリチウム二次電池を作製することができる。また、Feは資源として豊富であり安価でもあるため好ましい。正極活物質は、鉄リン酸リチウム化合物以外に、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを含むものとしてもよい。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、Li(1-x)MnO2(0<x<1など、以下同じ)、Li(1-x)Mn24などのリチウムマンガン複合酸化物、Li(1-x)CoO2などのリチウムコバルト複合酸化物、Li(1-x)NiO2などのリチウムニッケル複合酸化物、LiV23などのリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などを用いることができる。 The positive electrode of the lithium secondary battery of the present invention is, for example, a mixture of a positive electrode active material, a conductive material, and a binder, and an appropriate solvent is added to form a paste-like positive electrode material, which is applied to the surface of the current collector. It may be dried and compressed to increase the electrode density as necessary. The lithium iron phosphate compound contained in the positive electrode active material may be a compound having a basic composition represented by LiFePO 4 , and may be obtained by adding other components such as Mn, Ni, Co, etc. to this Fe site. . Further, the lithium iron phosphate compound is preferably a single phase having an olivine structure. The olivine type structure is based on the hexagonal close-packed packing of oxygen, in which phosphorus is located at the tetrahedral site and lithium and Fe are located at the octahedral site, and such a structure is highly stable. preferable. When this lithium iron phosphate compound having an olivine structure is used as a positive electrode active material for a lithium secondary battery, it is difficult to release oxygen, so that a lithium secondary battery excellent in safety can be manufactured. Fe is preferable because it is abundant as a resource and inexpensive. The positive electrode active material may include a sulfide containing a transition metal element, an oxide containing lithium and a transition metal element, or the like in addition to the iron phosphate lithium compound. Specifically, transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , FeS 2 , Li (1-x) MnO 2 (0 <x <1, etc., the same shall apply hereinafter), Li (1-x) Mn Lithium manganese composite oxide such as 2 O 4 , lithium cobalt composite oxide such as Li (1-x) CoO 2 , lithium nickel composite oxide such as Li (1-x) NiO 2 , lithium such as LiV 2 O 3 Vanadium composite oxides, transition metal oxides such as V 2 O 5, and the like can be used.

正極に含まれる導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。   The conductive material contained in the positive electrode is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, graphite such as natural graphite (scale-like graphite, scale-like graphite) or artificial graphite, acetylene black , Carbon black, ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) or a mixture of two or more thereof can be used. Among these, as the conductive material, carbon black and acetylene black are preferable from the viewpoints of electron conductivity and coatability. The binder serves to bind the active material particles and the conductive material particles, for example, a polytetrafluoroethylene (PTFE), a polyvinylidene fluoride (PVDF), a fluorine-containing resin such as fluorine rubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene-propylene-dienemer (EPDM), sulfonated EPDM, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. In addition, an aqueous dispersion of cellulose or styrene butadiene rubber (SBR), which is an aqueous binder, can also be used. Examples of the solvent for dispersing the positive electrode active material, the conductive material, and the binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, and N, N-dimethylaminopropyl. Organic solvents such as amine, ethylene oxide, and tetrahydrofuran can be used. Moreover, a dispersing agent, a thickener, etc. may be added to water, and an active material may be slurried with latex, such as SBR. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more. Examples of the application method include roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any of these can be used to obtain an arbitrary thickness and shape. Current collectors include aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, and aluminum, copper, etc. for the purpose of improving adhesion, conductivity, and oxidation resistance. A surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous, foam, and formed fiber group. The thickness of the current collector is, for example, 1 to 500 μm.

本発明のリチウム二次電池の負極は、例えば負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極合材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質には、結晶性の異なる少なくとも2種類以上の炭素材料が混合されて含まれるが、リチウムを吸蔵・放出可能であるものとすれば特に限定されず、例えば、コークス類、ガラス状炭素類、難黒鉛化炭素類、易黒鉛化炭素類、熱分解炭素類、炭素繊維、黒鉛類、ハードカーボン及びソフトカーボンなどの炭素材料のうち1以上が含まれてもよい。このうち、少なくとも黒鉛を含むものとすることが好ましい。また、黒鉛以外の活物質として、非結晶炭素などの炭素材料を含むものとすることが好ましい。本発明の負極は、負極活物質の炭素材料として少なくとも黒鉛と非晶質炭素とが混合されていることが好ましい。このとき、負極活物質のうち非晶質炭素の占める割合が20重量%以上40重量%以下の範囲であることが好ましく、25重量%以上35重量%以下の範囲であることがより好ましい。非晶質炭素の占める割合が20重量%以上であれば、充放電サイクル特性をより高めることができ、この割合が40重量%以下であれば、エネルギー密度をより高めることができる。また、負極活物質のうち黒鉛の占める割合が60重量%以上80重量%以下の範囲であることが好ましく、65重量%以上75重量%以下の範囲であることがより好ましい。黒鉛の占める割合が60重量%以上であれば、エネルギー密度をより高めることができ、この割合が80重量%以下であれば、充放電サイクル特性をより高めることができる。本発明のリチウム二次電池の負極は、負極活物質に非晶質炭素として、易黒鉛化炭素を含むものとすることが好ましく、d002=0.34nm以上の易黒鉛化炭素を含むものとするのがより好ましい。d002=0.34nm以上の易黒鉛化炭素では、リチウム挿入電位が黒鉛負極に比べて貴な電位となり、電解液を介して正極の鉄を還元する力が弱く、好ましい。また、易黒鉛化炭素は、X線回折測定による2θ=26°近傍の半値幅が0.5°以上であることが好ましい。このX線回折測定は、Cu−Kα線を用いて測定するものとする。また、易黒鉛化炭素は、ラマン分光測定によるラマンR値が0.20以上であることが好ましい。このラマン分光測定は、波長532nmのAr+イオンレーザーを用いて測定を行うものとする。このラマンR値は、1580cm-1領域(Gバンド)のピーク強度に対する1360cm-1領域(Dバンド)のピーク強度である強度比I1360/I1580の値をいう。本発明のリチウム二次電池の負極は、負極活物質の比表面積をA(m2/g)としたときに、2.38≦A≦3.40を満たすものであるが、比表面積Aが2.50m2/g以上であることがより好ましく、3.20m2/g以下であることが更に好ましい。比表面積Aが2.50m2/g以上では充放電サイクル特性をより高めることができ、3.20m2/g以下ではエネルギー密度をより高めることができる。この負極活物質の比表面積は、液体窒素温度で窒素ガスを吸着させて測定したBET比表面積をいうものとする。 The negative electrode of the lithium secondary battery of the present invention is prepared by mixing a negative electrode active material, a conductive material, and a binder, and adding a suitable solvent to form a paste-like negative electrode mixture on the surface of the current collector. It may be formed by coating and drying, and compressing to increase the electrode density as necessary. The negative electrode active material includes a mixture of at least two types of carbon materials having different crystallinity, but is not particularly limited as long as it can occlude and release lithium. For example, coke, glassy carbon One or more carbon materials such as carbon, non-graphitizable carbon, graphitizable carbon, pyrolytic carbon, carbon fiber, graphite, hard carbon, and soft carbon may be included. Among these, it is preferable to contain at least graphite. Moreover, it is preferable to contain carbon materials, such as an amorphous carbon, as active materials other than graphite. In the negative electrode of the present invention, it is preferable that at least graphite and amorphous carbon are mixed as a carbon material of the negative electrode active material. At this time, the proportion of amorphous carbon in the negative electrode active material is preferably in the range of 20 wt% to 40 wt%, and more preferably in the range of 25 wt% to 35 wt%. If the proportion of amorphous carbon is 20% by weight or more, the charge / discharge cycle characteristics can be further improved, and if this proportion is 40% by weight or less, the energy density can be further increased. Further, the proportion of graphite in the negative electrode active material is preferably in the range of 60 wt% to 80 wt%, and more preferably in the range of 65 wt% to 75 wt%. If the proportion of graphite is 60% by weight or more, the energy density can be further increased, and if this proportion is 80% by weight or less, the charge / discharge cycle characteristics can be further enhanced. The negative electrode of the lithium secondary battery of the present invention preferably contains graphitizable carbon as amorphous carbon in the negative electrode active material, and more preferably contains graphitizable carbon with d 002 = 0.34 nm or more. preferable. The graphitizable carbon having d 002 = 0.34 nm or more is preferable because the lithium insertion potential becomes a noble potential as compared with the graphite negative electrode, and the ability to reduce iron of the positive electrode through the electrolytic solution is weak. The graphitizable carbon preferably has a half-value width of about 2 ° = 26 ° in the vicinity of 2θ = 26 ° as measured by X-ray diffraction. This X-ray diffraction measurement is performed using Cu-Kα rays. The graphitizable carbon preferably has a Raman R value of 0.20 or more as measured by Raman spectroscopy. The Raman spectroscopic measurement is performed using an Ar + ion laser having a wavelength of 532 nm. This Raman R value refers to the value of the intensity ratio I 1360 / I 1580 which is the peak intensity of the 1360 cm −1 region (D band) with respect to the peak intensity of the 1580 cm −1 region (G band). The negative electrode of the lithium secondary battery of the present invention satisfies 2.38 ≦ A ≦ 3.40 when the specific surface area of the negative electrode active material is A (m 2 / g). more preferably 2.50m 2 / g or more, and more preferably not more than 3.20 m 2 / g. When the specific surface area A is 2.50 m 2 / g or more, the charge / discharge cycle characteristics can be further improved, and when it is 3.20 m 2 / g or less, the energy density can be further increased. The specific surface area of this negative electrode active material shall mean the BET specific surface area measured by adsorbing nitrogen gas at the liquid nitrogen temperature.

また、負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。負極の集電体には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、正極と同様のものを用いることができる。   In addition, as the conductive material, binder, solvent, and the like used for the negative electrode, those exemplified for the positive electrode can be used. The negative electrode current collector includes copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as improved adhesion, conductivity and reduction resistance. For the purpose, for example, a copper surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. The shape of the current collector can be the same as that of the positive electrode.

本発明のリチウム二次電池のイオン伝導媒体としては、支持塩を含む非水系電解液や非水系ゲル電解液などを用いることができる。非水電解液の溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。なお、環状カーボネート類は、電解液の導電性を高めていると考えられ、鎖状カーボネート類は、電解液の粘度を抑えていると考えられる。   As the ion conduction medium of the lithium secondary battery of the present invention, a non-aqueous electrolyte solution containing a supporting salt, a non-aqueous gel electrolyte solution, or the like can be used. Examples of the solvent for the nonaqueous electrolytic solution include carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t -Chain carbonates such as butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyllactone and γ-valerolactone, methyl formate, methyl acetate, ethyl acetate, Chain esters such as methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxyethane, and diethoxyethane; nitriles such as acetonitrile and benzonitrile; Examples include furans such as lan, methyltetrahydrofuran, sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Among these, the combination of cyclic carbonates and chain carbonates is preferable. According to this combination, not only the cycle characteristics representing the battery characteristics in repeated charge and discharge are excellent, but also the viscosity of the electrolyte, the electric capacity of the obtained battery, the battery output, etc. should be balanced. it can. In addition, it is thought that cyclic carbonates are improving the electroconductivity of electrolyte solution, and chain carbonates are considered that the viscosity of electrolyte solution is suppressed.

本発明のリチウム二次電池に含まれている支持塩は、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。また、支持塩として、リチウムビスオキサラトボレート(LiBOB)を用いるものとしてもよい。この支持塩は、非水電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。支持塩の濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。また、この非水電解液には、リン系、ハロゲン系及びホウ素系などの難燃剤を添加してもよい。 The supporting salt contained in the lithium secondary battery of the present invention is, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Examples include LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4 . Among these, from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3. It is preferable from the viewpoint of electrical characteristics to use a combination of one or two or more selected salts. Further, lithium bisoxalatoborate (LiBOB) may be used as the supporting salt. The supporting salt preferably has a concentration in the non-aqueous electrolyte of 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less. If the concentration of the supporting salt is 0.1 mol / L or more, a sufficient current density can be obtained, and if it is 5 mol / L or less, the electrolytic solution can be made more stable. Moreover, you may add flame retardants, such as a phosphorus type, a halogen type, and a boron type, to this non-aqueous electrolyte.

また、液状のイオン伝導媒体の代わりに、固体のイオン伝導性ポリマーをイオン伝導媒体として用いることもできる。イオン伝導性ポリマーとしては、例えば、アクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデンなどのポリマーと支持塩とで構成されるポリマーゲルを用いることができる。更に、イオン伝導性ポリマーと非水系電解液とを組み合わせて用いることもできる。また、イオン伝導媒体としては、イオン伝導性ポリマーのほか、無機固体電解質あるいは有機ポリマー電解質と無機固体電解質の混合材料、若しくは有機バインダーによって結着された無機固体粉末などを利用することができる。   Further, instead of the liquid ion conducting medium, a solid ion conducting polymer may be used as the ion conducting medium. As the ion conductive polymer, for example, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, and polyvinylidene fluoride and a supporting salt can be used. Further, an ion conductive polymer and a non-aqueous electrolyte can be used in combination. In addition to the ion conductive polymer, an inorganic solid electrolyte, a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, an inorganic solid powder bound by an organic binder, or the like can be used as the ion conductive medium.

本発明のリチウム二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、リチウム二次電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。   The lithium secondary battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the lithium secondary battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a thin fine olefin resin such as polyethylene or polypropylene is used. A porous membrane is mentioned. These may be used alone or in combination.

本発明のリチウム二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。図1は、本発明のリチウム二次電池10の一例を示す模式図である。このリチウム二次電池10は、集電体11に正極活物質12を形成した正極シート13と、集電体14の表面に負極活物質17を形成した負極シート18と、正極シート13と負極シート18との間に設けられたセパレータ19と、正極シート13と負極シート18の間を満たす非水電解液20と、を備えたものである。このリチウム二次電池10では、正極シート13と負極シート18との間にセパレータ19を挟み、これらを捲回して円筒ケース22に挿入し、正極シート13に接続された正極端子24と負極シートに接続された負極端子26とを配設して形成されている。ここでは、正極活物質12には鉄リン酸リチウム化合物が含まれ、負極活物質17には非晶質炭素(例えば易黒鉛化炭素)が20重量%以上40重量%以下、黒鉛が80重量%以下60重量%以上含まれている。また、負極活物質17の比表面積Aは、2.38m2/g以上3.40m2/g以下で形成されている。 The shape of the lithium secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc. FIG. 1 is a schematic diagram showing an example of a lithium secondary battery 10 of the present invention. The lithium secondary battery 10 includes a positive electrode sheet 13 in which a positive electrode active material 12 is formed on a current collector 11, a negative electrode sheet 18 in which a negative electrode active material 17 is formed on the surface of the current collector 14, and the positive electrode sheet 13 and the negative electrode sheet. 18 and a non-aqueous electrolyte solution 20 that fills the space between the positive electrode sheet 13 and the negative electrode sheet 18. In this lithium secondary battery 10, the separator 19 is sandwiched between the positive electrode sheet 13 and the negative electrode sheet 18, and these are wound and inserted into the cylindrical case 22, and the positive electrode terminal 24 connected to the positive electrode sheet 13 and the negative electrode sheet are connected. A connected negative electrode terminal 26 is provided. Here, the positive electrode active material 12 contains a lithium iron phosphate compound, and the negative electrode active material 17 contains 20% by weight to 40% by weight of amorphous carbon (for example, graphitizable carbon) and 80% by weight of graphite. Below 60% by weight is contained. Further, the specific surface area A of the negative electrode active material 17 is formed to be 2.38 m 2 / g or more and 3.40 m 2 / g or less.

以上詳述した本実施形態のリチウム二次電池では、高エネルギー密度と高い高温耐久性とを有するものとすることができる。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、一般的に充放電サイクルにおいて、正極活物質である鉄リン酸化合物から鉄が溶出し、この溶出したFeが負極上に析出又は付着することがあり、負極活物質の機能が低下することがある。これに対して、本発明では、複数の結晶性の異なる炭素材料が混合されており、且つその比表面積が好適な範囲にあるため、負極上に形成されるSEIと呼ばれる負極活物質表面皮膜の成分や形状が良好なものとなると推察される。その結果、溶出したFeの負極上への析出・付着を抑制することができ、高エネルギー密度と高い高温耐久性の性能とを両立することができると推察される。   The lithium secondary battery of the present embodiment described in detail above can have high energy density and high high temperature durability. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, in general, in a charge / discharge cycle, iron is eluted from an iron phosphate compound, which is a positive electrode active material, and this eluted Fe may be deposited or deposited on the negative electrode, which reduces the function of the negative electrode active material. There is. On the other hand, in the present invention, a plurality of carbon materials having different crystallinities are mixed, and the specific surface area is in a suitable range. Therefore, a negative electrode active material surface film called SEI formed on the negative electrode It is inferred that the components and shape are good. As a result, it is speculated that precipitation and adhesion of the eluted Fe on the negative electrode can be suppressed, and both high energy density and high high temperature durability performance can be achieved.

ここで、黒鉛と易黒鉛化炭素との混合物を負極活物質として含むものについて考察する。黒鉛は、Li金属基準で0.1V程度に電位変化が小さい領域(プラトー領域)がある。一方、非晶質炭素の一つである易黒鉛化炭素負極は、1Vから0Vにかけて直線的に電位変化する。すなわち、平均すれば、黒鉛負極の方が、易黒鉛化炭素負極よりも卑な電位の状態にある。このように、易黒鉛化炭素負極は、黒鉛よりも電解液を介して正極のFeを還元する力が弱いことから、負極への正極のFeの析出を抑制しているものと思われる。また、黒鉛と易黒鉛化炭素との表面状態の違いが影響を与えているものと推察される。例えば、易黒鉛化炭素負極の混合割合が低すぎると、負極中のFeを還元する力が強くなることから、負極へのFeの析出が多くなりサイクル耐久性が悪くなる。一方、易黒鉛化炭素負極の混合割合が高すぎると、作動電圧が低くなるため、エネルギー密度が小さくなる。すなわち、易黒鉛化炭素負極の混合割合を適切な値に制御することにより、負極上に形成されるSEIが良好なものとなり、その結果、溶出したFeの負極上への析出・付着を抑制することができ、高温耐久性(サイクル特性)が向上し、作動電圧降下を抑制することにより高エネルギー密度な電池となると推察される。   Here, the thing containing the mixture of graphite and graphitizable carbon as a negative electrode active material is considered. Graphite has a region (plateau region) where the potential change is as small as about 0.1 V on the basis of Li metal. On the other hand, the graphitizable carbon negative electrode, which is one of amorphous carbon, changes its potential linearly from 1V to 0V. That is, on average, the graphite negative electrode has a lower potential than the graphitizable carbon negative electrode. As described above, the graphitizable carbon negative electrode has a weaker ability to reduce the positive electrode Fe through the electrolytic solution than the graphite, and thus seems to suppress the precipitation of the positive electrode Fe on the negative electrode. Moreover, it is guessed that the difference in the surface state of graphite and graphitizable carbon has an influence. For example, when the mixing ratio of the graphitizable carbon negative electrode is too low, the force for reducing Fe in the negative electrode is increased, and therefore, precipitation of Fe on the negative electrode is increased, resulting in poor cycle durability. On the other hand, if the mixing ratio of the graphitizable carbon negative electrode is too high, the operating voltage becomes low, and the energy density becomes small. That is, by controlling the mixing ratio of the graphitizable carbon negative electrode to an appropriate value, the SEI formed on the negative electrode is improved, and as a result, the precipitation and adhesion of the eluted Fe on the negative electrode is suppressed. Therefore, it is presumed that a battery having a high energy density can be obtained by improving the high temperature durability (cycle characteristics) and suppressing the operating voltage drop.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下には、本発明のリチウム二次電池を具体的に作製した例を実施例として説明する。   Hereinafter, an example in which the lithium secondary battery of the present invention was specifically manufactured will be described as an example.

[実施例1]
本発明を実証する実施例として、オリビン型構造を基本骨格とした鉄リン酸リチウム化合物(LiFePO4)を含有した正極、黒鉛及び易黒鉛化炭素を含有した負極、カーボネート系の溶媒とLiPF6とを含有した電解液とを用いたリチウム二次電池について検討した。正極活物質として、オリビン型構造を基本骨格とした鉄リン酸リチウム化合物(LiFePO4)、導電材に炭素、結着材にポリフッ化ビニリデン(クレハ製KFポリマ)を用い、正極活物質/導電材/結着材をそれぞれ、78.5/13.8/7.7重量%で混合した正極合材を作製した。この正極合材をN−メチル−2−ピロリドン(NMP)で分散させてペーストとし、この正極合材ペーストを厚さ20μmのアルミニウム箔の両面に塗工乾燥させ、ロールプレスして、正極シート電極として用いた。なお、正極シート電極は54mm×450mmとした。次に、d002=0.340nmの易黒鉛化炭素とd002=0.388nm以下の黒鉛とを重量比で40:60となるように混合し、これを負極活物質とした。この負極活物質の比表面積は、黒鉛の比表面積と易黒鉛化炭素の比表面積とを用いて計算したところ、3.40m2/gであった。この混合物である負極活物質、結着材にポリフッ化ビニリデン(クレハ製KFポリマ)を用い、負極活物質とバインダとをそれぞれ、95/5重量%で混合し、NMPで分散させた負極合材のペーストを作製した。この負極合材ペーストを厚さ10μm銅箔の両面に塗工乾燥させ、ロールプレスして、負極合材層の空隙率を36体積%に調節したものを負極シート電極として用いた。この負極合材層の体積(面積×厚さ)とその活物質重量とにより求めた負極合材層の活物質密度は、1.0g/cm3であった。また、正極合材層の体積(面積×厚さ)とその活物質重量とにより求めた正極合材層の活物質密度は、1.3g/cm3であった。なお、負極シート電極は56mm×500mmとした。電解液は、LiPF6を、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(体積比3:7)に1mol/L濃度で溶解したものを用いた。作製した正・負極シート電極をセパレータ(東燃タピルス製、PE25μm厚、幅58mm品)を介してロール状に捲回し、18650電池缶に挿入し、上記の電解液を注入したあと、トップキャップをかしめて密閉することにより作製したリチウム二次電池を実施例1とした。
[Example 1]
As examples demonstrating the present invention, a positive electrode containing a lithium iron phosphate compound (LiFePO 4 ) having an olivine structure as a basic skeleton, a negative electrode containing graphite and graphitizable carbon, a carbonate-based solvent and LiPF 6 A lithium secondary battery using an electrolytic solution containing bismuth was studied. As the positive electrode active material, a lithium iron phosphate compound (LiFePO 4 ) having an olivine type structure as a basic skeleton, carbon as a conductive material, and polyvinylidene fluoride (Kureha KF polymer) as a binder are used. A positive electrode mixture in which the binder was mixed at 78.5 / 13.8 / 7.7% by weight was prepared. This positive electrode mixture is dispersed with N-methyl-2-pyrrolidone (NMP) to form a paste. This positive electrode mixture paste is coated and dried on both surfaces of an aluminum foil having a thickness of 20 μm, and roll-pressed. Used as. The positive electrode sheet electrode was 54 mm × 450 mm. Then, by mixing the following graphitization graphitizable carbon and d 002 = 0.388nm for d 002 = 0.340 nm so that the 40:60 weight ratio, which was used as a negative electrode active material. When the specific surface area of this negative electrode active material was calculated using the specific surface area of graphite and the specific surface area of graphitizable carbon, it was 3.40 m 2 / g. Negative electrode active material and binder used in this mixture are polyvinylidene fluoride (Kureha KF polymer), the negative electrode active material and the binder are mixed at 95/5% by weight, respectively, and dispersed with NMP. A paste was prepared. This negative electrode mixture paste was coated and dried on both sides of a 10 μm thick copper foil, and roll-pressed to adjust the porosity of the negative electrode mixture layer to 36% by volume as a negative electrode sheet electrode. The active material density of the negative electrode mixture layer determined from the volume (area × thickness) of the negative electrode mixture layer and the weight of the active material was 1.0 g / cm 3 . In addition, the active material density of the positive electrode mixture layer determined from the volume (area × thickness) of the positive electrode mixture layer and the weight of the active material was 1.3 g / cm 3 . The negative electrode sheet electrode was 56 mm × 500 mm. The electrolytic solution used was LiPF 6 dissolved in a mixed solvent (volume ratio 3: 7) of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at a concentration of 1 mol / L. The prepared positive and negative electrode sheet electrodes are rolled into a roll through a separator (product of Tonen Tapirs, PE 25 μm thickness, width 58 mm), inserted into a 18650 battery can, and the above electrolyte solution is injected. A lithium secondary battery produced by crimping and sealing was designated as Example 1.

なお、負極合材層の空隙率は、以下のように算出した。例えば、電極合材に活物質、導電材及び結着材が含まれる場合、活物質の重量をA(g)、活物質の真密度をX(g/cm3)、導電材の重量をB(g)、導電材の真密度をY(g/cm3)、結着材の重量をC(g)、結着材の真密度をZ(g/cm3)、電極合材層の活物質密度をM(g/cm3)とした場合に、空隙率V(体積%)は次式(1)を用いて計算した。 In addition, the porosity of the negative electrode mixture layer was calculated as follows. For example, when the electrode material includes an active material, a conductive material, and a binder, the weight of the active material is A (g), the true density of the active material is X (g / cm 3 ), and the weight of the conductive material is B. (G), Y (g / cm 3 ) for the true density of the conductive material, C (g) for the weight of the binder, Z (g / cm 3 ) for the true density of the binder, When the material density was M (g / cm 3 ), the porosity V (volume%) was calculated using the following formula (1).

V=100−(100M)/[A/(A/X+B/Y+C/Z)] …式(1)   V = 100− (100M) / [A / (A / X + B / Y + C / Z)] (1)

[実施例2〜3]
負極活物質として易黒鉛化炭素と黒鉛とを重量比で30:70となるように混合したものを用いた以外は実施例1と同様の工程を経て得られたリチウム二次電池を実施例2とした。この負極活物質の比表面積は、2.89m2/gであった。また、負極活物質として易黒鉛化炭素と黒鉛とを重量比で20:80となるように混合したものを用いた以外は実施例1と同様の工程を経て得られたリチウム二次電池を実施例3とした。
この負極活物質の比表面積は、2.38m2/gであった。
[Examples 2-3]
Example 2 A lithium secondary battery obtained through the same steps as Example 1 except that a mixture of graphitizable carbon and graphite in a weight ratio of 30:70 was used as the negative electrode active material. It was. The specific surface area of this negative electrode active material was 2.89 m 2 / g. Also, a lithium secondary battery obtained through the same steps as in Example 1 was used except that a graphitized carbon and graphite mixed at a weight ratio of 20:80 were used as the negative electrode active material. Example 3 was used.
The specific surface area of this negative electrode active material was 2.38 m 2 / g.

[比較例1〜4]
負極活物質として易黒鉛化炭素と黒鉛とを重量比で100:0となるように混合したものを用いた以外は実施例1と同様の工程を経て得られたリチウム二次電池を比較例1とした。この負極活物質(易黒鉛化炭素)の比表面積は、6.48m2/gであった。また、負極活物質として易黒鉛化炭素と黒鉛とを重量比で50:50となるように混合したものを用いた以外は実施例1と同様の工程を経て得られたリチウム二次電池を比較例2とした。この負極活物質の比表面積は、3.92m2/gであった。また、負極活物質として易黒鉛化炭素と黒鉛とを重量比で10:90となるように混合したものを用いた以外は実施例1と同様の工程を経て得られたリチウム二次電池を比較例3とした。この負極活物質の比表面積は、1.86m2/gであった。また、負極活物質として易黒鉛化炭素と黒鉛とを重量比で0:100となるように混合したものを用いた以外は実施例1と同様の工程を経て得られたリチウム二次電池を比較例4とした。この負極活物質(黒鉛)の比表面積は、1.35m2/gであった。
[Comparative Examples 1-4]
Comparative Example 1 is a lithium secondary battery obtained through the same steps as in Example 1 except that a mixture of graphitizable carbon and graphite in a weight ratio of 100: 0 is used as the negative electrode active material. It was. The specific surface area of this negative electrode active material (graphitizable carbon) was 6.48 m 2 / g. In addition, a lithium secondary battery obtained through the same process as in Example 1 was compared except that a mixture of graphitizable carbon and graphite in a weight ratio of 50:50 was used as the negative electrode active material. Example 2 was adopted. The specific surface area of this negative electrode active material was 3.92 m 2 / g. Further, a lithium secondary battery obtained through the same process as in Example 1 was compared except that a mixture of graphitizable carbon and graphite in a weight ratio of 10:90 was used as the negative electrode active material. Example 3 was used. The specific surface area of this negative electrode active material was 1.86 m 2 / g. Further, a lithium secondary battery obtained through the same process as in Example 1 was compared except that a mixture of graphitizable carbon and graphite so that the weight ratio was 0: 100 was used as the negative electrode active material. Example 4 was adopted. The specific surface area of this negative electrode active material (graphite) was 1.35 m 2 / g.

[X線回折測定]
負極合材に用いた黒鉛及び易黒鉛化炭素のX線回折測定をX線回折装置(リガク製,RINT−2200)を用いて行った。測定条件は、Cu−Kα線により40kV−30mAで10°〜70°までスキャンとした。図2は、負極に用いた黒鉛及び易黒鉛化炭素のX線回折測定結果である。図2に示すように、易黒鉛化炭素では、黒鉛のピークがある2θ=26°領域にブロードなピークがみられた。2θ=26°領域での半値幅は、黒鉛が0.49°であり、易黒鉛化炭素が3.28°であった。
[X-ray diffraction measurement]
X-ray diffraction measurement of graphite and graphitizable carbon used for the negative electrode mixture was performed using an X-ray diffractometer (RINT-2200, manufactured by Rigaku). The measurement conditions were scanning from 10 ° to 70 ° at 40 kV-30 mA with Cu-Kα rays. FIG. 2 shows X-ray diffraction measurement results of graphite and graphitizable carbon used for the negative electrode. As shown in FIG. 2, in graphitizable carbon, a broad peak was observed in the 2θ = 26 ° region where the graphite peak exists. The full width at half maximum in the 2θ = 26 ° region was 0.49 ° for graphite and 3.28 ° for graphitizable carbon.

[ラマン分光測定]
負極合材に用いた黒鉛及び易黒鉛化炭素のラマン分光測定をレーザラマン分光システム(日本分光(株)製、NRS−3300)を用いて行った。Ar+イオンレーザーを用い波長532nmの励起光でラマン分光測定を行い、炭素の積層構造を表す1580cm-1近傍領域のピークと炭素の乱層構造を表す1360cm-1近傍領域のピーク強度比I1360/I1580をラマンR値として算出した。図3は、負極に用いた黒鉛及び易黒鉛化炭素のラマン分光測定結果である。このラマンR値は、黒鉛が0.12であり、易黒鉛化炭素が0.99であった。
[Raman spectroscopy measurement]
Raman spectroscopy measurement of graphite and graphitizable carbon used for the negative electrode mixture was performed using a laser Raman spectroscopy system (manufactured by JASCO Corporation, NRS-3300). Using an Ar + ion laser, Raman spectroscopic measurement is performed with excitation light having a wavelength of 532 nm, and a peak intensity ratio I 1360 between a peak in the vicinity of 1580 cm −1 representing the carbon stack structure and a peak in the vicinity of 1360 cm −1 representing the carbon turbulence structure. / I 1580 was calculated as the Raman R value. FIG. 3 shows the results of Raman spectroscopic measurement of graphite and graphitizable carbon used for the negative electrode. This Raman R value was 0.12 for graphite and 0.99 for graphitizable carbon.

[比表面積測定]
負極活物質に用いた黒鉛及び易黒鉛化炭素の比表面積を比表面積測定装置(ユアサアイオニクス社製AUTOSORB−1)を用いて測定した。比表面積の測定は、液体窒素温度で窒素ガスを試料に吸着させて測定した。
[Specific surface area measurement]
The specific surface areas of graphite and graphitizable carbon used for the negative electrode active material were measured using a specific surface area measuring device (AUTOSORB-1 manufactured by Yuasa Ionics). The specific surface area was measured by adsorbing nitrogen gas to the sample at the liquid nitrogen temperature.

[エネルギー密度測定]
実施例1〜3及び比較例1〜4のリチウム二次電池を用い、エネルギー密度の測定を行った。エネルギー密度は、20℃の環境温度下、充電終止電圧4.1Vまで電流密度0.2mA/cm2の定電流で充電した後、放電終止電圧2.5Vまで電流密度0.2mA/cm2の定電流で放電させ、このときの放電容量と平均電圧とを乗算して求めた。平均電圧は、直線的に電圧変化する範囲において電圧を平均して求めた。
[Energy density measurement]
Using the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 4, energy density was measured. Energy density of 20 ° C. under ambient temperature, was charged at a constant current density of 0.2 mA / cm 2 until the charge voltage 4.1 V, the current density of 0.2 mA / cm 2 until the discharge end voltage 2.5V It was obtained by discharging at a constant current and multiplying the discharge capacity at this time by the average voltage. The average voltage was obtained by averaging the voltages in a range where the voltage changes linearly.

[充放電サイクル試験]
実施例1〜3及び比較例1〜4のリチウム二次電池を用い、60℃における高温充放電サイクル試験を行った。高温充放電サイクル試験は、雰囲気温度60℃とし、2Cレート(約1.0A)で4.1Vまでの定電流充電を行い、2Cレートで2.0Vまでの定電流放電を行う充放電を1サイクルとし、このサイクルを合計500サイクル行った。それぞれの試験結果を用い、1サイクル目の放電容量をC1とし、500サイクル目の放電容量をC500として、次式(2)により容量維持率Ck(%)を求めた。
[Charge / discharge cycle test]
Using the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 4, a high temperature charge / discharge cycle test at 60 ° C. was performed. In the high-temperature charge / discharge cycle test, charge / discharge is performed with a constant current charge of up to 4.1 V at a 2C rate (about 1.0 A) at an ambient temperature of 60 ° C. and a constant current discharge of up to 2.0 V at a 2C rate. This cycle was repeated for a total of 500 cycles. Using the test results, the capacity retention rate C k (%) was obtained by the following equation (2), assuming that the discharge capacity at the first cycle was C 1 and the discharge capacity at the 500th cycle was C 500 .

容量維持率Ck(%)=C500/C1×100 …式(2) Capacity maintenance rate C k (%) = C 500 / C 1 × 100 (2)

[充放電サイクル試験後のパワー密度測定]
また、高温充放電サイクルを行ったのち、20℃及び−30℃でパワー密度を求めた。パワー密度は、高温充放電サイクルを行ったのちのリチウム二次電池を20℃又は−30℃の環境温度下において放電試験を行い算出した。放電試験では、SOC50%の充電状態(定格容量の50%が充電された状態)において、電池の定格容量を1時間で放電可能な電流値を1Cとした場合の1C〜10Cの異なる定電流で10秒間放電させ、それらの場合の電池電圧の変化を測定した。得られた結果より、異なる電流における電池電圧の変化値を外挿し、10秒間で放電終止電圧3.0Vに達すると仮定した場合の最大電流値を求め、その最大電流値に放電終止電圧3.0Vを乗じた値をそのリチウム二次電池のパワー密度とした。
[Power density measurement after charge / discharge cycle test]
Moreover, after performing a high temperature charging / discharging cycle, the power density was calculated | required at 20 degreeC and -30 degreeC. The power density was calculated by conducting a discharge test on the lithium secondary battery after performing a high-temperature charge / discharge cycle at an environmental temperature of 20 ° C. or −30 ° C. In the discharge test, in a state of charge of SOC 50% (a state in which 50% of the rated capacity is charged), the battery has a constant current of 1C to 10C, assuming that the rated capacity of the battery is 1C. The battery was discharged for 10 seconds, and the change in battery voltage in those cases was measured. From the obtained results, extrapolated values of changes in battery voltage at different currents are obtained, and a maximum current value is obtained when it is assumed that the discharge end voltage reaches 3.0 V in 10 seconds, and the discharge end voltage 3. The value obtained by multiplying 0V was the power density of the lithium secondary battery.

(実験結果)
実施例1〜3及び比較例1〜4のリチウム二次電池の負極活物質の比表面積A(m2/g)、負極活物質の重量割合、平均電圧(V)、充放電サイクル試験の容量維持率(%)、エネルギー密度(Wh)、充放電サイクル試験後の20℃でのパワー密度(W)及び充放電サイクル試験後の20℃でのパワー密度(W)をまとめて表1に示した。また、実施例2及び比較例1,4の放電曲線を図4に示す。表1に示すように、易黒鉛化炭素を負極活物質に用いた比較例1では、充放電サイクル後の容量維持率及びパワー密度は高いが、平均電圧が低く、エネルギー密度が小さかった。また、黒鉛を負極活物質に用いた比較例4では、エネルギー密度は大きいが、充放電サイクル後の容量維持率及びパワー密度が低かった。これに対して、実施例1〜3では、充放電サイクル後の容量維持率及びパワー密度が優れ、平均電圧が高く、エネルギー密度も優れていることがわかった。即ち、実施例1〜3では、高エネルギー密度と高い高温耐久性の性能とが両立されていることがわかった。このように、正極活物質として鉄リン酸リチウム化合物を用いるリチウム二次電池において、結晶性の異なる複数の炭素材料を混合し比表面積を2.38〜3.40m2/gの範囲とした負極活物質、あるいは、20重量%以上40重量%以下の範囲の易黒鉛化炭素と黒鉛と混合した負極活物質を用いることにより、高エネルギー密度と高い高温耐久性の性能とを両立することができることが明らかとなった。
(Experimental result)
Specific surface area A (m 2 / g) of negative electrode active material of lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 4, weight ratio of negative electrode active material, average voltage (V), capacity of charge / discharge cycle test Table 1 summarizes the maintenance rate (%), energy density (Wh), power density (W) at 20 ° C. after the charge / discharge cycle test, and power density (W) at 20 ° C. after the charge / discharge cycle test. It was. Moreover, the discharge curve of Example 2 and Comparative Examples 1 and 4 is shown in FIG. As shown in Table 1, in Comparative Example 1 using graphitizable carbon as the negative electrode active material, the capacity retention ratio and power density after the charge / discharge cycle were high, but the average voltage was low and the energy density was small. In Comparative Example 4 using graphite as the negative electrode active material, the energy density was large, but the capacity retention rate and power density after the charge / discharge cycle were low. On the other hand, in Examples 1-3, it turned out that the capacity | capacitance maintenance factor and power density after a charging / discharging cycle are excellent, an average voltage is high, and an energy density is also excellent. That is, in Examples 1-3, it turned out that high energy density and the performance of high high temperature durability are compatible. Thus, in a lithium secondary battery using a lithium iron phosphate compound as a positive electrode active material, a negative electrode having a specific surface area in the range of 2.38 to 3.40 m 2 / g by mixing a plurality of carbon materials having different crystallinity. By using an active material, or a negative electrode active material mixed with graphitizable carbon in the range of 20 wt% or more and 40 wt% or less and graphite, both high energy density and high temperature durability can be achieved. Became clear.

Figure 2011071017
Figure 2011071017

10 リチウム二次電池、11 集電体、12 正極活物質、13 正極シート、14 集電体、17 負極活物質、18 負極シート、19 セパレータ、20 非水電解液、22 円筒ケース、24 正極端子、26 負極端子。   DESCRIPTION OF SYMBOLS 10 Lithium secondary battery, 11 Current collector, 12 Positive electrode active material, 13 Positive electrode sheet, 14 Current collector, 17 Negative electrode active material, 18 Negative electrode sheet, 19 Separator, 20 Nonaqueous electrolyte, 22 Cylindrical case, 24 Positive electrode terminal , 26 Negative terminal.

Claims (3)

リチウムを吸蔵・放出可能な鉄リン酸リチウム化合物を含む正極活物質を有する正極と、
結晶性の異なる少なくとも2種類以上の炭素材料が混合された負極活物質を有し、該負極活物質の比表面積をA(m2/g)としたときに、2.38≦A≦3.40を満たす負極と、
前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、
を備えたリチウム二次電池。
A positive electrode having a positive electrode active material containing a lithium iron phosphate compound capable of inserting and extracting lithium;
When having a negative electrode active material in which at least two kinds of carbon materials having different crystallinity are mixed, and the specific surface area of the negative electrode active material is A (m 2 / g), 2.38 ≦ A ≦ 3. A negative electrode satisfying 40,
An ion conductive medium that is interposed between the positive electrode and the negative electrode and conducts lithium ions;
Rechargeable lithium battery.
前記負極は、前記負極活物質の炭素材料として少なくとも黒鉛と非晶質炭素とが混合されており、該負極活物質のうち非晶質炭素の占める割合が20重量%以上40重量%以下の範囲である、請求項1に記載のリチウム二次電池。   In the negative electrode, at least graphite and amorphous carbon are mixed as a carbon material of the negative electrode active material, and the proportion of the amorphous carbon in the negative electrode active material is in the range of 20 wt% to 40 wt%. The lithium secondary battery according to claim 1, wherein 前記負極は、前記負極活物質に前記非晶質炭素としてd002=0.34nm以上の易黒鉛化炭素が含まれている、請求項2に記載のリチウム二次電池。 The lithium secondary battery according to claim 2, wherein the negative electrode includes graphitizable carbon having d 002 = 0.34 nm or more as the amorphous carbon in the negative electrode active material.
JP2009222418A 2009-09-28 2009-09-28 Lithium secondary battery Expired - Fee Related JP5749882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009222418A JP5749882B2 (en) 2009-09-28 2009-09-28 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009222418A JP5749882B2 (en) 2009-09-28 2009-09-28 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2011071017A true JP2011071017A (en) 2011-04-07
JP5749882B2 JP5749882B2 (en) 2015-07-15

Family

ID=44016098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009222418A Expired - Fee Related JP5749882B2 (en) 2009-09-28 2009-09-28 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5749882B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153393A1 (en) * 2011-05-10 2012-11-15 トヨタ自動車株式会社 Secondary battery and method for producing secondary battery
JP2013004519A (en) * 2011-06-20 2013-01-07 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP2015064974A (en) * 2013-09-24 2015-04-09 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2015082483A (en) * 2013-10-24 2015-04-27 横浜ゴム株式会社 Graphite material and electrode material using the same
JP2015534225A (en) * 2012-11-23 2015-11-26 エルジー・ケム・リミテッド ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048809A (en) * 1998-07-31 2000-02-18 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and manufacture thereof
JP2000272911A (en) * 1999-03-24 2000-10-03 Hitachi Chem Co Ltd Metal-carbon composite particle, its production, cathode material, cathode for lithium secondary battery and lithium secondary battery
JP2005285447A (en) * 2004-03-29 2005-10-13 Sharp Corp Lithium-ion secondary battery
JP2007287630A (en) 2006-04-20 2007-11-01 Sony Corp Nonaqueous electrolyte secondary battery
JP2008146891A (en) * 2006-12-07 2008-06-26 Hitachi Ltd Lithium secondary battery
JP2009032575A (en) * 2007-07-27 2009-02-12 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2009070598A (en) * 2007-09-11 2009-04-02 Hitachi Vehicle Energy Ltd Lithium secondary battery
WO2011027503A1 (en) * 2009-09-01 2011-03-10 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048809A (en) * 1998-07-31 2000-02-18 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and manufacture thereof
JP2000272911A (en) * 1999-03-24 2000-10-03 Hitachi Chem Co Ltd Metal-carbon composite particle, its production, cathode material, cathode for lithium secondary battery and lithium secondary battery
JP2005285447A (en) * 2004-03-29 2005-10-13 Sharp Corp Lithium-ion secondary battery
JP2007287630A (en) 2006-04-20 2007-11-01 Sony Corp Nonaqueous electrolyte secondary battery
JP2008146891A (en) * 2006-12-07 2008-06-26 Hitachi Ltd Lithium secondary battery
JP2009032575A (en) * 2007-07-27 2009-02-12 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2009070598A (en) * 2007-09-11 2009-04-02 Hitachi Vehicle Energy Ltd Lithium secondary battery
WO2011027503A1 (en) * 2009-09-01 2011-03-10 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153393A1 (en) * 2011-05-10 2012-11-15 トヨタ自動車株式会社 Secondary battery and method for producing secondary battery
JPWO2012153393A1 (en) * 2011-05-10 2014-07-28 トヨタ自動車株式会社 Secondary battery and method for manufacturing secondary battery
JP5747984B2 (en) * 2011-05-10 2015-07-15 トヨタ自動車株式会社 Secondary battery and method for manufacturing secondary battery
JP2013004519A (en) * 2011-06-20 2013-01-07 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP2015534225A (en) * 2012-11-23 2015-11-26 エルジー・ケム・リミテッド ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
JP2015064974A (en) * 2013-09-24 2015-04-09 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2015082483A (en) * 2013-10-24 2015-04-27 横浜ゴム株式会社 Graphite material and electrode material using the same
WO2015060423A1 (en) * 2013-10-24 2015-04-30 横浜ゴム株式会社 Graphite material and electrode material using same

Also Published As

Publication number Publication date
JP5749882B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5348170B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP5381199B2 (en) Lithium secondary battery
JP5897971B2 (en) Electrode active material, electrode for non-aqueous secondary battery, non-aqueous secondary battery and method for producing electrode for non-aqueous secondary battery
JP5359490B2 (en) Lithium ion secondary battery
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP2017174648A (en) Power storage device
JP2017152259A (en) Lithium ion secondary battery and recovery method thereof
JP5749882B2 (en) Lithium secondary battery
JP6205889B2 (en) Lithium secondary battery
JP5487598B2 (en) Lithium secondary battery and method of using the same
JP6346733B2 (en) Electrode, non-aqueous secondary battery and electrode manufacturing method
JP5271751B2 (en) Lithium ion secondary battery
JP2012216500A (en) Lithium secondary battery
JPWO2013084840A1 (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
JP6658182B2 (en) Electrode structure and lithium secondary battery
JP5504853B2 (en) How to use lithium secondary battery
JP5272810B2 (en) Capacitors
JP6503768B2 (en) Lithium ion secondary battery
JP2012226963A (en) Lithium secondary battery
JP2018085213A (en) Lithium secondary battery
JP2017134974A (en) Lithium secondary battery
JP2018097935A (en) Carbonaceous material, lithium secondary battery, and method of producing carbonaceous material
JP6763810B2 (en) Lithium ion secondary battery
JP2016162626A (en) Nonaqueous electrolyte battery
JP6011077B2 (en) Non-aqueous battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140421

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150515

R150 Certificate of patent or registration of utility model

Ref document number: 5749882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees