JP6108426B2 - 血小板産生方法及び血小板産生装置 - Google Patents

血小板産生方法及び血小板産生装置 Download PDF

Info

Publication number
JP6108426B2
JP6108426B2 JP2012120322A JP2012120322A JP6108426B2 JP 6108426 B2 JP6108426 B2 JP 6108426B2 JP 2012120322 A JP2012120322 A JP 2012120322A JP 2012120322 A JP2012120322 A JP 2012120322A JP 6108426 B2 JP6108426 B2 JP 6108426B2
Authority
JP
Japan
Prior art keywords
megakaryocyte
holding
culture
megakaryocytes
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012120322A
Other languages
English (en)
Other versions
JP2013031428A (ja
Inventor
浩之 江藤
浩之 江藤
啓光 中内
啓光 中内
福田 敏男
敏男 福田
遼 高松
遼 高松
新井 史人
史人 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2012120322A priority Critical patent/JP6108426B2/ja
Publication of JP2013031428A publication Critical patent/JP2013031428A/ja
Application granted granted Critical
Publication of JP6108426B2 publication Critical patent/JP6108426B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、血小板産生方法及び血小板産生装置に関し、特に、血小板の効率的な産生に関する。
血小板輸血には血小板製剤が使用される。血小板製剤は、一般に、献血により得られた血液から調製される。しかしながら、献血に依存する血小板製剤の供給量は、献血者の減少や、ウイルス感染症を患った献血者の増加による影響を受けやすい。
そこで、近年、献血に代わる血小板ソースの開発が注目されている。例えば、体性幹細胞である造血幹細胞(臍帯血幹細胞)をソースとして血小板を体外で大量に生産する技術の開発が進められた。しかしながら、造血幹細胞自体を体外で増幅する方法が未だ確立されていないため実用化には至っていない。
一方、多能性幹細胞である肺性幹(ES)細胞は、体外で無限に増殖させることができるという利点があるため、血小板を含む血液細胞を産生するソースとして注目されている。この点、非特許文献1においては、ヒトES細胞から成熟巨核球及び血小板を産生する技術が報告されている。
また、血小板の輸血においては、初回は患者のものと異なるヒト白血球抗原(HLA)を有する血小板を使用できるが、輸血を繰り返すと患者の体内でHLAに対する特異的抗体が産生され、その結果、輸血した血小板が迅速に拒絶される血小板輸血不応に陥ってしまう。
これに対し、患者由来の人工多能性幹(iPS)細胞から血小板を誘導できれば、理論的には拒絶を受けないオーダーメイドの血小板製剤を調製することが可能となり、血小板輸血を繰り返し行うことが容易となる。
しかしながら、例えば、血小板輸血を繰り返し受けなければならない患者が、特異的な遺伝子異常に伴う出血性疾患の患者である場合には、患者由来のiPS細胞から実際に血小板の産生が可能であるか不明であり、また、機能異常が維持されたままの血小板しか産生されない可能性もある。
そこで、健常人ドナーから得られた様々なHLAタイプの血液(例えば、臍帯血バンクに保存されている臍帯血)からiPS細胞を樹立し、当該iPS細胞から、さらに血小板の産生に適した株を選択して保存しておくことが考えられる。
こうしたiPS細胞バンクが実現すれば、患者に適合するHLAタイプの血小板を体外で大量に産生し、繰り返しの輸血に使用可能な血小板製剤を安定して供給することが可能になると期待される。
この点、非特許文献2において、ヒトiPS細胞から巨核球を誘導し、さらに生体内で止血機能を発揮する血小板を産生する技術が報告されている。
Takayama, N. et al.: Blood. 111: 5298-5306, 2008 Takayama, N. et al.: Journal of Experimental Medicine. 207:2817-2830,2010
しかしながら、血小板製剤の安定的な供給を実現するために十分な量の血小板を体外で効率よく産生する技術は未だ確立されていない。
本発明は、上記課題に鑑みて為されたものであり、体外において血小板を効率よく産生する血小板産生方法及び血小板産生装置を提供することをその目的の一つとする。
上記課題を解決するための本発明の一実施形態に係る血小板産生方法は、巨核球を培養することにより血小板を産生する方法であって、(a)培養液が通過可能な多孔構造を有する保持部に前記巨核球を保持すること:及び(b)前記保持部の一方側に設けられた前室部から、前記保持部の他方側に設けられた流路部へ、前記保持部を介して前記培養液を通過させながら前記巨核球を培養すること、を含むことを特徴とする。本発明によれば、体外において血小板を効率よく産生する血小板産生方法を提供することができる。
また、前記(b)において、前記保持部を介して前記培養液を通過させるとともに、前記流路部の上流端部からも前記流路部に前記培養液を流入させながら、前記巨核球を培養することとしてもよい。
上記課題を解決するための本発明の一実施形態に係る血小板産生装置は、巨核球を培養することにより血小板を産生するための装置であって、前記巨核球を保持可能で且つ培養液が通過可能な多孔構造を有する保持部と、前記保持部の一方側及び他方側にそれぞれ設けられた前室部及び流路部と、を備え、前記前室部から前記流路部へ、前記巨核球を保持した前記保持部を介して前記培養液を通過させながら、前記巨核球を培養することを特徴とする。本発明によれば、体外において血小板を効率よく産生する血小板産生装置を提供することができる。
また、前記血小板産生装置は、前記巨核球の培養中に、前記前室部から前記流路部へ、前記巨核球を保持した前記保持部を介して前記培養液を通過させるための外部流路部をさらに備えることとしてもよい。
また、前記血小板産生装置においては、前記巨核球を保持した前記保持部を介して前記培養液を通過させるとともに、前記流路部の上流端部からも前記流路部に前記培養液を流入させながら、前記巨核球を培養することとしてもよい。この場合、前記血小板産生装置は、前記巨核球の培養中に、前記巨核球を保持した前記保持部を介して前記培養液を通過させるとともに、前記流路部の上流端部からも前記流路部に前記培養液を流入させるための外部流路部をさらに備えることとしてもよい。
本発明によれば、体外において血小板を効率よく産生する血小板産生方法及び血小板産生装置を提供することができる。
本発明の一実施形態に係る血小板産生装置の主な構成及び当該血小板産生装置を使用した血小板産生方法の一例を模式的に示す説明図である。 本発明の一実施形態に係る血小板産生装置の一例の培養開始前の主な構成を模式的に示す説明図である。 本発明の一実施形態に係る血小板産生装置の一例への巨核球の播種を模式的に示す説明図である。 本発明の一実施形態に係る血小板産生装置の他の例の主な構成及び当該血小板産生装置を使用した血小板産生方法を模式的に示す説明図である。 本発明の一実施形態に係る実施例において使用した血小板産生装置及び当該血小板産生装置を使用した血小板産生方法を模式的に示す説明図である。 図5に示す血小板産生装置を使用して血小板を産生した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例2において使用した血小板産生装置を模式的に示す説明図である。 図7に示す血小板産生装置のVIII部分を拡大して模式的に示す説明図である。 図8に示すIX−IX線で切断した血小板産生装置の断面を模式的に示す説明図である。 本発明の一実施形態に係る実施例3において使用した血小板産生装置を模式的に示す説明図である。 図10に示す血小板産生装置のXI部分を拡大して模式的に示す説明図である。 図10及び図11に示す血小板産生装置を使用して血小板を産生した結果の一例を示す説明図である。
以下に、本発明の一実施形態について説明する。なお、本発明は、本実施形態に限られるものではない。
まず、本実施形態に係る血小板産生方法(以下、「本方法」という。)及び血小板産生装置(以下、「本装置」という。)の概要について説明する。
図1は、本装置1の主な構成及び本装置1を使用した本方法の一例を模式的に示す説明図である。図2は、本装置1の培養開始前の主な構成を模式的に示す説明図である。図3は、本装置1への巨核球Mの播種を模式的に示す説明図である。図4は、本装置1の主な構成及び本装置1を使用した本方法の他の例を模式的に示す説明図である。
本方法は、図1及び図4に示すように、巨核球Mを培養することにより血小板Pを産生する方法であって、(a)培養液が通過可能な多孔構造を有する保持部10に巨核球Mを保持すること:及び(b)保持部10の一方側に設けられた前室部20から、保持部10の他方側に設けられた流路部30へ、保持部10を介して培養液を通過させながら巨核球Mを培養すること、を含む。
すなわち、本方法は、培養液を流しながら巨核球Mを培養する連続培養系において、巨核球Mを培養液が通過可能な多孔構造を有する保持部10に保持するとともに、図1及び図4において矢印F1で示すように、保持部10の一方側から他方側に向けて、保持部10内に培養液を通過させながら巨核球Mを培養することにより、巨核球Mから血小板Pを産生する方法である。
本装置1は、図1〜図4に示すように、巨核球Mを培養することにより血小板Pを産生するための装置1であって、巨核球Mを保持可能で且つ培養液が通過可能な多孔構造を有する保持部10と、保持部10の一方側及び他方側にそれぞれ設けられた前室部20及び流路部30と、を備え、前室部20から流路部30へ、巨核球Mを保持した保持部10を介して培養液を通過させながら巨核球Mを培養する。
すなわち、本装置1は、内部に培養液を流しながら巨核球Mを培養する連続培養装置であって、保持部10に巨核球Mを保持するとともに、図1及び図4において矢印F1で示すように、前室部20から流路部30に向けて、保持部10内に培養液を通過させながら巨核球Mを培養することにより、巨核球Mから血小板Pを産生する装置である。本装置1は、本方法の実施に好ましく使用される。
なお、保持部10を介して流路部30に流出した培養液、及び保持部10に保持された巨核球Mから産生された血小板Pは、図1において矢印F2及び図4において矢印F3で示すように、流路部30を下流側に流れて、その下流端部31から回収される。
ここで、培養液を流しながら巨核球Mを培養する方法としては、例えば、巨核球Mが保持された保持部10の一方側のみ(例えば、流路部30のみ)に培養液を流す方法も考えられる。
しかしながら、本発明の発明者らが独自に検討を行った結果、流路部30のみに培養液を流す場合には、流路部30から保持部10内へ、及び流路部30から保持部10を介して前室部20へも培養液が流れてしまい、巨核球Mから産生された血小板Pを流路部30から効率よく回収できないことがあった。すなわち、この場合、保持部10に保持された巨核球Mから産生された血小板Pの一部は、前室部20に漏出してしまい、流路部30の下流端部31からは回収できなかった。
この点、血小板製剤の安定的な供給を実現するためには、巨核球Mから産生された血小板Pの回収効率を可能な限り高めることが重要である。
そこで、発明者らは、上記課題を解決する技術的手段について独自に鋭意検討を重ねた結果、前室部20から流路部30へ、巨核球Mを保持した保持部10を介して培養液を通過させながら当該巨核球Mを培養することにより、当該巨核球Mから産生された血小板Pの前室部20への漏出を効果的に抑制して、当該血小板Pを効率よく回収できることを見出した。
また、保持部10を介して培養液を通過させることによって、当該保持部10に保持されている巨核球Mに、培養液の流れによるせん断応力を負荷することもできる。この点、巨核球Mは本来、生体内(骨髄内)で血液の流れによるせん断応力を受けている。したがって、同様に保持部10内で巨核球Mにせん断応力を負荷することにより、生体内の環境を模倣した培養環境を形成し、巨核球Mによる血小板Pの産生を促進することができる。
このように、本方法及び本装置1によれば、巨核球Mによる血小板Pの産生を効果的に促進するとともに、巨核球Mから産生された血小板Pを効率的に回収することができる。
次に、本方法及び本装置1の詳細について説明する。保持部10は、前室部20と流路部30との間に設けられ、巨核球Mを保持可能で且つ培養液が通過可能な多孔構造を有する構造体であれば特に限られない。
保持部10は、その多孔構造に巨核球Mを収容可能な孔が形成されることにより、巨核球Mを保持可能となっている。すなわち、この多孔構造には、巨核球Mを収容可能なサイズ及び形状の孔が多数形成されている。
そして、例えば、保持部10の多孔構造に、巨核球Mが接着可能な接着分子を塗布することにより、巨核球Mを当該多孔構造に確実に保持することができる。接着分子は、巨核球Mの細胞膜表面に存在する分子と結合可能な分子であれば特に限られず、例えば、フィブロネクチン、VCAM−1、ビトロネクチン、コラーゲン、オステオポンチン及びラミニンからなる群より選択される1種以上が挙げられる。
また、保持部10は、その多孔構造に、その一方側(前室部20側)から他方側(流路部30側)まで連通する孔が形成されることにより、培養液が通過可能となっている。
また、保持部10は、例えば、その前室部20側に巨核球Mが通過できる開口が形成され、その流路部30側に当該巨核球Mが通過できない開口が形成された多孔構造を有することとしてもよい。
具体的に、保持部10は、例えば、特開2009−119206号公報に記載されているような、いわゆるソルトリーチング法により形成された多孔構造を有する多孔性担体であることとしてもよい。また、保持部10は、例えば、発泡成形により形成された多孔構造を有する多孔性担体であることとしてもよい。
また、保持部10は、複数の多孔性担体を積層することにより形成された多孔性担体であることとしてもよい。すなわち、例えば、巨核球Mを収容可能なサイズ及び形状の孔が形成された第一の多孔性担体と、当該巨核球Mが通過できないサイズ及び形状の孔が形成された第二の多孔性担体と、を有する多孔性積層体であることとしてもよい。この場合、前室部20側の第一の多孔性担体に巨核球Mを保持しつつ、流路部30側の第二の多孔性担体によって当該巨核球Mの漏出を効果的に防止することができる。
また、保持部10は、例えば、有機繊維及び/又は無機繊維により形成された多孔構造を有する繊維体(例えば、不織布又は織布)であることとしてもよい。また、保持部10は、巨核球Mを収容可能な繊維密度の第一の繊維体と、当該巨核球Mが通過できない繊維密度の第二の繊維体と、を有する積層繊維体であることとしてもよい。この場合、前室部20側の第一の繊維体に巨核球Mを保持しつつ、流路部30側の第二の繊維体によって当該巨核球Mの漏出を効果的に防止することができる。
また、保持部10は、フォトリソグラフィ等の微細加工により形成された多孔構造を有する構造体であることとしてもよい。この場合、孔のサイズ及び形状等の条件を厳密に制御できるため、例えば、巨核球Mを収容可能であって且つ巨核球Mの漏出を効果的に防止できる多孔構造を確実に作製することができる。
前室部20及び流路部30は、保持部10を介して連通するよう当該保持部10の一方側及び他方側にそれぞれ設けられた部屋であれば特に限られない。前室部20は、図1〜図4に示すように、培養液を当該前室部20に流入させるための開口が形成された上流端部21を有している。流路部30は、図1〜図4に示すように、培養液及び巨核球Mから産生された血小板Pを当該流路部30から回収するための開口が形成された下流端部31を有している。
なお、本装置1及び本装置1を構成する部分の形状及び数は、本実施形態で示す例に限られない。すなわち、例えば、本装置1が有する保持部1、前室部20及び流路部30の形状及び数は、図1〜図4に示す例に限られない。また、保持部10は、例えば、平板状又はシート状の構造体であることとしてもよく、筒状の構造体であることとしてもよいが、これらに限られない。本装置1の外形状は、平板状又はシート状の保持部10を含む箱形状であることとしてもよく、筒状の保持部10を含む筒状であることとしてもよいが、これらに限られない。
巨核球Mは、培養することにより血小板Pを産生できるものであれば特に限られない。すなわち、巨核球Mは、例えば、CD42a陽性及びCD42b陽性の多核化した血球系細胞として特定され、より具体的には、CD41a陽性、CD42a陽性及びCD42b陽性の血球系細胞として特定される。また、血小板を放出する直前の成熟した巨核球Mは、さらにvWF(von Willebrand factor)陽性の血球系細胞として特定される。すなわち、巨核球Mは、成熟することでvWFを発現し、このvWFが細胞核周囲から細胞膜周囲へ移動することにより、血小板を放出する準備が整う(Eto K, Nishikii H, Ogaeri T, Suetsugu S, Kamiya A, Kobayashi T, Yamazaki D, Oda A, Takenawa T, Nakauchi H. Blood 110, 3637-3647 (2007).)。巨核球Mは、ヒトの巨核球であることが好ましいが、ヒト以外の動物の巨核球であってもよい。
ヒト巨核球Mは、ヒトiPS細胞又はヒトES細胞に由来する巨核球であることが好ましいが、これに限られず、例えば、健常人ドナー又は患者から得られた造血幹細胞(例えば、臍帯血幹細胞)に由来する巨核球であってもよい。
保持部10への巨核球Mの保持は、例えば、上述した巨核球Mを保持部10に播種することにより行うことができる。巨核球Mを播種する方法は、保持部10に巨核球Mを保持できるものであれば特に限られないが、例えば、図3に示すように、巨核球Mを含む培養液Lを前室部20に流入させ、当該培養液Lを前室部20から流路部30へ保持部10を介して通過させる方法が挙げられる。
すなわち、この場合、例えば、まず、図2に示すように、保持部10、前室部20及び流路部30を有する本装置1を準備し、次いで、図3に示すように、当該本装置1に、ポンプ等の送液部50を含む播種用流路部70を接続する。
そして、図3に示すように、播種用流路部70を介して、巨核球Mを含む培養液Lを前室部20に流入させ、当該培養液Lを前室部20から流路部30へ保持部10を介して通過させることにより、当該巨核球Mを保持部10に捕捉する。こうして、巨核球Mを保持部10に保持することができる。
なお、巨核球Mを保持部10に播種する方法は、上述の例に限られず、例えば、巨核球Mを含む培養液L中に保持部10を浸漬することとしてもよい。この場合、例えば、培養液L中において、重力の作用により、前室部20から保持部10内に巨核球Mを沈降させることにより、当該巨核球Mを保持部10に容易に保持することができる。また、保持部10の多孔構造に、上述したような接着分子を予め塗布しておくことにより、保持部10に巨核球Mを効率よく保持することができる。
保持部10への巨核球Mの保持は、例えば、当該巨核球Mの前駆細胞を保持部10に播種し、続いて当当該前駆細胞を培養することにより、当該前駆細胞を当該巨核球Mに分化させることにより行うこととしてもよい。
すなわち、この場合、まず、上述した巨核球Mの播種と同様の方法で、前駆細胞を保持部10に播種する。次いで、前駆細胞を保持部10で培養することにより、当該前駆細胞の分化により生成された、保持部10に保持された巨核球Mが得られる。
前駆細胞は、培養することにより分化して、血小板Pを産生可能なより成熟した状態に変化した巨核球Mを生成するものであれば特に限られない。すなわち、前駆細胞としては、例えば、iPS細胞、ES細胞、造血幹細胞、巨核球赤芽球前駆細胞、巨核球系前駆細胞、巨核芽球、前巨核球、単核又は4n以下の多核を有するCD42b陽性細胞を使用することができ、特に、iPS細胞、ES細胞又はこれらに由来する細胞を好ましく使用することができる。
なお、前駆細胞から巨核球Mを分化誘導する培養においては、サイトカイン等の適切な成分を含む培養液を使用する。すなわち、例えば、ヒトiPS細胞から巨核球M又は当該巨核球Mの前駆細胞を分化誘導する場合には、トロンボポエチン(TPO)、SCF(Stem Cell Factor)及びヘパリンが添加された培養液を使用することが好ましい。
巨核球M又はその前駆細胞は、株化細胞(不死化細胞)であってもよいし、初代細胞であってもよい。すなわち、例えば、ヒトiPS細胞由来の巨核球細胞株を使用することができ、より具体的には、ヒトiPS細胞由来であって、CD41a陽性及びCD42b陽性、又はCD41a陽性、CD42a陽性及びCD42b陽性である、単核、2n核又は4n核を有する巨核球細胞株を使用することができる(国際出願PCT/2010/065903(WO2011/034073)参照)。
そして、本方法及び本装置1においては、上述のとおり、前室部20から流路部30へ、巨核球Mを保持した保持部10を介して培養液を通過させながら当該巨核球Mを培養する。すなわち、巨核球Mを培養して血小板Pを産生する間、図1及び図4において矢印F1で示すように、前室部20側から流路部30側に向けて、当該巨核球Mが保持されている保持部10の内部に培養液を流す。この矢印F1で示す流れによって、保持部10に保持された巨核球Mから産生された血小板Pを流路部30に効率よく放出させることができる。
また、保持部10に保持された巨核球Mに、矢印F1で示す培養液の流れを接触させることにより、巨核球Mを培養して血小板Pを産生する間、当該巨核球Mに当該流れによるせん断応力を負荷することができる。この生体内の環境を模倣したせん断応力の負荷によって、巨核球Mによる血小板Pの産生を効果的に促進することができる。
そして、図1において矢印F2及び図4において矢印F3で示すように、流出部30に流出した培養液及び血小板Pは、当該流出部30内を下流側に流れ、当該流出部30の下流端部31から回収される。
このように、本方法及び本装置1においては、巨核球Mから血小板Pを効率よく産生するとともに、当該産生された血小板Pを効率よく回収することができる。
図1及び図4に示す例において、本装置1は、巨核球Mの培養中に、前室部20から流路部30へ、当該巨核球Mを保持した保持部10を介して培養液を通過させるための外部流路部40をさらに備えている。
この外部流路部40は、流出部30の下流端部31と前室部20の上流端部21とを接続して、巨核球Mを培養して血小板Pを産生する間、培養液を循環させる。外部流路部40は、前室部20に培養液を流入させるための流入流路部41と、流路部30から当該培養液及び血小板Pを回収するための流出流路部42と、を含む。
流入流路部41の下流端は前室部20の上流端部21に接続され、流出流路部42の上流端は流路部30の下流端部31に接続されている。流入流路部41及び流出流路部42は、例えば、内部に培養液を流すことのできる筒状構造体(例えば、樹脂製のチューブ)から構成される。
また、図1及び図4に示す例において、外部流路部40は、当該外部流路部40に培養液を流すための動力を発生させる送液部50と、当該培養液を貯留するためのリザーバ−部60と、を含む。流入流路部41の上流端及び流出流路部42の下流端は、リザーバ−部60に接続されている。リザーバ−部60は、培養液を貯留できる容器であれば特に限られず、例えば、ガラス製又は樹脂製のタンクを好ましく使用することができる。
送液部50は、外部流路部40に培養液を流すための動力を発生させるものであれば特に限られず、例えば、培養液を圧送するためのポンプである。ポンプとしては、生体の血管内における血流と同様の脈流を発生させるものを好ましく使用することができる。
本方法及び本装置1においては、図4に示すように、前室部20から流路部30へ保持部10を介して培養液を通過させるとともに、流路部30の上流端部32からも当該流路部30に培養液を流入させながら、当該巨核球Mを培養することとしてもよい。
すなわち、この場合、図4において矢印F1で示すような保持部10を介した培養液の流れに加えて、図4において矢印F3で示すような流路部30の上流端部32から下流端部31への培養液の流れを形成する。
そして、前室部20から流路部30に流入した培養液と、上流端部32から流路部30に流入した培養液と、は合流して当該流路部30の下流側に流れ、その下流端部31から流出する。
ここで、流路部30の上流端部32から下流端部31への培養液の流れを追加することにより、例えば、当該流路部30内の流量を、保持部10を介した培養液の流量よりも大きくすることができる。
このため、保持部10を介した流れによって血小板Pの前室部20への漏出を効果的に抑制しつつ、流路部30の下流端部31から当該血小板Pを効率よく回収することができる。また、保持部10に保持された巨核球Mに対して、より効果的にせん断応力を負荷することもできる。
生体内においては、血液の脈流及び脈圧による血流速度、血圧及びせん断応力等の血管内環境の瞬間的な変化によって、血小板の放出が促進されていると推測される。この点、本方法及び本装置1においては、保持部10を介した流れと、流路部30の上流端部32から下流端部31への流れとの2方向流れによって、生体内に類似した流速、圧力及びせん断応力の変化を人為的に(例えば、ポンプの使用等による機械的手段によって)発生させ、局所における血小板Pの滞留を効果的に防止することができる。この結果、巨核球Mから放出された血小板Pを効率よく回収することができる。
図4に示す例において、本装置1は、巨核球Mの培養中に、当該巨核球Mを保持した保持部10を介して培養液を通過させるとともに、流路部30の上流端部32からも当該流路部30に当該培養液を流入させるための外部流路部40をさらに備えている。
この外部流路部40は、流出部30の下流端部31と、前室部20の上流端部21及び流路部30の上流端部32と、を接続して、巨核球Mを培養して血小板Pを産生する間、培養液を循環させる。
外部流路部40は、前室部20に培養液を流入させるための第一流入流路部41aと、流路部30の上流端部32から当該流路部30に培養液を流入させるための第二流入流路部41bと、流路部30から培養液及び血小板Pを回収するための流出流路部42と、を含む。
第一流入流路部41aの下流端は前室部20の上流端部21に接続され、第二流入流路部41bの下流端は流路部30の上流端部32に接続され、流出流路部42の上流端は流路部30の下流端部31に接続されている。
また、図4に示す例において、外部流路部40は、第一流入流路部41aに培養液を流すための動力を発生させる第一送液部50aと、第二流入流路部41bに培養液を流すための動力を発生させる第二送液部50bと、当該培養液を貯留するためのリザーバ−部60と、を含む。第一流入流路部41aの上流端、第二流入流路部41bの上流端及び流出流路部42の下流端は、リザーバ−部60に接続されている。
この外部流路部40においては、互いに独立した2つの送液部50a,50bによって、前室部20への培養液の流入条件と、流路部30の上流端部32への培養液の流入条件と、を互いに独立に設定することができる。
次に、本実施形態に係る具体的な実施例について説明する。
[実施例1]
図5は、実施例1において使用した血小板産生装置100及び当該血小板産生装置100を使用した血小板産生方法を模式的に示す説明図である。実施例1においては、図5に示すように、巨核球Mを保持可能で且つ培養液が通過可能な多孔構造を有する第一多孔性担体111と、血管内皮細胞Eを保持可能で且つ培養液が通過可能な第二多孔性担体112と、を積層することにより形成された積層担体110と、当該積層担体110の第一多孔性担体111側に設けられたチャンバー120と、当該積層担体110の第二多孔性担体112側に設けられた流路130と、を備えた血小板産生装置100を作製した。
積層担体110は、特開2009−119206号公報に記載されているソルトリーチング法により作製した。すなわち、生体適合性の高い樹脂であるPLCL(poly−L−lactide−co−ipsilon−caprolactone)と、直径が50〜106μmのNaCl粒子と、をクロロホルムに溶解して調製した溶液をシート状の型内で硬化させ、次いで、得られたシートから当該NaCl粒子を溶出することにより、厚さが約50〜1000μm、平均孔径が30μm以上のシート状の第一多孔性担体111を得た。すなわち、この第一多孔性担体111は、巨核球Mを収容可能な多孔構造を有していた。
また、同様に、NaCl粒子として、直径が23μm以下のものを使用して、厚さが約50〜1000μm、平均孔径が10μm以下のシート状の第二多孔性担体112を得た。すなわち、この第二多孔性担体112は、血管内皮細胞Eを収容可能で且つ巨核球Mは通過できない多孔構造を有していた。
一方、直径7.0mm、高さ2.0cmのチャンバー120と、幅5.0mm、高さ0.3mmの流路130と、をPDMS(polydimethylsiloxane)の成形により作製した。
巨核球Mとしては、ヒトiPS細胞由来の不死化巨核球細胞株(国際出願PCT/2010/065903(WO2011/034073)参照)を使用した。また、血管内皮細胞Eとしては、ヒト臍帯静脈内皮細胞(Human Umbilical Vein Endothelial Cell:HUVEC、KURABO Industries. Ltd.)を使用した。
そして、まず、予めI型コラーゲンが塗布された第二多孔性担体112に血管内皮細胞Eを播種し、24時間インキュベーションすることにより、当該血管内皮細胞Eを当該第二多孔性担体112に接着させた。
その後、この第二多孔性担体112に第一多孔性担体111を積層して積層担体110を形成し、当該積層担体110、チャンバー120及び流路130を図5に示すように組み立てた。
さらに、図5に示すように、ローラーポンプ150と、ガラス製容器からなるリザーバ−160と、フッ素樹脂(PFA)製チューブと、を含む外部流路140を形成した。外部流路部140の一方端は流路130の上流端131に接続され、他方端は当該流路130の下流端132に接続された。
次に、巨核球Mを含む培養液をチャンバー120内に流入させることによって、当該巨核球Mを第一多孔性担体111に播種し、12時間インキュベーションすることにより、当該巨核球Mを第一多孔性担体111に保持した。こうして、生体内の骨髄血管構造を模倣した血小板産生装置100を作製した。
その後、ローラーポンプ150を駆動させることにより、リザーバ−160内の培養液を、流路130の上流端131から下流端132に流しながら循環させることにより、巨核球Mと血管内皮細胞Eとの共培養を行った。
培養液としては、基礎培地IMDM(Sigma、I3390)に、15%のFBS(ニチレイ)、50mg/mlのAscorbic acid(Sigma、A−4544)、2mMのL−glutamine(Invitrogen、25030)、1xITS(Sigma、I3146:10μg/mlのhuman insulin、5.5μg/mlのhuman transferrin、5ng/mlのsodium selenite)、0.45mMのMTG(Sigma、M6145)、50ng/mlのSCF、100ng/mlのTPO及び25U/mlのheparinを添加して調製された培養液を使用した(Takayama et al., Blood, 2008; Takayama et al., Journal of Experimental Medicine, 2010)。培養は、5%CO/95%airの雰囲気下、37℃で24時間行った。なお、流路130内のせん断応力は、当該流路130のアスペクト比が1:16であることから、当該流路130内の培養液の流れを平板間流れと仮定し、次の式;τ=6μQ/ab(τ:せん断応力、μ:培養液の粘度(Pa・s)、a:流路130の幅(5mm)、b:流路130の高さ(0.3mm))から算出したところ、0.14dyne/cmであった。
24時間の連続培養後、チャンバー120内の培養液を回収し、当該培養液中に含まれる血小板の数を、当該チャンバー120内の血小板数として計測した。一方、本装置1のチャンバー120以外の部分(流路130及び外部流路140を含む)からも培養液を回収し、当該培養液中に含まれる血小板の数を、リザーバ−160内の血小板数として計測した。
血小板数は、蛍光標識抗CD41a抗体(CD41a−APC)及び蛍光標識抗CD42a抗体(CD42a−FITC)を使用したフローサイトメトリーにより測定した。
また、比較のために、培養液を流さない以外は同様にして、血小板産生装置100における巨核球M及び血管内皮細胞Eの静置培養も行い、血小板数を測定した。
図6に、血小板数を評価した結果を示す。すなわち、図6には、静置培養及び連続培養のそれぞれにおいて、チャンバー120内の血小板数(白抜き棒グラフ)及びリザーバ−130内の血小板数(黒塗り棒グラフ)を評価した結果を示す。
図6に示すように、血小板産生装置100において産生された血小板の数は、連続培養した場合の方が、静置培養した場合に比べて顕著に大きかった。すなわち、連続培養を行うことによって、静置培養に比べて巨核球Mから産生される血小板の数が増加することが確認された。
このように血小板の産生が促進された原因の一つとしては、流路130内に培養液を流すことによって、積層担体110内の巨核球Mに適度なせん断応力を負荷できたことが考えられた。
ただし、図6に示すように、連続培養においては、チャンバー120から回収された血小板の数が、リザーバ−130から回収された血小板の数に比べて大きかった。これは、流路130の上流端131から下流端132にのみ培養液を流すことによって、当該流路130から積層担体110の内部及びチャンバー120への流れも形成されて、巨核球Mから産生された血小板の一部がチャンバー120に漏出したためと考えられた。
[実施例2]
図7は、実施例2において使用した血小板産生装置1を模式的に示す説明図である。図8は、図7に示す血小板産生装置1のVIII部分を拡大して模式的に示す説明図である。図9は、図8に示すIX−IX線で切断した血小板産生装置1の断面を模式的に示す説明図である。
実施例2においては、フォトリソグラフィによって、図7〜図9に示すように、巨核球Mを保持可能で且つ培養液が流通可能な多孔構造を有する保持部10と、当該保持部10の一方側及び他方側にそれぞれ設けられた前室部20及び流路部30と、を備えた血小板産生装置1を作製した。
すなわち、まず、スピンコーティングによってシリコンウェハ上にレジスト(SU8−3050)を塗布した。次いで、このウェハ上に、図7に示すような流路パターンが形成されたクロムマスクを重ね合わせ、露光を行った。さらに、ウェハを現像し、純水によりリンスした。
こうしてウェハ上に形成されたパターンにPDMSを流し込み、硬化した。その後、硬化したPDMSをウェハから剥がし、プラズマイオンボンバーターによる浸水化処理を施した。そして、このPDMSをガラス基板上に貼り付けることにより、図7〜図9に示すような血小板産生装置1を作製した。
ここで、図8及び図9に示すように、保持部10は、巨核球Mが通過できない一定の間隔で並んだ複数の柱状体11を含む多孔構造を有していた。すなわち、複数の柱状体11は、隣接する当該柱状体11の間に、巨核球Mが通過できない孔12が形成されるように、下板部80(PDMS)と上板部81(ガラス基板)との間に形成された。また、各柱状体11の表面には、巨核球Mが接着可能な接着タンパク質であるVCAM−1が塗布された。
また、図7には図示していないが、図1に示すように、シリンジポンプからなる送液部50と、ガラス製容器からなるリザーバ−部60と、シリコンチューブと、を含む外部流路40を形成した。すなわち、外部流路部40の一方端は前室部20の上流端部21に接続され、他方端は流路部30の下流端部31に接続された。
巨核球Mとしては、上述の実施例1と同様、ヒトiPS細胞由来の不死化巨核球細胞株を使用した。なお、培養の開始に先立って、巨核球Mの細胞核をヘキスト染色するとともに、その細胞質を蛍光標識抗CD41a抗体(CD41a−FITC)により染色した。
そして、送液部50を駆動させることにより、巨核球Mを含む培養液を前室部20に流入させ、さらに保持部10の孔12内を通過させることによって、図8及び図9に示すように、当該巨核球Mを当該柱状体11間(孔12内)に捕捉した。さらに、その後、巨核球Mを保持部10で1時間静置培養することにより、当該巨核球Mを、予めVCAM−1が塗布された柱状体11の表面に接着させた。
その後、再び送液部50を駆動させ、前室部20から流路部30へ、巨核球Mを保持した保持部10を介して、リザーバ−部60内の培養液を通過させながら循環することにより、当該巨核球Mの連続培養を行った。
培養液としては、上述の実施例1で使用したものと同一組成の培養液を使用した。培養は、5%CO2/95%airの雰囲気下、37℃で6時間行った。培養液の流量は、1.0ml/hであった。
そして、培養期間中、Time−lapseビデオにより、血小板産生装置1内の流れ環境下における巨核球Mの様子を観察した。その結果、培養開始から90分が経過した時点で、巨核球Mの大きな変形が観察された。さらに、この変形の開始から3分が経過した時点から、巨核球Mの細胞質が培養液の流れによってちぎれ、血小板が産生される様子が観察された。
すなわち、巨核球Mが保持された保持部10を介して培養液を通過させながら当該巨核球Mを培養することによって、当該巨核球Mから血小板Pを産生し、且つ産生された当該血小板Pを当該培養液の流れにのせて流路部30に効率よく流出させることができた。
なお、実施例2では図7〜図9に示すような血小板産生装置1を使用したが、この例に限られず、巨核球Mを保持可能で且つ培養液が通過可能な保持部10を使用して、当該保持部10を介した培養液の流れを形成することにより、巨核球Mによる血小板Pの産生を効果的に促進するとともに、巨核球Mから産生された血小板Pを効率的に回収することができると考えられた。
[実施例3]
図10は、実施例3において使用した血小板産生装置1を模式的に示す説明図である。図11は、図10に示す血小板産生装置1のXI部分を拡大して模式的に示す説明図である。
実施例3においては、フォトリソグラフィによって、図10及び図11に示すように、巨核球Mを保持可能で且つ培養液が流通可能な多孔構造を有する保持部10と、当該保持部10の一方側及び他方側にそれぞれ設けられた前室部20及び流路部30と、を備えた血小板産生装置1を作製した。
すなわち、まず、スピンコーティングによってシリコンウェハ上にレジスト(SU8−3050)を塗布した。次いで、このウェハ上に、図10に示すような流路パターンが形成されたクロムマスクを重ね合わせ、露光を行った。さらに、ウェハをディベロッパーにより現像し、純水によりリンスして、装置用の型(mold)を作製した。
この型にPDMSを流し込み、60℃のオーブンに1時間静置することにより硬化した。その後、硬化したPDMS成形体を型から剥がし、ガラス基板上に貼り付けることにより、図10及び図11に示すような血小板産生装置1を作製した。
ここで、図11に示すように、保持部10は、巨核球Mが通過できない一定の間隔で並んだ複数の柱状体11を含む多孔構造を有していた。すなわち、複数の柱状体11は、隣接する当該柱状体11の間に、巨核球Mを保持可能であって、当該巨核球Mが流路部30側に通過できない孔12が形成されるように、PDMS成形体とガラス基板との間に形成された。隣接する2つの柱状体11の流路部30側の先端部間の距離は4μmであった。
血小板産生装置1をエタノールに30分浸漬し、さらにUVランプ下で風乾することにより滅菌した。滅菌後の血小板産生装置1を共焦点顕微鏡のインキュベータ内に設置し、培養システムと接続した。共焦点顕微鏡のインキュベータを稼働し、その温度を37℃に安定させた。
なお、図10には図示していないが、血小板産生装置1と接続された培養システムは、図4に示すように、シリンジポンプからなる第一送液部50aと、シリンジポンプからなる第二送液部50bと、ガラス製容器からなるリザーバ−部60と、シリコンチューブと、を含む外部流路40を有していた。
巨核球Mとしては、上述の実施例1と同様、ヒトiPS細胞由来の不死化巨核球細胞株を使用した。なお、培養の開始に先立って、巨核球Mの細胞核をヘキスト染色するとともに、その細胞質を蛍光標識抗CD41a抗体(CD41a−FITC)により染色した。
そして、まず、第一送液部50aを駆動させることにより、巨核球Mを含む培養液を前室部20に流入させ、さらに保持部10の孔12内を通過させることによって、図11に示すように、当該巨核球Mを柱状体11間(孔12内)に捕捉した。さらに、その後、巨核球Mを保持部10で1時間静置培養することにより、当該巨核球Mを、柱状体11の表面に接着させた。
その後、第一送液部50aを駆動させて、前室部20から流路部30へ、巨核球Mを保持した保持部10を介して、リザーバ−部60内の培養液を通過させるとともに、第二送液部50bを駆動させて、当該流路部30の上流端部32からも当該流路部30に当該培養液を流入させながら、当該巨核球Mの連続培養を行った。培養液は全てリザーバ−部60に回収した。培養液としては、上述の実施例1で使用したものと同一組成の培養液を使用した。
培養終了後、回収された培養液にACDを10倍希釈で加えて遠心チューブに移し、遠心した(900rpm×10分)。上澄み液を新たな遠心チューブに回収し、遠心した(1500rpm×10分)。上澄み液を吸引し除去した。
遠心チューブに残ったペレットに、CD41a−APC、CD42b−PEを各2mL加え、遮光して室温で30分置いた。その後、ペレットをカウントチューブに入れ、ビーズと混合してよく撹拌し、フローサイトメトリーを行った。
なお、比較の対象として、ウェルプレート内に、上述の血小板産生装置1に播種した巨核球Mの数と同数の巨核球Mを播種し、静置培養を行った。そして、静置培養後の巨核球Mについても、上述と同様の操作を行った。
図12には、静置培養と、血小板産生装置1を使用した連続培養とのそれぞれにおいてCD41a陽性細胞数及び血小板数を評価した結果を示す。図12に示すように、連続培養を行うことによって、静置培養を行った場合に比べて、CD41a陽性細胞数及び血小板数が顕著に増加することが示された。
すなわち、血小板産生装置1において、前室部20から流路部30へ、巨核球Mを保持した保持部10を介して培養液を通過させることに加えて、当該流路部30の上流端部32からも当該流路部30に培養液を流入させながら、当該巨核球Mを培養することにより、当該2方向の流れを形成せずに培養する場合に比べて、当該巨核球Mによる血小板Pの産生を効果的に促進し、当該巨核球Mから産生された当該血小板Pを効率的に回収することができることが確認された。
1 血小板産生装置、10 保持部、11 柱状体、12 孔、20 前室部、21 上流端部、30 流路部、31 下流端部、32 上流端部、40 外部流路部、41 流入流路部、41a 第一流入流路部、41b 第二流入流路部、42 流出流路部、50 送液部、50a 第一送液部、50b 第二送液部、60 リザーバー部、70 播種用流路部、80 下板部、81 上板部、100 血小板産生装置、110 第一多孔質担体、111 第二多孔質担体、120 チャンバー、130 流路、131 上流端、132 下流端、141 流入流路、142 流出流路、150 ポンプ、160 リザーバ−、M 巨核球、P 血小板。

Claims (2)

  1. 巨核球を培養することにより血小板を産生する方法であって、
    (a)培養液が通過可能な多孔構造を有する保持部に前記巨核球を保持すること:及び
    (b)前記保持部の一方側に設けられた前室部から、前記保持部の他方側に設けられた流路部へ、前記保持部を介して前記培養液を通過させながら前記巨核球を培養すること、
    を含む
    ことを特徴とする血小板産生方法。
  2. 前記(b)において、前記保持部を介して前記培養液を通過させるとともに、前記流路部の上流端部からも前記流路部に前記培養液を流入させながら、前記巨核球を培養する
    ことを特徴とする請求項1に記載の血小板産生方法。
JP2012120322A 2011-06-28 2012-05-26 血小板産生方法及び血小板産生装置 Expired - Fee Related JP6108426B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012120322A JP6108426B2 (ja) 2011-06-28 2012-05-26 血小板産生方法及び血小板産生装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011143383 2011-06-28
JP2011143383 2011-06-28
JP2012120322A JP6108426B2 (ja) 2011-06-28 2012-05-26 血小板産生方法及び血小板産生装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017039356A Division JP6312348B2 (ja) 2011-06-28 2017-03-02 血小板産生方法及び血小板産生装置

Publications (2)

Publication Number Publication Date
JP2013031428A JP2013031428A (ja) 2013-02-14
JP6108426B2 true JP6108426B2 (ja) 2017-04-05

Family

ID=47787883

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012120322A Expired - Fee Related JP6108426B2 (ja) 2011-06-28 2012-05-26 血小板産生方法及び血小板産生装置
JP2017039356A Active JP6312348B2 (ja) 2011-06-28 2017-03-02 血小板産生方法及び血小板産生装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017039356A Active JP6312348B2 (ja) 2011-06-28 2017-03-02 血小板産生方法及び血小板産生装置

Country Status (1)

Country Link
JP (2) JP6108426B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712612A1 (en) 2013-01-03 2020-09-23 Brigham and Women's Hospital, Inc. System and method for producing target biological substances
JP2014155471A (ja) * 2013-02-18 2014-08-28 Univ Of Tokyo 血小板産生流路装置及び血小板産生方法
WO2015075030A1 (en) 2013-11-19 2015-05-28 Platod Fluidic device for producing platelets
JP2015181406A (ja) * 2014-03-24 2015-10-22 東レエンジニアリング株式会社 血小板産生装置および血小板産生方法
JP2015181405A (ja) * 2014-03-24 2015-10-22 東レエンジニアリング株式会社 血小板産生装置および血小板産生方法
JP2015188381A (ja) * 2014-03-28 2015-11-02 東レエンジニアリング株式会社 分離装置および分離方法
AU2015241133B2 (en) * 2014-03-31 2019-11-28 Brigham And Women's Hospital, Inc. Systems and methods for biomimetic fluid processing
EP3347029B1 (en) * 2015-09-08 2022-03-09 Brigham and Women's Hospital, Inc. System and method for producing blood platelets
AU2016324365A1 (en) * 2015-09-15 2018-04-12 Megakaryon Corporation Platelet production method using rotary agitation culturing method
JPWO2017061528A1 (ja) * 2015-10-09 2018-07-26 国立大学法人名古屋大学 血小板製造用デバイス、血小板製造装置及び血小板製造方法
WO2018169061A1 (ja) * 2017-03-16 2018-09-20 富士フイルム株式会社 巨核球と血小板とを分離する方法および巨核球と血小板とを分離するための器具
EP4074321A4 (en) 2019-12-12 2024-01-03 Univ Chiba Nat Univ Corp FREEZE DRIED PREPARATION CONTAINING MEGAKARYOCYTES AND PLATELETS

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282072A (ja) * 1985-06-07 1986-12-12 Asahi Optical Co Ltd 細胞培養基支持体、細胞培養装置および細胞培養方法
JPS63230080A (ja) * 1987-03-18 1988-09-26 Toyobo Co Ltd 動物細胞の培養法
JPH01196289A (ja) * 1987-10-01 1989-08-08 Sumitomo Electric Ind Ltd 細胞培養容器
JP2004121167A (ja) * 2002-10-07 2004-04-22 Olympus Corp 生体組織補填体の製造装置
JP4631049B2 (ja) * 2005-03-18 2011-02-16 学校法人明治大学 バイオリアクター
JP5419076B2 (ja) * 2008-05-15 2014-02-19 旭化成メディカル株式会社 血小板の誘導方法
US20100248361A1 (en) * 2009-03-24 2010-09-30 The Ohio State University Research Foundation Platelet production methods

Also Published As

Publication number Publication date
JP6312348B2 (ja) 2018-04-18
JP2013031428A (ja) 2013-02-14
JP2017099411A (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6312348B2 (ja) 血小板産生方法及び血小板産生装置
JP6502997B2 (ja) 中空繊維バイオリアクター中での幹細胞の増幅
US11396016B2 (en) System and method for a biomimetic fluid processing
Laurent et al. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing
JP7186977B2 (ja) バイオミメティック流体処理のためのシステム及び方法
Enderami et al. Generation of insulin‐producing cells from human adipose‐derived mesenchymal stem cells on PVA scaffold by optimized differentiation protocol
US20070238169A1 (en) Cell sorter and culture system
US9803164B2 (en) Megakaryocyte and platelet production from stem cells
Yamachika et al. Basic fibroblast growth factor supports expansion of mouse compact bone-derived mesenchymal stem cells (MSCs) and regeneration of bone from MSC in vivo
JP2017158488A (ja) 細胞回収方法
JP2014060991A (ja) 多孔質中空糸の内腔を用いる幹細胞の培養方法
Shakir et al. Bioengineering lungs: An overview of current methods, requirements, and challenges for constructing scaffolds
JP6382938B2 (ja) 細胞培養治具およびこの細胞培養治具を用いた細胞培養方法
JP2017176043A (ja) 中空糸モジュールを用いる細胞培養方法
JP2019080575A (ja) 体細胞製造システム
TWI775842B (zh) 體外型之人工肝臟、及體外型之人工肝臟用或肝細胞培養用之器具
JP2016007207A (ja) iPS細胞の大量培養方法
US20180291324A1 (en) Biomimetic amniotic membrane niche for stem cells
JP2018014947A (ja) 中空糸膜モジュールを用いる細胞培養方法
Sivarapatna Vascular tissue regeneration using endothelial cells derived from human induced pluripotent stem cells
JP2019097478A (ja) 細胞回収方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170302

R150 Certificate of patent or registration of utility model

Ref document number: 6108426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees