JP6107955B2 - Seismic isolation structure and structure of pillars constituting the structure - Google Patents

Seismic isolation structure and structure of pillars constituting the structure Download PDF

Info

Publication number
JP6107955B2
JP6107955B2 JP2015532852A JP2015532852A JP6107955B2 JP 6107955 B2 JP6107955 B2 JP 6107955B2 JP 2015532852 A JP2015532852 A JP 2015532852A JP 2015532852 A JP2015532852 A JP 2015532852A JP 6107955 B2 JP6107955 B2 JP 6107955B2
Authority
JP
Japan
Prior art keywords
column
seismic isolation
members
stopper member
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015532852A
Other languages
Japanese (ja)
Other versions
JPWO2015025821A1 (en
Inventor
浩祐 岩本
浩祐 岩本
佐藤 祐二
祐二 佐藤
晃祥 大豊
晃祥 大豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Publication of JPWO2015025821A1 publication Critical patent/JPWO2015025821A1/en
Application granted granted Critical
Publication of JP6107955B2 publication Critical patent/JP6107955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2207/00Indexing codes relating to constructional details, configuration and additional features of a handling device, e.g. Conveyors
    • B65G2207/20Earthquake protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Warehouses Or Storage Devices (AREA)

Description

本発明は、立体倉庫、ボイラ鉄骨、立体パーキング、荷役設備等の構造物に適用して構造物の揺れを低減する構造物を構成する柱の免震構造及び構造物に関するものである。   The present invention relates to a seismic isolation structure for a column and a structure constituting a structure that is applied to a structure such as a three-dimensional warehouse, a boiler steel frame, a three-dimensional parking, and a cargo handling facility to reduce the shaking of the structure.

構造物の一例である立体倉庫は、複数の鋼鉄製の柱と複数段の鋼鉄製の梁を用いて複数のラック(棚)を立体的に組み立てた構成を有している。大規模な地震が発生した場合には、立体倉庫が損壊することが考えられており、又、地震により立体倉庫のラックに格納された荷が落下して荷が損傷する可能性があることから、立体倉庫に免震構造を備えて地震に対する安全性を高めることが考えられている。   A three-dimensional warehouse, which is an example of a structure, has a configuration in which a plurality of racks (shelves) are three-dimensionally assembled using a plurality of steel pillars and a plurality of steel beams. When a large-scale earthquake occurs, it is considered that the three-dimensional warehouse will be damaged, and the load stored in the rack of the three-dimensional warehouse may fall due to the earthquake and the load may be damaged. It is considered to increase the safety against earthquakes by installing a seismic isolation structure in a three-dimensional warehouse.

立体倉庫の免震構造としては、立体倉庫を構成する複数の各柱と基礎との間に、積層ゴムからなる免震構造を備えたものがある(特許文献1)。又、立体倉庫の柱を上下の途中位置で切断した構成として、二本の上部柱の下端同士を水平な第1水平部材で連結し、二本の上部柱に対応した二本の下部柱の上端同士を、前記第1水平部材と係合可能な水平な第2水平部材で連結し、前記第1水平部材と第2水平部材が長手方向へスライドできるようにし、更に、前記第1水平部材と第2水平部材との間を粘弾性体で接続したものがある(特許文献2)。   As a seismic isolation structure of a three-dimensional warehouse, there is one having a seismic isolation structure made of laminated rubber between a plurality of pillars and a foundation constituting the three-dimensional warehouse (Patent Document 1). In addition, as the structure in which the columns of the three-dimensional warehouse are cut at the upper and lower halfway positions, the lower ends of the two upper columns are connected by a horizontal first horizontal member, and the two lower columns corresponding to the two upper columns are connected. The upper ends are connected by a horizontal second horizontal member engageable with the first horizontal member so that the first horizontal member and the second horizontal member can slide in the longitudinal direction, and further, the first horizontal member And a second horizontal member are connected by a viscoelastic body (Patent Document 2).

特開2006−104883号公報JP 2006-104883 A 特開2013−039989号公報JP 2013-039989 A

しかし、特許文献1のように、多数の支持脚が備えられる立体倉庫の各支持脚の下端と基礎との間に積層ゴムによる免震構造を備えた場合には、積層ゴムが高価であることから、立体装置の設備コストが増加する問題がある。又、特許文献2においても、前記第1水平部材と第2水平部材を設け、更に、前記第1水平部材と第2水平部材とを接続する粘弾性体を設ける必要があるために、構造が複雑となって立体装置の設備コストが増加する問題がある。更に、特許文献2では、支持脚を免震する方向が前記第1水平部材と第2水平部材がスライドする方向である長手方向に限定されてしまい、このスライドの方向と直交する方向に対しては免震できないという問題がある。   However, as in Patent Document 1, when a base-isolated structure with laminated rubber is provided between the lower end and the foundation of each supporting leg of a three-dimensional warehouse provided with a large number of supporting legs, the laminated rubber is expensive. Therefore, there is a problem that the equipment cost of the three-dimensional device increases. Also in Patent Document 2, since it is necessary to provide the first horizontal member and the second horizontal member, and further to provide a viscoelastic body for connecting the first horizontal member and the second horizontal member, the structure is There is a problem that the equipment cost of the three-dimensional apparatus increases due to the complexity. Further, in Patent Document 2, the direction in which the support legs are isolated is limited to the longitudinal direction, which is the direction in which the first horizontal member and the second horizontal member slide, and the direction perpendicular to the direction of the slide is limited. Has the problem that it cannot be isolated.

一方、自動倉庫である立体倉庫は、スタッカークレーンの走行方向に沿って延びた長さを有し、且つスタッカークレーンの走行方向と直交の方向には格納される荷の大きさに対応した狭い幅を有しており、平面的に見て細長い矩形の形状を呈している。   On the other hand, a three-dimensional warehouse, which is an automatic warehouse, has a length that extends along the traveling direction of the stacker crane, and a narrow width corresponding to the size of the load stored in the direction perpendicular to the traveling direction of the stacker crane. And has an elongated rectangular shape when seen in a plan view.

このように平面的に細長い矩形の形状を有する立体倉庫では、長手方向には比較的高い剛性強度を有しているのに対して、狭い幅方向の剛性強度は比較的低い。このため、立体倉庫を地震から守るためには、狭い幅方向に対しては免震特性を低く設定して柔軟に免震する必要がある。更に、立体倉庫では、スタッカークレーンによってラックに対して荷物の格納、積み出しを行うために、スタッカークレーンに対向するラックの前面は開放されている。従って、立体倉庫の狭い幅方向に対して揺れが発生した場合には、荷がラックから落下する可能性があるため、この点からも立体倉庫の狭い幅方向に対しては柔軟に免震する必要がある。   Thus, the three-dimensional warehouse having a rectangular shape in plan view has a relatively high rigidity strength in the longitudinal direction, whereas the rigidity strength in the narrow width direction is relatively low. For this reason, in order to protect a three-dimensional warehouse from an earthquake, it is necessary to set the seismic isolation characteristics low in the narrow width direction and to flex-isolate flexibly. Furthermore, in a three-dimensional warehouse, the front surface of the rack facing the stacker crane is opened in order to store and unload luggage with respect to the rack by the stacker crane. Therefore, if a swing occurs in the narrow width direction of the three-dimensional warehouse, the load may fall from the rack. From this point as well, the seismic isolation is flexible in the narrow width direction of the three-dimensional warehouse. There is a need.

この課題は立体倉庫に限定されるものではなく、構造物に備えられる装置や配管等によって構造物の柱に筋交(brace)等の補強材が設置できないために水平二軸方向で剛性強度が異なる構造物の場合には、構造物の剛性強度の方向に応じて免震特性を変えられるようにしたものが望まれている。   This problem is not limited to three-dimensional warehouses, but because the reinforcements such as braces cannot be installed on the pillars of the structure by equipment or piping provided in the structure, the rigidity strength in the horizontal biaxial direction is high. In the case of different structures, it is desired that the seismic isolation characteristics can be changed according to the direction of the rigidity strength of the structure.

本発明は、上記従来の問題に鑑みてなしたもので、簡単な構成により構造物の柱に作用する荷重を、水平二軸方向で異なる免震特性を有して免震できるようにした免震構造を提供するものである。   The present invention has been made in view of the above-described conventional problems. The load applied to the column of the structure with a simple configuration can be isolated with different seismic isolation characteristics in the horizontal biaxial directions. It provides a seismic structure.

本発明の構造物を構成する柱の免震構造は、平坦な端面が対向するように配置される柱を構成する二つの柱部材と、平坦な前記端面に対向する平坦な当接面を一端及び他端に有して二つの前記柱部材の間に配置される免震柱と、
二つの前記柱部材と前記免震柱との間に配置され、二つの前記柱部材が水平方向へ相対移動した際に、前記免震柱の一端及び他端が二つの前記柱部材に対して水平方向外側へ移動するのを防止するストッパ部材と、二つの前記柱部材の平坦な前記端面と前記免震柱の一端及び他端の平坦な前記当接面を密着させる弾性体を有して前記免震柱が前記ストッパ部材により支点を中心に傾きを開始するようにしたトリガ機構を備え、
前記弾性体は、前記免震柱の傾きが開始する際のトリガ荷重が水平二軸方向で異なるように配置した
ことを特徴とする。
The seismic isolation structure for a column constituting the structure of the present invention has two column members constituting a column arranged so that the flat end surfaces face each other, and a flat contact surface facing the flat end surface at one end. And a seismic isolation column disposed between the two column members having the other end,
When the two column members are moved relative to each other in the horizontal direction, one end and the other end of the seismic isolation column are in relation to the two column members. A stopper member for preventing movement to the outside in the horizontal direction, and an elastic body that closely contacts the flat end surfaces of the two column members and the flat contact surfaces of one end and the other end of the seismic isolation column. A trigger mechanism in which the base isolation column starts to tilt around a fulcrum by the stopper member;
The elastic body is arranged such that a trigger load when the inclination of the base isolation column starts is different in the horizontal biaxial direction.

上記構造物を構成する柱の免震構造において、二つの前記柱部材と前記免震柱の間における幅方向の辺と奥行き方向の辺に、異なる数の弾性体を配置することができる。   In the seismic isolation structure of the column constituting the structure, different numbers of elastic bodies can be arranged on the side in the width direction and the side in the depth direction between the two column members and the seismic isolation column.

上記構造物を構成する柱の免震構造において、前記ストッパ部材は、二つの前記柱部材と前記免震柱の一端及び他端との一方から突出して他方を囲むように形成されることが好ましい。   In the seismic isolation structure of the column constituting the structure, the stopper member is preferably formed so as to protrude from one of the two column members and one end and the other end of the seismic isolation column and surround the other. .

上記構造物を構成する柱の免震構造において、前記支点は、二つの前記部材の平坦な前記端面の端縁及び前記免震柱の平坦な前記当接面の端縁によって形成されることが好ましい。   In the seismic isolation structure of the column constituting the structure, the fulcrum is formed by an edge of the flat end surface of the two members and an edge of the flat contact surface of the seismic isolation column. preferable.

上記構造物を構成する柱の免震構造において、前記弾性体は、二つの前記部材の平坦な前記端面又は前記免震柱の平坦な前記当接面によって形成される支点よりも内側に配置されることが好ましい。   In the seismic isolation structure for a column constituting the structure, the elastic body is disposed inside a fulcrum formed by the flat end surfaces of the two members or the flat contact surfaces of the seismic isolation columns. It is preferable.

上記構造物を構成する柱の免震構造において、前記免震柱が傾いた際の前記免震柱の変位を制限する変位制限機構を設けることが好ましい。   In the seismic isolation structure of the column constituting the structure, it is preferable to provide a displacement limiting mechanism that limits the displacement of the seismic isolation column when the seismic isolation column is tilted.

上記構造物を構成する柱の免震構造において、二つの前記柱部材の前記端面と前記免震柱の前記当接面の一方の中心に備えた凸状のストッパ部材と、凸状の前記ストッパ部材と嵌合するように二つの前記柱部材の前記端面と前記免震柱の前記当接面の他方の中心に備えた凹状のストッパ部材を有していてもよい。   In the seismic isolation structure for the columns constituting the structure, a convex stopper member provided at the center of one of the end surfaces of the two column members and the contact surface of the seismic isolation column, and the convex stopper You may have the concave stopper member with which the other end center of the said end surface of the said two column members and the said contact surface of the said seismic isolation column was equipped so that it might fit with a member.

本発明の構造物は、水平二軸方向で異なる免震効果が要求される構造物において、前記免震構造は、該免震構造に備えた前記弾性体によって生じる水平二軸方向へのトリガ荷重の低い側を、前記構造物の免震効果を高めたい方向に一致させて前記構造物の柱に配置したことを特徴とする。   The structure of the present invention is a structure in which different seismic isolation effects are required in the horizontal biaxial direction, and the seismic isolation structure is a trigger load in the horizontal biaxial direction generated by the elastic body provided in the seismic isolation structure. The lower side is arranged on the pillar of the structure so as to coincide with the direction in which the seismic isolation effect of the structure is desired to be enhanced.

本発明によれば、地震発生時に、二つの柱部材が水平方向へ相対移動することにより免震柱が二つの柱部材に対して傾くように作動し、このとき、免震柱が水平二軸方向へ傾く際の水平二軸方向のトリガ荷重を別個に設定できるようにしたので、簡単な構成により構造物の柱に作用する荷重を水平二軸方向に対して異なる免震特性で免震できるという優れた効果を奏し得る。   According to the present invention, when an earthquake occurs, the two column members move relative to each other in the horizontal direction so that the seismic isolation column is tilted with respect to the two column members. Since the trigger load in the horizontal biaxial direction when tilting in the direction can be set separately, the load acting on the column of the structure can be isolated with different seismic isolation characteristics with respect to the horizontal biaxial direction with a simple configuration An excellent effect can be achieved.

本発明の構造物を構成する柱の免震構造の一実施例を示す正面図である。It is a front view which shows one Example of the seismic isolation structure of the pillar which comprises the structure of this invention. 図1aの二つの柱部材が相対移動した状態を示す説明図である。It is explanatory drawing which shows the state which the two pillar members of FIG. 図1aの弾性体を配置する状態を示す免震柱の平面図である。It is a top view of the seismic isolation column which shows the state which arrange | positions the elastic body of FIG. 図2aをIIB−IIB方向から見た正面図である。It is the front view which looked at FIG. 2a from the IIB-IIB direction. 図2aをIIC−IIC方向から見た側面図である。It is the side view which looked at FIG. 2a from the IIC-IIC direction. 水平二軸方向である幅方向(X軸方向)の特性を説明するための作用図である。It is an effect | action figure for demonstrating the characteristic of the width direction (X-axis direction) which is a horizontal biaxial direction. 水平二軸方向である奥行き方向(Y軸方向)の特性を説明するための作用図である。It is an effect | action figure for demonstrating the characteristic of the depth direction (Y-axis direction) which is a horizontal biaxial direction. 弾性体の取付例を示す説明図である。It is explanatory drawing which shows the example of attachment of an elastic body. 図3aの変形例を示す説明図である。It is explanatory drawing which shows the modification of FIG. 弾性体の別の取付例を示す説明図である。It is explanatory drawing which shows another example of attachment of an elastic body. 図3cの変形例を示す説明図である。It is explanatory drawing which shows the modification of FIG. ストッパ部材の形状例を示す斜視図である。It is a perspective view which shows the example of a shape of a stopper member. ストッパ部材の別の形状例を示す斜視図である。It is a perspective view which shows another example of a shape of a stopper member. ストッパ部材の更に別の形状例を示す斜視図である。It is a perspective view which shows another example of a shape of a stopper member. ストッパ部材の更に又別の形状例を示す斜視図である。It is a perspective view which shows another example of a shape of a stopper member. 図1aの免震構造に有するトリガ機構の他の実施例を示す正面図である。It is a front view which shows the other Example of the trigger mechanism which has in the seismic isolation structure of FIG. 図5aを変形させた実施例を示す正面図である。It is a front view which shows the Example which deform | transformed FIG. 免震柱の傾きを制限する変位制限機構の形状例を示す説明図である。It is explanatory drawing which shows the example of a shape of the displacement limitation mechanism which restrict | limits the inclination of a seismic isolation column. 免震柱の傾きを制限する変位制限機構の別の形状例を示す説明図である。It is explanatory drawing which shows another example of a shape of the displacement limitation mechanism which restrict | limits the inclination of a seismic isolation column. 免震柱の傾きを制限する変位制限機構の更に別の形状例を示す説明図である。It is explanatory drawing which shows another example of a shape of the displacement limitation mechanism which restrict | limits the inclination of a seismic isolation column. 本発明の免震構造を適用する構造物の一例である立体倉庫の側面図である。It is a side view of the three-dimensional warehouse which is an example of the structure to which the seismic isolation structure of this invention is applied. 図7aをF−F方向から見た正面図である。It is the front view which looked at Drawing 7a from the FF direction.

以下、本発明の実施の形態を図示例と共に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図7a、図7bは、本発明の免震構造を適用する構造物の一例である立体倉庫を示している。立体倉庫100(構造物)は、複数の鋼鉄製の柱1と複数段の鋼鉄製の梁2を備えることにより複数のラック3(棚)を立体的に組み立てた構成を有している。立体倉庫100は、スタッカークレーン4を挟んで立設されており、立体倉庫100は図7aのように、スタッカークレーン4の走行方向に沿って長手方向に延びた長さVを有しており、スタッカークレーン4の走行方向と直交する幅方向には図7bのように、格納される荷の大きさに対応した狭い幅Wを有している。前記立体倉庫100を構成する複数の柱1は、ラック3に格納される荷の重量を支持するために高い強度を有している。   7a and 7b show a three-dimensional warehouse as an example of a structure to which the seismic isolation structure of the present invention is applied. The three-dimensional warehouse 100 (structure) has a configuration in which a plurality of racks 3 (shelves) are three-dimensionally assembled by including a plurality of steel pillars 1 and a plurality of steel beams 2. The three-dimensional warehouse 100 is erected with the stacker crane 4 interposed therebetween, and the three-dimensional warehouse 100 has a length V extending in the longitudinal direction along the traveling direction of the stacker crane 4 as shown in FIG. In the width direction orthogonal to the traveling direction of the stacker crane 4, as shown in FIG. 7B, the stacker crane 4 has a narrow width W corresponding to the size of the load to be stored. The plurality of pillars 1 constituting the three-dimensional warehouse 100 have high strength to support the weight of the load stored in the rack 3.

図7a、図7bの立体倉庫100を構成する複数の柱1の夫々に本発明の免震構造5を設ける。この免震構造5は、図7a、図7bに示すように、立体倉庫100に備えられる夫々の柱1の同一の高さ位置に設ける。免震構造5は柱1の任意の高さ位置に設けることができ、又、柱1の下端と基礎Tとの間に設けてもよい。   The seismic isolation structure 5 of the present invention is provided on each of the plurality of pillars 1 constituting the three-dimensional warehouse 100 of FIGS. 7a and 7b. As shown in FIGS. 7 a and 7 b, the seismic isolation structure 5 is provided at the same height position of each pillar 1 provided in the three-dimensional warehouse 100. The seismic isolation structure 5 can be provided at an arbitrary height position of the pillar 1, or may be provided between the lower end of the pillar 1 and the foundation T.

図1aは本発明の構造物を構成する柱の免震構造の一実施例を示す。立体倉庫100を構成する柱1に設けるようにした免震構造5は、例えば図7a、図7bの基礎Tに立設されて上端に水平で平坦な端面6が形成された下側の柱部材1Aと、該柱部材1Aの延長上に配置され下端に水平で平坦な端面7が形成された上側の柱部材1Bを有する二つの柱部材1A,1Bを備えている。二つの柱部材1A,1Bの対向する平坦な端面6,7の間には、該端面6,7に当接する平坦な当接面8,9を一端10aと他端10bに備えた免震柱10を配置している。二つの柱部材1A,1B及び免震柱10は、水平断面が矩形形状を有する角型鋼材で構成される場合を示している。尚、柱部材1A,1B及び免震柱10は、角型鋼材に限定されるものではなく、H型鋼材、I型鋼材、Z型鋼材、円筒型鋼材であってもよい。   FIG. 1a shows an embodiment of a seismic isolation structure for a column constituting the structure of the present invention. The seismic isolation structure 5 provided on the pillar 1 constituting the three-dimensional warehouse 100 is, for example, a lower pillar member that is erected on the foundation T of FIGS. 7a and 7b and has a horizontal flat end face 6 formed at the upper end. 1A and two column members 1A and 1B having an upper column member 1B disposed on the extension of the column member 1A and having a horizontal flat end surface 7 formed at the lower end. Between the opposing flat end faces 6 and 7 of the two column members 1A and 1B, the seismic isolation column is provided with flat contact surfaces 8 and 9 that contact the end faces 6 and 7 at one end 10a and the other end 10b. 10 is arranged. The two column members 1A and 1B and the seismic isolation column 10 show a case where the horizontal cross section is made of a square steel material having a rectangular shape. The column members 1A and 1B and the seismic isolation column 10 are not limited to square steel materials, but may be H-type steel materials, I-type steel materials, Z-type steel materials, and cylindrical steel materials.

二つの柱部材1A,1Bが対向する端部と、前記免震柱10の一端10a及び他端10bとの間には、トリガ機構11が設けられる。トリガ機構11は、前記端面6,7と当接面8,9が自重によって密着した状態を保持し続けようとするトリガ機能と、二つの柱部材1A,1Bが水平方向へ相対移動した際に、前記免震柱10の一端10a及び他端10bが二つの柱部材1A,1Bに対して水平方向外側へ外れるのを防止して、免震柱10の傾きを開始させるストッパ部材13とを有する。図1aに示す前記トリガ機構11は、二つの柱部材1A,1Bと免震柱10の一端10a及び他端10bの一方から突出して、二つの柱部材1A,1Bと免震柱10の一端10a及び他端10bの他方を囲むようにしたストッパ部材13を備えている。尚、図1aに示すトリガ機構11には、後述する弾性体19によるトリガ付加装置18を備えてトリガ荷重を増加させるようにした場合を示している。   A trigger mechanism 11 is provided between an end portion where the two column members 1 </ b> A and 1 </ b> B are opposed to one end 10 a and the other end 10 b of the seismic isolation column 10. The trigger mechanism 11 has a trigger function for keeping the end surfaces 6 and 7 and the contact surfaces 8 and 9 in close contact with each other by its own weight, and when the two column members 1A and 1B are relatively moved in the horizontal direction. And a stopper member 13 for preventing the seismic isolation column 10 from starting to be tilted by preventing the one end 10a and the other end 10b of the seismic isolation column 10 from moving outward in the horizontal direction with respect to the two column members 1A and 1B. . The trigger mechanism 11 shown in FIG. 1a protrudes from one of the two column members 1A, 1B and one end 10a and the other end 10b of the seismic isolation column 10, and the two column members 1A, 1B and one end 10a of the seismic isolation column 10. And a stopper member 13 that surrounds the other end 10b. Note that the trigger mechanism 11 shown in FIG. 1a is provided with a trigger adding device 18 using an elastic body 19 described later to increase the trigger load.

図1aの実施例では、前記免震柱10の一端10aと他端10bには水平方向外側へ張り出して前記当接面8,9を形成する当接フランジ17が設けている。下側の柱部材1Aの上端と上側の柱部材1Bの下端には、前記端面6,7を形成する押圧フランジ12が水平方向外側へ張り出して設けてある。そして、前記押圧フランジ12には、前記免震柱10に設けた当接フランジ17の外周を囲むストッパ部材13を設けている。図1aのストッパ部材13は、押圧フランジ12から免震柱10の長手方向内側へ向かって免震柱10から離反するように傾斜して所要の長さで延びており、従って、ストッパ部材13の内面と免震柱10の外面との間には免震柱10の長手方向内側へ向かって開いた隙間14が形成されている。そして、二つの柱部材1A,1Bが水平方向へ相対移動した際に、免震柱10は、その当接面8、9が、ストッパ部材13の内面と端面6,7とのコーナ部に当接することで二つの柱部材1A,1Bに対して水平方向外側へ移動することが防止される。即ち、前記ストッパ部材13の内面と端面6,7のコーナ部が支点Eとなって免震柱10は傾きを開始するようになっている。尚、図1aの構成に代えて、当接フランジ17にストッパ部材13を設け、該ストッパ部材13が、押圧フランジ12の外周を囲むように形成されていてもよい。   In the embodiment shown in FIG. 1a, the one end 10a and the other end 10b of the seismic isolation column 10 are provided with contact flanges 17 projecting outward in the horizontal direction to form the contact surfaces 8 and 9. On the upper end of the lower column member 1A and the lower end of the upper column member 1B, a pressing flange 12 that forms the end faces 6 and 7 is provided so as to protrude outward in the horizontal direction. The pressing flange 12 is provided with a stopper member 13 that surrounds the outer periphery of the contact flange 17 provided on the seismic isolation column 10. The stopper member 13 of FIG. 1a extends from the pressing flange 12 to the inner side in the longitudinal direction of the seismic isolation column 10 so as to be separated from the seismic isolation column 10 and to have a required length. Between the inner surface and the outer surface of the seismic isolation column 10, a gap 14 is formed that opens inward in the longitudinal direction of the seismic isolation column 10. When the two column members 1A and 1B move relative to each other in the horizontal direction, the seismic isolation column 10 has its contact surfaces 8 and 9 abutting against the corner portion between the inner surface of the stopper member 13 and the end surfaces 6 and 7, respectively. The contact prevents the two pillar members 1A and 1B from moving outward in the horizontal direction. In other words, the inner surface of the stopper member 13 and the corner portions of the end surfaces 6 and 7 serve as fulcrums E so that the seismic isolation column 10 starts to tilt. Instead of the configuration of FIG. 1 a, a stopper member 13 may be provided on the contact flange 17, and the stopper member 13 may be formed so as to surround the outer periphery of the pressing flange 12.

ここで、二つの柱部材1A,1Bの断面が矩形であることにより、前記支点Eは、免震柱10の平坦な当接面8,9における水平で直線に延びた端縁によって形成される。   Here, since the cross sections of the two column members 1A and 1B are rectangular, the fulcrum E is formed by the horizontal and straight edges of the flat contact surfaces 8 and 9 of the seismic isolation column 10. .

図4a、図4b、図4c、図4dは、二つの柱部材1A,1Bに設けた前記トリガ機構11を構成するストッパ部材13の形状例を示したものである。二つの柱部材1A,1Bと免震柱10との間に設けるトリガ機構11は上下で対称な形状を有しているので、図4a、図4b、図4c、図4dでは下側の柱部材1Aに設けたストッパ部材13のみを示している。   4a, 4b, 4c, and 4d show examples of the shape of the stopper member 13 constituting the trigger mechanism 11 provided on the two column members 1A and 1B. Since the trigger mechanism 11 provided between the two column members 1A, 1B and the seismic isolation column 10 has a vertically symmetrical shape, the lower column member in FIGS. 4a, 4b, 4c, and 4d. Only the stopper member 13 provided in 1A is shown.

図4aは、図1aと同様に、前記免震柱10の一端10aの全外周を包囲するように突出したストッパ部材13を設けた場合を示している。図4bは、押圧フランジ12の4つのコーナ部のみにストッパ部材13'を設けた場合を示している。図4cは、押圧フランジ12の4つの辺部のみにストッパ部材13''を設けた場合を示している。図4dは、免震柱10の一端10aの外周を包囲するように押圧フランジ12に、スタッド部材である突起15によるストッパ部材13を設けた場合を示している。   FIG. 4 a shows a case where a stopper member 13 protruding so as to surround the entire outer periphery of the one end 10 a of the seismic isolation column 10 is provided as in FIG. 1 a. FIG. 4 b shows a case where stopper members 13 ′ are provided only at the four corners of the pressing flange 12. FIG. 4 c shows a case where stopper members 13 ″ are provided only on the four sides of the pressing flange 12. FIG. 4 d shows a case where the stopper member 13 by the protrusion 15 that is a stud member is provided on the pressing flange 12 so as to surround the outer periphery of the one end 10 a of the seismic isolation column 10.

図5a、図5bは、前記トリガ機構11の他の実施例を示しており、二つの柱部材1A,1Bの端面6,7と免震柱10の当接面8,9の一方には凸状のストッパ部材20を有し、他方には凹状のストッパ部材21を設けた場合を示している。図5aのトリガ機構11は、免震柱10の当接フランジ17に上下に突出する凸状のストッパ部材20を設け、該凸状のストッパ部材20が、角パイプからなる柱部材1A,1Bによって形成される凹状のストッパ部材21に嵌合した構成を有している。又、図5bのトリガ機構11は、柱部材1A,1Bの押圧フランジ12に凸状のストッパ部材20を設け、該凸状のストッパ部材20が、角パイプからなる免震柱10によって形成された凹状のストッパ部材21に嵌合した構成を有している。   5a and 5b show another embodiment of the trigger mechanism 11, which is convex on one of the end surfaces 6 and 7 of the two column members 1A and 1B and the contact surfaces 8 and 9 of the seismic isolation column 10. FIG. A case is shown in which a stopper member 20 is provided and a concave stopper member 21 is provided on the other side. The trigger mechanism 11 shown in FIG. 5a is provided with a convex stopper member 20 protruding vertically on the contact flange 17 of the seismic isolation column 10, and the convex stopper member 20 is formed by column members 1A and 1B made of square pipes. It has the structure fitted to the concave stopper member 21 to be formed. Further, the trigger mechanism 11 of FIG. 5b is provided with a convex stopper member 20 on the pressing flange 12 of the column members 1A and 1B, and the convex stopper member 20 is formed by a seismic isolation column 10 made of a square pipe. It has a configuration fitted to the concave stopper member 21.

上記したように、前記二つの柱部材1A,1Bの平坦な端面6,7と、該端面6,7に密着した免震柱10の平坦な当接面8,9と、免震柱10の傾きを開始させる支点Eを形成するためのストッパ部材13、20,21によってトリガ機構11は構成される。   As described above, the flat end surfaces 6 and 7 of the two column members 1A and 1B, the flat contact surfaces 8 and 9 of the seismic isolation column 10 in close contact with the end surfaces 6 and 7, and the seismic isolation column 10 The trigger mechanism 11 is constituted by the stopper members 13, 20, 21 for forming the fulcrum E for starting the inclination.

又、図1a、図1bには、前記免震柱10と二つの柱部材1A,1Bとの間に、前記免震柱10が二つの柱部材1A,1Bに対して水平方向へ位置ずれするのを防止する調芯機構16を備えている。図1a、図1bの調芯機構16は、前記二つの柱部材1A,1Bの端面6,7の中央位置には、免震柱10に向かって突出した円錐状又は角錘状の凸部16aを形成し、前記免震柱10の一端10a及び他端10bの当接面8,9には、前記凸部16aに嵌合する円錐状又は角錘状の凹部16bを形成している。上記調芯機構16を備えた場合には、二つの柱部材1A,1Bと免震柱10との間に水平方向の位置ずれが生じた場合にも、傾斜した免震柱10が復元する際には、二つの柱部材1A,1Bと免震柱10は一定の位置に調整されて復元するようになる。   1a and 1b, the seismic isolation column 10 is displaced in the horizontal direction with respect to the two column members 1A and 1B between the seismic isolation column 10 and the two column members 1A and 1B. An alignment mechanism 16 is provided to prevent this. The alignment mechanism 16 of FIGS. 1a and 1b has a conical or pyramidal convex portion 16a protruding toward the seismic isolation column 10 at the center position of the end faces 6 and 7 of the two column members 1A and 1B. A conical or pyramidal concave portion 16b that fits into the convex portion 16a is formed on the contact surfaces 8 and 9 of the one end 10a and the other end 10b of the seismic isolation column 10. When the alignment mechanism 16 is provided, the tilted seismic isolation column 10 is restored even when a horizontal displacement occurs between the two column members 1A, 1B and the seismic isolation column 10. The two column members 1A and 1B and the seismic isolation column 10 are adjusted to a fixed position and restored.

図1a、図1b、図5a、図5bに示すように、二つの柱部材1A,1Bに備えた押圧フランジ12と、免震柱10に備えた当接フランジ17との間には、弾性体19によるトリガ付加装置18を設けている。弾性体19は、二つの柱部材1A,1Bの端面6,7と免震柱10の一端10a及び他端10bの当接面8,9を所要の力で密着させるように押圧フランジ12と当接フランジ17の外周部を弾性的に連結している。この弾性体19は、前記端面6,7及び当接面8,9によって形成される支点Eよりも内側に設けることができる。前記弾性体19によるトリガ付加装置18は、その設置数を選定することにより、トリガ機構11によって免震柱10が傾きを開始するときのトリガ荷重を増加させるように調整できる。弾性体19としては皿ばね等による復元ばね等を用いることができる。   As shown in FIGS. 1a, 1b, 5a, and 5b, an elastic body is provided between the pressing flange 12 provided on the two column members 1A and 1B and the contact flange 17 provided on the seismic isolation column 10. A trigger adding device 18 is provided. The elastic body 19 contacts the pressing flange 12 so that the end surfaces 6 and 7 of the two column members 1A and 1B and the contact surfaces 8 and 9 of the one end 10a and the other end 10b of the seismic isolation column 10 are in close contact with each other with a required force. The outer peripheral part of the contact flange 17 is elastically connected. The elastic body 19 can be provided inside a fulcrum E formed by the end surfaces 6 and 7 and the contact surfaces 8 and 9. The trigger adding device 18 by the elastic body 19 can be adjusted so as to increase the trigger load when the seismic isolation column 10 starts tilting by the trigger mechanism 11 by selecting the number of the devices. As the elastic body 19, a restoring spring such as a disc spring or the like can be used.

前記弾性体19は、図3aに示すように、押圧フランジ12の下側に設けてもよく、又、図3bに示すように、当接フランジ17の上側に設けてもよい。このとき、皿ばねからなる弾性体19に圧縮力を与えるテンションロッド19aは、押圧フランジ12及び当接フランジ17に設けた開口19bを貫通しており、開口19bがテンションロッド19aの径よりも大きな口径を有することにより遊嵌されている。更に、図3cに示すように、柱部材1Aと免震柱10の外側に突出して設けた取付部材22,23間を弾性的に連結するように前記弾性体19を配置してもよく、又、図3dに示すように、柱部材1Aと免震柱10の内側に突出して設けた取付部材22',23'間を弾性的に連結するように前記弾性体19を配置してもよい。尚、この場合においても、弾性体19は、前記端面6,7及び当接面8,9によって形成される支点Eよりも内側に設けられる。   The elastic body 19 may be provided below the pressing flange 12 as shown in FIG. 3a, or may be provided above the contact flange 17 as shown in FIG. 3b. At this time, the tension rod 19a for applying a compressive force to the elastic body 19 made of a disc spring passes through the opening 19b provided in the pressing flange 12 and the contact flange 17, and the opening 19b is larger than the diameter of the tension rod 19a. It is loosely fitted by having a caliber. Further, as shown in FIG. 3c, the elastic body 19 may be arranged so as to elastically connect between the column members 1A and the mounting members 22 and 23 provided to protrude outside the seismic isolation column 10, or As shown in FIG. 3d, the elastic body 19 may be arranged so as to elastically connect between the column member 1A and the mounting members 22 ′ and 23 ′ provided so as to protrude inside the seismic isolation column 10. In this case as well, the elastic body 19 is provided on the inner side of the fulcrum E formed by the end surfaces 6 and 7 and the contact surfaces 8 and 9.

図2a、図2b、図2cは、免震柱10について配置される弾性体19の配置方法の一例を示している。矩形形状を有する免震柱10の当接面8,9における幅方向(X軸方向)に延びる2つの辺24xには夫々4つの弾性体19を相互距離L1で配置し、奥行き方向(Y軸方向)に延びる2つの辺24yには弾性体19を備えていない場合を示している。   2a, 2b, and 2c show an example of an arrangement method of the elastic body 19 arranged for the seismic isolation column 10. FIG. Four elastic bodies 19 are arranged at a mutual distance L1 on two sides 24x extending in the width direction (X-axis direction) of the contact surfaces 8 and 9 of the seismic isolation column 10 having a rectangular shape, and the depth direction (Y-axis) The case where the elastic body 19 is not provided in the two sides 24y extending in the direction) is shown.

図2a、図2b、図2cに示すように、幅方向の辺24xと奥行き方向の辺24yに設ける弾性体19は、任意の数を選定して設置することができる。これにより、図1bに示すように、当接フランジ17の外周がストッパ部材13に当接して免震柱10が支点Eを中心に傾きを開始する際のトリガ荷重を、水平二軸方向X,Yに対して任意に設定することができる。前記弾性体19は同一の弾撥力を備えたもの用いて設置数を変えて配置してもよく、又、弾撥力が異なる弾性体19を配置してもよい。   As shown in FIGS. 2a, 2b, and 2c, an arbitrary number of elastic bodies 19 provided on the side 24x in the width direction and the side 24y in the depth direction can be selected and installed. As a result, as shown in FIG. 1B, the trigger load when the outer periphery of the contact flange 17 contacts the stopper member 13 and the seismic isolation column 10 starts to tilt around the fulcrum E is set to the horizontal biaxial directions X, Any value can be set for Y. The elastic bodies 19 having the same elastic force can be used by changing the number of installations, or elastic bodies 19 having different elastic forces can be provided.

図6a、図6b、図6cは、前記免震柱10が傾いた際の免震柱10と二つの柱部材1A,1Bとの間の変位を制限するようにした変位制限機構25を示している。尚、この各図では弾性体19の設置は省略している。図6aの変位制限機構25は、柱部材1Aのストッパ部材13から、更に免震柱10の上側までギャップGを有して延設した係止片26を設けた場合を示している。又、図6bの変位制限機構25は、柱部材1Aの押圧フランジ12と免震柱10の当接フランジ17との間をギャップGを有する長さの連結ボルト27で連結した場合を示している。又、図6cの変位制限機構25は、柱部材1Aの押圧フランジ12から、柱部材1Bの押圧フランジ12の上側に対してギャップGを有した長さで延びた係止部材28を設けた場合を示している。尚、前記変位制限機構25は、前記したようにストッパ部材13を兼用した形状としてもよく、又は、ストッパ部材13とは関係なく独立した構成のものを設けてもよい。   6a, 6b, and 6c show a displacement limiting mechanism 25 that limits the displacement between the base isolation column 10 and the two column members 1A and 1B when the base isolation column 10 is tilted. Yes. In each figure, the installation of the elastic body 19 is omitted. The displacement limiting mechanism 25 in FIG. 6A shows a case where a locking piece 26 extending from the stopper member 13 of the column member 1A to the upper side of the seismic isolation column 10 with a gap G is provided. 6b shows a case where the pressing flange 12 of the column member 1A and the contact flange 17 of the seismic isolation column 10 are connected by a connecting bolt 27 having a length having a gap G. . Further, the displacement limiting mechanism 25 in FIG. 6c is provided with a locking member 28 that extends from the pressing flange 12 of the column member 1A to the upper side of the pressing flange 12 of the column member 1B with a length having a gap G. Is shown. The displacement limiting mechanism 25 may have a shape that also serves as the stopper member 13 as described above, or may be provided with an independent configuration regardless of the stopper member 13.

上記実施例では次のように作動する。   The above embodiment operates as follows.

図1aは静止状態の時の柱1を示しており、上側の柱部材1Bに掛かる荷の荷重は、柱部材1Bの平坦な端面7と密着した免震柱10の平坦な当接面9、及び、免震柱10の平坦な当接面8と密着した柱部材1Aの平坦な端面6を介して下側の柱部材1Aに伝えられ、柱1は直線の状態に保持される。   FIG. 1a shows the column 1 in a stationary state, and the load applied to the upper column member 1B is a flat contact surface 9 of the seismic isolation column 10 in close contact with the flat end surface 7 of the column member 1B. And, it is transmitted to the lower column member 1A via the flat end surface 6 of the column member 1A in close contact with the flat contact surface 8 of the seismic isolation column 10, and the column 1 is held in a straight state.

又、図1aにおいて、地震の発生により柱1に水平方向の比較的小さい加速度S1の揺れが発生した場合にも、前記の柱1は直線の状態に保持される。即ち、柱部材1A,1Bの押圧フランジ12の平坦な端面6,7と、免震柱10の一端10aと他端10bの当接フランジ17の平坦な当接面8,9の密着による保持力によって柱1は直線の状態に保持される。このとき、平坦な端面6,7と平坦な当接面8,9の全面が荷重によって密着するため、密着による保持力大きく、免震柱10を傾かせるために必要なトリガ荷重は大きくなる。   Further, in FIG. 1a, even when a relatively small acceleration S1 in the horizontal direction is generated in the column 1 due to the occurrence of an earthquake, the column 1 is held in a straight state. That is, the holding force due to the close contact between the flat end surfaces 6 and 7 of the pressing flange 12 of the column members 1A and 1B and the flat contact surfaces 8 and 9 of the contact flange 17 at one end 10a and the other end 10b of the seismic isolation column 10. Thus, the pillar 1 is held in a straight state. At this time, since the flat end surfaces 6 and 7 and the flat contact surfaces 8 and 9 are in close contact with each other by the load, the holding force by the close contact is large, and the trigger load necessary to tilt the seismic isolation column 10 is large.

更に、平坦な端面6,7と平坦な当接面8,9は、弾性体19による引付けによって密着力が付加されているため、中小規模の地震により水平方向に比較的小さい加速度S1の揺れが発生しても、前記免震柱10の当接面8,9と柱部材1A,1Bの端面6,7は密着した状態を保持する。   Furthermore, since the flat end surfaces 6 and 7 and the flat contact surfaces 8 and 9 are attached to each other by the attraction by the elastic body 19, a relatively small acceleration S1 swings in the horizontal direction due to a small-scale earthquake. Even if this occurs, the contact surfaces 8 and 9 of the seismic isolation column 10 and the end surfaces 6 and 7 of the column members 1A and 1B are kept in close contact with each other.

一方、大規模地震の発生によって、図1bに示すように水平方向に大きな加速度S2の揺れが発生した場合には、柱部材1A,1Bは水平方向へ相対移動する状態となる。このとき、免震柱10の一端10a及び他端10bは、ストッパ部材13の内面と端面6,7のコーナ部に当接して移動することができないため、端面6,7と当接面8,9の密着によるトリガ荷重の範囲を超えた荷重が免震柱10に作用した場合には、図1bに示すように、免震柱10は当接面8,9の左右の端縁(辺)を支点Eとして傾きを開始する。このように免震柱10が傾くことによって、水平左右方向への大きな加速度S2の揺れは免震される。又、水平奥行き方向に大きな加速度S2の揺れが発生した場合にも、同様にして免震柱10が奥行き方向へ傾くことにより、水平奥行き方向の大きな加速度S2の揺れは免震される。このとき、当接面8,9の左右方向の幅B及び奥行き方向の奥行き長さを大きく形成すると、免震柱10は左右方向及び奥行き方向へ傾き難くなるので、大きなトリガ荷重を設定することができる。   On the other hand, when a large earthquake S2 occurs in the horizontal direction as shown in FIG. 1b due to the occurrence of a large-scale earthquake, the column members 1A and 1B are relatively moved in the horizontal direction. At this time, the one end 10a and the other end 10b of the seismic isolation column 10 cannot move while contacting the inner surface of the stopper member 13 and the corners of the end surfaces 6 and 7, and thus the end surfaces 6 and 7 and the contact surfaces 8 and When a load exceeding the trigger load range due to the close contact of 9 is applied to the seismic isolation column 10, the seismic isolation column 10 has left and right edges (sides) of the contact surfaces 8, 9 as shown in FIG. The tilt starts with fulcrum E as the fulcrum E. As the seismic isolation column 10 is tilted in this way, a large acceleration S2 in the horizontal and horizontal directions is isolated. Further, even when a large acceleration S2 shakes in the horizontal depth direction, the seismic isolation column 10 is similarly tilted in the depth direction so that the large acceleration S2 shake in the horizontal depth direction is isolated. At this time, if the width B in the left-right direction and the depth length in the depth direction of the contact surfaces 8 and 9 are formed large, the seismic isolation column 10 becomes difficult to tilt in the left-right direction and the depth direction, so a large trigger load should be set. Can do.

このように、簡単な構成の免震構造5を、図7a、図7bに示す立体倉庫100(構造物)の柱1に備えることにより、地震によって柱1に作用する荷重を、効果的に免震することができる。即ち、水平二軸方向X,Yのトリガ荷重を任意に設定したトリガ機構11を設けることにより、立体倉庫100の水平二軸方向X,Yに要求される免震特性を発揮して効果的に免震することができる。   In this way, by providing the seismic isolation structure 5 with a simple configuration in the column 1 of the three-dimensional warehouse 100 (structure) shown in FIGS. 7a and 7b, the load acting on the column 1 due to the earthquake can be effectively immunized. Can shake. That is, by providing the trigger mechanism 11 in which the trigger loads in the horizontal biaxial directions X and Y are arbitrarily set, the seismic isolation characteristics required for the horizontal biaxial directions X and Y of the three-dimensional warehouse 100 are effectively exhibited. It can be isolated.

図2a、図2b、図2cに示すように、免震柱10の幅方向の辺24xと奥行き方向の辺24yに弾性体19を配置した場合において、免震柱10を水平方向に変形させる際の水平剛性から、弾性体19の配置の違いにより水平二軸方向X,Yに与える免震特性の影響を考える。   As shown in FIGS. 2a, 2b, and 2c, when the elastic body 19 is disposed on the side 24x in the width direction and the side 24y in the depth direction of the base isolation column 10, the base isolation column 10 is deformed in the horizontal direction. From the horizontal rigidity of the horizontal axis, the influence of seismic isolation characteristics on the horizontal biaxial directions X and Y due to the difference in the arrangement of the elastic body 19 will be considered.

はじめに、図2a、図2b、図2cのように配置した弾性体19による免震柱10への水平剛性の寄与を考える。免震柱10に水平二軸方向の荷重が加わると、免震柱10は下端の支点E(図1b参照)を中心として傾斜しようとする。このとき、弾性体19は免震柱10の傾斜に抵抗するように働くため、傾斜しようとした免震柱10は垂直な状態に戻すように復元力が働く。   First, consider the contribution of horizontal rigidity to the seismic isolation column 10 by the elastic body 19 arranged as shown in FIGS. 2a, 2b, and 2c. When a load in the horizontal biaxial direction is applied to the seismic isolation column 10, the seismic isolation column 10 tends to incline around the lower end fulcrum E (see FIG. 1b). At this time, since the elastic body 19 works so as to resist the inclination of the seismic isolation column 10, the restoring force works so that the seismic isolation column 10 that is about to tilt returns to a vertical state.

免震柱10の高さをh、免震柱の幅をB、免震柱の奥行き長さをB'とし、図2dに示すように、免震柱10の上端部を、幅方向の辺24xと平行な軸方向Xに傾斜させるときの水平剛性khoXは、てこばねは長さの2乗に比例することから、式1に示すようになる。

Figure 0006107955
L1:弾性体の相互距離
L2:弾性体の設置範囲
ko:ばね定数The height of the seismic isolation column 10 is h, the width of the seismic isolation column is B, the depth length of the seismic isolation column is B ′, and as shown in FIG. The horizontal stiffness khoX when tilted in the axial direction X parallel to 24x is as shown in Equation 1 because the lever spring is proportional to the square of the length.
Figure 0006107955
L1: Mutual distance between elastic bodies L2: Installation range of elastic bodies ko: Spring constant

同様に、図2(d)に示すように、免震柱10の上端部を、奥行き方向の辺24yと平行な軸方向Yに傾斜させるときの水平剛性khoYは、式2に示すようになる。

Figure 0006107955
Similarly, as shown in FIG. 2D, the horizontal rigidity khoY when the upper end portion of the seismic isolation column 10 is inclined in the axial direction Y parallel to the side 24y in the depth direction is as shown in Equation 2. .
Figure 0006107955

ここで、L1=B/4、L2=B/2とすると、

Figure 0006107955
Figure 0006107955
となり、図2dに示す軸方向Xに対して、図2eに示す軸方向Yによると、水平剛性では1.73倍、固有周期では1.3倍の異なる免震特性をえることができる。勿論、上記は一例であり、弾性体19の配置によって水平二軸方向X,Yに任意の異なる免震特性を与えることができる。Here, if L1 = B / 4 and L2 = B / 2,
Figure 0006107955
Figure 0006107955
Thus, according to the axial direction Y shown in FIG. 2e with respect to the axial direction X shown in FIG. 2d, different seismic isolation characteristics of 1.73 times in the horizontal rigidity and 1.3 times in the natural period can be obtained. Of course, the above is an example, and the arrangement of the elastic body 19 can give any different seismic isolation characteristics in the horizontal biaxial directions X and Y.

従って、図7a、図7bに示す立体倉庫100では、免震構造5のトリガ荷重や固有周期が低くなる方向を、立体倉庫100の免震効果を高めたい方向に一致させて配置する。即ち、図2aの弾性体19を設置した幅方向の辺24xが延びる方向が、図7bの立体倉庫100における狭い幅Wの方向である軸方向Xに一致するように配置する。これにより、図7bの狭い幅Wの方向の免震効果を高めることができる。一方、小さい荷重では免震構造5を作動させたくない方向には、トリガ荷重が大きくなる図2aの奥行き方向の辺24yが延びる方向を一致させればよい。   Accordingly, in the three-dimensional warehouse 100 shown in FIGS. 7 a and 7 b, the direction in which the trigger load and the natural period of the seismic isolation structure 5 are lowered is aligned with the direction in which the three-dimensional warehouse 100 wants to enhance the seismic isolation effect. That is, the direction in which the side 24x in the width direction in which the elastic body 19 in FIG. 2a is installed extends is aligned with the axial direction X that is the direction of the narrow width W in the three-dimensional warehouse 100 in FIG. 7b. Thereby, the seismic isolation effect of the direction of the narrow width W of FIG. 7b can be heightened. On the other hand, the direction in which the side 24y in the depth direction in FIG. 2a in which the trigger load increases is aligned with the direction in which the seismic isolation structure 5 is not desired to be operated with a small load.

図2a、図2b、図2cに示すように、二つの柱部材1A,1Bと免震柱10との間で、幅方向の辺24xと奥行き方向の辺24yに異なる数の弾性体19を配置することにより、簡単な構成にて水平2軸方向X,Yにおけるトリガ荷重を容易に任意に設定することができる。   As shown in FIGS. 2a, 2b, and 2c, different numbers of elastic bodies 19 are arranged on the side 24x in the width direction and the side 24y in the depth direction between the two column members 1A and 1B and the seismic isolation column 10. By doing so, the trigger load in the horizontal biaxial directions X and Y can be easily and arbitrarily set with a simple configuration.

図1a、図1b、図4a、図4b、図4c、図4dに示すように、ストッパ部材13は、二つの柱部材1A,1Bから、免震柱10の一端10a及び他端10bを囲むように突出しているので、簡単な構成によって免震柱10が傾く際の支点Eを形成することができる。   As shown in FIGS. 1a, 1b, 4a, 4b, 4c, and 4d, the stopper member 13 surrounds one end 10a and the other end 10b of the seismic isolation column 10 from the two column members 1A and 1B. Therefore, the fulcrum E when the seismic isolation column 10 tilts can be formed with a simple configuration.

図1a、図1b、図2aに示すように、二つの前記柱部材1A,1Bの平坦な端面6,7の端縁又は免震柱10の平坦な当接面8,9の端縁によって支点Eを形成しているので、直線の支点Eによって、免震柱10が傾斜する際の大きな荷重を支持することができる。   As shown in FIGS. 1a, 1b, and 2a, the fulcrum is supported by the edges of the flat end surfaces 6 and 7 of the two column members 1A and 1B or the edges of the flat contact surfaces 8 and 9 of the seismic isolation column 10. Since E is formed, a large load when the seismic isolation column 10 is inclined can be supported by the straight fulcrum E.

図1a、図1b、図5a、図5bに示すように、前記弾性体19は、二つの柱部材1A,1Bの平坦な端面6、7及び前記免震柱10の平坦な当接面8,9によって形成される支点Eよりも内側(免震柱10の軸心側)に配置したので、トリガ機構11は柱1の外側へ大きく張り出さすことがなく、よって小型の免震構造5を達成することができる。   As shown in FIGS. 1 a, 1 b, 5 a, and 5 b, the elastic body 19 includes the flat end surfaces 6 and 7 of the two column members 1 </ b> A and 1 </ b> B and the flat contact surface 8 of the seismic isolation column 10, Since the trigger mechanism 11 does not overhang outside the column 1, the small seismic isolation structure 5 is formed. Can be achieved.

図5a、図5bに示すように、二つの柱部材1A,1Bと免震柱10との間に、互いに嵌合する凸状のストッパ部材20と凹状のストッパ部材21を設けると、簡単な構造で免震柱10が二つの柱部材1A,1Bに対して水平方向へ移動するのを防止できる。   As shown in FIGS. 5a and 5b, when a convex stopper member 20 and a concave stopper member 21 which are fitted to each other are provided between the two column members 1A and 1B and the seismic isolation column 10, a simple structure is obtained. Therefore, the seismic isolation column 10 can be prevented from moving in the horizontal direction with respect to the two column members 1A and 1B.

図6a、図6b、図6cに示すように、前記免震柱10の傾きによる免震柱10と二つの柱部材1A,1Bとの間の変位を制限する変位制限機構25を設けたので、簡単な構成の変位制限機構25により免震柱10の傾きを制限することができる。   As shown in FIGS. 6a, 6b, and 6c, since the displacement limiting mechanism 25 that limits the displacement between the base isolation column 10 and the two column members 1A and 1B due to the inclination of the base isolation column 10 is provided, The tilt of the base isolation column 10 can be limited by the displacement limiting mechanism 25 having a simple configuration.

水平二軸方向で異なる剛性強度を有する立体倉庫100において、弾性体19の配置によって免震構造5が有する水平二軸方向へのトリガ荷重の低い側を、立体倉庫100の免震効果を高めたい方向に一致させて柱1に配置するので、優れた免震効果を備えて、地震により立体倉庫100のラックから荷が落下する問題を低減できる。   In the three-dimensional warehouse 100 having different rigidity and strength in the horizontal biaxial direction, it is desired to enhance the seismic isolation effect of the three-dimensional warehouse 100 on the side where the trigger load in the horizontal biaxial direction of the seismic isolation structure 5 is provided by the elastic body 19. Since it arrange | positions to the pillar 1 according to a direction, it has the outstanding seismic isolation effect and can reduce the problem that a load falls from the rack of the three-dimensional warehouse 100 by an earthquake.

又、前記免震構造5は、立体倉庫100以外のボイラ鉄骨、立体パーキング、荷役設備等の種々の構造物の柱に適用することができる。   In addition, the seismic isolation structure 5 can be applied to pillars of various structures such as boiler steel frames other than the three-dimensional warehouse 100, three-dimensional parking, and cargo handling facilities.

尚、本発明は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, this invention is not limited to the above-mentioned Example, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

1 柱
1A 柱部材
1B 柱部材
5 免震構造
6 端面
7 端面
8 当接面
9 当接面
10 免震柱
10a 一端
10b 他端
11 トリガ機構
13 ストッパ部材
18 トリガ付加装置
19 弾性体
20 凸状のストッパ部材
21 凹状のストッパ部材
24x 幅方向の辺
24y 奥行き方向の辺
100 立体倉庫(構造物)
DESCRIPTION OF SYMBOLS 1 Column 1A Column member 1B Column member 5 Seismic isolation structure 6 End surface 7 End surface 8 Contact surface 9 Contact surface 10 Base isolation column 10a One end 10b The other end 11 Trigger mechanism 13 Stopper member 18 Trigger addition device 19 Elastic body 20 Convex shape Stopper member 21 Concave stopper member 24x Side in width direction 24y Side in depth direction 100 Three-dimensional warehouse (structure)

Claims (8)

平坦な端面が対向するように配置される柱を構成する二つの柱部材と、平坦な前記端面に対向する平坦な当接面を一端及び他端に有して二つの前記柱部材の間に配置される免震柱と、
二つの前記柱部材と前記免震柱との間に配置され、二つの前記柱部材が水平方向へ相対移動した際に、前記免震柱の一端及び他端が二つの前記柱部材に対して水平方向外側へ移動するのを防止するストッパ部材と、二つの前記柱部材の平坦な前記端面と前記免震柱の一端及び他端の平坦な前記当接面を密着させる弾性体を有して前記免震柱が前記ストッパ部材により支点を中心に傾きを開始するようにしたトリガ機構を備え、
前記弾性体は、前記免震柱の傾きが開始する際のトリガ荷重が水平二軸方向で異なるように配置した
ことを特徴とする構造物を構成する前記柱の免震構造。
Two pillar members constituting a pillar arranged so that the flat end faces face each other, and a flat abutting face facing the flat end face at one end and the other end, and between the two pillar members Seismic isolation columns,
When the two column members are moved relative to each other in the horizontal direction, one end and the other end of the seismic isolation column are in relation to the two column members. A stopper member for preventing movement to the outside in the horizontal direction, and an elastic body that closely contacts the flat end surfaces of the two column members and the flat contact surfaces of one end and the other end of the seismic isolation column. A trigger mechanism in which the base isolation column starts to tilt around a fulcrum by the stopper member;
The said seismic isolation structure of the said column which comprises the structure characterized by the said elastic body arrange | positioning so that the trigger load at the time of the inclination of the said seismic isolation column may differ in a horizontal biaxial direction.
二つの前記柱部材と前記免震柱の間における幅方向の辺と奥行き方向の辺に、異なる数の前記弾性体を配置したことを特徴とする請求項1に記載の構造物を構成する前記柱の免震構造。   2. The structure according to claim 1, wherein a different number of the elastic bodies are arranged on a side in a width direction and a side in a depth direction between the two column members and the base isolation column. Seismic isolation structure of the pillar. 前記ストッパ部材は、二つの前記柱部材と前記免震柱の一端及び他端との一方から突出して他方を囲むように形成されたことを特徴とする請求項1に記載の構造物を構成する前記柱の免震構造。   2. The structure according to claim 1, wherein the stopper member is formed so as to protrude from one of the two column members and one end and the other end of the seismic isolation column and surround the other. Seismic isolation structure of the column. 前記支点は、二つの前記部材の平坦な前記端面の端縁及び前記免震柱の平坦な前記当接面の端縁によって形成されたことを特徴とする請求項1に記載の構造物を構成する前記柱の免震構造。   2. The structure according to claim 1, wherein the fulcrum is formed by an edge of the flat end surface of two members and an edge of the flat contact surface of the seismic isolation column. Seismic isolation structure for the column. 前記弾性体は、二つの前記部材の平坦な前記端面又は前記免震柱の平坦な前記当接面によって形成される前記支点よりも内側に配置されることを特徴とする請求項1に記載の構造物を構成する前記柱の免震構造。   The said elastic body is arrange | positioned inside the said fulcrum formed by the flat said end surface of two said members, or the said flat contact surface of the said seismic isolation column of Claim 1 characterized by the above-mentioned. Seismic isolation structure of the pillar that constitutes the structure. 前記免震柱が傾いた際の前記免震柱の変位を制限する変位制限機構を設けたことを特徴とする請求項1に記載の構造物を構成する前記柱の免震構造。   The seismic isolation structure for the column constituting the structure according to claim 1, further comprising a displacement limiting mechanism that limits the displacement of the seismic isolation column when the seismic isolation column is tilted. 二つの前記柱部材の前記端面と前記免震柱の前記当接面の一方の中心に備えた凸状の前記ストッパ部材と、凸状の前記ストッパ部材と嵌合するように二つの前記柱部材の前記端面と前記免震柱の前記当接面の他方の中心に備えた凹状の前記ストッパ部材を有することを特徴とする請求項1に記載の構造物を構成する前記柱の免震構造。   The convex stopper member provided at the center of one of the end surfaces of the two column members and the abutment surface of the seismic isolation column, and the two column members so as to be fitted to the convex stopper member 2. The seismic isolation structure of the column constituting the structure according to claim 1, further comprising a concave stopper member provided at the other center of the end surface of the seismic isolation column and the contact surface of the seismic isolation column. 水平二軸方向で異なる免震効果が要求される構造物において、請求項1〜7のいずれか1つに記載の免震構造は、該免震構造に備えた前記弾性体によって生じる水平二軸方向へのトリガ荷重の低い側を、前記構造物の免震効果を高めたい方向に一致させて前記構造物の前記柱に配置することを特徴とする構造物。   In a structure requiring different seismic isolation effects in the horizontal biaxial directions, the seismic isolation structure according to any one of claims 1 to 7 is a horizontal biaxial generated by the elastic body provided in the seismic isolation structure. A structure in which a side having a low trigger load in a direction is arranged on the column of the structure so as to coincide with a direction in which the seismic isolation effect of the structure is desired to be enhanced.
JP2015532852A 2013-08-19 2014-08-18 Seismic isolation structure and structure of pillars constituting the structure Active JP6107955B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013169915 2013-08-19
JP2013169915 2013-08-19
PCT/JP2014/071580 WO2015025821A1 (en) 2013-08-19 2014-08-18 Seismic isolation structure of pillar configuring structure, and structure

Publications (2)

Publication Number Publication Date
JPWO2015025821A1 JPWO2015025821A1 (en) 2017-03-02
JP6107955B2 true JP6107955B2 (en) 2017-04-05

Family

ID=52483596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015532852A Active JP6107955B2 (en) 2013-08-19 2014-08-18 Seismic isolation structure and structure of pillars constituting the structure

Country Status (4)

Country Link
JP (1) JP6107955B2 (en)
CN (1) CN105452584B (en)
TW (1) TWI529112B (en)
WO (1) WO2015025821A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11828083B2 (en) 2017-02-16 2023-11-28 John Damian Allen Control structure with rotary force limiter and energy dissipater
WO2018150234A1 (en) * 2017-02-16 2018-08-23 Allen John Damian Force limiter and energy dissipater
GB202009430D0 (en) * 2020-06-19 2020-08-05 Ocado Innovation Ltd A grid framework structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676204B2 (en) * 1987-08-28 1997-11-12 哲夫 黒岩 Structural style and related equipment for seismic isolation
CN1080850C (en) * 1995-08-04 2002-03-13 奥依列斯工业株式会社 Vibration isolation device
JP3910278B2 (en) * 1997-08-19 2007-04-25 ジー アクソン マイケル Seismic shock dampening device for road columns
US6840017B1 (en) * 2000-10-24 2005-01-11 Oiles Corporation Vibration control structure
JP4759855B2 (en) * 2001-06-19 2011-08-31 株式会社Ihi Horizontal two-axis seismic isolation device for steel structures
JP3899354B2 (en) * 2004-10-08 2007-03-28 株式会社プロロジス Seismic isolation building
JP2011501049A (en) * 2007-10-26 2011-01-06 新日鉄エンジニアリング株式会社 Seismic isolation device for structure, construction method of the device, and seismic isolation member
JP5845707B2 (en) * 2011-08-12 2016-01-20 村田機械株式会社 Automatic warehouse rack equipment

Also Published As

Publication number Publication date
JPWO2015025821A1 (en) 2017-03-02
TW201529446A (en) 2015-08-01
CN105452584A (en) 2016-03-30
WO2015025821A1 (en) 2015-02-26
CN105452584B (en) 2017-07-04
TWI529112B (en) 2016-04-11

Similar Documents

Publication Publication Date Title
JP2015224482A (en) Seismically isolated structure
JP6107955B2 (en) Seismic isolation structure and structure of pillars constituting the structure
JP6168151B2 (en) Seismic isolation structure
JP2009214950A (en) Base isolated supporting structure of crane
JP5961057B2 (en) Seismic isolation structure, seismic isolation floor structure and clean room equipped with the same
JP4812463B2 (en) Base-isolated floor structure
JP6398281B2 (en) Seismic isolation structure
JP2007032046A (en) Fully movable shoe bridge and vibration isolation trigger device
JP6753072B2 (en) Seismic isolation device
JP4849230B2 (en) Load support device for load storage rack
JP6398269B2 (en) Seismic isolation structure
JP6716946B2 (en) Seismic isolation device
JP6303736B2 (en) Seismic isolation structure and seismic isolation device having the seismic isolation structure
JP6414271B2 (en) Seismic isolation structure for pillars constituting the structure
JP4971697B2 (en) Load bearing wall frame
JP2015205751A (en) seismic isolation structure
JP5925344B1 (en) Energy absorption type bearing
JP6232803B2 (en) Seismic isolation structure for pillars constituting the structure
JP2013230901A (en) Vibration control structure of rack
JP2015197016A (en) Base-isolation construction
JP6720596B2 (en) Seismic isolation device
JP2016079655A (en) Base isolation structure
JP2017154852A (en) Seismic isolator
JP6123546B2 (en) Seismic isolation structure for pillars constituting the structure
JP2015218468A (en) Quake-absorbing structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R151 Written notification of patent or utility model registration

Ref document number: 6107955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250