JP6716946B2 - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
JP6716946B2
JP6716946B2 JP2016031746A JP2016031746A JP6716946B2 JP 6716946 B2 JP6716946 B2 JP 6716946B2 JP 2016031746 A JP2016031746 A JP 2016031746A JP 2016031746 A JP2016031746 A JP 2016031746A JP 6716946 B2 JP6716946 B2 JP 6716946B2
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation column
column
inclination
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016031746A
Other languages
Japanese (ja)
Other versions
JP2017150178A (en
Inventor
浩祐 岩本
浩祐 岩本
佐藤 祐二
祐二 佐藤
晃祥 大豊
晃祥 大豊
松村 尚彦
尚彦 松村
元気 小寺
元気 小寺
翔平 大崎
翔平 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2016031746A priority Critical patent/JP6716946B2/en
Publication of JP2017150178A publication Critical patent/JP2017150178A/en
Application granted granted Critical
Publication of JP6716946B2 publication Critical patent/JP6716946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、立体倉庫、ボイラ鉄骨、立体パーキング、荷役設備等の構造物に適用して構造物の揺れを低減するための免震装置に関するものである。 The present invention relates to a seismic isolation device that is applied to a structure such as a three-dimensional warehouse, a boiler steel frame, a three-dimensional parking, a cargo handling facility, etc. to reduce the sway of the structure.

一般に、立体倉庫は、複数の鋼鉄製の柱と複数段の鋼鉄製の梁を用いて複数のラック(棚)を立体的に組み立てた構成を有している。大規模な地震が発生した場合には、立体倉庫が損壊する可能性があり、又、地震により立体倉庫のラックに格納された荷が落下して荷が損傷する可能性があることから、立体倉庫に免震装置を備えて地震に対処することが考えられている。 Generally, a three-dimensional warehouse has a configuration in which a plurality of racks (shelf) are three-dimensionally assembled by using a plurality of steel columns and a plurality of stages of steel beams. In the event of a large-scale earthquake, the three-dimensional warehouse may be damaged, and the earthquake may cause the load stored in the rack of the three-dimensional warehouse to drop and damage the load. It is considered that the warehouse will be equipped with seismic isolation devices to deal with the earthquake.

立体倉庫の柱の免震装置としては、立体倉庫を構成する複数の柱の各下端部と基礎との間に、積層ゴムからなる免震装置を備えたものがある(特許文献1)。因みに、特許文献1のように、多数の柱が設けられる立体倉庫の各柱の下端に積層ゴムによる免震装置を備えた場合には、基礎の増設が必要なことや積層ゴムが比較的高価であることから立体倉庫の設備コストが増加する問題があった。又、立体倉庫の柱を上下の途中位置で切断した構成として、上側の二本の柱の下端を水平な第1水平部材で連結し、上側の二本の柱に対応する下側の二本の柱の上端部を、前記第1水平部材と係合可能な水平な第2水平部材で連結することにより、前記第1水平部材と第2水平部材を長手方向へ低摩擦部材を介してスライド可能とし、前記第1水平部材と第2水平部材とを粘弾性体で接続したものがある(特許文献2)。 As a seismic isolation device for a pillar of a three-dimensional warehouse, there is one provided with a seismic isolation device made of laminated rubber between the lower ends of a plurality of pillars constituting the three-dimensional warehouse and the foundation (Patent Document 1). By the way, if a seismic isolation device using laminated rubber is provided at the lower end of each pillar of a three-dimensional warehouse in which a large number of pillars are provided as in Patent Document 1, it is necessary to add a foundation and the laminated rubber is relatively expensive. Therefore, there was a problem that the equipment cost of the three-dimensional warehouse increased. In addition, the pillar of the three-dimensional warehouse is cut in the middle of the upper and lower parts, the lower ends of the upper two pillars are connected by the horizontal first horizontal member, and the lower two pillars corresponding to the upper two pillars are connected. By connecting the upper end of the column with a horizontal second horizontal member engageable with the first horizontal member, the first horizontal member and the second horizontal member are slid in the longitudinal direction via a low friction member. In some cases, it is possible to connect the first horizontal member and the second horizontal member with a viscoelastic body (Patent Document 2).

特開2006−104883号公報JP, 2006-104883, A 特開2013−039989号公報JP, 2013-039989, A

しかしながら、特許文献2においては、前記第1水平部材と第2水平部材を設け、更に、前記第1水平部材と第2水平部材とを接続する粘弾性体を設ける必要があるために、構造が複雑となって立体倉庫の設備コストが増加する問題があった。 However, in Patent Document 2, since it is necessary to provide the first horizontal member and the second horizontal member, and further to provide a viscoelastic body that connects the first horizontal member and the second horizontal member, the structure is There was a problem that it became complicated and the equipment cost of the three-dimensional warehouse increased.

本発明は、上記従来の問題点に鑑みてなしたもので、簡単な構成で構造物に作用する揺れを免震できる免震装置を提供しようとするものである。 The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a seismic isolation device capable of isolating a sway acting on a structure with a simple configuration.

本発明は、上側部材と下側部材の間に傾斜自在に配設され且つ上下端部に張出部が形成された免震柱と、
該免震柱の上端部に形成された張出部が前記上側部材に対して水平方向へ移動しないように拘束する上側拘束部材と、
前記免震柱の下端部に形成された張出部が前記下側部材に対して水平方向へ移動しないように拘束する下側拘束部材と、
減衰要素とバネ要素の少なくとも一方の機能を有し、前記下側部材と免震柱との間或いは前記上側部材と免震柱との間に前記減衰要素またはバネ要素が位置するよう介装された連結体と
を備えた免震装置にかかるものである。
The present invention is a seismic isolation column that is tiltably disposed between an upper member and a lower member and has overhangs formed at upper and lower ends,
An upper restraint member that restrains an overhang formed at the upper end of the seismic isolation column so as not to move in the horizontal direction with respect to the upper member,
A lower restraint member that restrains the overhang formed at the lower end of the seismic isolation column so as not to move in the horizontal direction with respect to the lower member,
At least one of the functions of the damper element and the spring element, the damping element or spring element between the between the lower member and MenShinhashira or said upper member and MenShinhashira is interposed so as to be located The present invention relates to a seismic isolation device having a connecting body.

前記免震装置においては、前記免震柱の相互間を前記免震柱の長手方向と直交する方向へ延びて固定する固定連結材を備え、
前記免震柱と前記固定連結材とによって形成される面に直交する方向へは前記免震柱の傾斜が許容され、前記免震柱と前記固定連結材とによって形成される面に沿う方向へは前記免震柱の傾斜が阻止されるよう構成しても良い。
In the seismic isolation device, a fixed connecting member that extends and fixes a space between the seismic isolation columns in a direction orthogonal to a longitudinal direction of the seismic isolation column,
Inclination of the seismic isolation column is allowed in a direction orthogonal to a surface formed by the seismic isolation column and the fixed connecting member, and in a direction along a surface formed by the seismic isolation column and the fixed connecting member. May be configured such that the seismic isolation column is prevented from tilting.

この場合、前記免震柱の上端部に形成された張出部の上端面における傾斜が許容される方向の両幅端部には、中央側から幅端側へ向けて下り勾配となるテーパ面が形成され、前記免震柱の下端部に形成された張出部の下端面における傾斜が許容される方向の両幅端部には、中央側から幅端側へ向けて上り勾配となるテーパ面が形成されても良い。 In this case, a tapered surface having a downward slope from the center side to the width end side is provided at both width ends in the direction in which the inclination of the upper end surface of the overhang formed at the upper end of the seismic isolation column is allowed. Is formed, and both width end portions in the direction in which the inclination at the lower end surface of the overhanging portion formed at the lower end portion of the seismic isolation column is allowed have a taper that becomes an upward slope from the center side to the width end side. A surface may be formed.

前記免震装置において、前記連結体は、流体圧ダンパとしても良い。 In the seismic isolation device, the connecting body may be a fluid pressure damper.

前記免震装置において、前記連結体は、コイルバネとしても良い。 In the seismic isolation device, the connecting body may be a coil spring.

本発明の免震装置によれば、簡単な構成で構造物に作用する揺れを免震できるという優れた効果を奏し得る。 According to the seismic isolation device of the present invention, it is possible to obtain an excellent effect that the vibration acting on the structure can be isolated with a simple structure.

本発明の免震装置の実施例を示す正断面図である。It is a front sectional view showing an example of a seismic isolation device of the present invention. 本発明の免震装置の実施例を示す側断面図である。It is a sectional side view which shows the Example of the seismic isolation apparatus of this invention. 本発明の免震装置の実施例を示す平断面図であって、図1のIII−III断面図である。It is a plane sectional view which shows the Example of the seismic isolation apparatus of this invention, Comprising: It is a III-III sectional view of FIG. 本発明の免震装置の実施例における大規模な地震発生時の状態を示す正断面図である。It is a front sectional view showing a state at the time of a large-scale earthquake occurrence in an example of a seismic isolation device of the present invention. 本発明の免震装置の実施例において、連結体として流体圧ダンパの代わりにコイルバネを用いた例を示す正断面図である。FIG. 6 is a front cross-sectional view showing an example in which a coil spring is used as a connecting body instead of a fluid pressure damper in the embodiment of the seismic isolation apparatus of the present invention. (a)は本発明の免震装置を適用する構造物の一例である立体倉庫の正面図、(b)は側面図である。(A) is a front view of a three-dimensional warehouse which is an example of a structure to which the seismic isolation device of the present invention is applied, and (b) is a side view.

以下、本発明の実施の形態を添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1〜図6は本発明の免震装置の実施例である。 1 to 6 show an embodiment of the seismic isolation device of the present invention.

図6(a)及び図6(b)は本発明の免震装置を適用する構造物の一例である立体倉庫を示しており、構造物としての立体倉庫100は、複数の鋼鉄製の柱1と複数段の鋼鉄製の梁2を備えることにより複数のラック3(棚)が立体的に組み立てられた構成を有している。立体倉庫100は、スタッカクレーン4を挟むように立設され、該スタッカクレーン4の走行方向に沿って延びる長さを有しており、スタッカクレーン4の走行方向と直交する方向には、格納される荷の大きさに対応した、前記長さと比較して短い幅を有している。前記立体倉庫100を構成する複数の柱1は、ラック3に格納される荷の重量を支持するために高い強度を有している。 6(a) and 6(b) show a three-dimensional warehouse that is an example of a structure to which the seismic isolation device of the present invention is applied. The three-dimensional warehouse 100 as the structure is composed of a plurality of steel pillars 1 By having a plurality of stages of steel beams 2, a plurality of racks 3 (shelves) are three-dimensionally assembled. The three-dimensional warehouse 100 is erected so as to sandwich the stacker crane 4, has a length extending along the traveling direction of the stacker crane 4, and is stored in a direction orthogonal to the traveling direction of the stacker crane 4. It has a width that corresponds to the size of the load and is shorter than the length. The plurality of pillars 1 forming the three-dimensional warehouse 100 have high strength to support the weight of the load stored in the rack 3.

そして、図6の立体倉庫100を構成する複数の柱1に本発明の免震装置5を設ける。該免震装置5は、図6に示す如く、立体倉庫100に備えられる柱1の同一高さ位置に設けられる。前記免震装置5は、該免震装置5より上部の立体倉庫100全体がロッキングする挙動を発生させないために、上から1/3〜1/2程度の高さ位置に設置することが好ましい。このように、前記免震装置5を立体倉庫100の上部に設置しても、免震の効果により、免震装置5より上側の揺れが小さくなることで、結果的に免震装置5より下側の構造物の揺れも小さくなることが本発明者等の研究により判明している。 Then, the seismic isolation device 5 of the present invention is provided on the plurality of pillars 1 constituting the three-dimensional warehouse 100 of FIG. As shown in FIG. 6, the seismic isolation device 5 is provided at the same height position of the pillar 1 provided in the three-dimensional warehouse 100. The seismic isolation device 5 is preferably installed at a height position of about 1/3 to 1/2 from the top in order to prevent the locking behavior of the entire three-dimensional warehouse 100 above the seismic isolation device 5. Thus, even if the seismic isolation device 5 is installed above the three-dimensional warehouse 100, the seismic isolation effect reduces the vibration above the seismic isolation device 5, resulting in the seismic isolation device 5 being below the seismic isolation device 5. The inventors of the present invention have found that the sway of the structure on the side is also reduced.

本実施例の場合、前記免震装置5は、図1〜図4に示す如く、免震柱6と、上側拘束部材7と、下側拘束部材8と、連結体9とを備えている。 In the case of the present embodiment, the seismic isolation device 5 is provided with a seismic isolation column 6, an upper restraint member 7, a lower restraint member 8 and a connecting body 9, as shown in FIGS.

前記免震柱6は、上側部材としての水平フランジ1Aと下側部材としての水平フランジ1Bとの間に、前記上側拘束部材7と下側拘束部材8とを介して傾斜自在に配設されている。前記免震柱6の上下端部には、張出部としてのフランジ10及びフランジ11が形成されている。前記上側部材としての水平フランジ1Aは、免震柱6の上方に位置する柱1の下端部に設けられ、前記下側部材としての水平フランジ1Bは、免震柱6の下方に位置する柱1の上端部に設けられている。尚、前記柱1及び免震柱6は、水平断面が矩形形状を有する中空の角型鋼材であるが、該角型鋼材に限定されるものではなく、H型鋼材、I型鋼材、Z型鋼材、円筒型鋼材であっても良い。 The seismic isolation column 6 is disposed between the horizontal flange 1A as an upper member and the horizontal flange 1B as a lower member so as to be tiltable via the upper restraining member 7 and the lower restraining member 8. There is. Flange 10 and flange 11 are formed at the upper and lower ends of the seismic isolation column 6 as overhangs. The horizontal flange 1A as the upper member is provided at the lower end of the column 1 located above the seismic isolation column 6, and the horizontal flange 1B as the lower member is the column 1 located below the seismic isolation column 6. Is provided at the upper end of the. The column 1 and the seismic isolation column 6 are hollow square steel materials having a rectangular horizontal cross section, but are not limited to the square steel materials, and H-shaped steel materials, I-shaped steel materials, and Z-shaped steel materials. It may be steel or cylindrical steel.

前記上側拘束部材7は、前記免震柱6の上端部に形成された張出部としてのフランジ10が前記上側部材としての水平フランジ1Aに対して水平方向へ移動しないように拘束するためのものである。又、前記上側拘束部材7は、免震柱6の傾斜角度を制限するストッパ部7aを水平拘束部7bの下端に形成することにより、前記免震柱6が傾斜した際に該免震柱6が倒れずに自重で元の位置に復帰できる限界傾斜角度位置より傾斜角度が小さい位置で前記フランジ10を拘束するようにしてある。 The upper restraint member 7 restrains the flange 10 as an overhang formed at the upper end of the seismic isolation column 6 from horizontally moving relative to the horizontal flange 1A as the upper member. Is. Further, the upper restraint member 7 has a stopper portion 7a for limiting an inclination angle of the seismic isolation column 6 formed at a lower end of the horizontal restraint portion 7b, so that the seismic isolation column 6 is tilted when the seismic isolation column 6 is inclined. The flange 10 is constrained at a position where the tilt angle is smaller than the limit tilt angle position where it can return to its original position by its own weight without falling.

前記下側拘束部材8は、前記免震柱6の下端部に形成された張出部としてのフランジ11が前記下側部材としての水平フランジ1Bに対して水平方向へ移動しないように拘束するためのものである。又、前記下側拘束部材8は、免震柱6の傾斜角度を制限するストッパ部8aを水平拘束部8bの上端に形成することにより、前記免震柱6が傾斜した際に該免震柱6が倒れずに自重で元の位置に復帰できる限界傾斜角度位置より傾斜角度が小さい位置で前記フランジ11を拘束するようにしてある。 The lower restraint member 8 restrains the flange 11 as an overhang formed at the lower end of the seismic isolation column 6 so as not to move horizontally with respect to the horizontal flange 1B as the lower member. belongs to. Further, the lower restraining member 8 has a stopper portion 8a for limiting the inclination angle of the seismic isolation column 6 formed at the upper end of the horizontal constraining portion 8b, so that the seismic isolation column 6 is tilted. The flange 11 is constrained at a position where the tilt angle is smaller than the limit tilt angle position where 6 can return to the original position by its own weight without falling.

前記連結体9は、減衰要素の機能を有する油圧ダンパ等の流体圧ダンパ9aであって、前記水平フランジ1B,1B下面をつなぐように延びる下側部材としての梁2と免震柱6との間に介装されている。前記連結体9は、前記流体圧ダンパ9aの代わりに、図5に示す如く、バネ要素の機能を有するコイルバネ9bとしても良い。尚、前記連結体9として、図1に示す流体圧ダンパ9a及び図5に示すコイルバネ9bの両方を用いるようにしても良い。又、前記下側部材としての梁2の代わりに、前記水平フランジ1A,1A上面をつなぐように延びる上側部材としての梁2と免震柱6との間に、減衰要素とバネ要素の少なくとも一方の機能を有する連結体9を介装しても良い。 The connecting body 9 is a fluid pressure damper 9a such as a hydraulic damper having a function of a damping element, and includes a beam 2 as a lower member extending so as to connect the lower surfaces of the horizontal flanges 1B and 1B and a seismic isolation column 6. It is interposed between. Instead of the fluid pressure damper 9a, the connecting body 9 may be a coil spring 9b having a function of a spring element as shown in FIG. As the connecting body 9, both the fluid pressure damper 9a shown in FIG. 1 and the coil spring 9b shown in FIG. 5 may be used. Further, instead of the beam 2 as the lower member, at least one of a damping element and a spring element is provided between the beam 2 as an upper member extending so as to connect the upper surfaces of the horizontal flanges 1A and 1A and the seismic isolation column 6. You may interpose the coupling body 9 which has the function of.

前記免震柱6の相互間は、図2及び図3に示す如く、前記免震柱6の長手方向と直交する方向へ延びる固定連結材12によって固定し、前記免震柱6と前記固定連結材12とによって形成される面に直交する方向(立体倉庫100の幅方向)へは前記免震柱6の傾斜が許容され、前記免震柱6と前記固定連結材12とによって形成される面(立体倉庫100の奥行方向)に沿う方向へは前記免震柱6の傾斜が阻止されるよう構成してある。 As shown in FIG. 2 and FIG. 3, the seismic isolation columns 6 are fixed to each other by a fixed connecting member 12 extending in a direction orthogonal to the longitudinal direction of the seismic isolation columns 6, and the seismic isolation columns 6 and the fixed connection. Inclination of the seismic isolation column 6 is allowed in a direction (width direction of the three-dimensional warehouse 100) orthogonal to the surface formed by the material 12 and a surface formed by the seismic isolation column 6 and the fixed connecting member 12. The seismic isolation column 6 is prevented from tilting in the direction along the (depth direction of the three-dimensional warehouse 100).

前記免震柱6の上端部に形成された張出部としてのフランジ10の上端面における傾斜が許容される方向の両幅端部には、図1に示す如く、中央側から幅端側へ向けて下り勾配となるテーパ面10aが形成され、前記免震柱6の下端部に形成された張出部としてのフランジ11の下端面における傾斜が許容される方向の両幅端部には、中央側から幅端側へ向けて上り勾配となるテーパ面11aが形成されるようにしてある。 As shown in FIG. 1, from the center side to the width end side, both width ends in the direction in which the inclination of the upper end surface of the flange 10 as an overhang formed at the upper end of the seismic isolation column 6 is allowed. A tapered surface 10a having a downward slope is formed, and both width end portions in a direction in which the inclination at the lower end surface of the flange 11 as an overhanging portion formed at the lower end portion of the seismic isolation column 6 is allowed, The tapered surface 11a is formed so as to have an upward slope from the center side toward the width end side.

前記免震柱6のフランジ10及びフランジ11は、図3に示す如く、長辺と短辺を有する長方形とし、長辺を立体倉庫100の幅方向に沿わせ、短辺を立体倉庫100の奥行方向に沿わせるように配置してある。 As shown in FIG. 3, the flange 10 and the flange 11 of the seismic isolation column 6 are rectangles having long sides and short sides, the long sides are arranged along the width direction of the three-dimensional warehouse 100, and the short sides are the depth of the three-dimensional warehouse 100. It is arranged along the direction.

尚、本実施例の場合、前記免震柱6の上下端部に形成された張出部としてのフランジ10,11の上下端面における傾斜が許容される方向(前記長辺の方向)を立体倉庫100の幅方向と一致させ、前記免震柱6の上下端部に形成された張出部としてのフランジ10,11の上下端面における傾斜が阻止される方向(前記短辺の方向で且つ前記固定連結材12の延びる方向)を立体倉庫100の奥行方向と一致させるようにしてある。 In the case of the present embodiment, the three-dimensional warehouse is set in a direction in which the upper and lower end surfaces of the flanges 10 and 11 as the projecting portions formed on the upper and lower ends of the seismic isolation column 6 are allowed to tilt (the long side direction). The direction in which the inclination of the upper and lower end surfaces of the flanges 10 and 11 as protruding portions formed at the upper and lower ends of the seismic isolation column 6 is prevented (in the direction of the short side and the fixing The direction in which the connecting member 12 extends) is made to coincide with the depth direction of the three-dimensional warehouse 100.

次に、上記実施例の作用を説明する。 Next, the operation of the above embodiment will be described.

地震が発生していない平常時には、図1に示す如く、免震柱6は鉛直に保持され、該免震柱6の上側の柱1に掛かる荷重は、水平フランジ1A及び上側拘束部材7から、上下両端にフランジ10,11が設けられた免震柱6と、下側拘束部材8及び水平フランジ1Bとを介して下側の柱1に伝達される。但し、図1において、中小規模の地震の発生により柱1に水平方向の比較的小さい加速度の揺れが発生した場合にも、前記免震柱6は鉛直に保持される。 During normal times when an earthquake does not occur, the seismic isolation column 6 is held vertically as shown in FIG. 1, and the load applied to the column 1 above the seismic isolation column 6 is from the horizontal flange 1A and the upper restraining member 7. It is transmitted to the lower pillar 1 via the seismic isolation pillar 6 having the flanges 10 and 11 provided at the upper and lower ends and the lower restraining member 8 and the horizontal flange 1B. However, in FIG. 1, the seismic isolation column 6 is held vertically even when the column 1 sways in the horizontal direction with a relatively small acceleration due to a small-to-medium-scale earthquake.

即ち、柱1に掛る荷重によって、前記水平フランジ1A及び水平フランジ1Bに対し免震柱6のフランジ10,11は上側拘束部材7及び下側拘束部材8を介して圧着される。このとき、前記水平フランジ1A及び水平フランジ1Bには、免震柱6のフランジ10,11の外周を取り囲む上側拘束部材7及び下側拘束部材8が設けられているので、免震柱6が水平方向へ移動することは防止される。従って、中小規模の地震によって、水平方向に比較的小さい加速度の揺れが発生しても、免震柱6は鉛直に保持される。これは、水平方向の加速度により免震柱6を傾けようとするモーメントが、免震柱6によって支持されている鉛直方向の荷重により免震柱6を鉛直状態に保持しようとするモーメントを超えない限り、免震柱6は傾くことができないトリガ機能によるものである。 That is, due to the load applied to the column 1, the flanges 10 and 11 of the seismic isolation column 6 are pressed against the horizontal flange 1A and the horizontal flange 1B via the upper restraining member 7 and the lower restraining member 8. At this time, since the horizontal flange 1A and the horizontal flange 1B are provided with the upper restraint member 7 and the lower restraint member 8 surrounding the outer circumferences of the flanges 10 and 11 of the seismic isolation column 6, the seismic isolation column 6 is horizontal. Movement in the direction is prevented. Therefore, the seismic isolation column 6 is held vertically even if a shake of relatively small acceleration occurs in the horizontal direction due to a small-to-medium-scale earthquake. This is because the moment that tends to tilt the seismic isolation column 6 due to the acceleration in the horizontal direction does not exceed the moment that tends to hold the seismic isolation column 6 in the vertical state due to the vertical load supported by the seismic isolation column 6. As far as possible, the seismic isolation column 6 is based on a trigger function that cannot tilt.

一方、大規模な地震の発生によって、水平方向へ大きな加速度の揺れが発生した場合、上側の柱1が慣性によりその場にとどまろうとするのに対し、下側の柱1は水平方向へ相対移動した状態となる。このとき、免震柱6のフランジ11は、下側拘束部材8に当接して水平方向へ移動することができない。しかし、前記立体倉庫100の幅方向におけるフランジ11の下端面の両幅端部には、中央側から幅端側へ向けて上り勾配となるテーパ面11aが形成されている。このため、前記免震柱6のフランジ10,11にトリガ荷重の範囲を超えた負荷が作用した場合には、図4に示す如く、前記免震柱6は、フランジ11の下端面とテーパ面11aとの境界となる部分の辺と、フランジ10の上端面とテーパ面10aとの境界となる部分の辺とを支点として傾きを開始する。このように免震柱6が傾く免震の効果により、水平左右方向への大きな地震力の伝達が低減される。 On the other hand, when a large earthquake sways in the horizontal direction due to a large-scale earthquake, the upper pillar 1 tries to stay in place due to inertia, while the lower pillar 1 moves horizontally. It will be in the state of doing. At this time, the flange 11 of the seismic isolation column 6 is in contact with the lower restraint member 8 and cannot move in the horizontal direction. However, at both width ends of the lower end surface of the flange 11 in the width direction of the three-dimensional warehouse 100, tapered surfaces 11a having an upward slope from the center side to the width end side are formed. Therefore, when a load exceeding the trigger load range is applied to the flanges 10 and 11 of the seismic isolation column 6, the seismic isolation column 6 is provided with a lower end surface and a tapered surface of the flange 11 as shown in FIG. Inclination is started with a side of a portion serving as a boundary with 11a and a side of a portion serving as a boundary between the upper end surface of the flange 10 and the tapered surface 10a as fulcrums. Due to the effect of the seismic isolation in which the seismic isolation column 6 is tilted in this manner, transmission of a large seismic force in the horizontal direction is reduced.

ここで、前記上側拘束部材7の水平拘束部7b及び下側拘束部材8の水平拘束部8bには、ストッパ部7a及びストッパ部8aが形成されているため、前記免震柱6が過大に傾斜しようとしても、前記ストッパ部7a及びストッパ部8aにフランジ10,11が接触することにより、免震柱6が限界傾斜角度位置を超えて傾斜することが阻止される。この結果、免震柱6が倒れる心配はなく、元の位置に確実に復帰可能となる。 Here, since the stopper portion 7a and the stopper portion 8a are formed in the horizontal restraint portion 7b of the upper restraint member 7 and the horizontal restraint portion 8b of the lower restraint member 8, the seismic isolation column 6 is excessively inclined. Even if an attempt is made, the flanges 10 and 11 contact the stopper portion 7a and the stopper portion 8a, thereby preventing the seismic isolation column 6 from tilting beyond the limit tilt angle position. As a result, there is no concern that the seismic isolation column 6 will fall over, and it will be possible to reliably return to the original position.

しかも、前記水平フランジ1B,1B下面をつなぐように延びる下側部材としての梁2と免震柱6との間には、連結体9として流体圧ダンパ9aが介装されている。このため、大規模な地震発生時に、前記免震柱6の傾斜速度を低下させて該免震柱6の傾斜角を抑制することが可能となり、前記免震柱6が傾斜状態から直立状態に復元する際、フランジ10,11が上側拘束部材7及び下側拘束部材8に接触する荷重を低減することが可能となる。更に、前記免震柱6の傾斜角が抑制されることに伴い、ストッパ部7a及びストッパ部8aへのフランジ10,11の接触を低減することもできる。 Moreover, a fluid pressure damper 9a as a connecting body 9 is interposed between the beam 2 as a lower member extending so as to connect the lower surfaces of the horizontal flanges 1B and 1B and the seismic isolation column 6. Therefore, when a large-scale earthquake occurs, it becomes possible to reduce the inclination speed of the seismic isolation column 6 and suppress the inclination angle of the seismic isolation column 6, and the seismic isolation column 6 changes from the inclined state to the upright state. When restored, it is possible to reduce the load with which the flanges 10 and 11 contact the upper restraining member 7 and the lower restraining member 8. Further, since the inclination angle of the seismic isolation column 6 is suppressed, the contact of the flanges 10 and 11 with the stopper portion 7a and the stopper portion 8a can be reduced.

又、前記水平フランジ1B,1B下面をつなぐように延びる下側部材としての梁2と免震柱6との間には、図5に示す如く、連結体9として流体圧ダンパ9aの代わりにコイルバネ9bを介装することもできる。前記連結体9としてコイルバネ9bを用いても、大規模な地震発生時には、前記免震柱6の傾斜速度を低下させて該免震柱6の傾斜角を抑制することが可能となり、前記ストッパ部7a及びストッパ部8aへのフランジ10,11の接触を低減し且つ前記免震柱6を傾斜状態から積極的に直立状態に復元させることが可能となる。 Further, as shown in FIG. 5, a coil spring is used as a connecting body 9 instead of the fluid pressure damper 9a between the beam 2 as a lower member extending so as to connect the lower surfaces of the horizontal flanges 1B and 1B and the seismic isolation column 6. It is also possible to interpose 9b. Even if the coil spring 9b is used as the connecting body 9, when the large-scale earthquake occurs, the inclination speed of the seismic isolation column 6 can be reduced to suppress the inclination angle of the seismic isolation column 6, and the stopper portion can be provided. It is possible to reduce the contact of the flanges 10 and 11 with the 7a and the stopper portion 8a and positively restore the seismic isolation column 6 from the inclined state to the upright state.

一方、前記免震柱6の相互間は、図2及び図3に示す如く、前記免震柱6の長手方向と直交する方向へ延びる固定連結材12によって固定し、該固定連結材12の延びる方向を立体倉庫100の奥行方向と一致させているため、免震柱6が傾斜する方向を立体倉庫100の幅方向のみに限定することができ、免震柱6が振れ回るような挙動を阻止して動作を安定化させることができる。 On the other hand, as shown in FIGS. 2 and 3, the seismic isolation columns 6 are fixed to each other by fixed connecting members 12 extending in a direction orthogonal to the longitudinal direction of the seismic isolation columns 6, and the fixed connecting members 12 extend. Since the direction is aligned with the depth direction of the three-dimensional warehouse 100, the direction in which the seismic isolation column 6 tilts can be limited to only the width direction of the three-dimensional warehouse 100, and the seismic isolation column 6 is prevented from swinging around. The operation can be stabilized.

加えて、前記免震柱6の上下端部に形成された張出部としてのフランジ10,11の上下端面における傾斜が許容される方向の両幅端部には、図1に示す如く、中央側から幅端側へ向けてテーパ面10a,11aが形成されているため、免震柱6が傾斜する方向を立体倉庫100の幅方向のみに限定することをより的確に行えるようになり、免震挙動を更に安定化させることができる。 In addition, as shown in FIG. 1, at both width end portions in the direction in which the upper and lower end surfaces of the flanges 10 and 11 as protruding portions formed on the upper and lower end portions of the seismic isolation column 6 are allowed to have a center, as shown in FIG. Since the tapered surfaces 10a and 11a are formed from the side to the width end side, it is possible to more accurately limit the direction in which the seismic isolation column 6 is inclined only to the width direction of the three-dimensional warehouse 100. Seismic behavior can be further stabilized.

尚、前記立体倉庫100は、図6(a)からも明らかなように、スタッカクレーン4を挟んで幅が狭く且つ上方へ高く延びる形状となっており、大規模な地震発生時には、その幅方向において揺れが生じやすいが、立体倉庫100の奥行方向においては、図6(b)に示す如く、横に長く延びる形状となっており、揺れは幅方向と比較して生じにくい。このため、立体倉庫100の幅方向において免震柱6の傾斜を許容し、立体倉庫100の奥行方向において免震柱6の傾斜を阻止することにより、免震を行う方向を水平一軸方向へ限定することは有効となる。 As is clear from FIG. 6(a), the three-dimensional warehouse 100 has a narrow width across the stacker crane 4 and extends high upward, and when a large-scale earthquake occurs, its width direction is increased. In the depth direction of the three-dimensional warehouse 100, as shown in FIG. 6( b ), it has a shape that extends horizontally long, and the shaking is less likely to occur as compared with the width direction. Therefore, by allowing the seismic isolation column 6 to tilt in the width direction of the three-dimensional warehouse 100 and preventing the seismic isolation column 6 from tilting in the depth direction of the three-dimensional warehouse 100, the seismic isolation direction is limited to the horizontal uniaxial direction. It will be effective to do so.

又、前記免震装置5は、免震する構造物としての立体倉庫100の垂直方向に複数段配置するようにしても良い。このように配置すると、単段で免震する場合と比較し、より大きな揺れを吸収できる。 Further, the seismic isolation devices 5 may be arranged in a plurality of stages in the vertical direction of the three-dimensional warehouse 100 as a structure to be seismically isolated. By arranging in this way, it is possible to absorb a greater amount of shaking compared to the case where the seismic isolation is performed in a single step.

こうして、簡単な構成で構造物としての立体倉庫100に作用する揺れを免震でき且つ免震柱6の過大な傾斜を確実に防止し得る。 In this way, it is possible to isolate the sway acting on the three-dimensional warehouse 100 as a structure with a simple structure and surely prevent the seismic isolation column 6 from excessively tilting.

そして、本実施例においては、前記免震柱6の相互間を前記免震柱6の長手方向と直交する方向へ延びて固定する固定連結材12を備え、前記免震柱6と前記固定連結材12とによって形成される面に直交する方向へは前記免震柱6の傾斜が許容され、前記免震柱6と前記固定連結材12とによって形成される面に沿う方向へは前記免震柱6の傾斜が阻止されるよう構成してある。このように構成すると、免震柱6が傾斜する方向を特定の方向(例えば、立体倉庫100の幅方向)のみに限定することができ、免震柱6が振れ回るような挙動を阻止して動作を安定化させることができる。 In the present embodiment, the seismic isolation column 6 is provided with a fixed connecting member 12 that extends and fixes the seismic isolation column 6 in a direction orthogonal to the longitudinal direction of the seismic isolation column 6, and the seismic isolation column 6 and the fixed connection. The seismic isolation column 6 is allowed to tilt in a direction orthogonal to the surface formed by the material 12, and the seismic isolation is formed in a direction along the surface formed by the seismic isolation column 6 and the fixed connecting member 12. The pillar 6 is designed so as to be prevented from tilting. With this configuration, the direction in which the seismic isolation column 6 is inclined can be limited to a specific direction (for example, the width direction of the three-dimensional warehouse 100), and the seismic isolation column 6 is prevented from swinging around. The operation can be stabilized.

又、前記免震柱6の上端部に形成された張出部としてのフランジ10の上端面における傾斜が許容される方向の両幅端部には、中央側から幅端側へ向けて下り勾配となるテーパ面10aが形成され、前記免震柱6の下端部に形成された張出部としてのフランジ11の下端面における傾斜が許容される方向の両幅端部には、中央側から幅端側へ向けて上り勾配となるテーパ面11aが形成される。このように構成すると、免震柱6が傾斜する方向を特定の方向(例えば、立体倉庫100の幅方向)のみに限定することをより的確に行えるようになり、免震挙動を更に安定化させることができる。 Further, both width ends in the direction in which the upper end surface of the flange 10 as an overhanging portion formed on the upper end portion of the seismic isolation column 6 is allowed to incline, a downward slope from the center side toward the width end side. A tapered surface 10 a is formed, and both width end portions in the direction in which the inclination at the lower end surface of the flange 11 as an overhanging portion formed at the lower end portion of the seismic isolation column 6 is allowed have a width from the center side. A tapered surface 11a having an upward slope is formed toward the end side. With this configuration, it is possible to more accurately limit the direction in which the seismic isolation column 6 is inclined only to a specific direction (for example, the width direction of the three-dimensional warehouse 100), and further stabilize the seismic isolation behavior. be able to.

更に又、前記連結体9を、流体圧ダンパ9aとすると、大規模な地震発生時に、前記免震柱6の傾斜速度を低下させて該免震柱6の傾斜角を抑制することが可能となり、前記免震柱6が傾斜状態から直立状態に復元する際、フランジ10,11が上側拘束部材7及び下側拘束部材8に接触する荷重を低減することが可能となる。 Furthermore, if the connecting body 9 is a fluid pressure damper 9a, the inclination speed of the seismic isolation column 6 can be reduced and the inclination angle of the seismic isolation column 6 can be suppressed when a large-scale earthquake occurs. When the seismic isolation column 6 is restored from the inclined state to the upright state, it is possible to reduce the load with which the flanges 10 and 11 contact the upper restraining member 7 and the lower restraining member 8.

又、前記連結体9を、コイルバネ9bとすると、大規模な地震発生時には、前記免震柱6の傾斜速度を低下させて該免震柱6の傾斜角を抑制することが可能となり、前記上側拘束部材7及び下側拘束部材8へのフランジ10,11の接触を低減し且つ前記免震柱6を傾斜状態から積極的に直立状態に復元させることが可能となる。 Further, when the connecting body 9 is the coil spring 9b, when the large-scale earthquake occurs, the inclination speed of the seismic isolation column 6 can be reduced to suppress the inclination angle of the seismic isolation column 6, and the upper side of the seismic isolation column 6 can be suppressed. It is possible to reduce the contact of the flanges 10 and 11 with the restraint member 7 and the lower restraint member 8 and to positively restore the seismic isolation column 6 from the inclined state to the upright state.

尚、本発明の免震装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 The seismic isolation device of the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

1A 水平フランジ(上側部材)
1B 水平フランジ(下側部材)
2 梁(上側部材、下側部材)
5 免震装置
6 免震柱
7 上側拘束部材
8 下側拘束部材
9 連結体
9a 流体圧ダンパ
9b コイルバネ
10 フランジ(張出部)
10a テーパ面
11 フランジ(張出部)
11a テーパ面
12 固定連結材
1A Horizontal flange (upper member)
1B Horizontal flange (lower member)
2 beams (upper member, lower member)
5 Seismic Isolation Device 6 Seismic Isolation Column 7 Upper Restraint Member 8 Lower Restraint Member 9 Connected Body 9a Fluid Pressure Damper 9b Coil Spring 10 Flange (Overhang)
10a Tapered surface 11 Flange (overhang)
11a Tapered surface 12 Fixed connection material

Claims (6)

上側部材と下側部材の間に傾斜自在に配設され且つ上下端部に張出部が形成された免震柱と、
該免震柱の上端部に形成された張出部が前記上側部材に対して水平方向へ移動しないように拘束する上側拘束部材と、
前記免震柱の下端部に形成された張出部が前記下側部材に対して水平方向へ移動しないように拘束する下側拘束部材と、
減衰要素とバネ要素の少なくとも一方の機能を有し、前記下側部材と免震柱との間或いは前記上側部材と免震柱との間に前記減衰要素とバネ要素が位置するよう介装された連結体と
を備えた免震装置。
A seismic isolation column that is tiltably disposed between the upper member and the lower member and has overhangs formed at the upper and lower ends,
An upper restraint member that restrains an overhang formed at the upper end of the seismic isolation column so as not to move in the horizontal direction with respect to the upper member,
A lower restraint member that restrains the overhang formed at the lower end of the seismic isolation column so as not to move in the horizontal direction with respect to the lower member,
At least one of the functions of the damper element and the spring element, the damper element and the spring element between the between the lower member and MenShinhashira or said upper member and MenShinhashira is interposed so as to be located Seismic isolation device with a connecting body.
前記免震柱の相互間を前記免震柱の長手方向と直交する方向へ延びて固定する固定連結材を備え、
前記免震柱と前記固定連結材とによって形成される面に直交する方向へは前記免震柱の傾斜が許容され、前記免震柱と前記固定連結材とによって形成される面に沿う方向へは前記免震柱の傾斜が阻止されるよう構成した請求項1記載の免震装置。
A fixed connecting member that extends between and fixes the seismic isolation columns in a direction orthogonal to the longitudinal direction of the seismic isolation columns;
Inclination of the seismic isolation column is allowed in a direction orthogonal to a surface formed by the seismic isolation column and the fixed connecting member, and in a direction along a surface formed by the seismic isolation column and the fixed connecting member. The seismic isolation device according to claim 1, wherein the seismic isolation column is configured to prevent the inclination of the seismic isolation column.
前記免震柱の上端部に形成された張出部の上端面における傾斜が許容される方向の両幅端部には、中央側から幅端側へ向けて下り勾配となるテーパ面が形成され、前記免震柱の下端部に形成された張出部の下端面における傾斜が許容される方向の両幅端部には、中央側から幅端側へ向けて上り勾配となるテーパ面が形成される請求項2記載の免震装置。 A tapered surface is formed on both upper and lower ends of the projecting portion formed on the upper end of the seismic isolation column in a direction in which the inclination is allowed, in a downward slope from the center side toward the width end side. A taper surface that has an upward slope from the center side to the width end side is formed at both width end portions in the direction in which the inclination of the lower end surface of the overhang portion formed at the lower end portion of the seismic isolation column is allowed. The seismic isolation device according to claim 2. 前記連結体は、流体圧ダンパである請求項1〜3の何れか一項に記載の免震装置。 The seismic isolation device according to claim 1, wherein the connecting body is a fluid pressure damper. 前記連結体は、コイルバネである請求項1〜3の何れか一項に記載の免震装置。 The seismic isolation device according to claim 1, wherein the connecting body is a coil spring. 上側部材と下側部材の間に傾斜自在に配設され且つ上下端部に張出部が形成された免震柱と、 A seismic isolation column that is tiltably disposed between the upper member and the lower member and has overhangs formed at the upper and lower ends,
該免震柱の上端部に形成された張出部を前記上側部材に対して拘束する上側拘束部材と、 An upper restraint member that restrains an overhang formed on the upper end of the seismic isolation column with respect to the upper member,
前記免震柱の下端部に形成された張出部を前記下側部材に対して拘束する下側拘束部材と、 A lower restraint member that restrains the overhang formed at the lower end of the seismic isolation column with respect to the lower member,
減衰要素とバネ要素の少なくとも一方の機能を有し、前記下側部材と免震柱との間或いは前記上側部材と免震柱との間に前記減衰要素とバネ要素が位置するよう介装された連結体と It has at least one function of a damping element and a spring element, and is interposed so that the damping element and the spring element are located between the lower member and the seismic isolation column or between the upper member and the seismic isolation column. With connected body
を備えた免震装置。 Seismic isolation device.
JP2016031746A 2016-02-23 2016-02-23 Seismic isolation device Active JP6716946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016031746A JP6716946B2 (en) 2016-02-23 2016-02-23 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031746A JP6716946B2 (en) 2016-02-23 2016-02-23 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2017150178A JP2017150178A (en) 2017-08-31
JP6716946B2 true JP6716946B2 (en) 2020-07-01

Family

ID=59738744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031746A Active JP6716946B2 (en) 2016-02-23 2016-02-23 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP6716946B2 (en)

Also Published As

Publication number Publication date
JP2017150178A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP2015224482A (en) Seismically isolated structure
JP2014201385A (en) Vibration control structure of automatic rack warehouse
JP6168151B2 (en) Seismic isolation structure
JP6716946B2 (en) Seismic isolation device
JP6107955B2 (en) Seismic isolation structure and structure of pillars constituting the structure
JP6753072B2 (en) Seismic isolation device
JP6398281B2 (en) Seismic isolation structure
JP6662104B2 (en) Seismic isolation device
JP5825355B2 (en) Automatic warehouse rack equipment
JP6248454B2 (en) Automatic warehouse
JP6476717B2 (en) Rack equipment
JP6414271B2 (en) Seismic isolation structure for pillars constituting the structure
JP2015205751A (en) seismic isolation structure
JP6232803B2 (en) Seismic isolation structure for pillars constituting the structure
JP2013230901A (en) Vibration control structure of rack
JP6325949B2 (en) Steel structure vibration damping method and structure, and rack warehouse using the same
JP6123546B2 (en) Seismic isolation structure for pillars constituting the structure
JP6303736B2 (en) Seismic isolation structure and seismic isolation device having the seismic isolation structure
JP6720596B2 (en) Seismic isolation device
JP6398269B2 (en) Seismic isolation structure
JP2015197016A (en) Base-isolation construction
JP2015218468A (en) Quake-absorbing structure
JP6681305B2 (en) Vibration control stopper for rack and rack
JP4722027B2 (en) Goods storage shelf
JP2016079655A (en) Base isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R151 Written notification of patent or utility model registration

Ref document number: 6716946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151