JP6168151B2 - Seismic isolation structure - Google Patents

Seismic isolation structure Download PDF

Info

Publication number
JP6168151B2
JP6168151B2 JP2015532851A JP2015532851A JP6168151B2 JP 6168151 B2 JP6168151 B2 JP 6168151B2 JP 2015532851 A JP2015532851 A JP 2015532851A JP 2015532851 A JP2015532851 A JP 2015532851A JP 6168151 B2 JP6168151 B2 JP 6168151B2
Authority
JP
Japan
Prior art keywords
seismic isolation
column
members
contact
isolation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015532851A
Other languages
Japanese (ja)
Other versions
JPWO2015025820A1 (en
Inventor
浩祐 岩本
浩祐 岩本
佐藤 祐二
祐二 佐藤
晃祥 大豊
晃祥 大豊
松村 尚彦
尚彦 松村
元気 小寺
元気 小寺
翔平 大崎
翔平 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Publication of JPWO2015025820A1 publication Critical patent/JPWO2015025820A1/en
Application granted granted Critical
Publication of JP6168151B2 publication Critical patent/JP6168151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2207/00Indexing codes relating to constructional details, configuration and additional features of a handling device, e.g. Conveyors
    • B65G2207/20Earthquake protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Warehouses Or Storage Devices (AREA)

Description

本発明は、立体倉庫、ボイラ設備、立体駐車設備、荷役設備等の構造物に適用して構造物の揺れを低減するための免震構造に関するものである。   The present invention relates to a seismic isolation structure that is applied to a structure such as a three-dimensional warehouse, a boiler facility, a three-dimensional parking facility, and a cargo handling facility to reduce the shaking of the structure.

構造物の一例である立体倉庫は、複数の鋼鉄製の柱と複数段の鋼鉄製の梁を用いて複数のラック(棚)を立体的に組み立てた構成を有している。大規模地震が発生した場合には、立体倉庫が損壊することが考えられており、又、地震により立体倉庫のラックに格納された荷が落下して荷が損傷する可能性があることから、立体倉庫に免震構造を備えて地震に対する安全性を高めることが考えられている。   A three-dimensional warehouse, which is an example of a structure, has a configuration in which a plurality of racks (shelves) are three-dimensionally assembled using a plurality of steel pillars and a plurality of steel beams. When a large-scale earthquake occurs, it is considered that the three-dimensional warehouse will be damaged, and the load stored in the rack of the three-dimensional warehouse may fall due to the earthquake, and the load may be damaged. It is considered to increase the safety against earthquakes by installing a seismic isolation structure in a three-dimensional warehouse.

立体倉庫の免震構造としては、立体倉庫を構成する複数の各柱と基礎との間に、積層ゴムからなる免震構造を備えたものがある(特許文献1)。又、立体倉庫の柱を上下の途中位置で切断した構成として、二本の上部柱の下端同士を水平な第1水平部材で連結し、二本の上部柱に対応した二本の下部柱の上端同士を、前記第1水平部材と係合可能な水平な第2水平部材で連結し、前記第1水平部材と第2水平部材が長手方向へスライドできるようにし、更に、前記第1水平部材と第2水平部材との間を粘弾性体で接続したものがある(特許文献2)。   As a seismic isolation structure of a three-dimensional warehouse, there is one having a seismic isolation structure made of laminated rubber between a plurality of pillars and a foundation constituting the three-dimensional warehouse (Patent Document 1). In addition, as the structure in which the columns of the three-dimensional warehouse are cut at the upper and lower halfway positions, the lower ends of the two upper columns are connected by a horizontal first horizontal member, and the two lower columns corresponding to the two upper columns are connected. The upper ends are connected by a horizontal second horizontal member engageable with the first horizontal member so that the first horizontal member and the second horizontal member can slide in the longitudinal direction, and further, the first horizontal member And a second horizontal member are connected by a viscoelastic body (Patent Document 2).

特開2006−104883号公報JP 2006-104883 A 特開2013−039989号公報JP 2013-039989 A

しかし、特許文献1のように、多数の支持脚が備えられる立体倉庫の各支持脚の下端と基礎との間に積層ゴムによる免震構造を備えた場合には、積層ゴムが高価であることから、立体倉庫の設備コストが増加する問題がある。又、特許文献2においても、前記第1水平部材と第2水平部材を設け、更に、前記第1水平部材と第2水平部材とを接続する粘弾性体を設ける必要があるために、構造が複雑となって立体倉庫の設備コストが増加する問題がある。更に、特許文献2では、支持脚を免震する方向が前記第1水平部材と第2水平部材がスライドする方向である長手方向に限定されてしまい、このスライドの方向と直交する方向に対しては免震できないという問題がある。   However, as in Patent Document 1, when a base-isolated structure with laminated rubber is provided between the lower end and the foundation of each supporting leg of a three-dimensional warehouse provided with a large number of supporting legs, the laminated rubber is expensive. Therefore, there is a problem that the equipment cost of the three-dimensional warehouse increases. Also in Patent Document 2, since it is necessary to provide the first horizontal member and the second horizontal member, and further to provide a viscoelastic body for connecting the first horizontal member and the second horizontal member, the structure is There is a problem that the equipment cost of the three-dimensional warehouse increases due to the complexity. Further, in Patent Document 2, the direction in which the support legs are isolated is limited to the longitudinal direction, which is the direction in which the first horizontal member and the second horizontal member slide, and the direction perpendicular to the direction of the slide is limited. Has the problem that it cannot be isolated.

本発明は、上記従来の問題に鑑みてなしたもので、簡単な構成により構造物の柱に水平方向に作用する荷重を、効果的に免震できるようにした免震構造を提供するものである。   The present invention has been made in view of the above-described conventional problems, and provides a seismic isolation structure that can effectively isolate a load acting on a column of a structure in a horizontal direction with a simple configuration. is there.

本発明の免震構造は、平坦な端面が対向する二つの部材の間に配置され、平坦な前記端面に圧着される平坦な当接面を一端と他端に形成して前記当接面が前記端面に圧着した状態から傾斜が可能な免震柱を有し
二つの前記部材と前記免震柱の少なくとも一方に設けられて前記当接面と前記端面の少なくとも一方を水平方向から囲むように突出し、二つの前記部材が水平方向へ相対移動した際に前記免震柱が水平方向へ移動するのを防止し、前記端面と前記当接面が圧着した状態から前記免震柱が傾きを開始する支点を形成するようにしたストッパ部材有し、
二つの前記部材の平坦な前記端面及び該端面に圧着される前記免震柱の平坦な前記当接面と、前記支点を形成する前記ストッパ部材とによりトリガ機構を構成した
ことを特徴とする。
又、本発明の免震構造は、平坦な端面が対向する二つの部材の間に配置され、平坦な前記端面に圧着される平坦な当接面を一端と他端に形成して前記当接面が前記端面に圧着した状態から傾斜が可能な免震柱を有し、
二つの前記部材の前記端面と前記免震柱の前記当接面の少なくとも一方に設けた当接フランジと、二つの前記部材の前記端面と前記免震柱の前記当接面の他方に設けて前記当接フランジよりも外側へ突出した板状部材を有し、
前記当接フランジと前記板状部材の少なくとも一方の中心に設けた凸部と、前記当接フランジと前記板状部材の他方の中心に設けて前記凸部が嵌合する凹部を備えて、2つの前記部材が水平方向へ相対移動した際に前記免震柱が水平方向へ移動するのを防止するストッパ部材を有し、
前記当接フランジと前記板状部材が相互に圧着する前記端面及び前記当接面と、前記板状部材に圧着する前記当接フランジの外周によって形成される支点と、前記凸部及び前記凹部からなるストッパ部材とによりトリガ機構を構成した
ことを特徴とする。
In the seismic isolation structure of the present invention, a flat end surface is disposed between two opposing members, and a flat contact surface that is crimped to the flat end surface is formed at one end and the other end, and the contact surface is It has a seismic isolation column that can be tilted from the state of being crimped to the end face,
Provided on at least one of the two members and the seismic isolation column and projecting so as to surround at least one of the contact surface and the end surface from the horizontal direction, and when the two members move relative to each other in the horizontal direction, It has a stopper member that prevents the seismic column from moving in the horizontal direction, and forms a fulcrum at which the seismic isolation column starts tilting from the state where the end surface and the contact surface are crimped,
The trigger mechanism is configured by the flat end surfaces of the two members, the flat contact surfaces of the seismic isolation columns that are crimped to the end surfaces, and the stopper member that forms the fulcrum.
Further, the seismic isolation structure of the present invention is configured such that a flat end surface is disposed between two members facing each other, and a flat contact surface to be crimped to the flat end surface is formed at one end and the other end. Having a seismic isolation column capable of inclining from a state where the surface is crimped to the end face;
Contact flanges provided on at least one of the end surfaces of the two members and the contact surface of the seismic isolation column, and provided on the other of the end surfaces of the two members and the contact surface of the seismic isolation column A plate-like member protruding outward from the contact flange;
A convex portion provided at the center of at least one of the abutting flange and the plate-like member, and a concave portion provided at the other center of the abutting flange and the plate-like member and fitted with the convex portion. A stopper member for preventing the seismic isolation column from moving in the horizontal direction when the two members move in the horizontal direction;
From the end surface and the contact surface on which the contact flange and the plate-like member are pressure-bonded to each other, a fulcrum formed by the outer periphery of the contact flange to be pressure-bonded to the plate-like member, and the convex portion and the concave portion The trigger mechanism is composed of the stopper member
It is characterized by that.

前記免震構造において、二つの前記部材は柱部材とすることができる。   In the seismic isolation structure, the two members can be column members.

前記免震構造において、二つの前記部材は梁とすることができる。   In the seismic isolation structure, the two members can be beams.

前記免震構造において、前記支点は、前記ストッパ部材と、二つの前記部材の平坦な前記端面の端縁又は前記免震柱の平坦な前記当接面の端縁によって形成することができる。 In the seismic isolation structure, the fulcrum can be formed by the stopper member and the edge of the flat end surface of the two members or the edge of the flat contact surface of the seismic isolation column.

前記免震構造において、前記支点は、前記ストッパ部材の前記凸部と前記凹部が嵌合した状態で前記板状部材に圧着される当接フランジの外周によって形成することができる。 In the seismic isolation structure, the fulcrum can be formed by an outer periphery of a contact flange that is crimped to the plate-like member in a state where the convex portion and the concave portion of the stopper member are fitted.

前記免震構造において、前記ストッパ部材は、前記免震柱が自重で復帰できる傾斜角度に対応した位置で前記免震柱又は二つの前記部材に接する突出長さの突出部を備えて傾斜角制限部材を形成することができる。   In the seismic isolation structure, the stopper member includes a protruding portion having a protruding length in contact with the base isolation column or the two members at a position corresponding to an inclination angle at which the base isolation column can return by its own weight. A member can be formed.

前記免震構造において、前記トリガ機構は、二つの前記部材と前記免震柱を弾力的に連結して前記免震柱が傾きを開始するトリガ荷重を調節できる弾性体を有することができる。   In the seismic isolation structure, the trigger mechanism may include an elastic body that can elastically connect the two members and the seismic isolation column to adjust a trigger load at which the seismic isolation column starts to tilt.

前記免震構造において、二つの前記部材の平坦な前記端面と前記免震柱の平坦な前記当接面は、水平二軸方向における幅と奥行きの大きさが異なっていてもよい。   In the seismic isolation structure, the flat end surfaces of the two members and the flat contact surface of the seismic isolation column may be different in width and depth in the horizontal biaxial direction.

前記免震構造において、二つの前記部材と前記免震柱との間に形成する前記支点が、二つの前記部材及び前記免震柱の水平方向外側へ張り出した位置に設けられ、前記免震柱が傾きを開始するトリガ荷重を増加させることができる。   In the base isolation structure, the fulcrum formed between the two members and the base isolation column is provided at a position protruding outward in the horizontal direction of the two members and the base isolation column, and the base isolation column Can increase the trigger load to start tilting.

本発明の免震構造は、立体倉庫、ボイラ設備、立体駐車設備、荷役設備のような構造物に適用することができる。   The seismic isolation structure of the present invention can be applied to structures such as three-dimensional warehouses, boiler facilities, three-dimensional parking facilities, and cargo handling facilities.

本発明によれば、地震発生時に、免震柱が傾くことにより、簡単な構成で構造物に作用する荷重を効果的に免震できるという優れた効果を奏し得る。   ADVANTAGE OF THE INVENTION According to this invention, the seismic isolation column can incline at the time of an earthquake occurrence, and there can exist the outstanding effect that the load which acts on a structure with a simple structure can be effectively isolated.

本発明の実施例1の免震構造を示す正面図であり、二つの柱部材が静止した状態を示す図である。It is a front view which shows the seismic isolation structure of Example 1 of this invention, and is a figure which shows the state which two pillar members stopped. 二つの柱部材が相対移動した状態を示す図である。It is a figure showing the state where two pillar members moved relatively. トリガ機構の別の例を示す正面図である。It is a front view which shows another example of a trigger mechanism. トリガ機構の更に別の例を示す正面図である。It is a front view which shows another example of a trigger mechanism. 図1aをII方向から見た場合のトリガ機構の形状例を示す斜視図である。It is a perspective view which shows the example of a shape of the trigger mechanism at the time of seeing FIG. 1a from II direction. トリガ機構の別の形状例を示す斜視図である。It is a perspective view which shows another example of a shape of a trigger mechanism. トリガ機構の更に別の形状例を示す斜視図である。It is a perspective view which shows another example of a shape of a trigger mechanism. トリガ機構の更に又別の形状例を示す斜視図である。It is a perspective view which shows another example of a shape of a trigger mechanism. 免震柱の断面形状が正方形の例を示す説明図である。It is explanatory drawing which shows the example whose cross-sectional shape of a seismic isolation column is a square. 免震柱の断面形状が長方形の例を示す説明図である。It is explanatory drawing which shows the example whose cross-sectional shape of a seismic isolation column is a rectangle. 免震柱の断面形状が正八角形の例を示す説明図である。It is explanatory drawing which shows the example whose cross-sectional shape of a seismic isolation column is a regular octagon. 免震柱の断面形状が細長い八角形の例を示す説明図である。It is explanatory drawing which shows the example whose cross-sectional shape of a seismic isolation column is an elongate octagon. 本発明の実施例2の免震構造を示す正面図である。It is a front view which shows the seismic isolation structure of Example 2 of this invention. 図4aをIVB−IVB方向から見た平面図である。It is the top view which looked at FIG. 4a from the IVB-IVB direction. 本発明の実施例2である図4aの免震構造の変形例を示す正面図である。It is a front view which shows the modification of the seismic isolation structure of FIG. 4a which is Example 2 of this invention. 図5aをVB−VB方向から見た平面図である。It is the top view which looked at FIG. 5a from the VB-VB direction. 本発明の実施例3の免震構造を示す正面図である。It is a front view which shows the seismic isolation structure of Example 3 of this invention. 図6aの変形例を示す正面図である。It is a front view which shows the modification of FIG. 本発明の実施例4の免震構造を示す正面図である。It is a front view which shows the seismic isolation structure of Example 4 of this invention. 図7aの変形例を示す正面図である。It is a front view which shows the modification of FIG. 本発明の免震構造が適用される構造物の例を示し、更に、構造物の柱である二つの部材の間に免震構造を設けた場合の説明図である。It is explanatory drawing at the time of providing the example of the structure to which the seismic isolation structure of this invention is applied, and also providing the seismic isolation structure between the two members which are the pillars of a structure. 構造物の梁である二つの部材の間に免震構造を設けた場合の説明図である。It is explanatory drawing at the time of providing a seismic isolation structure between the two members which are the beams of a structure. 本発明の免震構造を適用した構造物の一例である立体倉庫の正面図である。It is a front view of the three-dimensional warehouse which is an example of the structure to which the seismic isolation structure of this invention is applied. 図9aの立体倉庫の側面図である。It is a side view of the three-dimensional warehouse of FIG. 9a. 免震構造を備えていない構造物の作用を説明するための説明図である。It is explanatory drawing for demonstrating the effect | action of the structure which is not provided with the seismic isolation structure. 一段の免震構造を備えた構造物の作用を説明するための説明図である。It is explanatory drawing for demonstrating the effect | action of the structure provided with the one-stage seismic isolation structure. 二段の免震構造を備えた構造物の作用を説明するための説明図である。It is explanatory drawing for demonstrating an effect | action of the structure provided with the two-stage seismic isolation structure.

以下、本発明の実施の形態を図示例と共に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図9a、図9bは、本発明の免震構造を適用する構造物の一例である立体倉庫100を示しており、この立体倉庫100は自動倉庫の場合を示している。立体倉庫100は複数の鋼鉄製の柱1と複数段の鋼鉄製の梁2を備えることにより複数のラック3(棚)を立体的に組み立てた構成を有している。立体倉庫100は、スタッカークレーン4を挟んで立設されており、立体倉庫100はスタッカークレーン4の走行方向に沿って延びた長さを有しており、スタッカークレーン4の走行方向と直交する方向には格納される荷の大きさに対応した狭い幅となっている。前記立体倉庫100を構成する複数の柱1は、ラック3に格納される荷の重量を支持するために高い強度を有している。   9a and 9b show a three-dimensional warehouse 100 as an example of a structure to which the seismic isolation structure of the present invention is applied, and this three-dimensional warehouse 100 shows a case of an automatic warehouse. The three-dimensional warehouse 100 has a configuration in which a plurality of racks 3 (shelves) are three-dimensionally assembled by including a plurality of steel pillars 1 and a plurality of steel beams 2. The three-dimensional warehouse 100 is erected with the stacker crane 4 interposed therebetween, and the three-dimensional warehouse 100 has a length extending along the traveling direction of the stacker crane 4 and is orthogonal to the traveling direction of the stacker crane 4. Has a narrow width corresponding to the size of the load to be stored. The plurality of pillars 1 constituting the three-dimensional warehouse 100 have high strength to support the weight of the load stored in the rack 3.

図9a、図9bに示す立体倉庫100を構成する複数の柱1の夫々に対して本発明の免震構造5を設ける。この免震構造5は、図9a、図9bに示すように、立体倉庫100に備えられる夫々の柱1の同一の高さ位置に設けられる。   The seismic isolation structure 5 of the present invention is provided for each of the plurality of pillars 1 constituting the three-dimensional warehouse 100 shown in FIGS. 9a and 9b. The seismic isolation structure 5 is provided at the same height position of each pillar 1 provided in the three-dimensional warehouse 100 as shown in FIGS. 9a and 9b.

前記免震構造5は、立体倉庫100のうち免震構造5よりも上側がロッキングする挙動を生じないようにするために、立体倉庫100の上側から1/3〜1/2程度の高さ位置に設置されている。このように、免震構造5を立体倉庫100の上部に設置しても、免震構造5によって、免震構造5よりも上側の揺れが小さくなることで、結果的に免震構造5よりも下側の構造物の揺れも小さくなることが本発明者の研究によって判明している。   The seismic isolation structure 5 has a height position of about 1/3 to 1/2 from the upper side of the three-dimensional warehouse 100 in order to prevent the upper side of the three-dimensional warehouse 100 from locking up. Is installed. Thus, even if the seismic isolation structure 5 is installed in the upper part of the three-dimensional warehouse 100, the seismic isolation structure 5 reduces the upper side of the seismic isolation structure 5, and as a result, the seismic isolation structure 5 does not. The inventor's research has revealed that the shaking of the lower structure is also reduced.

立体倉庫100を構成する柱1は、図1a、図1bに示す如く、上端に板状部材12を備えた下側の柱部材1A(第一の部材)と、下端に板状部材12'を備えた上側の柱部材1B(第二の部材)によって構成されており、二つの柱部材1A,1Bは対向する板状部材12,12'が水平且つ平坦な端面6,7を有している。二つの柱部材1A,1Bに備えた板状部材12,12'の間には、傾くことで立体倉庫100の柱1を免震する免震柱10が傾斜自在に配設される。この免震柱10の一端と他端には、前記平坦な端面6,7と対向して当接できる平坦な当接面8,9が形成されている。前記二つの柱部材1A,1B及び免震柱10は、水平断面が矩形形状を有する中空又は中実の角型鋼材である。尚、二つの柱部材1A,1B及び免震柱10は、角型鋼材に限定されるものではなく、H型鋼材、I型鋼材、Z型鋼材、円筒型鋼材であっても良い。   As shown in FIGS. 1a and 1b, the pillar 1 constituting the three-dimensional warehouse 100 includes a lower pillar member 1A (first member) having a plate-like member 12 at the upper end and a plate-like member 12 ′ at the lower end. The upper column member 1B (second member) is provided, and the two column members 1A and 1B have opposite flat plate members 12 and 12 'having horizontal and flat end surfaces 6 and 7, respectively. . Between the plate-like members 12 and 12 ′ provided in the two column members 1A and 1B, a seismic isolation column 10 for isolating the column 1 of the three-dimensional warehouse 100 by tilting is disposed so as to freely tilt. At the one end and the other end of the seismic isolation column 10, flat contact surfaces 8 and 9 that can contact the flat end surfaces 6 and 7 are formed. The two column members 1A and 1B and the seismic isolation column 10 are hollow or solid square steel having a rectangular horizontal cross section. The two column members 1A and 1B and the seismic isolation column 10 are not limited to square steel materials, but may be H-type steel materials, I-type steel materials, Z-type steel materials, and cylindrical steel materials.

前記免震柱10の一端10aの当接面8と、免震柱10の他端10bの当接面9は、二つの柱部材1A,1Bに備えた板状部材12,12'の端面6,7に当接することで、二つの柱部材1A,1Bと免震柱10は直線の状態に保持される。   The abutment surface 8 of the one end 10a of the seismic isolation column 10 and the abutment surface 9 of the other end 10b of the seismic isolation column 10 are the end surfaces 6 of the plate-like members 12 and 12 ′ provided in the two column members 1A and 1B. , 7, the two column members 1 </ b> A, 1 </ b> B and the seismic isolation column 10 are held in a straight line state.

前記板状部材12,12'と免震柱10との間には、前記免震柱10の水平方向の変位を拘束し且つ前記免震柱10が傾き始める際の支点Eを形成する係止機構(ストッパ部材)を備えることでトリガ機能を発揮するようにしたトリガ機構11を設ける。図1a、図1bに示すトリガ機構11は、二つの柱部材1A,1Bに有する平坦な端面6,7と、前記二つの柱部材1A,1Bの間に配置されて前記平坦な端面6,7に圧着される平坦な当接面8,9を有する免震柱10と、前記二つの柱部材1A,1Bから板状部材12,12'を介して免震柱10の一端10a及び他端10bである端部を水平方向から取り囲むように突出したストッパ部材13とにより構成されている。更に、図1a、図1bに示す前記ストッパ部材13は、前記板状部材12,12'から離反するに従って免震柱10から離反するクリアランス14を形成するように傾斜しており、前記クリアランス14によって免震柱10は支点Eを中心に傾くことができる。ここで、二つの柱部材1A,1Bの断面が矩形であることにより、前記支点Eは、免震柱10の平坦な当接面8,9における水平で直線に延びた端縁によって形成される。   Between the plate-like members 12, 12 ′ and the seismic isolation column 10 is a latch that restrains the horizontal displacement of the seismic isolation column 10 and forms a fulcrum E when the seismic isolation column 10 starts to tilt. A trigger mechanism 11 is provided that is provided with a mechanism (stopper member) so as to exhibit a trigger function. The trigger mechanism 11 shown in FIGS. 1a and 1b includes flat end surfaces 6 and 7 provided on two column members 1A and 1B, and the flat end surfaces 6 and 7 disposed between the two column members 1A and 1B. The base isolation column 10 having flat contact surfaces 8 and 9 to be crimped to each other, and the one end 10a and the other end 10b of the base isolation column 10 from the two column members 1A and 1B through the plate members 12 and 12 '. It is comprised by the stopper member 13 which protruded so that the edge part which might be may be enclosed from a horizontal direction. Further, the stopper member 13 shown in FIGS. 1 a and 1 b is inclined so as to form a clearance 14 that is separated from the seismic isolation column 10 as it is separated from the plate-like members 12 and 12 ′. The seismic isolation column 10 can tilt around the fulcrum E. Here, since the cross sections of the two column members 1A and 1B are rectangular, the fulcrum E is formed by the horizontal and straight edges of the flat contact surfaces 8 and 9 of the seismic isolation column 10. .

図1a、図1bの実施例では、二つの柱部材1A,1Bと、この二つの柱部材1A,1Bの間に配置された免震柱10と、二つの柱部材1A,1Bと免震柱10との間に設けられたトリガ機構11とによって前記免震構造5は構成されている。   In the embodiment of FIGS. 1a and 1b, two column members 1A and 1B, a seismic isolation column 10 disposed between the two column members 1A and 1B, two column members 1A and 1B, and a seismic isolation column. The base isolation structure 5 is configured by a trigger mechanism 11 provided between the base 10 and the trigger mechanism 11.

しかし、前記免震構造5に代えて、前記板状部材12,12'と、該板状部材12,12'の間に配置した免震構造5と、前記板状部材12,12'と免震構造5との間に設けられたトリガ機構11とによって、免震する構造物とは独立してユニット化した免震構造5とすることができる。このようにユニット化した免震構造5は、構造物の柱部材1A,1Bの途中、或いは、構造物を構成する梁2と梁2のような部材の間に組み込んで容易に配置することができる。   However, instead of the seismic isolation structure 5, the plate-like members 12, 12 ′, the seismic isolation structure 5 disposed between the plate-like members 12, 12 ′, and the plate-like members 12, 12 ′ By using the trigger mechanism 11 provided between the seismic structure 5 and the seismic isolation structure, the seismic isolation structure 5 can be provided as a unit. The unitized seismic isolation structure 5 can be easily arranged by being incorporated in the middle of the column members 1A and 1B of the structure or between members such as the beams 2 and 2 constituting the structure. it can.

そして、前記トリガ機構11によれば、二つの柱部材1A,1Bが水平方向へ相対移動した際には、ストッパ部材13の内面に免震柱10の端面6,7の端縁が当接することで、免震柱10は二つの柱部材1A,1Bに対して水平方向外側へ移動することが防止される。このため、前記ストッパ部材13の内面と免震柱10の端面6,7の端縁が支点Eとなって、免震柱10は傾きを開始するようになる。尚、前記免震柱10を傾斜させるために、図1a、図1bに示すように、ストッパ部材13の内面と免震柱10の外面との間に、板状部材12,12'から離反するに従って免震柱10から離反するクリアランス14を形成する代わりに、前記免震柱10とストッパ部材13との間に、免震柱10の外面と平行な所定のクリアランスを設けても良い。   According to the trigger mechanism 11, when the two column members 1 </ b> A and 1 </ b> B are relatively moved in the horizontal direction, the end edges of the end surfaces 6 and 7 of the seismic isolation column 10 come into contact with the inner surface of the stopper member 13. Thus, the seismic isolation column 10 is prevented from moving outward in the horizontal direction with respect to the two column members 1A and 1B. For this reason, the inner surface of the stopper member 13 and the end edges of the end surfaces 6 and 7 of the seismic isolation column 10 serve as fulcrums E, and the seismic isolation column 10 starts to tilt. In order to incline the seismic isolation column 10, as shown in FIGS. 1 a and 1 b, the plate-like members 12 and 12 ′ are separated from the inner surface of the stopper member 13 and the outer surface of the seismic isolation column 10. Therefore, instead of forming the clearance 14 that separates from the seismic isolation column 10, a predetermined clearance parallel to the outer surface of the seismic isolation column 10 may be provided between the seismic isolation column 10 and the stopper member 13.

図1c、図1dは、前記トリガ機構11の他の例を示したものである。前記トリガ機構11は、上下対称な形状を有して配置されるため、図1c、図dでは、免震柱10の下端と下側の柱部材1Aとの間に設けられるトリガ機構11のみを示している。図1cのトリガ機構11は、免震柱10の外面と平行なクリアランス14'を形成するように板状部材12から突出した突出部からなるストッパ部材13を形成しており、且つ、免震柱10の一端10a(下端)の外周には凸部26が突出している。従って、前記免震柱10は、凸部26がストッパ部材13に当接することによって水平方向への移動が防止され、且つ、免震柱10は凸部26を支点Eとして傾きを開始できるようになっている。前記凸部26は、柱部材1Aに設けた板状部材12の上面に近いにおけるストッパ部材13の内面に設けてもよい。又、前記凸部26は、免震柱10の周囲に複数個、間隔をおいて並べて設けてもよく、又、免震柱10の周囲に連続的に環状に設けてもよい。   FIGS. 1 c and 1 d show another example of the trigger mechanism 11. Since the trigger mechanism 11 is arranged to have a vertically symmetrical shape, only the trigger mechanism 11 provided between the lower end of the seismic isolation column 10 and the lower column member 1A is shown in FIGS. 1c and d. Show. The trigger mechanism 11 of FIG. 1c forms a stopper member 13 composed of a protruding portion protruding from the plate member 12 so as to form a clearance 14 ′ parallel to the outer surface of the base isolation column 10, and the base isolation column. A convex portion 26 protrudes from the outer periphery of one end 10a (lower end) of the ten. Accordingly, the seismic isolation column 10 is prevented from moving in the horizontal direction when the convex portion 26 abuts against the stopper member 13, and the seismic isolation column 10 can start to tilt with the convex portion 26 as a fulcrum E. It has become. The convex portion 26 may be provided on the inner surface of the stopper member 13 near the upper surface of the plate-like member 12 provided on the column member 1A. A plurality of the convex portions 26 may be provided around the seismic isolation column 10 at intervals, or may be provided continuously in an annular shape around the seismic isolation column 10.

又、図1dのトリガ機構11は、ストッパ部材13が免震柱10の外面と平行なクリアランス14'を形成するように設けられた場合において、柱部材1Bの一端に対して外側に突出する張出部10'(フランジ部)を設けている。従って、免震柱10は、前記張出部10'の外側の端部がストッパ部材13に当接することによって水平方向への移動が防止され、且つ、免震柱10は張出部10'の外側の端部を支点Eとして傾きを開始できるようになっている。尚、図1c、図1dでは、ストッパ部材13が免震柱10の外面と平行なクリアランス14'を形成するように設けられた場合について示したが、図1aに示すように、ストッパ部材13は免震柱10の長手方向中心側へ向かって間隔が開くように傾斜していてもよい。   Further, the trigger mechanism 11 of FIG. 1d is a tension member that protrudes outward with respect to one end of the column member 1B when the stopper member 13 is provided so as to form a clearance 14 ′ parallel to the outer surface of the seismic isolation column 10. A protruding portion 10 '(flange portion) is provided. Accordingly, the seismic isolation column 10 is prevented from moving in the horizontal direction by the outer end of the overhanging portion 10 ′ coming into contact with the stopper member 13, and the seismic isolation column 10 is supported by the overhanging portion 10 ′. The inclination can be started with the outer end as a fulcrum E. 1c and 1d show the case where the stopper member 13 is provided so as to form a clearance 14 'parallel to the outer surface of the seismic isolation column 10, but as shown in FIG. You may incline so that a space | interval may open toward the longitudinal direction center side of the seismic isolation column 10. FIG.

又、前記板状部材12,12'の端面6,7と免震柱10の当接面8,9との間には、薄いゴム材料等で形成されシート状弾性材28を介在させてもよい。   Further, a sheet-like elastic material 28 made of a thin rubber material or the like may be interposed between the end surfaces 6 and 7 of the plate-like members 12 and 12 'and the contact surfaces 8 and 9 of the seismic isolation column 10. Good.

図2a〜図2dは、二つの柱部材1A,1Bと免震柱10との間に設けた前記トリガ機構11を構成するストッパ部材13の形状例を示したものである。二つの柱部材1A,1Bに設けたトリガ機構11を構成するストッパ部材13は上下対称な形状を有しているため、図2a〜図2dでは下側の柱部材1Aの板状部材12に設けたストッパ部材13のみを示している。   2a to 2d show examples of the shape of the stopper member 13 constituting the trigger mechanism 11 provided between the two column members 1A and 1B and the seismic isolation column 10. FIG. Since the stopper member 13 constituting the trigger mechanism 11 provided on the two column members 1A and 1B has a vertically symmetrical shape, it is provided on the plate-like member 12 of the lower column member 1A in FIGS. Only the stopper member 13 is shown.

図2aは、図1aと同様に、前記免震柱10の一端10aの全外周を囲むように突出したストッパ部材13を設けた場合を示しており、図2bは、ストッパ部材13の変形例を示すもので、板状部材12の4つのコーナ部のみにストッパ部材13'を設けた場合を示しており、図2cは、板状部材12の4つの辺部のみにストッパ部材13''を設けた場合を示している。図2dは、板状部材12に対して免震柱10の一端10aの外周を囲むように、スタッド部材である突起15によるストッパ部材13を設けた場合を示している。   2a shows a case where a stopper member 13 protruding so as to surround the entire outer periphery of the one end 10a of the seismic isolation column 10 is provided as in FIG. 1a, and FIG. FIG. 2c shows the case where the stopper member 13 ′ is provided only on the four corner portions of the plate-like member 12, and FIG. 2c shows the case where the stopper member 13 ″ is provided only on the four side portions of the plate-like member 12. Shows the case. FIG. 2 d shows a case where the stopper member 13 by the protrusion 15 that is a stud member is provided so as to surround the outer periphery of the one end 10 a of the seismic isolation column 10 with respect to the plate-like member 12.

尚、図1a〜図1d、図2a〜図2dの実施例においては、トリガ機構11としてのストッパ部材13を、二つの柱部材1A,1Bに備えた場合について説明したが、前記ストッパ部材13は、免震柱10の一端10aと他端10bに設けるようにしてもよい。
<免震柱の幅と奥行きの設定について>
In the embodiments of FIGS. 1a to 1d and FIGS. 2a to 2d, the case where the stopper member 13 as the trigger mechanism 11 is provided in the two column members 1A and 1B has been described. The seismic isolation column 10 may be provided at one end 10a and the other end 10b.
<Setting the width and depth of the seismic isolation column>

免震構造5の柱1の幅または奥行きの大きさを増加すると、免震構造5のトリガ荷重の増加と免震構造5の剛性の増大に利用することができる。   Increasing the width or depth of the pillar 1 of the base isolation structure 5 can be used to increase the trigger load of the base isolation structure 5 and increase the rigidity of the base isolation structure 5.

図3a〜図3dは、前記免震柱10の断面形状を示したものであり、この免震柱10の断面形状は、端部10a,10bの当接面8,9の形状を表わしている。図3aは、免震柱10の断面形状が、水平二軸方向(X,Y)において幅B1と奥行きB2が同じ大きさである正方形の場合を示しており、図3bは、免震柱10の断面形状が水平二軸方向(X,Y)において、幅B1と奥行きB2の大きさが異なった長方形の場合を示している。又、前記免震柱10の断面形状は、図3aの正方形の四隅を切除した図3cに示す正八角形の形状を有していてもよく、或いは、図3bの長方形の四隅を切除した図3dに示す細長い八角形の形状を有していてもよい。又、前記免震柱10の断面形状は、上記の形状以外に六角形等の多角形とすることができ、又は、円形、或いは楕円形とすることもできる。   3a to 3d show the cross-sectional shape of the seismic isolation column 10, and the cross-sectional shape of the seismic isolation column 10 represents the shape of the contact surfaces 8 and 9 of the end portions 10a and 10b. . FIG. 3a shows a case where the cross-sectional shape of the seismic isolation column 10 is a square in which the width B1 and the depth B2 are the same in the horizontal biaxial direction (X, Y), and FIG. This shows a case in which the cross-sectional shape is a rectangle with different widths B1 and B2 in the horizontal biaxial direction (X, Y). Further, the cross-sectional shape of the seismic isolation column 10 may have a regular octagonal shape shown in FIG. 3c in which the four corners of the square in FIG. 3a are cut, or FIG. 3d in which the rectangular four corners in FIG. It may have an elongated octagonal shape as shown in FIG. The cross-sectional shape of the seismic isolation column 10 may be a polygon such as a hexagon other than the above shape, or may be a circle or an ellipse.

上記実施例では次のように作動する。   The above embodiment operates as follows.

図1aは静止状態の時の柱1を示しており、上側の柱部材1Bに掛かる荷の荷重は、柱部材1Bの平坦な端面7と免震柱10の平坦な当接面9、及び、免震柱10の平坦な当接面8と柱部材1Aの平坦な端面6を介して下側の柱部材1Aに伝えられ、柱1は直線の状態を保持している。   FIG. 1a shows the column 1 in a stationary state, and the load applied to the upper column member 1B includes the flat end surface 7 of the column member 1B, the flat contact surface 9 of the seismic isolation column 10, and It is transmitted to the lower column member 1A through the flat contact surface 8 of the seismic isolation column 10 and the flat end surface 6 of the column member 1A, and the column 1 maintains a straight state.

又、図1aにおいて、地震の発生により柱1に水平方向に比較的小さい加速度S1の揺れが発生した場合にも、前記の柱1は直線の状態を保持する。   Further, in FIG. 1a, even when a relatively small acceleration S1 is generated in the horizontal direction in the column 1 due to the occurrence of an earthquake, the column 1 maintains a straight state.

即ち、柱1に掛る荷重によって、前記柱部材1Bの端面7と免震柱10の当接面9は当接して圧着され、及び、免震柱10の当接面8と柱部材1Aの端面6は当接して圧着される。このとき、柱部材1A,1Bには、免震柱10の一端10aと他端10bの外周を取り囲むストッパ部材13が設けてあるので、免震柱10が水平方向外側へ移動することは防止される。従って、中小規模の地震によって、水平方向に比較的小さい加速度S1の揺れが発生しても、免震柱10の当接面8,9と柱部材1A,1Bの端面6,7が当接するトリガ機能によって免震柱10は傾くことができず、柱1は直線の状態に保持される。このとき、図3a〜図3dに示す免震柱10の当接面8,9と柱部材1A,1Bの端面6,7が当接する幅B1と奥行きB2の大きさを変更すると、免震柱10が傾きを開始するトリガ荷重の大きさを変えることができる。前記幅B1と奥行きB2の大きさを大きく設定すると、免震柱10が傾きを開始するトリガ荷重は大きくなる。   That is, the end surface 7 of the column member 1B and the abutment surface 9 of the seismic isolation column 10 are abutted and pressed by the load applied to the column 1, and the abutment surface 8 of the seismic isolation column 10 and the end surface of the column member 1A. 6 is abutted and pressed. At this time, since the column members 1A and 1B are provided with the stopper member 13 surrounding the outer periphery of the one end 10a and the other end 10b of the base isolation column 10, the base isolation column 10 is prevented from moving outward in the horizontal direction. The Therefore, even when a relatively small acceleration S1 is generated in the horizontal direction due to a small-scale earthquake, the trigger for the contact surfaces 8 and 9 of the seismic isolation column 10 and the end surfaces 6 and 7 of the column members 1A and 1B to contact each other. The seismic isolation column 10 cannot be inclined due to the function, and the column 1 is held in a straight state. At this time, if the size of the width B1 and the depth B2 at which the contact surfaces 8 and 9 of the seismic isolation column 10 and the end surfaces 6 and 7 of the column members 1A and 1B contact each other is changed as shown in FIGS. The trigger load magnitude at which 10 begins to tilt can be varied. When the width B1 and the depth B2 are set large, the trigger load at which the seismic isolation column 10 starts to tilt increases.

一方、大規模地震の発生によって、図1bに示すように水平左右方向に大きな加速度S2の揺れが発生した場合には、柱部材1A,1Bは水平方向へ相対移動した状態となる。このとき、免震柱10の一端10a及び他端10bは、当接面8,9の端縁がストッパ部材13の内面に当接して移動できないため、端面6,7と当接面8,9の当接によるトリガ荷重の範囲を超えた負荷が免震柱10に作用した場合には、図1bに示すように、免震柱10は当接面8,9の端縁を支点Eとして傾きを開始する。このように免震柱10が傾くことにより、水平左右方向への大きな加速度S2の揺れは免震される。又、水平奥行き方向に大きな加速度S2の揺れが発生した場合にも、同様にして免震柱10が奥行き方向へ傾くことにより、水平奥行き方向の大きな加速度S2の揺れは免震される。このとき、当接面8,9の左右方向の幅の大きさ及び奥行き方向の大きさを大きく設定すると、免震柱10は左右方向及び奥行き方向へ傾き難くなるので、大きなトリガ荷重を設定することができる。このように、簡単な構成の免震構造5を備えることによって、立体倉庫100(構造物)の柱1に作用する揺れを、水平二軸方向で効果的に免震することができる。   On the other hand, when a large earthquake S2 occurs in the horizontal horizontal direction as shown in FIG. 1b due to the occurrence of a large-scale earthquake, the column members 1A and 1B are relatively moved in the horizontal direction. At this time, the one end 10a and the other end 10b of the seismic isolation column 10 cannot move because the end edges of the contact surfaces 8 and 9 are in contact with the inner surface of the stopper member 13, so that the end surfaces 6 and 7 and the contact surfaces 8 and 9 are not moved. When a load exceeding the trigger load range due to the abutment is applied to the seismic isolation column 10, the seismic isolation column 10 is inclined with the edges of the abutment surfaces 8 and 9 as fulcrums E as shown in FIG. To start. As the seismic isolation column 10 is tilted in this way, a large acceleration S2 in the horizontal and horizontal directions is isolated. Further, even when a large acceleration S2 shakes in the horizontal depth direction, the seismic isolation column 10 is similarly tilted in the depth direction so that the large acceleration S2 shake in the horizontal depth direction is isolated. At this time, if the size of the width in the left-right direction and the size in the depth direction of the contact surfaces 8 and 9 are set large, the seismic isolation column 10 becomes difficult to tilt in the left-right direction and depth direction, so a large trigger load is set. be able to. Thus, by providing the seismic isolation structure 5 with a simple configuration, it is possible to effectively isolate the vibration acting on the pillar 1 of the three-dimensional warehouse 100 (structure) in the horizontal biaxial direction.

前記したように、地震によって傾いた免震柱10は、前記支点Eを中心に傾きを戻す力が作用するため、揺れが治まった状態では、二つの柱部材1A,1Bと免震柱10は図1aのように直線の状態に復元される。   As described above, since the seismic isolation column 10 tilted by the earthquake acts to return the tilt around the fulcrum E, the two column members 1A and 1B and the seismic isolation column 10 are It is restored to a straight state as shown in FIG.

図1a〜図1dに示すように、二つの柱部材1A,1Bに設けた板状部材12から免震柱10の一端10a及び他端10bを囲むように突出したストッパ部材13を設けて、免震柱10の水平方向への移動を防止し、且つ、支点Eにより免震柱10の傾きを開始させるようにしたトリガ機構11を備えたので、簡単な構成のトリガ機構11によって柱1を水平二軸方向で効果的に免震できるようになる。   As shown in FIGS. 1a to 1d, a stopper member 13 protruding from the plate-like member 12 provided on the two column members 1A and 1B so as to surround one end 10a and the other end 10b of the seismic isolation column 10 is provided. Since the trigger mechanism 11 that prevents the seismic column 10 from moving in the horizontal direction and starts the tilt of the seismic isolation column 10 by the fulcrum E is provided, the column 1 is horizontally placed by the trigger mechanism 11 having a simple configuration. It becomes possible to perform seismic isolation effectively in the biaxial direction.

例えば、立体倉庫100である自動倉庫に荷を格納する際に大きな揺れの荷重が加わる方向や隣接する構造物との距離が近く、中小規模程度の地震では免震構造5を作動させたくない方向に対しては、免震構造5を作動させたくない方向の大きさBを大きくすることで、免震構造5の免震柱10が傾き始めるトリガ荷重を大きく設定することができる。即ち、図3a、図3cに示すように、免震柱10の断面形状を、水平二軸方向(X,Y)の幅B1と奥行きB2の大きさBが同一である場合には、水平二軸方向(X,Y)で同一のトリガ荷重を設定することができる。又、図3b、図3dに示すように、免震柱10の断面形状を、水平二軸方向(X,Y)の幅B1と奥行きB2の大きさを異なった大きさとした場合には、水平二軸方向(X,Y)でのトリガ荷重を違えて設定することができる。   For example, when storing a load in an automatic warehouse that is a three-dimensional warehouse 100, a direction in which a large shaking load is applied or a distance from an adjacent structure is close, and a direction in which the seismic isolation structure 5 is not desired to be operated in a small-scale earthquake. On the other hand, the trigger load at which the seismic isolation column 10 of the base isolation structure 5 starts to tilt can be set large by increasing the size B in the direction in which the base isolation structure 5 is not desired to be operated. That is, as shown in FIGS. 3a and 3c, when the cross-sectional shape of the seismic isolation column 10 is the same when the width B1 in the horizontal biaxial direction (X, Y) and the size B in the depth B2 are the same. The same trigger load can be set in the axial direction (X, Y). As shown in FIGS. 3b and 3d, when the cross-sectional shape of the seismic isolation column 10 is set such that the width B1 and the depth B2 in the horizontal biaxial directions (X, Y) are different from each other, the horizontal shape is horizontal. The trigger load in the biaxial direction (X, Y) can be set differently.

上記実施例に示したトリガ機構11では、二つの柱部材1A,1Bと免震柱10は平坦な端面6,7と平坦な当接面8,9の当接によって直線に保持される。更に、二つの柱部材1A,1Bが水平方向へ相対移動した際には、前記免震柱10の一端10a及び他端10bが二つの柱部材1A,1Bに対して水平方向外側へ移動するのをストッパ部材13によって防止される。このため、免震柱10は支点Eを中心に傾くようになり、これによって、簡単な構成の免震構造5によって構造物を水平二軸方向で効果的に免震することができる。即ち、水平二軸方向(X,Y)と交叉する水平全方向に対する免震が可能になる。   In the trigger mechanism 11 shown in the above embodiment, the two column members 1A and 1B and the seismic isolation column 10 are held in a straight line by the contact between the flat end surfaces 6 and 7 and the flat contact surfaces 8 and 9. Furthermore, when the two column members 1A and 1B move relative to each other in the horizontal direction, the one end 10a and the other end 10b of the seismic isolation column 10 move outward in the horizontal direction with respect to the two column members 1A and 1B. Is prevented by the stopper member 13. For this reason, the seismic isolation column 10 comes to incline around the fulcrum E, whereby the structure can be effectively isolated in the horizontal biaxial direction by the seismic isolation structure 5 having a simple configuration. That is, seismic isolation is possible in all horizontal directions crossing the horizontal biaxial directions (X, Y).

ここで、前記板状部材12,12'の端面6,7と免震柱10の当接面8,9との間に、薄いゴム等で形成されるシート状弾性材28を設置すると、板状部材12,12'と免震柱10との衝撃的な接触荷重を抑制することができる。前記シート状弾性材28は、ゴム材料の代わりに発泡材料を利用することもできる。この場合、ゴム材料に比べて復元力は小さくなるが、接触荷重の抑制効果を高めることが期待できる。   Here, when a sheet-like elastic material 28 formed of thin rubber or the like is installed between the end faces 6 and 7 of the plate-like members 12 and 12 ′ and the contact surfaces 8 and 9 of the seismic isolation column 10, The impact contact load between the shaped members 12, 12 ′ and the seismic isolation column 10 can be suppressed. The sheet-like elastic material 28 can use a foam material instead of a rubber material. In this case, the restoring force is smaller than that of the rubber material, but it can be expected to increase the effect of suppressing the contact load.

図4a、図4bは本発明の実施例2の免震構造を示す。図4a、図4bに示すトリガ機構11は、免震柱10の一端10a及び他端10bに外側へ向けて突出した張出部27(フランジ部)と、板状部材12,12'に突設されて前記張出部27の外周をクリアランスを有して囲む所要長さのストッパ部材13とにより構成している。図4a、図4bのストッパ部材13は断面矩形の筒形を有している。23は補強ブラケットである。又、前記ストッパ部材13は、前記免震柱10が自重で復帰できる傾斜角度に対応した位置で前記免震柱10に接する突出長さJを有することにより傾斜角制限部材24を構成している。   4a and 4b show a seismic isolation structure according to Embodiment 2 of the present invention. The trigger mechanism 11 shown in FIGS. 4a and 4b is provided on a projecting portion 27 (flange portion) projecting outward from one end 10a and the other end 10b of the seismic isolation column 10 and the plate-like members 12 and 12 ′. The stopper member 13 having a required length surrounds the outer periphery of the protruding portion 27 with a clearance. The stopper member 13 shown in FIGS. 4a and 4b has a cylindrical shape with a rectangular cross section. Reference numeral 23 denotes a reinforcing bracket. The stopper member 13 forms a tilt angle limiting member 24 by having a protruding length J that contacts the seismic isolation column 10 at a position corresponding to the tilt angle at which the seismic isolation column 10 can return with its own weight. .

図5a、図5bは実施例2の図4a、図4bの変形例である免震構造を示す。図5a、図5bに示すトリガ機構11は、板状部材12,12'と、該板状部材12,12'に固定されて前記免震柱10の一端10a及び他端10bに設けたフランジ状の張出部27の外周を囲むように突出した所要長さのストッパ部材13とにより構成されている。図5a、図5bのストッパ部材13は、断面がU字形の鋼材からなっていて、張出部27を前後、左右から挟むように対称に配置されている。このストッパ部材13は、そのウェブ面が、板状部材12,12'に対する固定部分では前記張出部27に接近しており、板状部材12,12'から離反することにより免震柱10との間隔が増加するように傾斜した傾斜面25を形成している。又、前記ストッパ部材13は、前記免震柱10が自重で復帰できる傾斜角度に対応した位置で前記免震柱10に接する突出長さJを有することにより傾斜角制限部材24を構成している。   5a and 5b show a seismic isolation structure which is a modification of FIG. 4a and FIG. 4b of the second embodiment. The trigger mechanism 11 shown in FIGS. 5a and 5b has a plate-like member 12, 12 ′ and a flange-like shape fixed to the plate-like member 12, 12 ′ and provided at one end 10a and the other end 10b of the seismic isolation column 10. And a stopper member 13 having a required length protruding so as to surround the outer periphery of the overhanging portion 27. The stopper member 13 shown in FIGS. 5a and 5b is made of a steel material having a U-shaped cross section, and is arranged symmetrically so as to sandwich the protruding portion 27 from the front and rear and from the left and right. The stopper member 13 has a web surface that is close to the overhanging portion 27 at a fixed portion with respect to the plate-like members 12 and 12 ′. An inclined surface 25 is formed so as to increase the interval of. The stopper member 13 forms a tilt angle limiting member 24 by having a protruding length J that contacts the seismic isolation column 10 at a position corresponding to the tilt angle at which the seismic isolation column 10 can return with its own weight. .

図4a、図4b、図5a、図5bの実施例によれば、前記ストッパ部材13により突出長さJを有する傾斜角制限部材24を構成したので、該傾斜角制限部材24によって前記免震柱10が自重で復帰できる傾斜角度以上に傾くことを制限することができる。   4a, 4b, 5a, and 5b, since the tilt angle limiting member 24 having the protruding length J is constituted by the stopper member 13, the seismic isolation column is formed by the tilt angle limiting member 24. It can restrict | limit that 10 inclines more than the inclination angle which can return with dead weight.

図4a、図4b、図5a、図5bに示す第2の実施例においても、板状部材12,12'と、該板状部材12,12'に備えたストッパ部材13と、免震柱10とからなるトリガ機構11を備えた免震構造5は、免震する構造物とは独立してユニット化することができ、このユニット化した免震構造5は構造物の柱部材1A,1Bや梁2などに容易に組み込んで配置することができる。   Also in the second embodiment shown in FIGS. 4a, 4b, 5a and 5b, the plate-like members 12, 12 ′, the stopper member 13 provided on the plate-like members 12, 12 ′, and the seismic isolation column 10 are provided. The seismic isolation structure 5 including the trigger mechanism 11 can be unitized independently from the structure to be seismically isolated, and the unitized seismic isolation structure 5 includes the column members 1A and 1B of the structure, It can be easily assembled and arranged in the beam 2 or the like.

図6a、図6bは、立体倉庫100を構成する柱1に備える免震構造5の別の実施例を示している。図6a、図6bに示す免震構造5は、二つの柱部材1A,1Bの端面6,7と免震柱10の当接面8,9の一方の中心に備えた凸部20と、前記凸部20と嵌合するように二つの柱部材1A,1Bの端面6,7と免震柱10の当接面8,9の他方の中心に備えた凹部21とからなるストッパ部材13を備えたトリガ機構11を構成している。図6aでは、免震柱10の当接フランジ17に凸部20が設けられ、該凸部20は、角パイプからなる柱部材1A,1Bによって形成された凹部21に嵌合している。前記凸部20及び凹部21は、截頭角錐形状或いは、截頭円錐形状とすることができる。一方、図6bでは、柱部材1A,1Bの板状部材12,12'に凸部20を設け、免震柱10に凹部21を設けた場合を示している。そして、図6a、図6bの実施例では、前記トリガ機構11の凸部20と凹部21が調芯機構を兼ねた構成となっている。   6a and 6b show another embodiment of the seismic isolation structure 5 provided in the pillar 1 constituting the three-dimensional warehouse 100. FIG. The seismic isolation structure 5 shown in FIGS. 6a and 6b includes a convex portion 20 provided at the center of one of the end surfaces 6 and 7 of the two column members 1A and 1B and the contact surfaces 8 and 9 of the seismic isolation column 10; A stopper member 13 is provided that includes end surfaces 6 and 7 of the two column members 1A and 1B and a recess 21 provided at the other center of the contact surfaces 8 and 9 of the seismic isolation column 10 so as to be fitted to the convex portion 20. The trigger mechanism 11 is configured. In FIG. 6a, a convex portion 20 is provided on the contact flange 17 of the seismic isolation column 10, and the convex portion 20 is fitted in a concave portion 21 formed by column members 1A and 1B made of square pipes. The convex portion 20 and the concave portion 21 may have a truncated pyramid shape or a truncated cone shape. On the other hand, in FIG. 6b, the case where the convex part 20 is provided in the plate-like members 12 and 12 'of the column members 1A and 1B and the concave part 21 is provided in the seismic isolation column 10 is shown. In the embodiment shown in FIGS. 6a and 6b, the convex portion 20 and the concave portion 21 of the trigger mechanism 11 also serve as an alignment mechanism.

又、図6a、図6bの実施例では、柱部材1A,1Bの板状部材12,12'が免震柱10の当接フランジ17に対して外側へ突出した形状を有しており、これによって、柱部材1A,1Bの板状部材12,12'の周囲によって免震柱10の傾きが開始される支点Eを形成している。尚、図6a、図6bでは、当接フランジ17よりも板状部材12,12'が外側に突出して、当接フランジ17の外周によって支点Eを形成した場合を示したが、板状部材12,12'よりも当接フランジ17が外側に突出して、板状部材12,12'の外周によって支点Eを形成するようにしてもよい。   In the embodiment of FIGS. 6a and 6b, the plate members 12 and 12 ′ of the column members 1A and 1B have a shape protruding outward with respect to the contact flange 17 of the seismic isolation column 10. Thus, a fulcrum E where the seismic isolation column 10 starts to tilt is formed around the plate-like members 12 and 12 ′ of the column members 1A and 1B. 6A and 6B show the case where the plate-like members 12 and 12 ′ protrude outward from the contact flange 17 and the fulcrum E is formed by the outer periphery of the contact flange 17. , 12 ′, the contact flange 17 may protrude outward, and the fulcrum E may be formed by the outer periphery of the plate-like members 12, 12 ′.

図6a、図6bの実施例によると、柱部材1A,1Bが水平方向に相対移動する際に、二つの柱部材1A,1Bと免震柱10との間に設けられて嵌合する凸部20と凹部21からなるストッパ部材13により、免震柱10が水平方向外側へ移動するのを防止する。又、大規模地震によって二つの柱部材1A,1Bを相対移動させる大きな揺れが作用したときには、凸部20と凹部21が案内となって、免震柱10は当接フランジ17による支点Eを中心に傾きを開始してトリガ機能を生じ、これにより柱1に作用する揺れは免震される。   According to the embodiment of FIGS. 6a and 6b, when the column members 1A and 1B move relative to each other in the horizontal direction, they are provided between the two column members 1A and 1B and the seismic isolation column 10 to be fitted. The seismic isolation column 10 is prevented from moving outward in the horizontal direction by the stopper member 13 composed of 20 and the recess 21. Further, when a large shake that moves the two column members 1A and 1B relative to each other due to a large-scale earthquake acts, the convex portion 20 and the concave portion 21 serve as a guide, and the seismic isolation column 10 is centered on the fulcrum E by the contact flange 17. A tilt function is started and a trigger function is generated, so that the vibration acting on the column 1 is isolated.

図6a、図6bの実施例では、二つの柱部材1A,1B又は免震柱10を凹部21として利用できるので、免震構造5の構成を簡略にすることができる。更に、当接フランジ17と板状部材12,12'により支点Eを免震柱10よりも水平方向外側へ任意に張り出して設けることができるので、簡単な構成により免震柱10が傾きを開始するトリガ荷重を増加することができる。   In the embodiment of FIGS. 6 a and 6 b, the two column members 1 </ b> A and 1 </ b> B or the seismic isolation column 10 can be used as the recess 21, so that the configuration of the seismic isolation structure 5 can be simplified. Further, since the fulcrum E can be arbitrarily extended outward from the seismic isolation column 10 by the contact flange 17 and the plate-like members 12, 12 ', the seismic isolation column 10 starts to tilt with a simple configuration. The trigger load can be increased.

又、上記したように、凸部20と凹部21は調芯機構を兼ねるようになっているので、二つの柱部材1A,1Bと免震柱10との間に水平方向に位置ずれが存在した場合でも、傾斜した免震柱10が復元する際には、二つの柱部材1A,1Bと免震柱10は一定の位置に調整されて復元されるようになる。上記図6a、図6bに示した凸部20と凹部21からなる調芯機構は他の実施例においても適用することができる。   In addition, as described above, since the convex portion 20 and the concave portion 21 also serve as an alignment mechanism, there is a displacement in the horizontal direction between the two column members 1A, 1B and the seismic isolation column 10. Even in this case, when the tilted seismic isolation column 10 is restored, the two column members 1A and 1B and the seismic isolation column 10 are adjusted to a certain position and restored. The alignment mechanism including the convex portion 20 and the concave portion 21 shown in FIGS. 6a and 6b can be applied to other embodiments.

図7a、図7bは、立体倉庫100を構成する柱1に備える免震構造5の他の実施例を示している。図7a、図7bに示す免震構造5は、前記図6a、図6bと同一の構成において、下側の柱部材1Aの上端と上側の柱部材1Bの下端に設けた板状部材12,12'と、前記当接フランジ17との間に、二つの柱部材1A,1Bの端面6,7と免震柱10の当接面8,9を密着した状態で弾力的に連結するトリガ付加部材18を備えたトリガ機構11を構成している。前記トリガ付加部材18としては図示する皿ばね等による復元ばね19(弾性体)を備えることができる。   FIGS. 7 a and 7 b show another embodiment of the seismic isolation structure 5 provided in the pillar 1 constituting the three-dimensional warehouse 100. The seismic isolation structure 5 shown in FIGS. 7a and 7b has plate-like members 12 and 12 provided at the upper end of the lower column member 1A and the lower end of the upper column member 1B in the same configuration as in FIGS. 6a and 6b. , And the contact flange 17, the trigger addition member that elastically connects the end surfaces 6 and 7 of the two column members 1 </ b> A and 1 </ b> B and the contact surfaces 8 and 9 of the seismic isolation column 10 in close contact with each other. A trigger mechanism 11 having 18 is configured. The trigger adding member 18 may include a restoring spring 19 (elastic body) such as a disc spring shown in the figure.

図7a、図7bに示す実施例のトリガ機構11では、二つの柱部材1A,1Bの端面6,7と免震柱10の当接面8,9を密着させた状態に引き付けておく復元ばね19によるトリガ付加部材18を備えたので、図1a〜図1d、図6a、図6bの場合に比して、免震柱10が支点Eを中心に傾きを開始するトリガ荷重は増加するようになる。更に、復元ばね19の引き付け強度を選定することにより、トリガ荷重を調節することができる。又、復元ばね19の引き付け強度を選定することにより、免震柱10が傾く際の固有周期を調節することができる。
<トリガ加速度設定について>
In the trigger mechanism 11 of the embodiment shown in FIGS. 7a and 7b, a restoring spring that attracts the end surfaces 6 and 7 of the two column members 1A and 1B and the contact surfaces 8 and 9 of the seismic isolation column 10 in close contact with each other. Since the trigger addition member 18 according to FIG. 19 is provided, the trigger load at which the seismic isolation column 10 starts to tilt around the fulcrum E is increased as compared with the cases of FIGS. 1a to 1d, 6a, and 6b. Become. Furthermore, the trigger load can be adjusted by selecting the pulling strength of the restoring spring 19. Moreover, the natural period when the seismic isolation column 10 tilts can be adjusted by selecting the attractive strength of the restoring spring 19.
<About trigger acceleration setting>

免震柱10に水平方向に揺れの荷重が加わった際に免震柱10が傾き始めるときのモーメントMは、次式で表わされる。

Figure 0006168151
α:トリガ震度(重力加速度を1とした無次元数)
H:免震柱10の高さ
N:柱1の数
M:免震装置より上部の質量
g:重力加速度
:復元ばねに与えた初期荷重
B:柱の幅B1及び奥行きB2の大きさMoment M P when the MenShinhashira 10 when the applied shaking load horizontally begin inclination to MenShinhashira 10 is expressed by the following equation.
Figure 0006168151
α: Trigger seismic intensity (dimensionless number with gravitational acceleration as 1)
H: Height of the seismic isolation column 10 N: Number of columns 1 M: Mass above the seismic isolation device g: Gravitational acceleration f O : Initial load applied to the restoring spring B: Column width B1 and depth B2

この式を、柱の幅B1及び奥行きB2の大きさBでまとめると、以下のようになる。

Figure 0006168151
This formula is summarized as follows with the size B of the column width B1 and the depth B2.
Figure 0006168151

上式より、免震構造5を構成する柱1の断面積の幅B1と奥行きB2の大きさBが大きいほど、対応できるトリガ加速度αを大きく設定できることになる。柱1の断面積の奥行きB2を大きくした場合には、奥行き方向で対応できるトリガ加速度αを大きく設定できることになる。
<免震構造の剛性の増大>
From the above equation, the corresponding trigger acceleration α can be set larger as the width B1 and the depth B2 of the cross-sectional area of the pillar 1 constituting the seismic isolation structure 5 are larger. When the depth B2 of the cross-sectional area of the column 1 is increased, the trigger acceleration α that can be handled in the depth direction can be set large.
<Increase in rigidity of seismic isolation structure>

前記復元ばね19を有するトリガ機構11を備えた免震構造5の固有振動数F(Hz)は、次式で与えられる。以下では、説明を簡略にするために、当接フランジ17の幅と奥行きの大きさBの場合について説明する。

Figure 0006168151
:復元ばねの係数
B:当接フランジ17の当接面8,9の幅の大きさ
L:復元ばね19の間隔
H:免震柱10の高さ
N:柱1の数
M:免震装置より上部の質量The natural frequency F (Hz) of the seismic isolation structure 5 having the trigger mechanism 11 having the restoring spring 19 is given by the following equation. Hereinafter, in order to simplify the description, the case of the width B and the depth B of the contact flange 17 will be described.
Figure 0006168151
k O : coefficient of the restoring spring B: width of the contact surfaces 8 and 9 of the contact flange 17 L: distance between the restoring springs 19 H: height of the seismic isolation column 10: number of columns 1 M: Mass above the seismic device

上記式から、免震構造5に設置する復元ばね19の係数kを大きくすると、水平二軸方向(X,Y)の固有振動数はともに大きくなる。一方、免震柱10に備えた当接フランジ17の当接面8,9の大きさBは、水平二軸方向で各別に設定できるため、免震構造5の剛性を大きくしたい方向もしくは小さくしたい方向の大きさBを調整することで、固有振動数は任意に設定することができる。From the above equation, when the coefficient k O of the restoring spring 19 installed in the seismic isolation structure 5 is increased, both the natural frequencies in the horizontal biaxial direction (X, Y) are increased. On the other hand, since the size B of the contact surfaces 8 and 9 of the contact flange 17 provided in the seismic isolation column 10 can be set separately in the horizontal biaxial direction, it is desired to increase or decrease the rigidity of the seismic isolation structure 5. The natural frequency can be arbitrarily set by adjusting the magnitude B of the direction.

従って、図7a、図7bの実施例では、前記免震柱10に備えた当接フランジ17の当接面8,9の幅B1と奥行きB2の大きさBによるトリガ機能に、前記復元ばね19によるトリガ付加部材18によるトリガ荷重が加えられることにより、免震柱10が傾きを開始する際のトリガ荷重は大きな値に設定することができる。   Therefore, in the embodiment of FIGS. 7a and 7b, the restoring spring 19 has a trigger function based on the width B1 and the depth B2 of the contact surfaces 8, 9 of the contact flange 17 provided in the seismic isolation column 10. When the trigger load by the trigger addition member 18 is applied, the trigger load when the seismic isolation column 10 starts to tilt can be set to a large value.

例えば、構造物に配管や隣接した構造との取り合いが存在するために、ブレース等による補強が難しく剛性が低下する部分がある場合には、地震発生時の変形が大きくなることが考えられる。このような剛性が低い部分に対しては、免震柱10に備えた当接フランジ17の当接面8,9の幅B1と奥行きB2の大きさBを大きくして免震構造5の剛性を増大させることで、地震による負荷の作用時に構造物が局部的に大きく変形する問題を抑制することができる。   For example, since there is a connection with piping or an adjacent structure in the structure, if there is a portion where it is difficult to reinforce with braces or the like and the rigidity is reduced, deformation at the time of occurrence of an earthquake is considered to be large. For such a portion having low rigidity, the width B1 and the depth B2 of the contact surfaces 8, 9 of the contact flange 17 provided in the base isolation column 10 are increased to increase the rigidity of the base isolation structure 5. By increasing the value, it is possible to suppress the problem that the structure is largely deformed locally during the action of a load caused by an earthquake.

図8a、図8bは、本発明の免震構造が適用される構造物の例と、構造物に対して本発明の免震構造を適用する場所を示している。図8a、図8bに示すように、本発明の前記免震構造5は、図9a、図9bに示した立体倉庫100、又は、ボイラ設備101、又は、立体駐車設備102、又は、クレーン、アンローダ、コンベア装置等の荷役設備103のような構造物を構成する柱1に適用することができる。前記免震構造5は、図8aに示すように、構造物を構成する柱1の途中に設けることができる他、柱1の下端と基礎Gとの間に設けることもできる。又、前記免震構造5は、図8bに示すように、構造物を構成する梁2,2からなる部材の間に設けることできる。   8a and 8b show examples of structures to which the seismic isolation structure of the present invention is applied and places where the seismic isolation structure of the present invention is applied to the structures. 8a and 8b, the seismic isolation structure 5 of the present invention includes the three-dimensional warehouse 100, the boiler equipment 101, the three-dimensional parking equipment 102, the crane, and the unloader shown in FIGS. 9a and 9b. The present invention can be applied to the pillar 1 constituting a structure such as a cargo handling facility 103 such as a conveyor device. As shown in FIG. 8 a, the seismic isolation structure 5 can be provided in the middle of the pillar 1 constituting the structure, or can be provided between the lower end of the pillar 1 and the foundation G. Moreover, the said seismic isolation structure 5 can be provided between the members which consist of the beams 2 and 2 which comprise a structure, as shown in FIG. 8b.

次に、図10a〜図10cを参照して、構造物の柱1に複数段の免震構造5を設けた場合について説明する。図10aは免震構造5を備えていない立体倉庫100を示し、図10bは一段の免震構造5を備えた立体倉庫100の場合を示し、図10cは二段の免震構造5を備えた立体倉庫100の場合を比較して示している。図10aのように、免震構造5を備えない立体倉庫100では、地震により基礎が揺れると、立体倉庫100に伝えられた揺れは上部へ向かうほど大きな加速度の揺れとなり、上端部の揺れは非常に大きくなる。   Next, with reference to FIG. 10a-FIG. 10c, the case where the multi-stage seismic isolation structure 5 is provided in the pillar 1 of the structure is demonstrated. 10a shows a three-dimensional warehouse 100 that does not include the seismic isolation structure 5, FIG. 10b shows a case of the three-dimensional warehouse 100 that includes one stage of the base isolation structure 5, and FIG. 10c includes a two-stage seismic isolation structure 5. The case of the three-dimensional warehouse 100 is shown in comparison. As shown in FIG. 10a, in the three-dimensional warehouse 100 that does not have the seismic isolation structure 5, when the foundation is shaken due to the earthquake, the vibration transmitted to the three-dimensional warehouse 100 becomes a larger acceleration toward the upper part, and the upper end shakes very much. Become bigger.

一方、図10bに示すように、一段の免震構造5を備えた立体倉庫100では、免震構造5による免震作用によって、例えば変形量δを吸収できるため、免震構造5よりも上部への揺れの伝わりを低減できるので、立体倉庫100の上部の揺れは低減される。又、図10cに示すように、柱1に、上下二段の免震構造5を備えた立体倉庫100では、二段の免震構造5の免震作用によって、変形量2δまでの変形を免震装置として許容できるようになるので、より揺れが大きくなる大規模地震まで免震装置として対応できるようになる。従って、免震の機能が小さい免震構造5であっても、図10cに示すように、免震構造5を多段に設けることによって、地震によって構造物が大きく変形する揺れを吸収して免震することができる。   On the other hand, as shown in FIG. 10 b, in the three-dimensional warehouse 100 including the one-stage seismic isolation structure 5, for example, the deformation amount δ can be absorbed by the seismic isolation function of the seismic isolation structure 5, so Therefore, the shaking of the upper part of the three-dimensional warehouse 100 is reduced. Further, as shown in FIG. 10c, in the three-dimensional warehouse 100 in which the pillar 1 is provided with the upper and lower two-stage seismic isolation structure 5, the deformation up to the deformation amount 2δ is exempted by the seismic isolation action of the two-stage seismic isolation structure 5. Since it can be tolerated as a seismic device, it can be used as a seismic isolation device even for large-scale earthquakes with greater shaking. Therefore, even if the seismic isolation structure 5 has a small seismic isolation function, by providing the seismic isolation structure 5 in multiple stages, as shown in FIG. can do.

尚、本発明の免震構造は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the seismic isolation structure of the present invention is not limited to the above-described embodiments, and various changes can be made without departing from the scope of the present invention.

1A 柱部材(第一の部材)
1B 柱部材(第二の部材)
2 梁(部材)
5 免震構造
6 端面
7 端面
8 当接面
9 当接面
10 免震柱
10a 一端
10b 他端
11 トリガ機構
12 板状部材
12' 板状部材
13 ストッパ部材
13' ストッパ部材
13'' ストッパ部材
15 突起(突出部)
18 トリガ付加部材
19 復元ばね(弾性体)
20 凸部(ストッパ部材)
21 凹部(ストッパ部材)
24 傾斜角制限部材
E 支点
100 立体倉庫
101 ボイラ設備
102 立体駐車設備
103 荷役設備
1A Column member (first member)
1B Column member (second member)
2 Beam (member)
5 seismic isolation structure 6 end surface 7 end surface 8 abutment surface 9 abutment surface 10 seismic isolation column 10a one end 10b other end 11 trigger mechanism 12 plate member 12 'plate member 13 stopper member 13' stopper member 13 '' stopper member 15 Protrusion (protrusion)
18 Trigger addition member 19 Restoring spring (elastic body)
20 Convex part (stopper member)
21 Recess (stopper member)
24 Inclination angle limiting member E Support point 100 Three-dimensional warehouse 101 Boiler equipment 102 Three-dimensional parking equipment 103 Cargo handling equipment

Claims (12)

平坦な端面が対向する二つの部材の間に配置され、平坦な前記端面に圧着される平坦な当接面を一端と他端に形成して前記当接面が前記端面に圧着した状態から傾斜が可能な免震柱を有し
二つの前記部材と前記免震柱の少なくとも一方に設けられて前記当接面と前記端面の少なくとも一方を水平方向から囲むように突出し、二つの前記部材が水平方向へ相対移動した際に前記免震柱が水平方向へ移動するのを防止し、前記端面と前記当接面が圧着した状態から前記免震柱が傾きを開始する支点を形成するようにしたストッパ部材有し、
二つの前記部材の平坦な前記端面及び該端面に圧着される前記免震柱の平坦な前記当接面と、前記支点を形成する前記ストッパ部材とによりトリガ機構を構成した
ことを特徴とする免震構造。
A flat end surface is disposed between two opposing members, and a flat contact surface to be crimped to the flat end surface is formed at one end and the other end, and the contact surface is inclined from the state in which the contact surface is crimped to the end surface It has a capable MenShinhashira,
Provided on at least one of the two members and the seismic isolation column and projecting so as to surround at least one of the contact surface and the end surface from the horizontal direction, and when the two members move relative to each other in the horizontal direction, It has a stopper member that prevents the seismic column from moving in the horizontal direction, and forms a fulcrum at which the seismic isolation column starts tilting from the state where the end surface and the contact surface are crimped,
A trigger mechanism is configured by the flat end surfaces of the two members, the flat abutting surfaces of the seismic isolation columns crimped to the end surfaces, and the stopper member forming the fulcrum. Seismic structure.
平坦な端面が対向する二つの部材の間に配置され、平坦な前記端面に圧着される平坦な当接面を一端と他端に形成して前記当接面が前記端面に圧着した状態から傾斜が可能な免震柱を有し、A flat end surface is disposed between two opposing members, and a flat contact surface to be crimped to the flat end surface is formed at one end and the other end, and the contact surface is inclined from the state in which the contact surface is crimped to the end surface Have seismic isolation columns
二つの前記部材の前記端面と前記免震柱の前記当接面の少なくとも一方に設けた当接フランジと、二つの前記部材の前記端面と前記免震柱の前記当接面の他方に設けて前記当接フランジよりも外側へ突出した板状部材を有し、Contact flanges provided on at least one of the end surfaces of the two members and the contact surface of the seismic isolation column, and provided on the other of the end surfaces of the two members and the contact surface of the seismic isolation column A plate-like member protruding outward from the contact flange;
前記当接フランジと前記板状部材の少なくとも一方の中心に設けた凸部と、前記当接フランジと前記板状部材の他方の中心に設けて前記凸部が嵌合する凹部を備えて、2つの前記部材が水平方向へ相対移動した際に前記免震柱が水平方向へ移動するのを防止するストッパ部材を有し、  A convex portion provided at the center of at least one of the abutting flange and the plate-like member, and a concave portion provided at the other center of the abutting flange and the plate-like member and fitted with the convex portion. A stopper member for preventing the seismic isolation column from moving in the horizontal direction when the two members move in the horizontal direction;
前記当接フランジと前記板状部材が相互に圧着する前記端面及び前記当接面と、前記板状部材に圧着する前記当接フランジの外周によって形成される支点と、前記凸部及び前記凹部からなるストッパ部材とによりトリガ機構を構成した  From the end surface and the contact surface on which the contact flange and the plate-like member are pressure-bonded to each other, a fulcrum formed by the outer periphery of the contact flange to be pressure-bonded to the plate-like member, and the convex portion and the concave portion The trigger mechanism is composed of the stopper member
ことを特徴とする免震構造。Seismic isolation structure characterized by that.
二つの前記部材は柱部材であることを特徴とする請求項1又は2に記載の免震構造。 Seismic isolation structure according to claim 1 or 2, characterized in that two of said member is a pillar member. 二つの前記部材は梁であることを特徴とする請求項1又は2に記載の免震構造。 Seismic isolation structure according to claim 1 or 2, characterized in that two of said members is a beam. 前記支点は、前記ストッパ部材と、二つの前記部材の平坦な前記端面の端縁又は前記免震柱の平坦な前記当接面の端縁によって形成されることを特徴とする請求項1に記載の免震構造。 The fulcrum is formed by the stopper member and the end edge of the flat end surface of the two members or the end edge of the flat contact surface of the seismic isolation column. Seismic isolation structure. 前記支点は、前記ストッパ部材の前記凸部と前記凹部が嵌合した状態で前記板状部材に圧着される当接フランジの外周によって形成されることを特徴とする請求項2に記載の免震構造。The seismic isolation system according to claim 2, wherein the fulcrum is formed by an outer periphery of a contact flange that is crimped to the plate-like member in a state where the convex portion and the concave portion of the stopper member are fitted. Construction. 前記ストッパ部材は、前記免震柱が自重で復帰できる傾斜角度に対応した位置で前記免震柱又は二つの前記部材に接する突出長さの突出部を備えて傾斜角制限部材を形成したことを特徴とする請求項に記載の免震構造。 The stopper member is provided with a protruding portion having a protruding length in contact with the base isolation column or the two members at a position corresponding to an inclination angle at which the base isolation column can return with its own weight. The seismic isolation structure according to claim 1 , wherein 前記トリガ機構は、二つの前記部材と前記免震柱を弾力的に連結して前記免震柱が傾きを開始するトリガ荷重を調節できる弾性体を有することを特徴とする請求項1又は2に記載の免震構造。 The trigger mechanism, to claim 1 or 2, characterized in that an elastic body, wherein by connecting the the two said members MenShinhashira elastically MenShinhashira can adjust the trigger load to start tilt The seismic isolation structure described. 二つの前記部材の平坦な前記端面と前記免震柱の平坦な前記当接面は、水平二軸方向における幅と奥行きの大きさが異なっていることを特徴とする請求項1に記載の免震構造。   2. The immunity according to claim 1, wherein the flat end surfaces of the two members and the flat contact surfaces of the seismic isolation columns have different widths and depths in the horizontal biaxial direction. Seismic structure. 二つの前記部材と前記免震柱との間に形成する前記支点が、二つの前記部材及び前記免震柱の水平方向外側へ張り出した位置に設けられ、前記免震柱が傾きを開始するトリガ荷重を増加させたことを特徴とする請求項に記載の免震構造。 The trigger that the fulcrum formed between the two members and the seismic isolation column is provided at a position projecting outward of the two members and the seismic isolation column in the horizontal direction, and the seismic isolation column starts to tilt The seismic isolation structure according to claim 2 , wherein the load is increased. 前記請求項1〜10のいずれか1つに記載の免震構造を備えたことを特徴とする構造物。   A structure comprising the seismic isolation structure according to any one of claims 1 to 10. 免震構造を備えた立体倉庫であることを特徴とする請求項11に記載の構造物。   The structure according to claim 11, wherein the structure is a three-dimensional warehouse having a seismic isolation structure.
JP2015532851A 2013-08-19 2014-08-18 Seismic isolation structure Active JP6168151B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013169827 2013-08-19
JP2013169827 2013-08-19
PCT/JP2014/071579 WO2015025820A1 (en) 2013-08-19 2014-08-18 Seismic isolation structure

Publications (2)

Publication Number Publication Date
JPWO2015025820A1 JPWO2015025820A1 (en) 2017-03-02
JP6168151B2 true JP6168151B2 (en) 2017-07-26

Family

ID=52483595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015532851A Active JP6168151B2 (en) 2013-08-19 2014-08-18 Seismic isolation structure

Country Status (4)

Country Link
JP (1) JP6168151B2 (en)
CN (1) CN105452576B (en)
TW (1) TWI577859B (en)
WO (1) WO2015025820A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200073672A (en) * 2018-12-14 2020-06-24 민성준 easy to renovate seismic deck rods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6662104B2 (en) * 2016-03-01 2020-03-11 株式会社Ihi Seismic isolation device
JP6790618B2 (en) * 2016-09-07 2020-11-25 村田機械株式会社 Seismic isolation device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676204B2 (en) * 1987-08-28 1997-11-12 哲夫 黒岩 Structural style and related equipment for seismic isolation
JP4759855B2 (en) * 2001-06-19 2011-08-31 株式会社Ihi Horizontal two-axis seismic isolation device for steel structures
JP2004092080A (en) * 2002-08-29 2004-03-25 Shimizu Corp Steel frame, construction method therefor, and seismic-response controlled structure
JP5406631B2 (en) * 2009-08-24 2014-02-05 株式会社竹中工務店 Seismic isolation structure and seismic isolation structure
CN201972240U (en) * 2010-12-28 2011-09-14 陈云 Self-resetting swinging shock-isolation support
CN202170577U (en) * 2011-06-10 2012-03-21 广州大学 Isolated structure of high-rise building

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200073672A (en) * 2018-12-14 2020-06-24 민성준 easy to renovate seismic deck rods
KR102610698B1 (en) * 2018-12-14 2023-12-05 민성준 easy to renovate seismic deck rods

Also Published As

Publication number Publication date
TW201529942A (en) 2015-08-01
CN105452576B (en) 2017-05-10
WO2015025820A1 (en) 2015-02-26
TWI577859B (en) 2017-04-11
JPWO2015025820A1 (en) 2017-03-02
CN105452576A (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP2015224482A (en) Seismically isolated structure
JP6168151B2 (en) Seismic isolation structure
JP6107955B2 (en) Seismic isolation structure and structure of pillars constituting the structure
JP4812463B2 (en) Base-isolated floor structure
JP6398281B2 (en) Seismic isolation structure
JP2017502182A (en) Polygonal seismic isolation system
JP6753072B2 (en) Seismic isolation device
JP6414271B2 (en) Seismic isolation structure for pillars constituting the structure
JP6716946B2 (en) Seismic isolation device
JP6232803B2 (en) Seismic isolation structure for pillars constituting the structure
JP6662104B2 (en) Seismic isolation device
JP6248454B2 (en) Automatic warehouse
JP2016079655A (en) Base isolation structure
JP6303736B2 (en) Seismic isolation structure and seismic isolation device having the seismic isolation structure
JP2015205751A (en) seismic isolation structure
JP6398269B2 (en) Seismic isolation structure
JP2015218468A (en) Quake-absorbing structure
JP6123546B2 (en) Seismic isolation structure for pillars constituting the structure
JP6720596B2 (en) Seismic isolation device
JP4722027B2 (en) Goods storage shelf
JP3138538U (en) Seismic pedestal and stepped wedge for preventing malfunction
JP2015197016A (en) Base-isolation construction
JP2015209322A (en) Base isolation structure
JP7272850B2 (en) Sliding seismic isolation mechanism
JP2015028250A (en) Base-isolation structure of column constituting structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R151 Written notification of patent or utility model registration

Ref document number: 6168151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250