JP6103364B2 - 自動水栓装置 - Google Patents

自動水栓装置 Download PDF

Info

Publication number
JP6103364B2
JP6103364B2 JP2013056260A JP2013056260A JP6103364B2 JP 6103364 B2 JP6103364 B2 JP 6103364B2 JP 2013056260 A JP2013056260 A JP 2013056260A JP 2013056260 A JP2013056260 A JP 2013056260A JP 6103364 B2 JP6103364 B2 JP 6103364B2
Authority
JP
Japan
Prior art keywords
water
radio wave
sensor
discharge
submerged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013056260A
Other languages
English (en)
Other versions
JP2014181482A5 (ja
JP2014181482A (ja
JP6103364B6 (ja
Inventor
永石 昌之
昌之 永石
翔一 立木
翔一 立木
裕也 正平
裕也 正平
哲弘 早田
哲弘 早田
正実 ▲辻▼田
正実 ▲辻▼田
健介 村田
健介 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2013056260A priority Critical patent/JP6103364B6/ja
Priority claimed from JP2013056260A external-priority patent/JP6103364B6/ja
Publication of JP2014181482A publication Critical patent/JP2014181482A/ja
Publication of JP2014181482A5 publication Critical patent/JP2014181482A5/ja
Publication of JP6103364B2 publication Critical patent/JP6103364B2/ja
Application granted granted Critical
Publication of JP6103364B6 publication Critical patent/JP6103364B6/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Domestic Plumbing Installations (AREA)

Description

本発明は、吐水及び止水を自動的に行う自動水栓装置に関する。
人の手の動きをセンサによって検知し、吐水及び止水を自動的に行う自動水栓装置が知られている。このような自動水栓装置は、人がハンドルに手を触れることなく手洗い等を行うことができるために衛生的であり、広く普及している。従来、手の動きを検知するセンサとしては赤外線センサが用いられることが多かったが、近年では電波センサが用いられることも多い。
電波センサは、所定周波数のマイクロ波を放射してその反射波を受信し、当該反射波に基づいて被検知体(マイクロ波を反射した物体)の速度を検知するセンサである。被検知体が移動すると、ドップラー効果によって反射波の周波数が変化する。電波センサは、反射波の周波数に基づいて被検知体の速度を検知する。
このような電波センサを用いた自動水栓装置においては、電波センサは、吐水口に近づく(又は遠ざかる)手の速度変化を検知して、検知信号を制御部に出力する。制御部は、当該検知信号に基づいて電磁弁の開閉を制御し、吐水、止水を切り換える。これにより、例えば、吐水口の下方に手が到達するのとほぼ同時に吐水を開始するようなことが可能となる。
電波センサは、手洗い時に手が挿入される空間、すなわち、吐水口の下方の空間に向けてマイクロ波を放射するように配置される。このため、例えばスパウトのうち吐水口の近傍に電波センサを配置する構成が考えられる。しかし、このような構成においては、スパウトの内部に電波センサを収納して配線の引き回しを行う必要が生じるため、スパウトが大型化してしまうという問題があった。
そこで、下記特許文献1に記載された自動水栓装置では、ボウル部のうち水を受ける面の反対側(裏側)に電波センサを配置している。電波センサから放射されたマイクロ波は、ボウル部の一部領域を透過して、上方の吐水口に向かう。このような構成によれば、スパウトが大型化してしまったり、スパウトのデザインが制約されてしまったりすることがないため、意匠性の高い自動水栓装置とすることができる。
特開2003−64741号公報
上記特許文献1に記載された自動水栓装置は、ボウル部に水を貯めることを可能とするために、ボウル部の底部に貯水栓を備えている。このため、貯水栓を閉止した状態で吐水が行われると、ボウル部の水位が上昇し、ボウル部のうち電波センサからの電波が透過する領域(以下、「電波透過領域」と称する)が水没してしまう場合がある。
マイクロ波は、樹脂や陶器などからなるボウル部を透過することができるが、水を透過することはできない。このため、電波透過領域が水没してしまうと、電波センサから放射されたマイクロ波は吐水口に到達することができなくなる。このような状態になると、手洗いが終了して使用者の手が吐水口の下方の空間から引き抜かれても、電波センサはこのような動きを検知することができない。その結果、吐水を停止すべき状態となっているにも拘わらず、吐水がいつまでも継続されてしまう。
本発明はこのような課題に鑑みてなされたものであり、その目的は、電波センサをボウル部の裏側に配置した構成としながらも、手の動きを確実に検知して、吐水及び止水を適切なタイミングで行うことのできる自動水栓装置を提供することにある。
上記課題を解決するために、本発明に係る自動水栓装置は、吐水口を有する吐水部と、
前記吐水口から吐出された水を受けて、当該水を排水管に排出するボウル部と、電波を放
射してその反射波を受信し、前記反射波に基づいて被検知体の動きに関する検知信号を出
力するセンサと、前記検知信号に基づいて、前記吐水口からの吐水及び止水を制御する制
御部と、を備えた自動水栓装置であって、前記センサは、前記ボウル部を挟んで前記吐水
口とは反対側となる位置に配置されており、前記ボウル部を透過して前記吐水口に向かう
ように電波を放射するものであって、前記ボウル部のうち電波が透過する領域である電波
透過領域の位置が、前記ボウル部が受けた水によって水没しない位置となるように、前記
センサが配置されており、前記制御部は強制止水手段を有しており、前記強制止水手段は、前記排水管への水の排出に異常が生じた場合において、前記電波透過領域が水没した状態のまま前記吐水口からの吐水が継続されてしまうことを防止するために、前記被検知体の動きに基づくことなく、前記吐水口からの吐水を強制的に停止するものであることを特徴としている。
本発明に係る自動水栓装置は、センサと制御部とを備えており、これらによって吐水及び止水を自動的に行うことが可能となっている。具体的には、吐水口の下方における被検知体(手)の動きをセンサが検知し、当該動きに関する検知信号を出力する。制御部は、検知信号に基づいて吐水口からの吐水及び止水を制御する。
センサは、所謂電波センサであって、電波を放射してその反射波を受信し、当該反射波に基づいて被検知体の動きに関する検知信号を出力するものである。センサは、ボウル部を挟んで吐水口とは反対側となる位置に配置されている。すなわち、ボウル部の裏側であって使用者からは見えない位置に配置されている。センサは、ボウル部を透過して吐水口に向かうように電波を放射する。
センサは、ボウル部のうち電波が透過する領域である電波透過領域の位置が、ボウル部が受けた水によって水没しない位置となるように配置されている。このようにセンサが配置されているため、使用者の手とセンサとの間に介在する水が電波を遮ってしまうことが無く、使用者の手の動きを常に正確に検知することができる。その結果、使用者の手が吐水口の下方の空間から引き抜かれたにも拘わらず、吐水がいつまでも継続されてしまうようなことを防止することができる。
また本発明に係る自動水栓装置では、前記吐水部は、前記吐水口から吐出される水の流量が所定の上限流量を超えないように規制する流量規制機構を有しており、前記ボウル部は、前記排水管に向けた水の排出を規制する手段を有しておらず、受けた水を直ちに前記排水管に排出するものであって、前記排水管に排出され得る水の最大流量が前記上限流量よりも大きくなるよう、前記ボウル部が形成されていることにより、前記電波透過領域が水没しない構成となっていることも好ましい。
この好ましい態様では、吐水部は、吐水口から吐出される水の流量が所定の上限流量を超えないように規制する流量規制機構を有している。例えば、水道管の水圧(一次側の水圧)が変化した場合であっても、吐水の流量は流量規制機構によって規制されるため、所定の上限流量を超えることがない。
ボウル部は、排水管に向けた水の排出を規制する手段を有しておらず、受けた水を直ちに排水管に排出するものである。排水管に向けた水の排出を規制する手段とは、例えば、ボウル部に水を溜めることを可能とする貯水栓である。更に、ボウル部は、排水管に排出され得る水の最大流量が、上記の上限流量よりも大きくなるように形成されている。
このような構成により、吐水口からボウル部に水が吐出されても、当該水はボウル部に留らず、直ちに排水管に排出される。継続して吐水が行われても、ボウル部の水位が上昇してしまうことがないため、電波透過領域が水没してしまうことが確実に防止される。
また本発明に係る自動水栓装置では、前記制御部は強制止水手段を有しており、前記強制止水手段は、前記排水管への水の排出に異常が生じた場合において、前記電波透過領域が水没した状態のまま前記吐水口からの吐水が継続されてしまうことを防止するために、前記被検知体の動きに基づくことなく、前記吐水口からの吐水を強制的に停止するものであることも好ましい。
排水管に向けた水の排出を規制する手段(例えば貯水栓)を有さないボウル部であっても、例えば排水管の入口に異物が詰まってしまい、ボウル部から排水管への水の排出に異常が生じる場合がある。このような状態のまま吐水が行われると、ボウル部の水位が上昇して電波透過領域が水没してしまう可能性がある。その結果、センサによって手の動きを検知することができなくなり、使用者の手洗い動作が完了した後においても吐水が継続されてしまう恐れがある。
この好ましい態様では、制御部は強制止水手段を有している。強制止水手段は、電波透過領域が水没した状態のまま吐水が継続されてしまうを防止するために、被検知体の動きに基づくことなく、吐水口からの吐水を強制的に停止するものである。このような強制止水手段を制御部が有することにより、上記のように排水管への水の排出に異常が生じた場合であっても、被検知体の動きを検知することができない状態のまま吐水が継続されてしまうようなことを確実に防止することができる。すなわち、吐水を停止すべき状態となっているにも拘わらず、吐水がいつまでも継続されてしまうようなことを確実に防止することができる。
また本発明に係る自動水栓装置では、前記強制止水手段は、前記吐水口からの吐水が行われており、且つ、前記電波透過領域が水没している状態、が所定時間継続した場合に、前記吐水口からの吐水を強制的に停止することも好ましい。
吐水がいつまでも継続されてしまうようなことを確実に防止するためには、電波透過領域が水没していることがセンサによって検知された場合に、強制止水手段によって吐水口からの吐水を強制的に停止することが望ましい。しかし、電波透過領域が水没した場合であっても、ボウル部から排水管への水の排水には異常が生じておらず、吐水を強制的に停止することが適切ではない場合がある。
例えば、自動水栓装置において使用者が洗顔を行っている際には、手に溜められた水が塊となってボウル部に落下し、電波透過領域が一時的に水膜で覆われた状態(すなわち、一時的に水没した状態)となることがある。このような状況においては、使用者は継続して吐水が行われることを期待するはずである。従って、電波透過領域の水没が検知されたことに伴って吐水を強制的に停止してしまうと、使用者に違和感や使い勝手の悪さを感じさせてしまうこととなり、適切ではない。
この好ましい態様では、強制止水手段は、吐水口からの吐水が行われており、且つ、電波透過領域が水没している状態、となっても、その時点で直ちには止水せず継続して吐水を行う。一方、上記のような状態が所定時間継続した場合には、吐水口からの吐水を強制的に停止する。
このように、電波透過領域が水没している状態となっても、それが一時的なものである場合には、直ちには止水せずに継続して吐水を行う。このような制御を行うことにより、自動水栓装置が使用されている途中において不適切なタイミングで吐水が停止されてしまい、使用者に対して違和感や使い勝手の悪さを感じさせてしまうことが防止される。
また本発明に係る自動水栓装置では、前記強制止水手段は、前記吐水口からの吐水が行われている際における前記反射波の周波数が、前記センサから放射された電波の周波数と略一致している状態を、前記電波透過領域が水没している状態として判断することも好ましい。
電波透過領域が水没すると、センサから放射されたマイクロ波は水によって全て反射されてしまう。このとき、反射面(ボウル部と水との境界面)は動かないため、反射波の周波数は、前記センサから放射された電波の周波数と略一致する。
そこで、この好ましい態様では、強制止水手段は、吐水が行われている際における反射波の周波数が、センサから放射された電波の周波数と略一致している状態を、電波透過領域が水没している状態として判断する。吐水口からの吐水が行われており、且つ、反射波の周波数がセンサから放射された電波の周波数と略一致している状態、が所定時間継続した場合に、強制止水手段は吐水口からの吐水を強制的に停止する。
電波透過領域が水没しているか否かを、反射波の周波数に基づいて正確に判断することができるため、より適切なタイミングで止水を行うことができる。
また本発明に係る自動水栓装置では、前記強制止水手段は、前記吐水口からの吐水が行われている際における前記反射波の強度が所定強度以上になった状態を、前記電波透過領域が水没している状態として判断することも好ましい。
電波透過領域が水没すると、センサから放射されたマイクロ波は水によって全て反射されてしまう。このとき、反射面(ボウル部と水との境界面)とセンサとの距離は短くなるため、センサから放射された電波は、ほとんど減衰せずに反射波としてセンサに戻ってくる。すなわち、センサに到達する反射波の強度は比較的大きくなる。
そこで、この好ましい態様では、強制止水手段は、吐水が行われている際における反射波の強度が所定強度以上になった状態を、電波透過領域が水没している状態として判断する。吐水口からの吐水が行われており、且つ、反射波の強度が所定強度以上になった状態、が所定時間継続した場合に、強制止水手段は吐水口からの吐水を強制的に停止する。
電波透過領域が水没しているか否かを、反射波の強度に基づいて正確に判断することができるため、より適切なタイミングで止水を行うことができる。
また本発明に係る自動水栓装置では、前記ボウル部は、前記ボウル部から水が溢れることを防止するためのオーバーフロー口が、その上方側の部分に形成されており、前記オーバーフロー口に流入した水を前記排水管に導くためのオーバーフロー管を有するものであって、前記センサは、放射された電波が、前記オーバーフロー管の内部を透過して前記吐水口に向かうように配置されており、前記強制止水手段は、前記センサから、前記オーバーフロー管の内部を水が流れたことを示す前記検知信号が出力された場合に、前記吐水口からの吐水を強制的に停止することも好ましい。

この好ましい態様では、ボウル部のうち上方側の部分には、ボウル部から水が溢れることを防止するためのオーバーフロー口が形成されている。ボウル部は、オーバーフロー口に流入した水を前記排水管に導くためのオーバーフロー管を有している。センサは、放射された電波が、オーバーフロー管の内部を透過して吐水口に向かうように配置されている。
以上のような構成において、強制止水手段は、オーバーフロー管の内部を水が流れたことを示す検知信号がセンサ部から出力された場合に、吐水口からの吐水を強制的に停止する。
オーバーフロー管の内部を水が流れている状態においては、ボウル部から排水管への水の排出に異常が生じ、電波透過領域が水没している可能性が極めて高い。このため、オーバーフロー管の内部を水が流れたことを示す検知信号がセンサ部から出力された場合には、強制止水手段が吐水口からの吐水を強制的に停止する。このような制御により、吐水がいつまでも継続されてしまうことが防止される。
本発明によれば、電波センサをボウル部の裏側に配置した構成としながらも、手の動きを確実に検知して、吐水及び止水を適切なタイミングで行うことのできる自動水栓装置を提供することができる。
本発明の第一実施形態に係る自動水栓装置の構造を示す断面図である。 図1に示した自動水栓装置のうち、センサ及び制御装置の構成を説明するための図である。 制御装置で行われる処理の流れを示すフローチャートである。 図1に示した自動水栓装置の動作を説明するための図である。 図1に示した自動水栓装置の動作を説明するための図である。 図1に示した自動水栓装置の動作を説明するための図である。 図1に示した自動水栓装置の動作を説明するための図である。 図1に示した自動水栓装置において、排水口に異物が詰まった状態を説明するための図である。 図1に示した自動水栓装置において、洗顔が行われているときの状態を説明するための図である。 本発明の第二実施形態に係る自動水栓装置の動作を説明するための図である。
以下、添付図面を参照しながら本発明の実施の形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
図1は、本発明の第一実施形態に係る自動水栓装置AF1の構造を模式的に示す断面図である。自動水栓装置AF1は、公共施設のトイレに備えられる水栓装置であって、使用者が手を洗う際に使用するものである。図1に示したように、自動水栓装置AF1は、スパウト(吐水部)10と、ボウル20と、制御装置50と、センサ60とを備えている。
スパウト10は、下方に向けて水を吐出するための部材であって、後述のボウル20の上面22から上方に向けて立ち上がるように配置されている。スパウト10の内部には水の流路が形成されており、その下流側端部には、水の出口である吐水口11が形成されている。また、当該流路の上流側端部はスパウト10の下端において開口しており、給水管40が下方から接続されている。給水管40は、図示しない水道管からスパウト10に向けて水を供給するための配管であって、ボウル20を貫いてスパウト10の下端に接続されている。給水管40からスパウト10に供給された水は、スパウト10の内部の流路を通って吐水口11に到達した後、吐水口11から下方のボウル20に向けて吐出される。
給水管40には、開閉弁41と定流量弁42とが配置されている。開閉弁41は、ソレノイドによって動作する電磁弁であって、水道管からスパウト10までの流路の開閉を切り換えるものである。換言すれば、吐水口11からの吐水と止水とを切り換えるものである。
定流量弁42は、給水管40を流れる水の流量を一定に保つための弁である。水道管の水圧が上昇した場合であっても、給水管40を流れる水の流量は増加することなく、定流量弁42によって所定流量に保たれる。定流量弁42は、給水管40のうち開閉弁41よりも下流側の部分に配置されている。
ボウル20は、吐水口11から吐出された水を受けて、当該水を排水管SWに排出するものである。ボウル20は、水平な上面22を有する陶器である。上面22には、水を受ける面として凹状のボウル面21が形成されている。ボウル面21の底部には排出口23が形成されており、排出口23には、下水管に繋がる配管である排水管SWの上端が接続されている。ボウル面21が受けた水は、ボウル面21に沿って排出口23に導かれ。その後、排水管SWに排出される。
排出口23には、例えば貯水栓のような、排水管SWに向けた水の排出を一時的に規制する機構が備えられていない。このため、ボウル20は、吐水口11から受けた水を貯留することなく、直ちに排水管SWに排出する構成となっている。
また、排出口23及び排水管SWの流路抵抗、すなわち、ボウル20から下水管までの流路における流路抵抗は比較的小さくなっており、当該流路を流れる水の最大流量は、吐水口11から吐出される水の流量よりも大きくなっている。換言すれば、給水管40を流れる水の流量が、排水管SWに排出され得る水の最大流量を超えないように、給水管40を流れる水の流量の上限が定流量弁42によって調整されている。このため、吐水口11からの吐水を長時間継続した場合であっても、水がボウル20に溜まってしまうことはなく、ボウル20における水位が上昇してしまうこともない。
制御装置50は、後に説明するセンサ60からの検知信号に基づいて、開閉弁41の動作を制御するものである。制御装置50と開閉弁41とは信号線SL1によって接続されている。開閉弁41の開閉を切り換えるための制御信号が、信号線SL1を通じて制御装置50から開閉弁41へと送信される。尚、開閉弁41の動作状態を制御装置50に向けてフィードバックするための信号線を更に備えてもよい。
センサ60は、適切なタイミングにおいて吐水及び止水を行うことができるよう、使用者Mの手Hの動きを検知するためのものである。センサ60は、所謂電波センサであって、所定方向に向けてマイクロ波(電波)MWを放射してその反射波を受信し、当該反射波に基づいて被検知体(マイクロ波MWを反射した物体)の動きに関する検知信号を出力するものである。
センサ60は、ボウル20を挟んで吐水口11とは反対側となる位置に配置されている。すなわち、ボウル20の裏側(使用者Mから見て奥側)であって使用者Mからは見えない位置に配置されている。具体的には、ボウル20の裏側の空間において、排出口23よりも僅かに高い位置に配置されている。
センサ60は、放射されたマイクロ波MWがボウル20を透過して、上方且つ僅かに使用者側にある吐水口11に向かうように配置されている。センサ60から放射されるマイクロ波MWは指向性の電波となっており、そのほとんどが吐水口11に向かって放射される。放射されたマイクロ波MWは、ボウル面21のうち一部の狭い領域(電波透過領域RP)のみを通過して、吐水口11に向かう。
図1に示したように、電波透過領域RPはボウル面21のうち下方側の部分であるが、その下端の位置は、排出口23よりも高い位置となっている。既に説明したように、吐水口11から吐水が行われている状態であっても、吐出された水がボウル20に溜まることはなく、ボウル20における水位が上昇することもない。このため、排出口23よりも高い位置にある電波透過領域RPが水没してしまうことはない。その結果、センサ60と吐水口11との間にはマイクロ波MWの進行を妨げる水膜が形成されないため、手Hの動きをセンサ60によって常に正確に検知することが可能となっている。センサ60から出力される検知信号は、信号線SL2を通じて制御装置50へと送信される。
図2を参照しながら、センサ60及び制御装置50の構成について更に説明する。図2は、自動水栓装置AF1のうち、センサ60及び制御装置50の構成を説明するための図である。
センサ60は、送信部61と、受信部62と、ミキサ回路65とを有している。送信部61は、発振回路63で生成された所定周波数(送信周波数SF)の信号SGを、吐水口11に向けてマイクロ波MWとして放射するためのアンテナである。受信部62は、送信部61から放射された後、被検知体により反射されて戻ってきた反射波を受信するためのアンテナである。受信部62は、反射波を受信すると、これを当該反射波の振動数及び強度に応じた信号である信号RGに変換する。
被検知体が静止している場合には、反射波及び信号RGの周波数は送信周波数SFと等しい。一方、被検知体が動いている場合には、反射波及び信号RGの周波数はドップラー効果によって変化する。具体的には、被検知体の速度が大きいほど、反射波及び信号RGの周波数から送信周波数SFを差し引いた値の絶対値は大きくなる。
また、送信部61から被検知体までの距離が小さいほど、マイクロ波MWはその減衰が小さい状態で反射波として戻ってくるため、反射波の強度は大きくなる。このため、信号RGの強度も大きくなる。尚、信号RGは電位の振動であるから、ここでいう信号RGの強度とは、上記振動の中心における電位の大きさといってもよい。
発振回路63と送信部61との間には、結合回路64が配置されている。発振回路63で生成された信号SGは、結合回路によってその一部が取り出されて、信号RGと共にミキサ回路65に入力される。
ミキサ回路65は、信号SGと信号RGの入力を受けて、これらに基づいて検知信号DGを出力する回路である。ミキサ回路65から出力される検知信号DGの周波数の値は、信号RGの周波数から送信周波数SF(信号SGの周波数)を差し引いた値の絶対値に等しい。また、検知信号DGの強度は、信号RGの強度に等しい。すなわち、電位の振動である検知信号DGと信号RGとは、それぞれの振動の中心における電位の大きさが互いに等しい。検知信号DGは、信号線SL2を通じて制御装置50へと出力される。
制御装置50は、複数の増幅回路51と、複数のバンドパスフィルタ52と、演算装置53とを有している。センサ60から制御装置50に入力された検知信号DGは、増幅回路51によって増幅された後にバンドパスフィルタ52に入力され、バンドパスフィルタ52によって周波数帯域毎に分類されて演算装置53に入力される。
その結果、検知信号DGは周波数成分毎に分けられて、そのそれぞれが演算装置53に入力される。このような構成は、送信部61から放射されたマイクロ波MWが何によって反射されたのかを識別し、自動水栓装置AF1の状態を検知することを目的とするものである。
例えば、使用者Mの手Hの動きは比較的遅い。このため、マイクロ波MWが手Hによって反射された場合、手Hの動きに関する情報は、検知信号DGには低い周波数の成分として含まれている。また、マイクロ波MWが手Hによって反射された場合、手Hは比較的大きな物体であるから、検知信号DGの強度は大きくなる。
そこで、制御装置50では、検知信号DGを低い増幅率で増幅し(単一の増幅回路51のみを通過させ)、通過帯域の周波数が低いバンドパスフィルタ52を通過させたものを、手Hの動きに関する情報として演算装置53に入力している。
また、手Hに当たって飛び散った水(以下では「散乱水」とも称する)の動きは比較的速い。このため、マイクロ波MWが散乱水によって反射された場合、散乱水の動きに関する情報は、検知信号DGには高い周波数の成分として含まれている。また、マイクロ波MWが散乱水によって反射された場合、散乱水は小さい物体であるから、検知信号DGの強度は小さくなる。
そこで、制御装置50では、検知信号DGを高い増幅率で増幅し(直列に配置された複数の増幅回路51を通過させ)、通過帯域の周波数が高いバンドパスフィルタ52を通過させたものを、散乱水の動きに関する情報として演算装置53に入力している。
検知信号DGには、これらの他に、吐水口11から吐出された水が、手Hに当たることなくボウル面21に到達している場合における水流(以下、「整流」とも称する)の表面の動きに関する情報も含まれている。当該情報についても、検知信号DGを増幅回路51で増幅し、対応するバンドパスフィルタ52を通過させることによって抽出し、演算装置53に入力している。
演算装置53は、それぞれのバンドパスフィルタ52から出力される信号によって、送信部61から放射されたマイクロ波MWが何によって反射されたのかを識別し、手H、散乱水、整流のそれぞれの動き(状態)を把握することが可能となっている。後に説明するように、制御装置50(演算装置53)は、これらに基づいて自動水栓装置AF1の状態を検知し、開閉弁41を適切に動作させるための制御信号を出力する。
続いて、自動水栓装置AF1の具体的な動作について、図3乃至図7を参照しながら説明する。図3は、制御装置50で行われる処理の流れを示すフローチャートである。図4乃至図7は、いずれも自動水栓装置AF1の動作を説明するための図であって、各時点における自動水栓装置AF1の状態を示している。
図4乃至図7の(A)には、自動水栓装置AF1の状態、及び吐水口11から吐出された水(以下、「水WT」と表記する)の状態を図示している。また、図4乃至図7の(B)には、演算装置53に入力される検知信号DGの時間変化を4つのグラフで示している。このうち、グラフG1は、検知信号DGのうち散乱水の動きに関する情報として抽出された成分(以下、「散乱水成分」とも称する)の時間変化を示している。グラフG2は、検知信号DGのうち手Hの動きに関する情報として抽出された成分(以下、「手成分」とも称する)の時間変化を示している。グラフG3は、検知信号DGのうち整流の動きに関する情報として抽出された成分(以下、「整流成分」とも称する)の時間変化を示している。
また、グラフG4は、検知信号DGの強度の時間変化を示している。すなわち、ミキサ回路65から出力される検知信号DGを電位の振動と見た場合において、当該振動の中心における電位(以下、「基準電位」とも称する)の時間変化を示している。
使用者Mが自動水栓装置AF1の近くに存在しないときには、自動水栓装置AF1は待機状態となっている(図3のステップS01)。このとき、吐水口11からの吐水は行われていない。制御装置50は、検知信号DGのうち特に手成分に基づいて、吐水口11の下方空間おける使用者Mの手Hの有無を監視しながら、吐水を開始すべきかどうかの判定(吐水判定)を繰り返し行っている。
図4は、このような待機状態における自動水栓装置AF1の状態を示している。センサ60からは、常にマイクロ波MWが吐水口11に向けて放射されている。図4に示した状態においては、使用者Mが自動水栓装置AF1に向かって接近しているところではあるが、センサ60と吐水口11との間には何ら物体(手H等)が存在していない。このため、反射波としてセンサ60に戻るマイクロ波MWは僅かとなっている。また、当該反射波の周波数は送信周波数SFと略一致している。その結果、ミキサ回路65から出力される検知信号DGの周波数はほぼ0となっている。
従って、図4の(B)に示したように、散乱水成分(グラフG1)、手成分(グラフG2)、及び整流成分(グラフG3)は、いずれも大きさが0で一定の電位となっている。また、基準電位(グラフG4)は、低い電位で且つ一定となっている。
図5の(A)は、手洗いを開始しようとする使用者Mが、吐水口11の下方に手Hを差し出した状態を示している。手Hは、減速しながら吐水口11の下方空間に侵入し、その一部がマイクロ波MWに当たった状態で停止する。手Hに当たったマイクロ波MWは反射されて、反射波となってセンサ60に戻る。
この時点では、まだ吐水口11からの吐水は開始されていない。このため、図5の(B)に示したように、散乱水成分(グラフG1)及び整流成分(グラフG3)は、いずれも大きさが0で一定の電位のままである。
一方、手成分(グラフG2)は振動する波形の信号となっている。手Hが次第に減速するため、初期においては手成分の振動の周波数は大きく、時間の経過とともに周波数は小さくなっていく。また、手Hが次第に送信部61に近づくため、ミキサ回路65から出力される検知信号DGの強度は次第に大きくなる。その結果、初期においては手成分の振幅は小さく、時間の経過とともに振幅は大きくなっていく。更に、基準電位も時間の経過とともに高くなっていく。
手成分(グラフG2)が上記のように変化したことをもって、制御装置50はステップS01の吐水判定を終了し、吐水を開始するように制御する(図3のステップS02)。尚、吐水判定は、手成分の変化ではなく基準電位の変化に基づいて行ってもよい。具体的には、図5の(B)のグラフG4に示したように基準電位が上昇して所定の閾値を超えた時点で、吐水を開始することとしてもよい。
制御装置50は、使用者Mの手Hが接近する動きを上記のように検知すると、制御信号を送信して開閉弁41を開く。図6の(A)は、このような制御によって吐水が開始された状態を示している。図6の(A)に示したように、吐水口11から吐出された水WTは、少なくともその一部が手Hに当たって散乱しながら下方に向かい、ボウル面21に受け止められる。その後、ボウル面21に沿って排出口23に導かれ、直ちに排水管SWに排出される。
このとき、電波透過領域RPは水没した状態とはならないため、マイクロ波MWは継続して吐水口11に向けて放射されている。マイクロ波MWは散乱水及び手Hによって反射され、それぞれの反射波がセンサ60に戻る。
散乱水及び手Hは、いずれもマイクロ波MWを反射しながら動いている。このため、図6の(B)に示したように、散乱水成分(グラフG1)、及び、手成分(グラフG2)は、振動する波形の信号となっている。一方、図6の(A)の状態においては、手Hに当たらずにボウル面21に直接到達する水WTがほとんど存在せず、整流は形成されていない。その結果、整流成分(グラフG3)は振動しておらず、大きさが0で一定の電位となっている。
ステップS02で吐水が開始された以降においては、制御装置50は、図6の(B)に示した検知信号DGに基づいて、吐水を停止すべきかどうかの判定(止水判定)を繰り返し行う(図3のステップS03)。散乱水成分及び手成分が振動する波形の信号となっており、整流成分が0となっている間は、使用者Mが手洗いを行っていると推定される。このため、制御装置50はそのような間は止水を行わず、吐水を継続するように制御する。
手洗いが終了すると、使用者Mは吐水口11の下方から手Hを引き抜く。図7の(A)は、手Hが引き抜かれた直後の時点における状態を示している。このとき、吐水口11からの吐水は継続して行われているが、吐出された水は手Hに当たらずにボウル面21に直接到達している。このため、吐出された水は整流となっている。
図7の(A)の状態においても、ボウル面21に到達した水はボウル面21に沿って排出口23に導かれ、直ちに排水管SWに排出される。電波透過領域RPは水没した状態とはならないため、マイクロ波MWは継続して吐水口11に向けて放射されている。マイクロ波MWは、整流(の側面)及び手Hによって反射され、それぞれの反射波がセンサ60に戻る。
図7の(B)では、手Hが引き抜かれる過程において、マイクロ波MWが手Hによって反射されなくなった時刻を時刻t1として示している。グラフG1に示したように、時刻t1よりも前の時点から、散乱水成分は大きさが0で一定の電位となっている。これは、吐水口11から吐出された水WTが、手Hに当たらなくなったことを示している。また、それと同時に吐出された水WTは整流となるため、整流成分(グラフG3)は振動する波形の信号となっている。
手成分(グラフG2)は、時刻t1以前では、手Hが次第に送信部61から遠ざかるため、ミキサ回路65から出力される検知信号DGの強度は次第に小さくなる。その結果、時刻t1に近づくに従って振幅は小さくなっていく。更に、基準電位(グラフG4)も時間の経過とともに低くなっていく。
時刻t1以降においては、センサ60と吐水口11との間には整流のみが存在している。このため、整流成分(グラフG3)のみが振動する波形の信号となっており、散乱水成分(グラフG1)、手成分(グラフG2)は、いずれも大きさが0で一定の電位となっている。また、基準電位(グラフG4)は、低い電位で且つ一定となっている。
図7の(B)のように、振動する波形の信号が整流成分(グラフG3)のみという状態になると、ステップS03において止水判定を行っていた制御装置50は、使用者Mの手洗い動作が完了したと判断し、吐水口11からの吐水を停止する制御を行う。
吐水が停止された後においても、マイクロ波MWは継続して吐水口11に向けて放射される。センサ60と吐水口11との間には何ら物体が存在せず、以降は図4の(A)に示した待機状態に戻る。
以上に説明したように、本実施形態に係る自動水栓装置AF1においては、電波透過領域RPの位置が水没しない位置となるように、センサ60が配置されている。センサ60がこのように配置されているため、使用者Mの手Hとセンサ60との間に介在する水WTがマイクロ波MWの進行を遮ってしまうことが無い。吐水が行われている際は、ボウル面21よりも上方において常にマイクロ波MWが放射された状態となっているため、制御装置50により手Hの動きを常に正確に検知することが可能となっている。その結果、手Hが吐水口11の下方の空間から引き抜かれたにも拘わらず、吐水がいつまでも継続されてしまうようなことが防止されている。
既に説明したように、自動水栓装置AF1は、吐水口11からの吐水を長時間継続した場合であっても、吐出された水WTがボウル20に溜まることのない構成となっている。従って、通常の使用状態においては、ボウル20における水位が上昇してしまうことはない。
しかし、例えば排出口23に異物が詰まってしまう等により、排水管SWへの水の排出に異常が生じた場合には、ボウル20における水位が上昇し、電波透過領域RPが水没してしまうようなことも起こり得る。
図8は、排出口23に異物Obが詰まってしまった状態を説明するための図である。図8の(A)は、排出口23に異物Obが詰まっている状態のまま、使用者Mが手Hを差し出して、吐水が開始された後の状態を示している。吐出された水WTは、排出口23に流入することができないため、ボウル20に溜まってしまう。その結果、ボウル20における水位は上昇し、図8の(A)に示したように電波透過領域RPが水没してしまう。
マイクロ波は、陶器であるボウル20を透過することができるが、水WTを透過することはできない。このため、図8の(A)のように電波透過領域RPが水没してしまうと、センサ60から放射されたマイクロ波MWは、ボウル20と貯留された水WTとの境界面において全て反射され、その反射波がセンサ60に戻る。従って、マイクロ波MWはボウル面21よりも上方には到達しない。図8の(B)は、このように電波透過領域RPが水没した状態における、散乱水成分(グラフG1)、手成分(グラフG2)、整流成分(グラフG3)、基準電位(グラフG4)の時間変化を示している。
マイクロ波MWは、ボウル面21よりも上方には到達しないのであるから、散乱水、手H、整流のいずれにも当たることがない。また、送信部61から放射されたマイクロ波MWは、ボウル20と貯留された水WTとの境界面(当該境界面は静止している)において全て反射される。このため、ミキサ回路65から出力される検知信号DGの周波数の値は0となる。その結果、散乱水成分(グラフG1)、手成分(グラフG2)、及び整流成分(グラフG3)は、いずれも大きさが0で一定の電位となっている。
その後、手洗いが終了すると、使用者Mは吐水口11の下方から手Hを引き抜く。このとき、吐水口11から吐出された水は整流となる。しかし、マイクロ波MWは貯留された水WTに妨げられるため、整流には到達しない。その結果、演算装置53には、図7の(B)のグラフG3に示したような波形の検知信号DGが入力されない。
図7の(B)を参照しながら説明したように、制御装置50は、振動する波形の信号が整流成分(グラフG3)のみという状態になったことをもって、使用者Mの手洗い動作が完了したと判断する。このため、図8に示した状態においては、制御装置50はステップS03の止水判定を正確に行うことができず(使用者Mの手洗い動作が完了したことを正確に検知することができず)、いつまでも無駄な吐水が継続されてしまう可能性がある。
そこで、自動水栓装置AF1の制御装置50は、ステップS03において止水判定を行うことに加えて、これと並行して強制止水判定を行っている(ステップS04)。強制止水判定とは、上記のように排水管SWへの水WTの排出に異常が生じた際に、吐水を強制的に停止すべきかどうかを判定する処理である。制御装置50は、電波透過領域RPが水没していることを検知すると、強制的にステップS05に移行して吐水を停止させる。すなわち、振動する波形の信号が整流成分(グラフG3)のみという状態になること等を待つことなく(使用者Mの手洗い動作が完了したことを検知又は判定することなく)、強制的に吐水を停止させる。
電波透過領域RPが水没していることを制御装置50が検知(判断)するための具体的な方法としては、様々な方法を採用することができる。例えば、散乱水成分(グラフG1)と手成分(グラフG2)の両方が振動する波形となっている図6の状態から、散乱水成分(グラフG1)、手成分(グラフG2)、及び整流成分(グラフG3)が全て一定である図8の状態に変化したことが検知された時点で、電波透過領域RPが水没していると判断することができる。
また、図8の(B)のグラフG4に示したように、電波透過領域RPが水没している状態においては、センサ60に比較的近い位置でマイクロ波MWが反射されている。その結果、基準電位が非常に高くなっている。そこで、基準電位が所定の閾値ULを超えたことが検知された時点で、電波透過領域RPが水没していると判断することもできる。
以上のような方法により、電波透過領域RPが水没していると判断した場合には、制御装置50は強制的にステップS05に移行して吐水を停止させる。制御装置50がこのような強制止水を行うことにより、排水管SWへの水WTの排出に異常が生じた場合であっても、吐水が無駄に継続されてしまうようなことや、その結果として水WTがボウル20から溢れてしまうようなことが確実に防止される。
図9の(A)は、使用者Mが洗顔を行っている状態を示している。洗顔は、両手に水を溜めた後、当該水を水塊となして一気にボウル面21に落下させる動作を含んでいる。このため、排水管SWへの水WTの排出に異常が生じていない場合であっても、落下した水塊によって電波透過領域RPが一時的に覆われてしまい、マイクロ波MWがボウル面21よりも上方に届かなくなってしまう場合がある。すなわち、電波透過領域RPが水没した状態と同じになってしまう場合がある。
図9の(B)は、このときにおける散乱水成分(グラフG1)、手成分(グラフG2)、整流成分(グラフG3)、基準電位(グラフG4)の時間変化を示している。時刻t2より前の時点においては、ボウル面21に落下した水塊が電波透過領域RPの全体を覆っている。
時刻t2以降においては、ボウル面21に落下した水塊はボウル面21に沿って流れて、排出口23に流入する。このため、マイクロ波MWは再び電波透過領域RPを透過するようになる。尚、図9の(B)は、時刻t2までの間に使用者Mの手Hが引き抜かれており、時刻t3以降においては整流のみが検知されている場合の例を示している。手Hが引き抜かれるタイミングによっては、異なる波形となることは言うまでもない。
落下した水塊によって電波透過領域RPが一時的に覆われているとき(時刻t2よりも前)においては、図9の(B)に示した各グラフは、それぞれ図8の(B)に示した各グラフと同一となっている。しかし、この場合には、排水管SWへの水WTの排出に異常が生じているわけではないため、電波透過領域RPが覆われたとしても吐水を停止させる必要はない。
また、図9の(A)に示した状態では、洗願を行っている使用者Mは継続して吐水が行われることを期待するはずである。従って、電波透過領域RPの水没が検知されたことに伴って吐水を強制的に停止してしまうと、使用者Mに違和感や使い勝手の悪さを感じさせてしまうこととなり、適切ではない。
そこで、自動水栓装置AF1では、電波透過領域RPが水没したことが検知されても、その時点で直ちには吐水を停止しない。電波透過領域RPが水没したことが検知されてから、そのような状態が所定時間継続した場合にのみ、ステップS04からステップS05に移行して吐水を強制的に停止することとしている。
制御装置50がこのような制御を行うことにより、自動水栓装置AF1が使用されている途中において不適切なタイミングで吐水が停止されてしまい、使用者Mに対して違和感や使い勝手の悪さを感じさせてしまうことが防止される。
本発明の第二実施形態に係る自動水栓装置AF2について、図10を参照しながら説明する。自動水栓装置AF2は、ボウル20がオーバーフロー口24及びオーバーフロー管25を備えている点において、自動水栓装置AF1と異なっている。また、制御装置50により行われる強制止水判定の内容についても、自動水栓装置AF1と異なっている。その他については自動水栓装置AF1と同一であるため、自動水栓装置AF1と共通する事項については説明を省略する。
ボウル面21のうち上方側の部分であって、且つ使用者Mから見て奥側となる部分には、オーバーフロー口24が形成されている。オーバーフロー口24は、ボウル20から水が溢れることを防止するためのものである。排出口23に異物Obが詰まった状態のまま吐水が行われ、ボウル20における水位が上昇した際には、ボウル20に貯留された水はオーバーフロー口24に流入する。このため、ボウル面21の縁から水が溢れてしまうことが防止される。
オーバーフロー管25は、オーバーフロー口24に流入した水を排水管SWに導くための管である。本実施形態では、オーバーフロー管25は、ボウル20の裏面に沿うように配置されている。オーバーフロー管25の一端はオーバーフロー口24に対して裏側から接続されており、オーバーフロー管25の他端は、排出口23よりも下方において、排水管SWに対して分岐接続されている。
センサ60は、オーバーフロー管25の更に裏側(使用者Mから見て奥側)に配置されており、送信部61から放射されたマイクロ波MWが、オーバーフロー管25の内部を透過して吐水口11に向かうように配置されている。
図10の(A)は、このような自動水栓装置AF2において、排出口23に異物Obが詰まっている状態のまま使用者Mが手Hを差し出して、吐水が開始された後の状態を示している。吐出された水WTは、排出口23に流入することができないため、ボウル20に溜まってしまう。その結果、ボウル20における水位は上昇しており、図10の(A)に示したように電波透過領域RPは水没している。
図10の(B)は、このように電波透過領域RPが水没した状態における、散乱水成分(グラフG1)、手成分(グラフG2)、整流成分(グラフG3)、基準電位(グラフG4)の時間変化を示している。
図8に示した場合と同様に、マイクロ波MWは、ボウル面21よりも上方には到達しないのであるから、散乱水、手H、整流のいずれにも当たることがない。このため、手成分(グラフG2)及び整流成分(グラフG3)は、いずれも大きさが0で一定の電位となっている。
一方、散乱水成分(グラフG1)については一定とならず、振動する波形の信号となっている。これは、送信部61から放射されたマイクロ波MWがオーバーフロー管25の内部を透過する際に、オーバーフロー管25の内部を流れる水によって反射されたことによるものである。このような反射波を受信部62が受信した際にミキサ回路65から出力される検知信号DGは、その周波数が、散乱水による反射波を受信した際の周波数とほぼ等しい。このため、実際にはマイクロ波MWは散乱水に到達していないにもかかわらず、散乱水成分(グラフG1)は振動する波形の信号となる。
排水管SWへの水WTの排出が正常に行われている状態においては、散乱水成分(グラフG1)のみが振動する波形の信号となり、手成分(グラフG2)及び整流成分(グラフG3)がいずれも一定となることは起こり得ない。従って、本実施形態では、散乱水成分、手成分、整流成分が上記のようになったことが検出された時点で、制御装置50は、電波透過領域RPが水没していると判断することとしている。
自動水栓装置AF1の場合と同様に、制御装置50は、上記のような方法で電波透過領域RPが水没していることを検知すると、ステップS04からステップS05に移行して吐水を強制的に停止する。ただし、電波透過領域RPが水没していることが検知された時点で直ちに吐水を停止するのではない。電波透過領域RPが水没したことが検知されてから、そのような状態が所定時間継続した場合にのみ、ステップS04からステップS05に移行して吐水を強制的に停止する。
尚、以上の説明においては、電波透過領域RPが水没していることを検知信号DGに基づいて判断し、これに基づいて吐水を強制的に停止する例を説明した。本発明の実施形態としてはこのような態様に限られず、種々の制御方法を採用することができる。例えば、吐水が開始されてからの経過時間が所定の上限時間に達すると、排水管SWへの水の排出に異常が生じたと推定し、その時点で吐水を強制的に停止することとしてもよい。このような方法であっても、ボウル20における水位の上昇が抑制されるため、水が溢れてしまうことや、いつまでも無駄な吐水が継続されてしまうこと等が防止される。
以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
10:スパウト
11:吐水口
20:ボウル
21:ボウル面
22:上面
23:排出口
24:オーバーフロー口
25:オーバーフロー管
40:給水管
41:開閉弁
42:定流量弁
50:制御装置
51:増幅回路
52:バンドパスフィルタ
53:演算装置
60:センサ
61:送信部
62:受信部
63:発振回路
64:結合回路
65:ミキサ回路
AF1,AF2:自動水栓装置
DG:検知信号
M:使用者
H:手
MW:マイクロ波
Ob:異物
RP:電波透過領域
SF:送信周波数
SL1,SL2:信号線
SW:排水管
WT:水

Claims (6)

  1. 吐水口を有する吐水部と、
    前記吐水口から吐出された水を受けて、当該水を排水管に排出するボウル部と、
    電波を放射してその反射波を受信し、前記反射波に基づいて被検知体の動きに関する検知信号を出力するセンサと、
    前記検知信号に基づいて、前記吐水口からの吐水及び止水を制御する制御部と、を備えた自動水栓装置であって、
    前記センサは、前記ボウル部を挟んで前記吐水口とは反対側となる位置に配置されており、前記ボウル部を透過して前記吐水口に向かうように電波を放射するものであって、
    前記ボウル部のうち電波が透過する領域である電波透過領域の位置が、前記ボウル部が受けた水によって水没しない位置となるように、前記センサが配置されており、
    前記制御部は強制止水手段を有しており、
    前記強制止水手段は、
    前記排水管への水の排出に異常が生じた場合において、前記電波透過領域が水没した状態のまま前記吐水口からの吐水が継続されてしまうことを防止するために、前記被検知体の動きに基づくことなく、前記吐水口からの吐水を強制的に停止するものであることを特徴とする自動水栓装置。
  2. 前記吐水部は、前記吐水口から吐出される水の流量が所定の上限流量を超えないように規制する流量規制機構を有しており、
    前記ボウル部は、前記排水管に向けた水の排出を規制する手段を有しておらず、受けた水を直ちに前記排水管に排出するものであって、
    前記排水管に排出され得る水の最大流量が前記上限流量よりも大きくなるよう、前記ボウル部が形成されていることにより、前記電波透過領域が水没しない構成となっていることを特徴とする、請求項1に記載の自動水栓装置。
  3. 前記強制止水手段は、
    前記吐水口からの吐水が行われており、且つ、前記排水管への水の排出に異常が生じ前記電波透過領域が水没している状態、が所定時間継続した場合に、前記吐水口からの吐水を強制的に停止することを特徴とする、請求項に記載の自動水栓装置。
  4. 前記強制止水手段は、
    前記吐水口からの吐水が行われている際における前記反射波の周波数が、前記センサから放射された電波の周波数と略一致している状態を、前記電波透過領域が水没している状態として判断することを特徴とする、請求項に記載の自動水栓装置。
  5. 前記強制止水手段は、
    前記吐水口からの吐水が行われている際における前記反射波の強度が所定強度以上になった状態を、前記電波透過領域が水没している状態として判断することを特徴とする、請求項に記載の自動水栓装置。
  6. 前記ボウル部は、前記ボウル部から水が溢れることを防止するためのオーバーフロー口が、その上方側の部分に形成されており、前記オーバーフロー口に流入した水を前記排水管に導くためのオーバーフロー管を有するものであって、
    前記センサは、放射された電波が、前記オーバーフロー管の内部を透過して前記吐水口に向かうように配置されており、
    前記強制止水手段は、
    前記センサ部から、前記オーバーフロー管の内部を水が流れたことを示す前記検知信号が出力された場合に、前記吐水口からの吐水を強制的に停止することを特徴とする、請求項に記載の自動水栓装置。
JP2013056260A 2013-03-19 自動水栓装置 Active JP6103364B6 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056260A JP6103364B6 (ja) 2013-03-19 自動水栓装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056260A JP6103364B6 (ja) 2013-03-19 自動水栓装置

Publications (4)

Publication Number Publication Date
JP2014181482A JP2014181482A (ja) 2014-09-29
JP2014181482A5 JP2014181482A5 (ja) 2015-12-03
JP6103364B2 true JP6103364B2 (ja) 2017-03-29
JP6103364B6 JP6103364B6 (ja) 2017-07-12

Family

ID=

Also Published As

Publication number Publication date
JP2014181482A (ja) 2014-09-29

Similar Documents

Publication Publication Date Title
WO2012033166A1 (ja) 自動水栓装置
TWI431302B (zh) Water outlet
JP2009150190A (ja) 吐水装置
JP2007247159A (ja) 自動水栓及び自動水栓機能付き洗面装置
JP6103364B2 (ja) 自動水栓装置
JP6103364B6 (ja) 自動水栓装置
JP2010145379A (ja) センサ装置
JP2016061030A (ja) 検知装置及び小便器洗浄装置
JP6249349B2 (ja) 吐水装置
JP2017222987A (ja) 小便器装置
JP5246586B2 (ja) 吐水装置
JP2009233047A (ja) システムキッチン
JP5812510B2 (ja) 自動水栓装置
JP2001311191A (ja) 動体検知システム
JP7158651B2 (ja) 小便器装置
JP2017172191A (ja) 水周り機器
JP2010144494A (ja) 吐水装置
JP5885120B2 (ja) 自動水栓装置
JP6651771B2 (ja) 自動水栓装置
JP5088221B2 (ja) 水栓装置
JP2009036011A (ja) 吐水装置
JP6621047B2 (ja) 対象物検出装置
JP6839408B2 (ja) 自動水栓
JP2010144496A (ja) 水栓装置
JP7189492B2 (ja) 衛生洗浄装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170216

R150 Certificate of patent or registration of utility model

Ref document number: 6103364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150