JP6097487B2 - 遠心ポンプ - Google Patents

遠心ポンプ Download PDF

Info

Publication number
JP6097487B2
JP6097487B2 JP2012060652A JP2012060652A JP6097487B2 JP 6097487 B2 JP6097487 B2 JP 6097487B2 JP 2012060652 A JP2012060652 A JP 2012060652A JP 2012060652 A JP2012060652 A JP 2012060652A JP 6097487 B2 JP6097487 B2 JP 6097487B2
Authority
JP
Japan
Prior art keywords
fluid
return vane
pressure surface
pressure
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012060652A
Other languages
English (en)
Other versions
JP2013194558A (ja
Inventor
佐野 岳志
岳志 佐野
中村 裕樹
裕樹 中村
真成 飯野
真成 飯野
崇文 樋口
崇文 樋口
晃生 前田
晃生 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012060652A priority Critical patent/JP6097487B2/ja
Publication of JP2013194558A publication Critical patent/JP2013194558A/ja
Application granted granted Critical
Publication of JP6097487B2 publication Critical patent/JP6097487B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、例えば、複合発電プラントなどの給水設備などに給水ポンプとして使用される遠心ポンプに関するものである。
発電プラントの高効率化の観点から、ガスタービンと蒸気タービンを組み合わせた複合発電プラントが提案されている。この複合発電プラントでは、ガスタービンから排出された高温の排気ガスを排熱回収ボイラに送り、この排熱回収ボイラ内で加熱ユニットを用いて蒸気を生成し、生成した蒸気を蒸気タービンに送ってこの蒸気タービンを駆動するようにしている。この排熱回収ボイラに設けられた加熱ユニットは、複数段(例えば、高圧、中圧、低圧)のユニットからなり、それぞれ節炭器、蒸発器、過熱器等を有している。
従って、蒸気タービンにおける低圧タービンから排出された蒸気は、復水器で冷却されて復水となり、復水ポンプ及び給水ポンプにより高圧過熱系に送られ、ここで過熱されて高圧蒸気となって高圧タービンに送られて仕事をして中圧蒸気となる。そして、この中圧蒸気は再熱器で過熱されて中圧タービンに送られて仕事をして低圧蒸気となる。そして、この低圧蒸気は低圧タービンに送られて仕事をする。また、復水器から高圧過熱系に送られる復水の一部は中圧過熱系に送られ、ここで過熱されてから高圧タービンからの中圧蒸気と共に再熱器に送られる。更に、復水器から高圧及び中圧過熱系に送られる復水の一部は低圧過熱系に送られ、ここで過熱されてから中圧タービンからの低圧蒸気と共に低圧タービンに送られる。
このような複合プラントにあっては、復水器からの復水は、復水ポンプ及び給水ポンプにより高圧過熱系、中圧過熱系、低圧過熱系に送られる。この場合、給水ポンプは、水を複合プラント内で循環させる重要な役目を担っている。この給水ポンプは、通常、多段式遠心ポンプが適用される。
従来の多段式遠心ポンプは、中空形状をなすケーシング内に回転軸が駆動回転可能に支持され、この回転軸に複数のブレード(羽根)からなるインペラ(羽根車)が、多段に装着されて構成される。そして、多段のインペラの入口側に吸込通路が設けられる一方、出口側にディフューザ通路及び流体の戻り通路であるリターン通路が設けられている。
リターン通路は、前段のインペラによって圧送された流体を後段のインペラに送る役目を果たすものであって、リターン通路における吸込通路直前のストレート部には、回転軸の周方向に沿って等間隔に、かつ、回転軸を中心として放射状に配置されているリターンベーンが設けられている(例えば特許文献1参照)。
特開2008−298020号公報
ところで、多段式遠心ポンプのリターンベーンは、ディフューザ通路で転向された流れを次段のインペラへ導くために用いられ、同時に、ディフューザ通路出口に残存する流れの旋回成分を除去する役割を持っている。通常、ディフューザ通路出口における流れ角は20°〜30°であり、これを、次段のインペラ入口において90°にまで転向させる必要がある。しかしながら、ディフューザ通路出口から吸込通路までの少ないスペースで流体の流れを転向させる必要があるため、流れが完全に転向せず、流体のはく離が生じる場合がある。
また、流体がリターンベーンに沿って流れた場合においても、リターンベーンの後縁を通過した後に、遠心力によって流れ方向が曲げられてしまう(偏流)場合がある。
この場合、次段のインペラ入口において旋回流れが残存することによって、インペラ効率が低下する場合がある。また、効率を維持できたとしても、インペラ揚程が低下する場合があり、揚程確保のために、インペラ外径を大きくする必要があり、製造コスト面で不利となる。
この発明は、このような事情を考慮してなされたもので、その目的は、リターンベーンによって流体の流れの旋回成分を除去しながら流体を次段のインペラに導く際、旋回流れの残存を抑制する遠心ポンプを提供することにある。
上記課題を解決するために、この発明は以下の手段を提供している。
本発明の遠心ポンプは、軸線回りに回転する回転軸と、前記軸線方向に配列されるように前記回転軸に設けられ、流体を遠心力により圧送する複数のインペラと、上流側の前記インペラによって径方向外側に圧送された前記流体を径方向内側に反転させて下流側の前記インペラに流入させる流路と、前記流体が反転された後の前記流路に周方向に間隔をあけて複数が設けられ、前記流体を径方向内側に向かって転向させるように湾曲するリターンベーンと、を備え、前記リターンベーンが、該リターンベーンの腹側である圧力面から背側である負圧面に向かうに従って下流側に傾斜するように、これら圧力面と負圧面を連通させる第一連通部を有し、前記第一連通部は、前記リターンベーンの下流側の端部である後縁において前記負圧面に沿って流れる流体を形成して、前記リターンベーンの前記後縁において前記圧力面を流れてきた流体の流れ方向を維持するように前記リターンベーンの下流側に設けられていることを特徴とする。
上記構成によれば、圧力面に沿って流れる流体が、第一連通部を介して圧力面から負圧面へ通過し、そのまま負圧面に沿って流れることによって、エネルギーの高い流体が負圧面に流れる。この流体により、負圧面側を流れてきた流体がはく離するのを抑制することができる。また、エネルギーの高い流体により、リターンベーンの後縁を通過した後の偏流を抑制することができる。
上記構成によれば、圧力面に沿って流れる流体が、リターンベーンの下流側において第一連通部を介して圧力面から負圧面へ通過し、そのまま負圧面に沿って流れることによって、エネルギーの高い流体が負圧面に流れる。この流体により、特に、リターンベーンの後縁を通過した後の偏流を抑制することができる。
上記遠心ポンプにおいて、前記リターンベーンの上流側に、該リターンベーンの圧力面から負圧面に向かうに従って下流側に傾斜するように、これら圧力面と負圧面を連通させる第二連通部を有することが好ましい。
上記構成によれば、下流側の第一連通部によって、リターンベーンの後縁を通過した後の偏流を抑制することができるとともに、上流側の第二連通部によって、負圧面側を流れてきた流体がはく離するのを抑制することができる。
また、本発明の遠心ポンプは、軸線回りに回転する回転軸と、前記軸線方向に配列されるように前記回転軸に設けられ、流体を遠心力により圧送する複数のインペラと、上流側の前記インペラによって径方向外側に圧送された前記流体を径方向内側に反転させて下流側の前記インペラに流入させる流路と、前記流体が反転された後の前記流路に周方向に間隔をあけて複数が設けられ、前記流体を径方向内側に向かって転向させるように湾曲するリターンベーンと、を備え、前記リターンベーンは、主翼と、前記リターンベーンの後縁を構成する後置翼と、から構成され、前記後置翼の圧力面は、前記主翼の圧力面の面に対して圧力面側にオフセットしており、前記後置翼において前記後置翼の背側である負圧面に沿って流れる流体を形成して、前記後置翼において前記圧力面を流れてきた流体の流れ方向を維持するように前記主翼と前記後置翼との間に第一連通部が設けられることを特徴とする。
上記構成によれば、圧力面に沿って流れる流体が、第一連通部を介して圧力面から負圧面へ通過し、そのまま負圧面に沿って流れることによって、エネルギーの高い流体が負圧面に流れる。この流体により、特に、リターンベーンの後縁を通過した後の偏流を抑制することができる。
上記遠心ポンプにおいて、前記リターンベーンは、前記リターンベーンの前縁を構成する前置翼をさらに備え、前記前置翼の圧力面の面は、前記主翼の圧力面の面に対して負圧面側にオフセットしており、前記主翼と前記後置翼との間に第二連通部が設けられることが好ましい。
上記構成によれば、下流側の第一連通部によって、リターンベーンの後縁を通過した後の偏流を抑制することができるとともに、上流側の第二連通部によって、負圧面側を流れてきた流体がはく離するのを抑制することができる。
本発明によれば、圧力面に沿って流れる流体が、第一連通部を介して圧力面から負圧面へ通過し、そのまま負圧面に沿って流れることによって、エネルギーの高い流体が負圧面に流れる。この流体により、負圧面側を流れてきた流体がはく離するのを抑制することができる。また、エネルギーの高い流体により、リターンベーンの後縁を通過した後の偏流を抑制することができる。
本発明の実施形態に係る給水ポンプを示す断面図である。 本発明の実施形態に係る給水ポンプの要部断面図である。 図2のA−A矢視図である。 リターンベーンの斜視図である。 リターンベーンの周囲の流体の流れを説明する図である。 別の実施形態のリターンベーンの斜視図である。 本発明の第二実施形態に係るリターンベーンの概略図である。 本発明の実施形態に係る給水ポンプが適用された複合プラントの概略構成図である。
(第一実施形態)
以下、本発明の第一実施形態について図面を参照して詳細に説明する。
図8に示すように、本実施形態に係る給水ポンプ(遠心ポンプ)1が適用された複合プラント70において、ガスタービン71は、圧縮機72と燃焼器73とタービン74とから構成されている。また、蒸気タービン75は、高圧タービン76と中圧タービン77と低圧タービン78とが一軸に連結されて構成されている。そして、ガスタービン71の圧縮機72に吸気ライン79が設けられる一方、タービン74に排気ライン80が設けられ、この排気ライン80によりガスタービン71から排出された排気ガスを排熱回収ボイラ81に送ることができる。
排熱回収ボイラ81は、図示しないが、低圧ユニットと中圧ユニットと高圧ユニットと再熱器を有している。この排熱回収ボイラ81内では、ガスタービン71からの排気ガスが上方に移送することで、高圧ユニット、中圧ユニット、低圧ユニットの順に熱回収を行って蒸気を発生させ、発生した蒸気を蒸気タービン75に送って駆動し、発電機82を運転可能となっている。
そして、高圧ユニットの高圧蒸気を高圧タービン76に供給する高圧蒸気供給ライン83が設けられると共に、高圧タービン76から排出された中圧蒸気を再熱器に戻す中圧蒸気回収ライン84が設けられている。そして、再熱器で過熱された中圧蒸気を中圧タービン77に供給する中圧蒸気供給ライン85が設けられると共に、中圧タービン77から排出された中圧蒸気を低圧タービン78に供給する低圧蒸気搬送ライン86が設けられている。また、低圧ユニットに発生した低圧蒸気をこの低圧蒸気搬送ライン86に供給する低圧蒸気供給ライン87が設けられている。
低圧タービン78から排出された蒸気を凝縮する復水器88には、海水により冷却する冷却水循環ライン89が設けられている。そして、この復水器88には、凝縮した復水を排熱回収ボイラ81に戻す復水回収ライン90が設けられており、この復水回収ライン90には、復水ポンプ91及び脱気器92が設けられている。また、この復水回収ライン90の下流端部は、給水ポンプ1及び給水ライン94を介して排熱回収ボイラ81の高圧ユニット、中圧ユニット、低圧ユニットに連結されている。
従って、ガスタービン71では、吸気ライン79を通して圧縮機72に取り込まれた空気が圧縮されることで高温・高圧の圧縮空気となり、この圧縮空気が燃焼器73に送られ、ここで圧縮空気と燃料の混合気に着火されて燃焼し、この燃焼器73で生成された高温・高圧の燃焼ガスがタービン74に送られて駆動する。そして、タービン74から排出された排気ガスは排気ライン80を通って排熱回収ボイラ81に送られ、ここで、高温・高圧の排気ガスにより蒸気を生成する。
即ち、復水器88で凝縮された復水が、復水ポンプ91で加圧されて脱気器92で溶存酸素が取り除かれた後、給水ポンプ1により給水ライン94を通って排熱回収ボイラ81に戻される。すると、この高圧ユニットで過熱されて発生した高圧蒸気が、高圧蒸気供給ライン83を通して高圧タービン76に送られ、ここで仕事をして中圧蒸気となる。この中圧蒸気は中圧蒸気回収ライン84を通して排熱回収ボイラ81の再熱器に送られ、再加熱された後、中圧蒸気供給ライン85を通して中圧タービン77に送られ、ここで仕事をして低圧蒸気となる。そして、この低圧蒸気は低圧蒸気搬送ライン86を通して低圧タービン78に送られ、ここで仕事をして復水器88に戻される。
また、給水ポンプ1から抽出された復水は、排熱回収ボイラ81の中圧ユニットに戻され、この中圧ユニットで過熱されてから、中圧蒸気供給ライン85に供給される。更に、給水ライン94を通る復水の一部は、低圧ユニットに戻され、この低圧ユニットで過熱されてから、低圧蒸気供給ライン87を通して低圧蒸気搬送ライン86に供給される。
図1に示すように、給水ポンプ1は、外部ケーシング2と、外部ケーシング2の内部に配置されている内部ケーシング3と、内部ケーシング3を貫通するように配置された回転軸4と、キーを介して回転軸4に一体回転可能に固定された両吸込インペラ5及び複数のインペラ6と、で主に構成されている。
外部ケーシング2は、中空形状をなし、吸込口8と、吐出口9が形成されている。内部ケーシング3は、所謂、輪切構造をなしており、複数のリング部材10から構成されている。これら外部ケーシング2と内部ケーシング3とによって、流体を上流側から下流側に流す流路7が形成されている。
また、外部ケーシング2の一端部(図1の右端部)にケーシングカバー11が装着されているとともに、外部ケーシング2の他端部にケーシングカバー12が装着され、ケーシングカバー11,12がそれぞれ複数の締結ボルト13,14により固定されることで、外部ケーシング2、内部ケーシング3、及びケーシングカバー11,12が一体化される。
また、吸込口8には、復水回収ライン90(図8参照)が連結され、吐出口9には給水ライン94が接続されている。
両吸込インペラ5は、外部ケーシング2の内部に収容されており、吸込口8から流体を吸込むように構成されている。複数のインペラ6は、内部ケーシング3における各々のリング部材10の内部に、回転軸4の軸方向に間隔を空けて収容されている。回転軸4は図示しない軸受によって回転自在に支持されている。なお、回転軸4は、図示しない原動機によって回転駆動可能となっている。
外部ケーシング2には、両吸込インペラ5の吐出側が図示しない給水経路を介して隣接するインペラ6の吸入側に接続されている。各々のインペラ6の吐出側は、隣接するインペラ6の吸入側に接続されている。そして、端部のインペラ6の吐出側が吐出口9に接続されている。
内部ケーシング3の内部には、吸込口8及び吐出口9にそれぞれ連通し、縮径及び拡径を繰り返す内部空間が設けられている。この内部空間は、インペラ6を収容する空間として機能すると共に流路7としても機能する。つまり、吸込口8と吐出口9とは、インペラ6及び流路7を介して連通している。
各々のインペラ6は、図1及び図2に示すように、吐出口9側に進むにつれて漸次拡径した略円盤状のハブ18と、ハブ18に放射状に取り付けられ、周方向に並んだ複数の羽根19と、これら複数の羽根19の先端側を周方向に覆うように取り付けられたシュラウド20と、で主に構成されている。
流路7は、流体が段階的に圧縮されるように各々のインペラ6間を繋ぐように形成されている。詳細に説明すると、この流路7は、吸込通路22と、圧縮通路23と、ディフューザ通路24と、リターン通路25と、で主に構成されている。
吸込通路22は、径方向外方から径方向内方に向かって流体を流した後、流体の向きをインペラ6の直前で回転軸4の軸方向に変換させる通路である。
圧縮通路23は、ハブ18の羽根取付面とシュラウド20の内壁面とで囲まれた通路であり、吸込通路22から送られてきた流体をインペラ6内で圧縮させるための通路である。
ディフューザ通路24は、径方向内方側が圧縮通路23に連通している。このディフューザ通路24は、インペラ6によって圧縮された流体を径方向外方に流している。ディフューザ通路24には、回転軸4の軸線Oを中心として周方向に等間隔に配置された複数のディフューザベーン16が設けられている。各々のディフューザベーン16は、軸方向視において径方向内周側から外周側へ延在するとともに、周方向に凸の湾曲形状をなしている。
リターン通路25は、一端側がディフューザ通路24に連通し、他端側が吸込通路22に連通するようになっている。このリターン通路25は、ディフューザ通路24を通って径方向外方に流れてきた流体の向きを径方向内方に向くように反転させるコーナー部26と、径方向外方から径方向内方に向かって延出するストレート部27と、で構成されている。
ストレート部27は、内部ケーシング3に一体的に取り付けられた隔壁部材3aの下流側側壁26aと、内部ケーシング3に一体的に取り付けられ、径方向内方に延伸した延伸部3bの上流側側壁26bと、で囲まれた通路である。また、ストレート部27には、回転軸4の軸線Oを中心として周方向に等間隔に配置された複数のリターンベーン17が設けられている。各々のリターンベーン17は、軸方向視において径方向内周側から外周側へ延在するとともに、周方向に凸の湾曲形状をなしている。
図3及び図4に示すように、各々のリターンベーン17は、流体の上流側(径方向外側)から下流側(径方向内側)に向かって延在する弧状のベーンである。リターンベーン17は、上流側の端部である前縁29と、下流側の端部である後縁30とを有し、前縁29と後縁30とを結ぶベーン中心線Cは弧状に湾曲している。
具体的には、前縁29側において図3に矢印で示す流体の流れ方向に沿うように形成されているとともに、インペラ6の入口において流体の流れを転向させるために、負圧面32よりも圧力が高い圧力面31側(腹側)が湾曲部の内側となるように湾曲している。即ち、圧力面31と反対側の負圧面32側(背側)が凸となるような弧状に形成されている。
そして、リターンベーン17は、リターンベーン17の後半部分(下流側)において、圧力面31と負圧面32とを連通させる第一スリット(第一連通部)33と、リターンベーン17の前半部分(上流側)において圧力面31と負圧面32とを連通させる第二スリット(第二連通部)34とを有している。第一スリット33と第二スリット34とは、リターンベーン17において、回転軸4の軸方向に長さを有し、下流側側壁26a(図2参照)から上流側側壁26bまで延在するスリットである。
第一スリット33は、リターンベーン17の圧力面31から負圧面32に向かうに従って、流体の下流側に傾斜している。同様に、第二スリット34は、リターンベーン17の圧力面31から負圧面32に向かうに従って、流体の下流側に傾斜している。即ち、第一スリット33及び第二スリット34は圧力面31及び負圧面32に直交する方向に形成されておらず、機能的な表現をすると、圧力面31に沿って流れる流体が滑らかに導入され、負圧面32側に流れ、かつ、負圧面32側に流れた流体が負圧面32に沿って流れるような形状を有している。
次に、このように構成された給水ポンプ1の作用について説明する。
本実施形態の給水ポンプ1では、図1及び図2に示すように、回転軸4と共に各々のインペラ5,6が回転すると、復水が吸込口8から外部ケーシング2内に吸い込まれ、両吸込インペラ5で昇圧された後に各々のインペラ6により昇圧される。このとき、復水は、各々のインペラ6を流過する過程で昇圧された後、各々のディフューザ通路24で復水の動圧が静圧に変換される。そして、端部のディフューザ通路24で減速された復水は、吐出口9から吐出される。
ところで、ディフューザ通路24に設けられているディフューザベーン16で転向された流体の流れは、リターンベーン17によって次段のインペラ6に導かれるとともに、旋回成分が除去される。
図5に示すように、流体がリターンベーン17の前半部分(上流側)を流れる際、圧力面31側を流れる流体の一部は、第二スリット34を通過して負圧面32に沿って流れる(符号F1)。この流れは比較的高いエネルギーを有しているため、上流側より負圧面32側を流れてきた流体が、図5の符号S1で示すようなはく離を起こすことを抑制する働きをする。
また、流体がリターンベーン17の後半部分(下流側)を流れる際、圧力面31側を流れる流体の一部は、第一スリット33を通過して負圧面32に沿って流れる(符号F2)。この流れは比較的高いエネルギーを有しているため、圧力面31側を流れてきた流体が、図5の符号S2で示すようなリターンベーン17の後縁30を通過した後に、遠心力による偏流を起こすことを抑制する働きをする。
即ち、第一スリット33及び第二スリット34は、リターンベーン17のコアンダ効果を促進させ、流体の流れの転向の阻害要因を抑制する。これにより、揚程を確保するために、例えばインペラ6の外径を大きくする必要がなくなる。
なお、上記実施形態においては、圧力面31上の流れを負圧面32側に通過させ、そのまま負圧面32に沿って流すためにスリット33,34を設ける構成としたが、これに限ることはない。例えば、図6に示すように、圧力面31から負圧面32まで貫通するとともに、圧力面31から負圧面32に向かうに従って下流側に傾斜する複数の孔36としてもよい。
また、スリット33,34の軸方向(図2における左右方向)の長さは、上記実施形態のように下流側側壁26aから上流側側壁26bまで延在する構成に限らず、軸方向の一部に設ける構成としてもよい。
また、スリット33,34又は孔36の個数は上記実施形態の2つ(2組)に限らず、1つ(1組)でもよいし、3つ(3組)以上としてもよい。
また、第二スリット34を設けることなく、第一スリット33のみを設ける形態としてもよい。
(第二実施形態)
以下、本発明に係る給水ポンプ1のリターンベーンの第二実施形態を図面に基づいて説明する。図7は、本実施形態に係るリターンベーン17Bの一例を示す概略図である。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
図7に示すように、本実施形態のリターンベーン17Bは、主翼38と、リターンベーン17Bの前縁29を構成する前置翼39と、後縁30を構成する後置翼40とから構成されている。
後置翼40の圧力面41の傾きは、主翼38の圧力面42の最下流側における傾きと略同一である。さらに後置翼40の圧力面41は、主翼38の圧力面42の面に対して、圧力面42側(腹側)にオフセットしている。即ち、主翼38と後置翼40との間に第一隙間44(第一連通部)が設けられている。
また、前置翼39の圧力面45の傾きは、主翼38の圧力面42の最上流側における傾きと略同一である。さらに前置翼39の圧力面45は、主翼38の圧力面42の面に対して、負圧面43側(背側)にオフセットしている。即ち、前置翼39と主翼38との間に第二隙間46(第二連通部)が設けられている。
図7に示すように、流体がリターンベーン17Bの前半部分(上流側)を流れる際、圧力面45側を流れる流体の一部は、第二隙間46を通過して負圧面43に沿って流れる(符号F3)。この流れは比較的高いエネルギーを有しているため、上流側より負圧面48,43側を流れてきた流体が、図7の符号S3で示すようなはく離を起こすことを抑制する働きをする。
また、流体がリターンベーン17Bの後半部分(下流側)を流れる際、圧力面42側を流れる流体の一部は、第一隙間44を通過して負圧面47に沿って流れる(符号F4)。この流れは比較的高いエネルギーを有しているため、圧力面41側を流れてきた流体が、図7の符号S4で示すようなリターンベーン17Bの後縁30を通過した後に、遠心力による偏流を起こすことを抑制する働きをする。
即ち、第一隙間44及び第二隙間46は、リターンベーン17Bのコアンダ効果を促進させ、流体の流れの転向の阻害要因を抑制する。これにより、揚程を確保するために、例えばインペラ6の外径を大きくする必要がなくなるため、インペラ効率の低下を防止することができる。
なお、上記実施形態においては、主翼38と前置翼39と後置翼40とを組み合わせ、主翼38と前置翼39との間に第二隙間46(第二連通部)を設け、主翼38と後置翼40との間に第一隙間44(第一連通部)を設ける構成にしたがこれに限ることはなく、隙間44,46を一つとする構成も採用することができる。例えば、前置翼49と主翼38を接続して第一隙間44を設けることなく、第二隙間46のみを設ける形態としてもよい。
1 給水ポンプ(遠心ポンプ)
4 回転軸
5 両吸込インペラ
6 インペラ
7 流路
16 ディフューザベーン
17,17B リターンベーン
22 吸込通路
23 圧縮通路
24 ディフューザ通路
25 リターン通路
26 コーナー部
27 ストレート部
29 前縁
30 後縁
31 圧力面
32 負圧面
33 第一スリット(第一連通部)
34 第二スリット(第二連通部)
38 主翼
39 前置翼
40 後置翼
41 圧力面
42 圧力面
43 負圧面
44 第一隙間(第一連通部)
45 圧力面
46 第二隙間(第二連通部)
47 負圧面
48 負圧面

Claims (4)

  1. 軸線回りに回転する回転軸と、
    前記軸線方向に配列されるように前記回転軸に設けられ、流体を遠心力により圧送する複数のインペラと、
    上流側の前記インペラによって径方向外側に圧送された前記流体を径方向内側に反転させて下流側の前記インペラに流入させる流路と、
    前記流体が反転された後の前記流路に周方向に間隔をあけて複数が設けられ、前記流体を径方向内側に向かって転向させるように湾曲するリターンベーンと、を備え、
    前記リターンベーンが、該リターンベーンの腹側である圧力面から背側である負圧面に向かうに従って下流側に傾斜するように、これら圧力面と負圧面を連通させる第一連通部を有し、前記第一連通部は、前記リターンベーンの下流側の端部である後縁において前記負圧面に沿って流れる流体を形成して、前記リターンベーンの前記後縁において前記圧力面を流れてきた流体の流れ方向を維持するように前記リターンベーンの下流側に設けられていることを特徴とする遠心ポンプ。
  2. 前記リターンベーンの上流側に、該リターンベーンの圧力面から負圧面に向かうに従って下流側に傾斜するように、これら圧力面と負圧面を連通させる第二連通部を有することを特徴とする請求項1に記載の遠心ポンプ。
  3. 軸線回りに回転する回転軸と、
    前記軸線方向に配列されるように前記回転軸に設けられ、流体を遠心力により圧送する複数のインペラと、
    上流側の前記インペラによって径方向外側に圧送された前記流体を径方向内側に反転させて下流側の前記インペラに流入させる流路と、
    前記流体が反転された後の前記流路に周方向に間隔をあけて複数が設けられ、前記流体を径方向内側に向かって転向させるように湾曲するリターンベーンと、を備え、
    前記リターンベーンは、
    主翼と、
    前記リターンベーンの後縁を構成する後置翼と、から構成され、
    前記後置翼の圧力面は、前記主翼の圧力面の面に対して圧力面側にオフセットしており、前記後置翼において前記後置翼の背側である負圧面に沿って流れる流体を形成して、前記後置翼において前記圧力面を流れてきた流体の流れ方向を維持するように前記主翼と前記後置翼との間に第一連通部が設けられることを特徴する遠心ポンプ。
  4. 前記リターンベーンは、前記リターンベーンの前縁を構成する前置翼をさらに備え、
    前記前置翼の圧力面の面は、前記主翼の圧力面の面に対して負圧面側にオフセットしており、前記主翼と前記後置翼との間に第二連通部が設けられることを特徴とする請求項3に記載の遠心ポンプ。
JP2012060652A 2012-03-16 2012-03-16 遠心ポンプ Active JP6097487B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012060652A JP6097487B2 (ja) 2012-03-16 2012-03-16 遠心ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012060652A JP6097487B2 (ja) 2012-03-16 2012-03-16 遠心ポンプ

Publications (2)

Publication Number Publication Date
JP2013194558A JP2013194558A (ja) 2013-09-30
JP6097487B2 true JP6097487B2 (ja) 2017-03-15

Family

ID=49393844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060652A Active JP6097487B2 (ja) 2012-03-16 2012-03-16 遠心ポンプ

Country Status (1)

Country Link
JP (1) JP6097487B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6476011B2 (ja) * 2015-02-27 2019-02-27 株式会社川本製作所 ポンプ装置
CN106762842A (zh) * 2016-12-06 2017-05-31 重庆美的通用制冷设备有限公司 一种回流器及包含其的离心式压缩机
US11092163B2 (en) 2017-02-08 2021-08-17 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Compressor and turbocharger
JP2018173020A (ja) 2017-03-31 2018-11-08 三菱重工業株式会社 遠心圧縮機
JP2019157807A (ja) * 2018-03-15 2019-09-19 株式会社日立製作所 遠心ポンプ
JP7161419B2 (ja) 2019-02-05 2022-10-26 三菱重工コンプレッサ株式会社 遠心回転機械の製造方法、及び遠心回転機械
JP7368260B2 (ja) * 2020-01-31 2023-10-24 三菱重工業株式会社 タービン
CN114607639B (zh) * 2022-02-28 2024-02-20 江西南方锅炉股份有限公司 一种用于蒸汽锅炉设备的输送装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1836860A (en) * 1921-01-29 1931-12-15 Moody Lewis Ferry Vane formation for rotary elements
JPS60167200U (ja) * 1984-04-13 1985-11-06 三菱重工業株式会社 多段遠心圧縮機
JPH04334797A (ja) * 1991-05-13 1992-11-20 Hitachi Ltd 遠心ポンプのディフューザ
JP3569087B2 (ja) * 1996-11-05 2004-09-22 株式会社日立製作所 多段遠心圧縮機
JP3771794B2 (ja) * 1999-11-04 2006-04-26 三菱重工業株式会社 遠心ポンプ
JP3924233B2 (ja) * 2002-10-09 2007-06-06 日機装株式会社 ターボポンプのディフューザ
JP4976792B2 (ja) * 2006-09-14 2012-07-18 東プレ株式会社 遠心ファン用羽根車
JP4951418B2 (ja) * 2007-06-01 2012-06-13 株式会社日立産機システム 多段遠心ポンプ

Also Published As

Publication number Publication date
JP2013194558A (ja) 2013-09-30

Similar Documents

Publication Publication Date Title
JP6097487B2 (ja) 遠心ポンプ
RU2598970C2 (ru) Облопаченный элемент для турбомашины и турбомашина
US11015453B2 (en) Engine component with non-diffusing section
US20120272663A1 (en) Centrifugal compressor assembly with stator vane row
CN101839148A (zh) 蒸汽涡轮机的动叶及使用了该动叶的蒸汽涡轮机
ES2640870T3 (es) Procedimiento y turbina para expandir un fluido de trabajo orgánico en un ciclo de Rankine
US10006467B2 (en) Assembly for a fluid flow machine
US20150184538A1 (en) Interior cooling circuits in turbine blades
JP6208922B2 (ja) 回転機械と共に用いるブレード及びこのような回転機械の組み立て方法
JP2010065686A (ja) 蒸気タービンエンジンの低圧セクション用の蒸気タービン回転動翼
WO2018181343A1 (ja) 遠心圧縮機
JP2016125481A (ja) 非軸対称ハブ流路及びスプリッタブレードを組み込んだ軸流圧縮機ロータ
JP2010156338A (ja) タービン翼付け根構成
US9822792B2 (en) Assembly for a fluid flow machine
CN105008676A (zh) 轴流旋转机械及扩散器
KR102073766B1 (ko) 배기가스 터보차저의 레이디얼 압축기의 압축기 휠
JP2000303854A (ja) 高効率ガスタービン
CN101825001B (zh) 轴流式涡轮机
US11401826B2 (en) Stator structure and gas turbine having the same
JP4512048B2 (ja) 給水ポンプ
US9719355B2 (en) Rotary machine blade having an asymmetric part-span shroud and method of making same
CN112135957B (zh) 蒸汽涡轮设备及联合循环设备
JP6935312B2 (ja) 多段遠心圧縮機
WO2018128609A1 (en) Seal assembly between a hot gas path and a rotor disc cavity
JP2011043113A (ja) 遠心ポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6097487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150