JP2016125481A - 非軸対称ハブ流路及びスプリッタブレードを組み込んだ軸流圧縮機ロータ - Google Patents

非軸対称ハブ流路及びスプリッタブレードを組み込んだ軸流圧縮機ロータ Download PDF

Info

Publication number
JP2016125481A
JP2016125481A JP2015162360A JP2015162360A JP2016125481A JP 2016125481 A JP2016125481 A JP 2016125481A JP 2015162360 A JP2015162360 A JP 2015162360A JP 2015162360 A JP2015162360 A JP 2015162360A JP 2016125481 A JP2016125481 A JP 2016125481A
Authority
JP
Japan
Prior art keywords
compressor
blade
root
dimension
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015162360A
Other languages
English (en)
Inventor
アンソニー・ルイス・ディピエトロ,ジュニア
Louis Dipietro Anthony Jr
グレゴリー・ジョン・カイアファ
John Kajfasz Gregory
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2016125481A publication Critical patent/JP2016125481A/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/146Shape, i.e. outer, aerodynamic form of blades with tandem configuration, split blades or slotted blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/329Details of the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/321Application in turbines in gas turbines for a special turbine stage
    • F05D2220/3216Application in turbines in gas turbines for a special turbine stage for a special compressor stage
    • F05D2220/3219Application in turbines in gas turbines for a special turbine stage for a special compressor stage for the last stage of a compressor or a high pressure compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • F05D2260/961Preventing, counteracting or reducing vibration or noise by mistuning rotor blades or stator vanes with irregular interblade spacing, airfoil shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】十分なストールレンジ並びに空力と構造的性能との許容可能な釣り合いを有して作動可能な圧縮機ロータを提供すること。
【解決手段】圧縮機装置はロータを含み、該ロータが、中心軸線の周りに回転するように装着され、外周が非軸対称な表面プロファイルを有する流路面を定めるディスクと、流路面から半径方向外向きに延び、各々が根元、先端、前縁、及び後縁を有する翼形軸流圧縮機ブレードのアレイと、圧縮機ブレードと交互し、各々が根元、先端、前縁、及び後縁を有する翼形スプリッタブレードのアレイと、を備え、スプリッタブレードの根元における翼弦寸法及びスプリッタブレードのスパン寸法のうちの少なくとも1つが、圧縮機ブレードの対応する寸法よりも小さい。
【選択図】 図1

Description

本発明は、全体的に、ターボ機械の圧縮機に関し、より詳細には、このような圧縮機のロータブレード段に関する。
ガスタービンエンジンは、直列流れ連通して、圧縮機と、燃焼器と、タービンとを含む。タービンは、圧縮機に機械的に結合され、これら3つの構成要素がターボ機械コアを定める。コアは、高温の加圧燃焼ガスを発生してエンジンを作動させると共に、推進力のような有効な仕事又は機械的仕事を行うよう公知の方式で動作可能である。圧縮機の1つの一般的なタイプは、軸流翼形部の列を有する圧縮機ブレードと呼ばれるディスクを各々が含む複数のロータを備えた軸流圧縮機である。
熱力学的サイクル効率上の理由で、一般的には、実施可能な最も高い圧力比(すなわち、入口圧力と出口圧力の比)を有する圧縮機を組み込むことが望ましい。また、最も少ない数の圧縮機段を含むことが望ましい。しかしながら、所与の圧縮機段を通過する実施可能な最大圧力比及び質量流量に対して相互に関連する空力的な限界があることは周知である。
ディスク内の機械的応力を低減するために、非軸対称の「扇形(スカラップ)」表面プロファイルを有するディスクを構成することは知られている。この特徴部の空力的に不利な副次的作用は、流れ区域を通過するロータブレード列が増加し、空力的荷重レベルが増大して、空気流分離が促進されることである。
従って、十分なストールレンジ並びに空力と構造的性能との許容可能な釣り合いを有して作動可能な圧縮機ロータに対する要求が依然としてある。
米国特許第8,529,210号明細書
本発明の1つの態様によれば、軸流ロータを有する圧縮機装置であって、該軸流ロータが、中心軸線の周りに回転するように装着され、外周が非軸対称な表面プロファイルを有する流路面を定めるディスクと、流路面から半径方向外向きに延び、各々が根元、先端、前縁、及び後縁を有する翼形軸流圧縮機ブレードのアレイと、圧縮機ブレードと交互し、各々が根元、先端、前縁、及び後縁を有する翼形スプリッタブレードのアレイと、を備え、スプリッタブレードの根元における翼弦寸法及びスプリッタブレードのスパン寸法のうちの少なくとも1つが、圧縮機ブレードの対応する寸法よりも小さい。
本発明の別の態様によれば、流路面が、隣接する圧縮機ブレード間に凹状スカラップを含む。
本発明の別の態様によれば、スカラップが、圧縮機ブレードの根元に隣接して最小半径方向深さを有し、隣接する圧縮機ブレード間のほぼ中間の位置にて最大半径方向深さを有する。
本発明の別の態様によれば、各スプリッタブレードが、2つの隣接する圧縮機ブレード間のほぼ中間に配置される。
本発明の別の態様によれば、スプリッタブレードは、該スプリッタブレードの後縁がディスクに対して圧縮機ブレードの後縁とほぼ同じ軸方向位置にあるように位置付けられる。
本発明の別の態様によれば、スプリッタブレードのスパン寸法が、圧縮機ブレードのスパン寸法の50%以下である。
本発明の別の態様によれば、スプリッタブレードのスパン寸法が、圧縮機ブレードのスパン寸法の30%以下である。
本発明の別の態様によれば、スプリッタブレードの根元における翼弦寸法が、圧縮機ブレードの根元における翼弦寸法の50%以下である。
本発明の1つの態様によれば、複数の軸流段を備えた圧縮機装置であって、複数の軸流段のうちの少なくとも1つの選択された段が、中心軸線の周りに回転するように装着され、外周が非軸対称な表面プロファイルを有する流路面を定めるディスクと、流路面から半径方向外向きに延び、各々が根元、先端、前縁、及び後縁を有する翼形軸流圧縮機ブレードのアレイと、圧縮機ブレードと交互し、各々が根元、先端、前縁、及び後縁を有する翼形スプリッタブレードのアレイと、を含み、スプリッタブレードの根元における翼弦寸法及びスプリッタブレードのスパン寸法のうちの少なくとも1つが、圧縮機ブレードの対応する寸法よりも小さい。
本発明の別の態様によれば、流路面が、隣接する圧縮機ブレード間に凹状スカラップを含む。
本発明の別の態様によれば、スカラップが、圧縮機ブレードの根元に隣接して最小半径方向深さを有し、隣接する圧縮機ブレード間のほぼ中間の位置にて最大半径方向深さを有する。
本発明の別の態様によれば、各スプリッタブレードが、2つの隣接する圧縮機ブレード間のほぼ中間に配置される。
本発明の別の態様によれば、スプリッタブレードは、該スプリッタブレードの後縁がディスクに対して圧縮機ブレードの後縁とほぼ同じ軸方向位置にあるように位置付けられる。
本発明の別の態様によれば、スプリッタブレードのスパン寸法が、圧縮機ブレードのスパン寸法の50%以下である。
本発明の別の態様によれば、スプリッタブレードのスパン寸法が、圧縮機ブレードのスパン寸法の30%以下である。
本発明の別の態様によれば、スプリッタブレードの根元における翼弦寸法が、圧縮機ブレードの根元における翼弦寸法の50%以下である。
本発明の別の態様によれば、選択された段が、圧縮機の後方半部分内に配置される。
本発明の別の態様によれば、選択された段が、圧縮機の最後尾の段である。
本発明は、添付図面と共に以下の説明を参照することで最もよく理解することができる。
本発明の1つの態様に従って構成された圧縮機ロータを組み込んだガスタービンエンジンの概略断面図。 圧縮機装置のロータの一部の斜視図。 圧縮機装置のロータの一部の上面図。 圧縮機装置のロータの一部の後方立面図。 図4の線5−5に沿った側面図。 図4の線6−6に沿った側面図。
種々の図全体を通して同一の参照符号が同じ要素を表す図面を参照すると、図1は、全体的に符号10で示されたガスタービンエンジンを示す。エンジン10は、長手方向中心軸線11を有し、軸方向流れの順序で、ファン12、低圧圧縮機又は「ブースタ」14、高圧圧縮機(「HPC」)16、燃焼器18、高圧タービン(「HPT」)20、及び低圧タービン(「LPT」)22を含む。全体として、HPC16、燃焼器18及びHPT20は、エンジン10のコア24を定める。HPT20及びHPC16は、外側シャフト26によって相互に接続される。全体として、ファン12、ブースタ14及びLPT22は、エンジン10の低圧システムを定める。ファン12、ブースタ14及びLPT22は、内側シャフト28により相互に接続される。
作動時には、HPC16からの加圧空気が燃焼器18において燃料と混合されて燃焼し、燃焼ガスを発生する。HPT20によってこれらのガスから幾らかの仕事が取り出され、外側シャフト26を介して圧縮機16を駆動する。燃焼ガスの残りの部分は、コア24からLPT22に排出される。LPT22は、燃焼ガスから仕事を取り出し、内側シャフト28を介してファン12及びブースタ14を駆動する。ファン12は、空気の加圧ファン流を発生するよう動作する。ファン流の第1の部分(「コア流」)は、ブースタ14及びコア24に流入し、ファン流の第2の部分(「バイパス流」)は、コア24を囲むバイパスダクト30を通って排出される。例示の実施例は、高バイパスターボファンエンジンであるが、本発明の原理は、低バイパスターボファン、ターボジェット、及びターボシャフトなどの他のタイプのエンジンにも同様に適用可能である。
本明細書で使用される場合、用語「軸方向」及び「長手方向」の両方は、中心軸線11に平行な方向を指し、「半径方向」は軸方向に垂直な方向をさし、また、「接線方向」又は「円周方向」は、軸方向及び半径方向に対して相互に垂直な方向を指す点に留意されたい。本明細書で使用される場合、用語「前方」又は「前部」は、構成要素を通過する又は構成要素の周囲を通る空気流の相対的に上流側にある位置を指し、用語「後方」又は「後部」は、構成要素を通過する又は構成要素の周囲を通る空気流の相対的に下流側にある位置を指す。この流れの方向は、図1の矢印「F」で示される。これらの方向に関する用語は、説明の際に便宜上使用されるに過ぎず、記載される構造体の特定の向きは必須ではない。
HPC16は、軸方向流体流、すなわち、中心軸線11に略平行な流体流用に構成される。これは、遠心圧縮機又は斜流圧縮機とは大きく異なる。HPC16は、複数の段を含み、その各々が、回転ディスク34に装着された翼形部又はブレード32(総称的に)の列を有するロータと、固定翼形部又はベーン36の列とを含む。ベーン36は、ブレード32の下流側列に流入する前にブレード32の上流側列から出る空気流を転回させる役割を果たす。
図2〜6は、本発明の原理に従って構成され、HPC16に含めるのに好適なロータ38の一部を示している。一例として、ロータ38は、HPC16の後方半部分の段の1又はそれ以上に、詳細には最終又は最後尾の段に組み込むことができる。
ロータ38は、ウェブ42及びリム44を有するディスク40を含む。完成したディスク40は、中心軸線11の周りに回転するよう装着される環状構造であることは理解されるであろう。リム44は、前方端部46と後方端部48とを有する。前方端部46と後方端部48との間に、環状の流路面50が延びる。
軸流圧縮機ブレード52の列は、流路面25から延びる。各圧縮機ブレードは、流路面50にある根元54から先端56まで延び、前縁62及び後縁64において凸状の負圧側面60に接合される凹状の正圧側面58を含む。図5で最もよく分かるように、各圧縮機ブレード52は、根元54から先端56までの半径方向距離として定義されるスパン(又はスパン寸法)「S1」と、前縁62及び後縁64を接続する仮想直線の長さとして定義される翼弦(又は翼弦寸法)「C1」とを有する。圧縮機ブレード52の特定の設計に応じて、翼弦C1は、スパンS1に沿った種々の位置で異なる場合がある。本発明において、関連する基準寸法は、根元54における翼弦C1である。
図4で分かるように、流路面50は回転体ではない。むしろ、流路面50は、非軸対称な表面プロファイルを有する。非軸対称な表面プロファイルの一例として、圧縮機ブレード52の隣接する各ペア間に凹状湾曲部又は「スカラップ」66を備えて輪郭形成することができる。比較の目的で、図4の破線は、圧縮機ブレード52の根元54を通る半径を有する仮想円筒面を示している。流路面の曲率は、圧縮機ブレード52の根元54において最大半径(すなわち、スカラップ66の最小半径方向深さ)を有し、隣接する圧縮機ブレード52間のほぼ中間の位置にて最小半径(すなわち、スカラップ66の最大半径方向深さ「d」)を有することが分かる。
定常又は過渡運転時には、このスカラップ(扇状)構成は、流路面50に沿ったリム44上の翼形部ハブ交点での機械的及び熱的フープ応力集中の大きさを低減するのに有効である。これは、ディスク40の許容可能な構成要素の長寿命を達成するという目標に寄与する。流路50のスカラップ(扇状)化の空力的に不利な副次的作用は、隣接する圧縮機ブレード52間のロータ通過流れ区域が増大することである。このロータ通過流れ区域の増大は、空力的荷重レベルを増大させ、その結果、圧縮機ブレード52の負圧側面60上で、根元54付近の内寄り部分にて、及び後方位置(例えば、前縁62から翼弦C1のおよそ75%)にて望ましくない流れ分離を引き起こす傾向となる。
流路面50からスプリッタブレード152のアレイが延びる。1つのスプリッタブレード152が、圧縮機ブレード52の各ペア間に配置される。円周方向において、スプリッタブレード152は、2つの隣接する圧縮機ブレード52間で中間に位置するか、又は円周方向に偏位され、或いは、スカラップ66の最深部dと円周方向に整列することができる。換言すると、圧縮機ブレード52とスプリッタブレード152は、流路面50の周辺で交互に配置されている。各スプリッタブレード152は、流路面50における根元154から先端156まで延び、前縁162及び後縁164において凸状の負圧側面160に接合される凹状の正圧側面158を含む。図6で最もよく分かるように、各スプリッタブレード152は、根元154から先端156までの半径方向距離として定義されるスパン(又はスパン寸法)「S2」と、前縁162及び後縁164を接続する仮想直線の長さとして定義される翼弦(又は翼弦寸法)「C2」とを有する。スプリッタブレード152の特定の設計に応じて、翼弦C2は、スパンS2に沿った種々の位置で異なる場合がある。本発明において、関連する基準寸法は、根元154における翼弦C2である。
スプリッタブレード152は、ロータ38のハブソリディティを局所的に高め、これにより圧縮機ブレード52からの上述した流れ分離を阻止するよう機能する。同様の効果は、圧縮機ブレード152の数を単純に増大し、従って、ブレード間の間隔を縮小することによって得られる。しかしながら、これは、空力的表面面積の摩擦損失を増大させ、空力的効率の低下及び根元重量の増大として現れる望ましくない副次的作用がある。従って、スプリッタブレード152の寸法及び位置は、表面積を最小にしながら、流れ分離を阻止するよう選択することができる。スプリッタブレード152は、これらの後縁164がリム44に対して圧縮機ブレード52の後縁とほぼ同じ軸方向位置にあるように位置付けられる。このことは図3で分かる。スプリッタブレード152のスパンS2及び/又は翼弦C2は、圧縮機ブレード52の対応するスパンS1及び翼弦C1を1として、その数分の1とすることができる。これらは、「部分スパン」及び/又は「部分翼弦」スプリッタブレードと呼ぶことができる。例えば、スパンS2は、スパンS1に等しいか、又はそれよりも小さいとすることができる。好ましくは、摩擦損失を低減するために、スパンS2は、スパンS1の約50%以下である。より好ましくは、最小摩擦損失とするために、スパンS2はスパンS1の約30%以下である。別の実施例として、翼弦C2は、翼弦C1と等しいか又はそれ未満とすることができる。より好ましくは、最小摩擦損失とするために、翼弦C2は、翼弦C1の約50%以下である。
ディスク40、圧縮機ブレード52、及びスプリッタブレード152は、作動時の予測される応力及び環境条件に耐え得るあらゆる材料から構成することができる。公知の好適な合金の非限定的な実施例は、鉄、ニッケル、及びチタン合金を含む。図2〜6において、ディスク40、圧縮機ブレード52、及びスプリッタブレード152は、全体的に一体的な単体構造又はモノリシックとして描かれている。このタイプの構造体は、「ブレード付きディスク」又は「ブリスク」と呼ぶことができる。本発明の原理は、別個の構成要素(図示せず)から構成されるロータにも同様に適用可能である。
スプリッタブレードを備えた本明細書で記載されるロータ装置は、ロータハブのソリディティレベルを局所的に増大させ、ハブの空力的加重レベルを局所的に低減し、非軸対称に輪郭形成されたハブ流路面の存在下で流れ分離しようとするロータ翼形部ハブの傾向を抑制する。部分スパン及び/又は部分翼弦スプリッタブレードの使用は、公称値から変化していないロータの中間及び上側セクションのソリディティレベルを保持し、従って中間及び上側翼形部セクションの性能を維持するのに有効である。
以上、圧縮機ロータ装置について説明してきた。本明細書(何れかの添付の特許請求の範囲、要約書、及び図面を含む)で開示される特徴の全て、そのように開示された何れかの方法又はプロセスのステップの全ては、このような特徴及び/又はステップの少なくとも一部が互いに排他的である組み合わせを除いて、あらゆる組み合わせで結合することができる。
本明細書(何れかの添付の特許請求の範囲、要約書、及び図面を含む)で開示される各特徴は、明示的に別途規定のない限り、同じ、等価の又は同様の目的を提供する代替の特徴で置き換えることができる。従って、明示的に別途規定のない限り、開示される各特徴は、一般的な一連の等価又は同様の特徴のうちの1つの実施例に過ぎない。
本発明は、上述の1又は複数の実施形態の詳細事項に限定されない。
本発明は、本明細書(何れかの添付の特許請求の範囲、要約書、及び図面を含む)で開示される特徴のうちの何れかの新規の特徴又は何れかの新規の組み合わせ、又はこのように開示される何れかの方法又はプロセスのステップのうちの何れかの新規のステップ又は何れかの新規の組み合わせに拡張することができる。
F 流れ方向
C1 翼弦
S1 スパン
d 深さ
S2 スパン
C2 翼弦
10 エンジン
11 軸線
12 ファン
14 ブースタ
16 高圧圧縮機
18 燃焼器
20 高圧タービン
22 低圧タービン
24 コア
26 外側シャフト
28 内側シャフト
30 バイパスダクト
32 ブレード
34 回転ディスク
36 ベーン
38 ロータ
40 ディスク
42 ウェブ
44 リム
46 前方端部
48 後方端部
50 流路面
52 圧縮機ブレード
54 根元
56 先端
58 正圧側面
60 負圧側面
62 前縁
64 後縁
66 スカラップ
152 スプリッタブレード
154 根元
156 先端
158 正圧側面
160 負圧側面
162 前縁
164 後縁

Claims (20)

  1. 軸流ロータ(38)を有する圧縮機装置であって、該軸流ロータが、
    中心軸線(11)の周りに回転するように装着され、外周が非軸対称な表面プロファイルを有する流路面(25,50)を定めるディスク(34)と、
    前記流路面から半径方向外向きに延び、各々が根元(54)、先端(56)、前縁(62)、及び後縁(64)を有する翼形軸流圧縮機ブレード(52)のアレイと、
    前記圧縮機ブレードと交互し、各々が根元(154)、先端(156)、前縁(162)、及び後縁(164)を有する翼形スプリッタブレード(152)のアレイと、
    を備え、前記スプリッタブレードの根元における翼弦寸法及び前記スプリッタブレードのスパン寸法のうちの少なくとも1つが、前記圧縮機ブレードの対応する寸法よりも小さい、圧縮機装置。
  2. 前記流路面が、隣接する圧縮機ブレード間に凹状スカラップを含む、請求項1に記載の装置。
  3. 前記スカラップが、前記圧縮機ブレードの根元に隣接して最小半径方向深さを有し、隣接する前記圧縮機ブレード間のほぼ中間の位置にて最大半径方向深さを有する、請求項1に記載の装置。
  4. 前記各スプリッタブレードが、2つの隣接する前記圧縮機ブレード間のほぼ中間に配置される、請求項1に記載の装置。
  5. 前記スプリッタブレードは、該スプリッタブレードの後縁が前記ディスクに対して前記圧縮機ブレードの後縁とほぼ同じ軸方向位置にあるように位置付けられる、請求項1に記載の装置。
  6. 前記スプリッタブレードのスパン寸法が、前記圧縮機ブレードのスパン寸法の50%以下である、請求項1に記載の装置。
  7. 前記スプリッタブレードのスパン寸法が、前記圧縮機ブレードのスパン寸法の30%以下である、請求項1に記載の装置。
  8. 前記スプリッタブレードの根元における翼弦寸法が、前記圧縮機ブレードの根元における翼弦寸法の50%以下である、請求項7に記載の装置。
  9. 前記スプリッタブレードの根元における翼弦寸法が、前記圧縮機ブレードの根元における翼弦寸法の50%以下である、請求項1に記載の装置。
  10. 複数の軸流段を備えた圧縮機装置であって、前記複数の軸流段のうちの少なくとも1つの選択された段が、
    中心軸線(11)の周りに回転するように装着され、外周が非軸対称な表面プロファイルを有する流路面(25,50)を定めるディスク(34)と、
    前記流路面から半径方向外向きに延び、各々が根元(54)、先端(56)、前縁(62)、及び後縁(64)を有する翼形軸流圧縮機ブレード(52)のアレイと、
    前記圧縮機ブレードと交互し、各々が根元(154)、先端(156)、前縁(162)、及び後縁(164)を有する翼形スプリッタブレード(152)のアレイと、
    を含み、前記スプリッタブレードの根元における翼弦寸法及び前記スプリッタブレードのスパン寸法のうちの少なくとも1つが、前記圧縮機ブレードの対応する寸法よりも小さい、圧縮機装置。
  11. 前記流路面が、隣接する前記圧縮機ブレード間に凹状スカラップを含む、請求項10に記載の装置。
  12. 前記スカラップが、前記圧縮機ブレードの根元に隣接して最小半径方向深さを有し、隣接する前記圧縮機ブレード間のほぼ中間の位置にて最大半径方向深さを有する、請求項10に記載の装置。
  13. 前記各スプリッタブレードが、2つの隣接する前記圧縮機ブレード間のほぼ中間に配置される、請求項10に記載の装置。
  14. 前記スプリッタブレードは、該スプリッタブレードの後縁が前記ディスクに対して前記圧縮機ブレードの後縁とほぼ同じ軸方向位置にあるように位置付けられる、請求項10に記載の装置。
  15. 前記スプリッタブレードのスパン寸法が、前記圧縮機ブレードのスパン寸法の50%以下である、請求項10に記載の装置。
  16. 前記スプリッタブレードのスパン寸法が、前記圧縮機ブレードのスパン寸法の30%以下である、請求項10に記載の装置。
  17. 前記スプリッタブレードの根元における翼弦寸法が、前記圧縮機ブレードの根元における翼弦寸法の50%以下である、請求項16に記載の装置。
  18. 前記スプリッタブレードの根元における翼弦寸法が、前記圧縮機ブレードの根元における翼弦寸法の50%以下である、請求項10に記載の装置。
  19. 前記選択された段が、前記圧縮機の後方半部分内に配置される、請求項10に記載の装置。
  20. 前記選択された段が、前記圧縮機の最後尾の段である、請求項10に記載の装置。
JP2015162360A 2014-12-29 2015-08-20 非軸対称ハブ流路及びスプリッタブレードを組み込んだ軸流圧縮機ロータ Pending JP2016125481A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/585,154 2014-12-29
US14/585,154 US9938984B2 (en) 2014-12-29 2014-12-29 Axial compressor rotor incorporating non-axisymmetric hub flowpath and splittered blades

Publications (1)

Publication Number Publication Date
JP2016125481A true JP2016125481A (ja) 2016-07-11

Family

ID=54012097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015162360A Pending JP2016125481A (ja) 2014-12-29 2015-08-20 非軸対称ハブ流路及びスプリッタブレードを組み込んだ軸流圧縮機ロータ

Country Status (6)

Country Link
US (1) US9938984B2 (ja)
EP (1) EP3040511A1 (ja)
JP (1) JP2016125481A (ja)
CN (1) CN105736460B (ja)
BR (1) BR102015020296A2 (ja)
CA (1) CA2901715A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9874221B2 (en) * 2014-12-29 2018-01-23 General Electric Company Axial compressor rotor incorporating splitter blades
US20180017019A1 (en) * 2016-07-15 2018-01-18 General Electric Company Turbofan engine wth a splittered rotor fan
KR102207937B1 (ko) * 2016-10-06 2021-01-26 한화에어로스페이스 주식회사 축류형 압축기
FR3059735B1 (fr) * 2016-12-05 2020-09-25 Safran Aircraft Engines Piece de turbomachine a surface non-axisymetrique
TWI678471B (zh) * 2018-08-02 2019-12-01 宏碁股份有限公司 散熱風扇
EP3608505B1 (en) * 2018-08-08 2021-06-23 General Electric Company Turbine incorporating endwall fences
US11149552B2 (en) 2019-12-13 2021-10-19 General Electric Company Shroud for splitter and rotor airfoils of a fan for a gas turbine engine
IT202100002240A1 (it) * 2021-02-02 2022-08-02 Gen Electric Motore a turbine con palette a flusso trasversale ridotto
US12037921B2 (en) 2022-08-04 2024-07-16 General Electric Company Fan for a turbine engine
US20240209748A1 (en) * 2022-12-21 2024-06-27 General Electric Company Outlet guide vane assembly for a turbofan engine

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE611328C (de) 1933-03-24 1935-03-26 Paul Kaehler Leitvorrichtung
GB630747A (en) 1947-07-09 1949-10-20 George Stanley Taylor Improvements in or relating to multi-stage axial-flow compressors
GB752674A (en) 1953-03-24 1956-07-11 Daimler Benz Axtiexgeselischaf Improvements relating to axial-flow compressors
US2839239A (en) * 1954-06-02 1958-06-17 Edward A Stalker Supersonic axial flow compressors
US3039736A (en) 1954-08-30 1962-06-19 Pon Lemuel Secondary flow control in fluid deflecting passages
US2953295A (en) 1954-10-22 1960-09-20 Edward A Stalker Supersonic compressor with axially transverse discharge
US2920864A (en) * 1956-05-14 1960-01-12 United Aircraft Corp Secondary flow reducer
BE638547A (ja) * 1962-10-29 1900-01-01
US3692425A (en) 1969-01-02 1972-09-19 Gen Electric Compressor for handling gases at velocities exceeding a sonic value
GB1514096A (en) * 1977-02-01 1978-06-14 Rolls Royce Axial flow rotor or stator assembly
US4512718A (en) 1982-10-14 1985-04-23 United Technologies Corporation Tandem fan stage for gas turbine engines
US5152661A (en) 1988-05-27 1992-10-06 Sheets Herman E Method and apparatus for producing fluid pressure and controlling boundary layer
US5002461A (en) 1990-01-26 1991-03-26 Schwitzer U.S. Inc. Compressor impeller with displaced splitter blades
GB2258272B (en) 1991-07-27 1994-12-07 Rolls Royce Plc Rotors for turbo machines
US5299914A (en) 1991-09-11 1994-04-05 General Electric Company Staggered fan blade assembly for a turbofan engine
US5639217A (en) 1996-02-12 1997-06-17 Kawasaki Jukogyo Kabushiki Kaisha Splitter-type impeller
DE19650656C1 (de) * 1996-12-06 1998-06-10 Mtu Muenchen Gmbh Turbomaschine mit transsonischer Verdichterstufe
GB2337795A (en) 1998-05-27 1999-12-01 Ebara Corp An impeller with splitter blades
EP0978632A1 (de) 1998-08-07 2000-02-09 Asea Brown Boveri AG Turbomaschine mit Zwischenschaufeln als Strömungsteilelemente
JP2001027103A (ja) 1999-07-14 2001-01-30 Ishikawajima Harima Heavy Ind Co Ltd ターボ機械の静翼構造
US6511294B1 (en) * 1999-09-23 2003-01-28 General Electric Company Reduced-stress compressor blisk flowpath
GB0002257D0 (en) 2000-02-02 2000-03-22 Rolls Royce Plc Rotary apparatus for a gas turbine engine
US6478545B2 (en) 2001-03-07 2002-11-12 General Electric Company Fluted blisk
US7094027B2 (en) 2002-11-27 2006-08-22 General Electric Company Row of long and short chord length and high and low temperature capability turbine airfoils
GB0314123D0 (en) 2003-06-18 2003-07-23 Rolls Royce Plc A gas turbine engine
US20070154314A1 (en) 2005-12-29 2007-07-05 Minebea Co., Ltd. Reduction of tonal noise in cooling fans using splitter blades
US7465155B2 (en) * 2006-02-27 2008-12-16 Honeywell International Inc. Non-axisymmetric end wall contouring for a turbomachine blade row
DE102006057063B3 (de) 2006-11-28 2008-07-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Stator-Stufe eines Axialverdichters einer Strömungsmaschine mit Querlamellen zur Wirkungsgradsteigerung
DE102008055824B4 (de) 2007-11-09 2016-08-11 Alstom Technology Ltd. Dampfturbine
US8858161B1 (en) 2007-11-29 2014-10-14 Florida Turbine Technologies, Inc. Multiple staged compressor with last stage airfoil cooling
CN100462566C (zh) * 2007-11-29 2009-02-18 北京航空航天大学 叶片沿周向非均匀分布的大小叶片叶轮及压气机
CN100494694C (zh) 2007-11-29 2009-06-03 北京航空航天大学 带有非全高小叶片的大小叶片叶轮及压气机
DE102008019740A1 (de) 2008-04-19 2009-10-22 Mtu Aero Engines Gmbh Stator- und/oder Rotor-Stufe eines Axialverdichters einer Strömungsmaschine mit Strömungsleitelementen zur Wirkungsgradsteigerung
FR2939852B1 (fr) 2008-12-15 2014-10-31 Snecma Etage d'aubes statoriques dans un compresseur
US8182204B2 (en) 2009-04-24 2012-05-22 Pratt & Whitney Canada Corp. Deflector for a gas turbine strut and vane assembly
US8403645B2 (en) * 2009-09-16 2013-03-26 United Technologies Corporation Turbofan flow path trenches
US8529210B2 (en) 2010-12-21 2013-09-10 Hamilton Sundstrand Corporation Air cycle machine compressor rotor
US8920127B2 (en) 2011-07-18 2014-12-30 United Technologies Corporation Turbine rotor non-metallic blade attachment
US20130051996A1 (en) 2011-08-29 2013-02-28 Mtu Aero Engines Gmbh Transition channel of a turbine unit
US9140128B2 (en) 2012-09-28 2015-09-22 United Technologes Corporation Endwall contouring
ES2745632T3 (es) 2012-12-19 2020-03-03 MTU Aero Engines AG Etapa del estator y/o del rotor de una turbomáquina, así como turbina de gas correspondiente
GB201303767D0 (en) 2013-03-04 2013-04-17 Rolls Royce Plc Stator Vane Row
US10221707B2 (en) 2013-03-07 2019-03-05 Pratt & Whitney Canada Corp. Integrated strut-vane
US20140314549A1 (en) 2013-04-17 2014-10-23 General Electric Company Flow manipulating arrangement for a turbine exhaust diffuser
EP2799721B8 (fr) 2013-05-03 2016-12-07 Safran Aero Booster S.A. Redresseur de turbomachine axiale avec aubes auxiliaires en pieds d'aubes
EP2806102B1 (de) 2013-05-24 2019-12-11 MTU Aero Engines AG Schaufelgitter einer Strömungsmaschine und zugehörige Strömungsmaschine
US9874221B2 (en) * 2014-12-29 2018-01-23 General Electric Company Axial compressor rotor incorporating splitter blades

Also Published As

Publication number Publication date
EP3040511A1 (en) 2016-07-06
BR102015020296A2 (pt) 2016-07-05
CA2901715A1 (en) 2016-06-29
US9938984B2 (en) 2018-04-10
CN105736460A (zh) 2016-07-06
CN105736460B (zh) 2020-08-07
US20160186772A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
US9874221B2 (en) Axial compressor rotor incorporating splitter blades
CN107035435B (zh) 结合分流器的压缩机
JP2016125481A (ja) 非軸対称ハブ流路及びスプリッタブレードを組み込んだ軸流圧縮機ロータ
US20210239132A1 (en) Variable-cycle compressor with a splittered rotor
US9546555B2 (en) Tapered part-span shroud
US20120272663A1 (en) Centrifugal compressor assembly with stator vane row
JP6468414B2 (ja) 圧縮機静翼、軸流圧縮機、及びガスタービン
US11719168B2 (en) Compressor apparatus with bleed slot and supplemental flange
CN112983885B (zh) 用于燃气涡轮发动机的风扇的分流器和转子翼型件的围带
US20180313364A1 (en) Compressor apparatus with bleed slot including turning vanes
JP2010156338A (ja) タービン翼付け根構成
US20210372288A1 (en) Compressor stator with leading edge fillet
JP2017089637A (ja) タービンの部分を一体化するためのシステム