JP6095728B2 - Heat pump equipment - Google Patents

Heat pump equipment Download PDF

Info

Publication number
JP6095728B2
JP6095728B2 JP2015120179A JP2015120179A JP6095728B2 JP 6095728 B2 JP6095728 B2 JP 6095728B2 JP 2015120179 A JP2015120179 A JP 2015120179A JP 2015120179 A JP2015120179 A JP 2015120179A JP 6095728 B2 JP6095728 B2 JP 6095728B2
Authority
JP
Japan
Prior art keywords
refrigerant
heating
hot water
flow rate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015120179A
Other languages
Japanese (ja)
Other versions
JP2017003236A (en
Inventor
古川 修
修 古川
Original Assignee
サンポット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンポット株式会社 filed Critical サンポット株式会社
Priority to JP2015120179A priority Critical patent/JP6095728B2/en
Publication of JP2017003236A publication Critical patent/JP2017003236A/en
Application granted granted Critical
Publication of JP6095728B2 publication Critical patent/JP6095728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、暖房用加熱と給湯用加熱とを並行して行うヒートポンプ装置に関する。   The present invention relates to a heat pump device that performs heating for heating and heating for hot water supply in parallel.

地中熱を利用して暖房用加熱と給湯用加熱(貯湯タンク内の湯水の沸き上げ)とを並行して行う従来のヒートポンプ装置(ヒートポンプユニット)では、圧縮機から吐出した冷媒が、暖房用加熱や給湯用加熱に対応する複数の分流路を介して循環するようになっている。   In a conventional heat pump device (heat pump unit) that uses geothermal heat for heating and hot water supply (boiling hot water in a hot water storage tank) in parallel, the refrigerant discharged from the compressor is used for heating. It circulates through a plurality of distribution channels corresponding to heating and heating for hot water supply.

そして、電磁開閉弁が、各分流路に配設され、ユーザ操作によるリモコン等からの暖房用加熱指示や給湯用加熱指示に応じて開閉するようになっている。給湯用加熱は、通常、安価な深夜電力を利用して圧縮機や循環ポンプ等を作動させるために、夜間の決められた時間内に実施、終了するようになっている。   An electromagnetic on-off valve is provided in each branch flow path and opens and closes in response to a heating instruction for heating or a heating instruction for hot water supply from a remote controller or the like by a user operation. Heating for hot water supply is usually performed and finished within a predetermined time of the night in order to operate a compressor, a circulation pump, etc. using inexpensive late-night power.

従来のヒートポンプ装置では、さらに、圧縮機の冷媒吐出流量は、ヒートポンプ装置と暖房空間の暖房機器との間を循環する熱媒体の設定温度と検出温度との差分(=設定温度−検出温度)に応じて制御されている。   In the conventional heat pump device, the refrigerant discharge flow rate of the compressor is further set to the difference between the set temperature and the detected temperature of the heat medium circulating between the heat pump device and the heating device in the heating space (= set temperature−detected temperature). Are controlled accordingly.

また、特許文献1の温湿度調整装置では、圧縮機から吐出される冷媒が加熱回路と冷凍回路との2つに分流するとともに、各分流路には、その上流端部に膨張弁(開度調整弁の一種)が配設されている。該温湿度調整装置では、いずれかの膨張弁の開度が変更されると、対応の分流路の冷媒流量が変化するとともに、加熱回路と冷凍回路とに分流する冷媒の分流流量の比も変化することになる。   Further, in the temperature and humidity adjusting device of Patent Document 1, the refrigerant discharged from the compressor is divided into two, a heating circuit and a refrigeration circuit, and each branch passage has an expansion valve (opening degree) at its upstream end. A kind of regulating valve) is provided. In the temperature / humidity adjusting device, when the opening degree of one of the expansion valves is changed, the refrigerant flow rate of the corresponding branch flow path is changed, and the ratio of the flow rate of the refrigerant divided into the heating circuit and the refrigeration circuit is also changed. Will do.

特許第5643982号公報Japanese Patent No. 5634982

従来のヒートポンプ装置では、各分流路の電磁開閉弁が暖房用加熱及び給湯用加熱の実施及び停止に応じて単に開閉するだけであるので、暖房用加熱と給湯用加熱との並行実施期間では、各分流路間の冷媒流量の分配率が固定されている。   In the conventional heat pump device, the electromagnetic on-off valve of each branch flow path simply opens and closes according to the execution and stop of heating for heating and heating for hot water supply, so in the parallel execution period of heating for heating and heating for hot water supply, The distribution ratio of the refrigerant flow rate between the branch channels is fixed.

暖房用加熱と給湯用加熱とを並行して行う場合、暖房用加熱の加熱要求に対応する冷媒流量は、暖房用加熱の設定温度の変更や、採熱用媒体の温度変化に応じて、変化する。したがって、圧縮機の冷媒吐出流量を暖房用加熱の要求に合わせて制御し、かつ各分流路間の冷媒流量の分配率が固定されている従来のヒートポンプ装置では、運転状況によって、給湯用加熱の分流路の冷媒流量が不足することがある。不足期間が長引くと、貯湯タンクの湯水の沸き上がりが、遅れ、深夜電力期間に終了できないことにつながる。   When heating for heating and heating for hot water supply are performed in parallel, the refrigerant flow rate corresponding to the heating demand for heating for heating changes according to changes in the set temperature for heating for heating or changes in the temperature of the heating medium. To do. Therefore, in the conventional heat pump apparatus in which the refrigerant discharge flow rate of the compressor is controlled in accordance with the heating heating requirement and the distribution rate of the refrigerant flow rate between the respective flow paths is fixed, the heating heat supply heating temperature is changed depending on the operation state. The refrigerant flow rate in the shunt channel may be insufficient. If the shortage period is prolonged, boiling of hot water in the hot water storage tank will be delayed and will not be completed during the midnight power period.

なお、貯湯タンクとヒートポンプ装置との間で湯水を循環させる循環路を構成する配管の径や循環ポンプの性能上、湯水の循環流量には上限がある。したがって、湯水の沸き上げ期間に給湯用加熱の分流路の冷媒流量が不足しないように、圧縮機の冷媒吐出流量を多めに制御することは、給湯用加熱の分流路の冷媒流量の上限の上回り分を含む吐出流量で圧縮機を運転する時間が増大する。これは、電力の無駄な消費量を増やすことになる。   In addition, there exists an upper limit in the circulating flow volume of hot water from the diameter of the piping which comprises the circulation path which circulates hot water between a hot water storage tank and a heat pump apparatus, and the performance of a circulation pump. Therefore, to prevent the refrigerant flow rate in the branch flow path for hot water supply from becoming insufficient during the boiling period of hot water, it is necessary to control the refrigerant discharge flow rate higher than the upper limit of the refrigerant flow rate in the flow path for hot water supply heating. The time for operating the compressor at the discharge flow rate including the minute increases. This increases wasteful power consumption.

そこで、特許文献1のように、各分流路に膨張弁を配設して、各分流路間の冷媒流量の分配率を各時点の暖房用加熱及び給湯用加熱の各加熱要求に合わせて適切に制御することが考えられる。   Therefore, as in Patent Document 1, an expansion valve is provided in each branch flow path, and the distribution ratio of the refrigerant flow rate between the respective flow paths is appropriately set in accordance with each heating request of heating for heating and heating for hot water supply at each time point. It is conceivable to control it.

しかしながら、ヒートポンプ装置が設置される状況により暖房空間の容積や貯湯タンクの容量がまちまちであるので、各時点で暖房空間や貯湯タンクの加熱要求量を正確に把握することは難しい。したがって、暖房空間や貯湯タンクの加熱要求量の比に応じて決まる暖房用加熱及び給湯用加熱の分流路の冷媒流量の分配率も算出することができない。膨張弁の開度制御は、算出した分配率に応じて行わなければならないので、分配率を適切に算出することができないということは、膨張弁の開度制御によって各分流路の冷媒流量を暖房用加熱及び給湯用加熱の各加熱要求に応じた流量に制御できないことを意味する。   However, since the volume of the heating space and the capacity of the hot water storage tank vary depending on the situation where the heat pump device is installed, it is difficult to accurately grasp the heating required amount of the heating space and the hot water storage tank at each time point. Accordingly, it is also impossible to calculate the distribution ratio of the refrigerant flow rate in the branch flow path for heating for heating and hot water supply, which is determined according to the ratio of the required heating amount of the heating space or hot water storage tank. Since the opening control of the expansion valve must be performed according to the calculated distribution rate, the fact that the distribution rate cannot be calculated appropriately means that the refrigerant flow rate in each branch flow path is heated by the opening control of the expansion valve. It means that it cannot be controlled to the flow rate according to each heating requirement of heating for heating and heating for hot water supply.

本発明の目的は、設置状況により暖房空間の容積や貯湯タンクの容量がまちまちであっても、暖房空間及び貯湯タンクにそれらの各時点の加熱要求量に応じた適切な流量で冷媒を供給することができるヒートポンプ装置を提供することである。   The object of the present invention is to supply refrigerant to the heating space and the hot water storage tank at an appropriate flow rate according to the required heating amount at each time point, even if the volume of the heating space and the capacity of the hot water storage tank vary depending on the installation situation. It is to provide a heat pump device that can.

本願発明のヒートポンプ装置は、
相互に並列接続された第1分流路及び第2分流路を含んで、冷媒が封入された冷媒循環路と、
前記冷媒循環路の途中に設けられて、上流側の冷媒を圧縮して、下流側に吐出する圧縮機と、
暖房機器を経由する暖房用循環路を流通する熱媒体と前記第1分流路を流通する冷媒との熱交換を行う暖房用熱交換器と、
貯湯タンクを経由する貯湯タンク用循環路を流通する湯水と前記第2分流路を流通する冷媒との熱交換を行う給湯用熱交換器と、
前記冷媒循環路において前記圧縮機に吸入される前の冷媒を加熱する冷媒加熱部と、
前記第1分流路又は前記第2分流路に配設されて開度が調整自在である開度調整弁と、
前記暖房用循環路を前記暖房用熱交換器から前記暖房機器へ向かう往き側熱媒体の温度を検出する往き側熱媒体用温度検出器と、
前記圧縮機を作動させて、前記暖房用熱交換器及び前記給湯用熱交換器による熱交換を行うときに、前記圧縮機の現在の吐出流量に対して、前記開度調整弁の開度を、前記第2分流路の冷媒流量が前記給湯用熱交換器における前記湯水の設定加熱量を確保できる開度に変更する第1処理と、往き側熱媒体について設定した設定温度と往き側熱媒体について前記往き側熱媒体用温度検出器が検出した現在の検出温度との差分の絶対値が減少するように前記圧縮機の冷媒吐出流量を変更する第2処理とを交互に実施するとともに、前記第1処理の実施中は前記圧縮機の吐出流量を前記第2処理の前回の終了時の吐出流量に固定し、前記第2処理の実施中は前記開度調整弁の開度を前記第1処理の前回の終了時の開度に固定する処理制御部とを備えることを特徴とする。
The heat pump device of the present invention is
A refrigerant circulation path including a first branch flow path and a second branch flow path connected in parallel with each other, and having a refrigerant sealed therein;
A compressor that is provided in the middle of the refrigerant circulation path, compresses the refrigerant on the upstream side, and discharges the refrigerant on the downstream side;
A heat exchanger for heating that exchanges heat between a heat medium that circulates through a heating circulation path that passes through a heating device and a refrigerant that circulates through the first branch flow path;
A hot water supply heat exchanger for exchanging heat between hot water flowing through the hot water tank circulation path passing through the hot water storage tank and the refrigerant flowing through the second branch flow path;
A refrigerant heating unit for heating the refrigerant before being sucked into the compressor in the refrigerant circulation path;
An opening degree adjusting valve disposed in the first branch path or the second branch path and having an adjustable opening degree;
A temperature detector for the forward heat medium that detects the temperature of the forward heat medium that travels from the heating heat exchanger to the heating equipment in the heating circuit;
When the compressor is operated and heat exchange is performed by the heat exchanger for heating and the heat exchanger for hot water supply, the opening of the opening adjustment valve is set with respect to the current discharge flow rate of the compressor. The first process of changing the flow rate of the refrigerant in the second branch channel to an opening degree that can secure the set heating amount of the hot water in the hot water supply heat exchanger, the set temperature set for the outgoing heat medium, and the outgoing heat medium And alternately performing a second process of changing the refrigerant discharge flow rate of the compressor so that the absolute value of the difference from the current detected temperature detected by the forward-side heat medium temperature detector decreases, and During the execution of the first process, the discharge flow rate of the compressor is fixed to the discharge flow rate at the previous end of the second process, and during the second process, the opening degree of the opening adjustment valve is set to the first flow rate. With a processing control unit that fixes the opening at the end of the previous processing It is characterized in.

本発明によれば、第1処理では、圧縮機の吐出流量が第2処理の前回の終了時の吐出流量に固定されたまま、開度調整弁の開度は、圧縮機の現在の吐出流量に対して、第2分流路の冷媒流量が給湯用熱交換器における湯水の設定加熱量を確保できる開度に変更される。第2処理では、開度調整弁の開度が第1処理の前回の終了時の開度に固定されたまま、圧縮機の冷媒吐出流量は、往き側熱媒体の設定温度と往き側熱媒体用温度検出器が検出した現在の検出温度との差分の絶対値が減少するように、変更される。   According to the present invention, in the first process, the opening of the opening adjustment valve is set to the current discharge flow rate of the compressor while the discharge flow rate of the compressor is fixed to the discharge flow rate at the previous end of the second process. On the other hand, the refrigerant flow rate in the second branch passage is changed to an opening degree that can secure the set heating amount of hot water in the hot water supply heat exchanger. In the second process, while the opening of the opening adjustment valve is fixed at the opening at the previous end of the first process, the refrigerant discharge flow rate of the compressor is the set temperature of the forward heat medium and the forward heat medium. The absolute value of the difference from the current detected temperature detected by the industrial temperature detector is changed.

すなわち、第1処理では、第1分流路の冷媒流量を考慮することなく、第2分流路の冷媒流量が、給湯用加熱の要求量に応じた値に適正化されるように、変更される。一方、この第1処理の実施により、第1分流路の冷媒流量が、暖房用加熱の要求量に応じた適正値からずれる。このずれは、暖房機器へ向かう往き側熱媒体について、該往き側熱媒体の設定温度と現在の検出温度との差分に反映される。   That is, in the first process, the refrigerant flow rate in the second branch channel is changed so as to be optimized to a value corresponding to the required amount of heating for hot water supply without considering the refrigerant flow rate in the first branch channel. . On the other hand, by performing this first process, the refrigerant flow rate in the first branch channel deviates from an appropriate value corresponding to the required amount of heating for heating. This deviation is reflected in the difference between the set temperature of the outgoing heat medium and the current detected temperature for the outgoing heat medium heading to the heating device.

第2処理では、暖房機器へ向かう往き側熱媒体について、該往き側熱媒体の設定温度と現在の検出温度との差分の絶対値が減少するように、圧縮機の冷媒吐出流量が変更される。この変更は、第1分流路の冷媒流量を暖房用加熱の要求量に応じた適正値に戻すだけでなく、開度調整弁の現在の開度の下で第1分流路及び第2分流路の冷媒流量の合計の過不足分も緩和させる。すなわち、第2処理は、ヒートポンプ装置全体での冷媒流量の過不足分を適当に補正する機能も有する。このことは、第2分流路の冷媒流量が、第1処理の前回の開始時の冷媒流量よりも、現在の給湯用加熱の要求量の対応値に接近したことを意味する。   In the second process, the refrigerant discharge flow rate of the compressor is changed so that the absolute value of the difference between the set temperature of the forward side heat medium and the current detected temperature is reduced for the forward side heat medium toward the heating device. . This change not only returns the refrigerant flow rate of the first branch flow path to an appropriate value according to the required amount of heating for heating, but also the first branch flow path and the second branch flow path under the current opening of the opening adjustment valve. The total excess and deficiency of the refrigerant flow is also alleviated. That is, the second process also has a function of appropriately correcting the excess or deficiency of the refrigerant flow rate in the entire heat pump apparatus. This means that the refrigerant flow rate in the second branch channel is closer to the current value corresponding to the required amount of heating for hot water supply than the refrigerant flow rate at the previous start of the first process.

第2処理に続く第1処理は、第2分流路の冷媒流量が第1処理の前回の開始時のものより現在の給湯用加熱の要求量の対応値に接近したことを受けて、実施される。したがって、第1処理の今回の実行により、第2分流路の冷媒流量は、第1処理の前回の実行時よりも、現在の給湯用加熱の要求量の対応値に接近する。   The first process subsequent to the second process is performed in response to the fact that the refrigerant flow rate in the second branch channel has approached the corresponding value of the current required amount of heating for hot water supply from that at the previous start of the first process. The Therefore, by the current execution of the first process, the refrigerant flow rate in the second branch channel is closer to the corresponding value of the current required amount of heating for hot water supply than during the previous execution of the first process.

こうして、第1処理及び第2処理の交互の実施が繰り返されて、第1分流路及び第2分流路の冷媒流量は、それぞれ暖房用加熱の要求量と、給湯用加熱の要求量とに合致した値に収束、又は十分に接近する。   In this way, the first treatment and the second treatment are alternately performed repeatedly, and the refrigerant flow rates in the first branch passage and the second branch passage match the required heating heating amount and the required hot water heating amount, respectively. Converge to or close enough to

このように、本発明によれば、第2分流路の冷媒流量を適正化するだけの単純な第1処理と、暖房機器へ向かう往き側熱媒体について、該往き側熱媒体の設定温度と現在の検出温度との差分の絶対値を減少させるように圧縮機の冷媒吐出流量を変更するだけの単純な第2処理とを交互に繰り返す。そして、これにより、ヒートポンプ装置の設置状況により暖房空間の容積や貯湯タンクの容量がまちまちであっても、所定時間経過後は、暖房空間及び貯湯タンクにそれらの各時点の加熱要求量に応じた適切な流量で冷媒を供給することができる。   As described above, according to the present invention, with respect to the simple first process that only optimizes the refrigerant flow rate in the second branch flow path, and the outgoing side heat medium that goes to the heating device, the set temperature of the outgoing side heat medium and the current A simple second process that simply changes the refrigerant discharge flow rate of the compressor so as to reduce the absolute value of the difference from the detected temperature is alternately repeated. Thus, even if the space of the heating space and the capacity of the hot water storage tank vary depending on the installation status of the heat pump device, the heating space and the hot water storage tank respond to the heating request amount at each time point after the predetermined time has elapsed. The refrigerant can be supplied at an appropriate flow rate.

本発明のヒートポンプ装置において、
前記冷媒加熱部は、前記冷媒循環路において前記圧縮機に吸入される前の冷媒と所定の採熱用媒体との熱交換を行う採熱用熱交換器であり、
前記処理制御部は、前記第1処理では、前記採熱用熱交換器の採熱用媒体入口側の採熱用媒体の温度が高いほど、前記圧縮機の現在の吐出流量に対する前記第2分流路の冷媒流量の割合が小さくなるように、前記開度調整弁の開度を変更することが好ましい。
In the heat pump device of the present invention,
The refrigerant heating unit is a heat collecting heat exchanger that exchanges heat between the refrigerant before being sucked into the compressor in the refrigerant circulation path and a predetermined heat collecting medium,
In the first process, the process control unit is configured to perform the second diversion with respect to the current discharge flow rate of the compressor as the temperature of the heat collecting medium on the heat collecting medium inlet side of the heat collecting heat exchanger increases. It is preferable to change the opening degree of the opening degree adjusting valve so that the ratio of the refrigerant flow rate in the passage becomes small.

採熱用媒体が一定の流量で採熱用熱交換器を通過していく場合、採熱用熱交換器の採熱用媒体入口側の採熱用媒体の温度が高いほど、採熱用熱交換器での採熱用媒体との熱交換後の冷媒の温度が上昇し、圧縮機から吐出される冷媒の熱流量が増大することになる。この構成によれば、採熱用熱交換器の採熱用媒体入口側の採熱用媒体の温度が高いほど、圧縮機の現在の吐出流量に対する第2分流路の冷媒流量の割合を小さくするように開度調整弁の開度を変更することにより、第1処理で第2分流路の冷媒流量を給湯用加熱に要求される流量に適切に合わせることができる。   When the heat collecting medium passes through the heat collecting heat exchanger at a constant flow rate, the higher the temperature of the heat collecting medium at the heat collecting medium inlet side of the heat collecting heat exchanger, the heat collecting heat. The temperature of the refrigerant after heat exchange with the heat collecting medium in the exchanger rises, and the heat flow rate of the refrigerant discharged from the compressor increases. According to this configuration, the higher the temperature of the heat collecting medium on the heat collecting medium inlet side of the heat collecting heat exchanger, the smaller the ratio of the refrigerant flow rate in the second branch channel to the current discharge flow rate of the compressor. Thus, by changing the opening degree of the opening degree adjusting valve, it is possible to appropriately match the refrigerant flow rate of the second branch flow path with the flow rate required for heating for hot water supply in the first process.

本発明のヒートポンプ装置において、前記処理制御部は、前記第1処理では、前記給湯用熱交換器の湯水入口側の湯水の温度が高いほど、前記圧縮機の現在の吐出流量に対する前記第2分流路の冷媒流量の割合が小さくなるように、前記開度調整弁の開度を変更することが好ましい。   In the heat pump device of the present invention, in the first process, the process control unit is configured such that the higher the temperature of the hot water at the hot water inlet side of the hot water supply heat exchanger, the higher the temperature of the hot water at the discharge flow rate of the compressor. It is preferable to change the opening degree of the opening degree adjusting valve so that the ratio of the refrigerant flow rate in the passage becomes small.

給湯用熱交換器に流入する湯水の温度が高いほど、給湯用熱交換器で湯水を設定温度にするのに必要な熱交換量は少なくて済む。この構成によれば、給湯用熱交換器の湯水入口側の湯水の温度が高いほど、圧縮機の現在の吐出流量に対する第2分流路の冷媒流量の割合を小さくするように、開度調整弁の開度を変更することにより、第1処理で第2分流路の冷媒流量を給湯用加熱に要求される流量に適切に合わせることができる。   The higher the temperature of the hot water flowing into the hot water supply heat exchanger, the smaller the amount of heat exchange required to bring the hot water to the set temperature in the hot water supply heat exchanger. According to this configuration, the opening degree adjustment valve is configured such that the higher the temperature of the hot water on the hot water inlet side of the hot water supply heat exchanger, the smaller the ratio of the refrigerant flow rate in the second branch flow path to the current discharge flow rate of the compressor. By changing the opening degree, the refrigerant flow rate of the second branch channel can be appropriately adjusted to the flow rate required for hot water heating in the first process.

本発明のヒートポンプ装置は、好ましくは、
前記第1分流路及び前記第2分流路の両方に対して並列に接続された第3分流路と、
屋外の空気を屋内の暖房空間に導く給気通路と屋内の前記暖房空間の空気を屋外に排出する排気通路とにまたがって配設されるデシカントと、
前記給気通路において前記デシカントの上流側に配設されて、前記デシカントを通過する前の空気を前記第3分流路の冷媒により加熱する凝縮器と、
前記第3分流路において前記凝縮器の下流側に配設されて開度が調整自在である第1調整弁と、
前記第3分流路において前記凝縮器の上流側に配設されて開度が調整自在である第2調整弁と、
前記排気通路において前記デシカントの上流側に配設されて、前記デシカントを通過する前の空気を、前記第1調整弁を通ってきた第3分流路の冷媒により冷却する蒸発器とを備え、
前記処理制御部は、
前記蒸発器の冷媒入口側及び冷媒出口側の冷媒温度が第1目標温度範囲内になるように前記第1調整弁の開度を調整してから、前記凝縮器の冷媒出口側の冷媒温度が第2目標温度範囲内になるように前記第2調整弁の開度を調整する第3処理を実施し、
前記第1処理、前記第2処理及び前記第3処理の3つの処理を所定の順番で繰り返し実施し、
前記第1処理の実施中は前記圧縮機の吐出流量を前記第2処理の前回の終了時の吐出流量に固定しかつ前記第1調整弁及び前記第2調整弁の開度を前記第3処理の前回の終了時の開度に固定し、
前記第2処理の実施中は前記開度調整弁の開度を前記第1処理の前回の終了時の開度に固定しかつ前記第1調整弁及び前記第2調整弁の開度を前記第3処理の前回の終了時の開度に固定し、
前記第3処理の実施中は前記開度調整弁の開度を前記第1処理の前回の終了時の開度に固定しかつ前記圧縮機の吐出流量を前記第2処理の前回の終了時の吐出流量に固定する。
The heat pump device of the present invention is preferably
A third branch channel connected in parallel to both the first branch channel and the second branch channel;
A desiccant disposed across an air supply passage for guiding outdoor air to the indoor heating space and an exhaust passage for discharging the air in the indoor heating space to the outside;
A condenser that is disposed upstream of the desiccant in the air supply passage, and that heats the air before passing through the desiccant by the refrigerant in the third branch channel;
A first regulating valve disposed on the downstream side of the condenser in the third branch channel and having an adjustable opening;
A second regulating valve disposed on the upstream side of the condenser in the third branch channel and having an adjustable opening;
An evaporator disposed upstream of the desiccant in the exhaust passage and configured to cool the air before passing through the desiccant with a refrigerant in a third branch passage that has passed through the first adjustment valve;
The processing control unit
The refrigerant temperature on the refrigerant outlet side of the condenser is adjusted after the opening of the first adjustment valve is adjusted so that the refrigerant temperatures on the refrigerant inlet side and the refrigerant outlet side of the evaporator are within the first target temperature range. Performing a third process for adjusting the opening of the second adjustment valve so as to be within the second target temperature range;
The three processes of the first process, the second process and the third process are repeatedly performed in a predetermined order,
During the execution of the first process, the discharge flow rate of the compressor is fixed to the discharge flow rate at the previous end of the second process, and the opening degree of the first adjustment valve and the second adjustment valve is set to the third process. Fixed at the opening at the previous end of
During the execution of the second process, the opening of the opening adjustment valve is fixed to the opening at the previous end of the first process, and the opening of the first adjustment valve and the second adjustment valve is set to the first. 3 Fix the opening at the end of the previous process,
During the execution of the third process, the opening of the opening adjustment valve is fixed to the opening at the previous end of the first process, and the discharge flow rate of the compressor is the same as that at the previous end of the second process. Fix the discharge flow rate.

この構成によれば、第1処理、第2処理及び第3処理が、所定の順番で繰り返し実施される。そして、各処理の実施中は、実施が停止されている他の2つの処理において行われた開度調整弁の開度、圧縮機の吐出流量、又は第1調整弁及び前記第2調整弁の開度は、該他の2つの処理の前回の終了時に値に固定されて、各処理が実施される。   According to this configuration, the first process, the second process, and the third process are repeatedly performed in a predetermined order. During the execution of each process, the opening of the opening adjustment valve, the discharge flow rate of the compressor, or the first adjustment valve and the second adjustment valve performed in the other two processes that have been stopped. The opening is fixed to a value at the previous end of the other two processes, and each process is performed.

すなわち、第1処理及び第3処理では、第1分流路の冷媒流量を考慮することなく、第2分流路及び第3分流路の各冷媒流量が、給湯用加熱及びデシカント制御用加熱の要求量に応じた値に適正化されるように、変更される。一方、この第1処理及び第3処理の実施により、第1分流路の冷媒流量が、暖房用加熱の要求量に応じた適正値からずれる。このずれは、暖房機器へ向かう往き側熱媒体について、該往き側熱媒体の設定温度と現在の検出温度との差分に反映される。   That is, in the first process and the third process, the refrigerant flow rates in the second branch flow path and the third branch flow path are the required amounts of heating for hot water supply and desiccant control without considering the refrigerant flow rate in the first branch flow path. To be optimized to a value according to On the other hand, by performing the first process and the third process, the refrigerant flow rate in the first branch flow path deviates from an appropriate value according to the required amount of heating for heating. This deviation is reflected in the difference between the set temperature of the outgoing heat medium and the current detected temperature for the outgoing heat medium heading to the heating device.

第2処理では、該差分の絶対値が減少するように、圧縮機の冷媒吐出流量が変更される。この変更は、第1分流路の冷媒流量を暖房用加熱の要求量に応じた適正値に戻すだけでなく、開度調整弁、第1調整弁及び第2調整弁の現在の開度の下で第1分流路、第2分流路及び第3分流路の冷媒流量の合計の過不足分も緩和する。すなわち、第2処理は、ヒートポンプ装置全体での冷媒流量の過不足分を適当に補正する機能も有する。このことは、第2分流路及び第3分流路の冷媒流量が、第1処理及び第3処理の前回の開始時の冷媒流量よりも、現在の給湯用加熱及びデシカント制御用加熱の各要求量の対応値に接近したことを意味する。   In the second process, the refrigerant discharge flow rate of the compressor is changed so that the absolute value of the difference decreases. This change not only returns the refrigerant flow rate in the first branch flow path to an appropriate value corresponding to the required amount of heating for heating, but also reduces the current opening degree of the opening adjustment valve, the first adjustment valve, and the second adjustment valve. Thus, the excess and deficiency of the total refrigerant flow in the first branch path, the second branch path, and the third branch path is also alleviated. That is, the second process also has a function of appropriately correcting the excess or deficiency of the refrigerant flow rate in the entire heat pump apparatus. This is because the refrigerant flow rates in the second and third flow paths are higher than the refrigerant flow rates at the previous start of the first process and the third process, and the respective required amounts of heating for hot water supply and heating for desiccant control. It means that the corresponding value of was approached.

第2処理に続く第1処理及び第3処理は、第2分流路及び第3分流路の冷媒流量が第1処理及び第3処理の前回の開始時のものより現在の給湯用加熱及びデシカント制御用加熱の要求量の対応値に接近したことを受けて、実施される。したがって、第1処理及び第3処理の今回の実行により、第2分流路及び第3分流路の冷媒流量は、第1処理の前回の実行時よりも、現在の給湯用加熱及びデシカント制御用加熱の各要求量の対応値に接近する。   In the first process and the third process following the second process, the coolant flow rates in the second branch path and the third branch path are higher than those at the previous start of the first process and the third process, and the current heating and desiccant control. It is implemented in response to the fact that it has approached the corresponding value of the required heating amount. Therefore, due to the current execution of the first process and the third process, the refrigerant flow rates in the second branch path and the third branch path are higher than those in the previous execution of the first process. Approaches the corresponding value of each requested quantity.

こうして、第1処理、第2処理及び第3処理の実施が所定の順番で繰り返されて、第1分流路、第2分流路及び第3分流路の冷媒流量は、それぞれ暖房用加熱、給湯用加熱及びデシカント制御用加熱の各要求量とに合致した値に収束、又は十分に接近する。   Thus, the first process, the second process, and the third process are repeated in a predetermined order, and the refrigerant flow rates in the first branch path, the second branch path, and the third branch path are for heating for heating and hot water supply, respectively. It converges or approaches sufficiently to a value that matches the required amount of heating and heating for desiccant control.

このように、この構成によれば、単純な第1処理及び第2処理の実施に、第3分流路の冷媒流量を適正化するだけの単純な第3処理の実施を加えて、それら実施を繰り返すだけとなっている。そして、これにより、ヒートポンプ装置の設置状況により暖房空間の容積や貯湯タンクの容量がまちまちであっても、所定時間経過後は、暖房空間及び貯湯タンクと共にデシカントの各時点の加熱要求量に応じた適切な流量で冷媒を供給することができる。   As described above, according to this configuration, in addition to the simple first process and the second process, the simple third process only for optimizing the refrigerant flow rate in the third branch flow path is added, and the execution is performed. It has only been repeated. Thus, even if the space of the heating space and the capacity of the hot water storage tank vary depending on the installation state of the heat pump device, after the predetermined time has elapsed, the heating request amount at each time point of the desiccant is determined together with the heating space and the hot water storage tank. The refrigerant can be supplied at an appropriate flow rate.

地中熱ヒートポンプシステムの構成図。The block diagram of a geothermal heat pump system. ヒートポンプ装置の構成図。The block diagram of a heat pump apparatus. デシカント装置の構成図。The block diagram of a desiccant apparatus. ヒートポンプ装置の機能ブロック図。The functional block diagram of a heat pump apparatus. 暖房運転制御全体のフローチャート。The flowchart of the whole heating operation control. 給湯配分率制御のフローチャート。The flowchart of hot water supply distribution rate control. デシカント制御のフローチャート。The flowchart of desiccant control. 圧縮機制御のフローチャート。The flowchart of compressor control.

図1は地中熱ヒートポンプシステム1の構成図である。図1及び後述の図2において、Z1〜Z8は、同一の符号同士が同一箇所の関係にあることを示している。   FIG. 1 is a configuration diagram of a geothermal heat pump system 1. In FIG. 1 and FIG. 2 described later, Z1 to Z8 indicate that the same reference numerals are in the same location.

地中熱ヒートポンプシステム1は、ヒートポンプ装置(ヒートポンプユニット)2、地中採熱部3、デシカント装置4、貯湯タンクユニット5及び床暖房装置6を備える。ヒートポンプ装置2及び貯湯タンクユニット5は、家屋10の屋外又は屋内に配設される。デシカント装置4及び床暖房装置6は、家屋10内に配設される。   The geothermal heat pump system 1 includes a heat pump device (heat pump unit) 2, an underground heat collecting unit 3, a desiccant device 4, a hot water storage tank unit 5, and a floor heating device 6. The heat pump device 2 and the hot water storage tank unit 5 are disposed outdoors or indoors in the house 10. The desiccant device 4 and the floor heating device 6 are disposed in the house 10.

地中採熱部3は、往き側採熱管8と戻り側採熱管9とを備えるUチューブ方式を採用している。往き側採熱管8と戻り側採熱管9とは、地面11の下の地中12内の所定深さまで垂直に降下し、最下端で相互に接続されている。往き側採熱管8及び戻り側採熱管9は、採熱用媒体(詳細には不凍液入り水)が流通する採熱用媒体循環路85の一部を構成する。採熱用媒体は、ヒートポンプ装置2から往き側採熱管8に導かれ、往き側採熱管8の最下端で折り返して戻り側採熱管9へ入り、戻り側採熱管9を通って、ヒートポンプ装置2に戻る。   The underground heat collecting unit 3 employs a U-tube system including a forward-side heat collecting tube 8 and a return-side heat collecting tube 9. The forward-side heat collection pipe 8 and the return-side heat collection pipe 9 are vertically lowered to a predetermined depth in the underground 12 below the ground 11 and are connected to each other at the lowermost end. The forward-side heat collecting pipe 8 and the return-side heat collecting pipe 9 constitute a part of a heat collecting medium circulation path 85 through which a heat collecting medium (specifically, water containing antifreeze liquid) flows. The heat collecting medium is guided from the heat pump device 2 to the outgoing side heat collecting tube 8, folded back at the lowermost end of the outgoing side heat collecting tube 8, enters the return side heat collecting tube 9, passes through the return side heat collecting tube 9, and passes through the heat pump device 2. Return to.

貯湯タンクユニット5は、湯水16を貯留する貯湯タンク15を備える。貯湯タンク15には、導管19〜22が接続される。導管19,20は、貯湯タンク用循環路としての貯湯水循環路89の一部を構成する。循環ポンプP3は導管20に配設される。貯湯タンク15内の湯水16は、循環ポンプP3の作動により、貯湯水循環路89を循環する。循環ポンプP3の駆動、停止及び回転速度は制御基板97(図2)により制御される。なお、循環ポンプP3の回転速度と貯湯水循環路89内の湯水16の循環流量とは比例関係がある(循環流量∝回転速度)。   The hot water storage tank unit 5 includes a hot water storage tank 15 that stores hot water 16. The hot water storage tank 15 is connected to conduits 19 to 22. The conduits 19 and 20 constitute a part of a hot water storage circuit 89 serving as a hot water tank circulation path. The circulation pump P3 is disposed in the conduit 20. The hot water 16 in the hot water storage tank 15 circulates in the hot water storage circuit 89 by the operation of the circulation pump P3. The drive, stop, and rotation speed of the circulation pump P3 are controlled by the control board 97 (FIG. 2). Note that the rotational speed of the circulation pump P3 and the circulating flow rate of the hot water 16 in the hot water circulating circuit 89 are proportional to each other (circulating flow rate ∝ rotational speed).

図1において、A1は、導管22から貯湯タンク15に供給される水道水(補給水)の流れ方向を示し、A2は、貯湯タンク15の湯水16が導管21を介して家屋10内の出湯端末へ流れる方向を示している。家屋10内の出湯端末の例として、風呂場の浴槽の給湯栓やシャワー、及び台所の給湯栓が挙げられる。   In FIG. 1, A1 shows the flow direction of the tap water (makeup water) supplied from the conduit 22 to the hot water storage tank 15, and A2 shows the hot water terminal 16 in the house 10 where the hot water 16 in the hot water storage tank 15 passes through the conduit 21. The direction of flow to Examples of the hot water outlet terminal in the house 10 include a hot water tap and shower of a bathtub in a bathroom, and a hot water tap of a kitchen.

バイパス管26は、導管21と導管22とを接続している。混合装置27は、導管21へのバイパス管26の接続箇所に配設され、バイパス管26からの水道水と貯湯タンク15からの湯水16とを、それらの混合比を調整してから、出湯端末の方へ導く。   The bypass pipe 26 connects the conduit 21 and the conduit 22. The mixing device 27 is disposed at a connection point of the bypass pipe 26 to the conduit 21 and adjusts the mixing ratio between the tap water from the bypass pipe 26 and the hot water 16 from the hot water storage tank 15, and then the hot water outlet terminal. Lead towards.

床暖房装置6は、熱媒体としての温水を使用する暖房機器の一例であり、家屋10内の所定の部屋の床に敷設される。家屋10内で使用される温水式の暖房機器には、床暖房装置6以外に、パネルヒータ及びファンコイルユニット等が存在する。   The floor heating device 6 is an example of a heating device that uses hot water as a heat medium, and is laid on the floor of a predetermined room in the house 10. In addition to the floor heating device 6, there are a panel heater, a fan coil unit, and the like in the hot water heating device used in the house 10.

床暖房装置6には導管29,30が接続され、導管29,30は、床暖房装置6内に埋め込まれた放熱用の温水パイプと共に、床暖房装置6を経由する暖房用循環路としての熱媒体循環路92の一部を構成する。熱媒体循環路92には、循環ポンプP2(図2)が配設され、所定の熱媒体(詳細には不凍液入り水)が循環ポンプP2の作動により熱媒体循環路92を循環する。該所定の熱媒体は、床暖房装置6を通過する際に、床暖房装置6において放熱して、暖房空間を暖める。   The conduits 29 and 30 are connected to the floor heating device 6, and the conduits 29 and 30 together with heat-dissipating hot water pipes embedded in the floor heating device 6 serve as heat as a heating circulation path via the floor heating device 6. A part of the medium circulation path 92 is formed. A circulation pump P2 (FIG. 2) is disposed in the heat medium circulation path 92, and a predetermined heat medium (specifically, water containing antifreeze liquid) circulates in the heat medium circulation path 92 by the operation of the circulation pump P2. The predetermined heat medium dissipates heat in the floor heating device 6 and warms the heating space when passing through the floor heating device 6.

デシカント装置4は、家屋10の屋内において壁の近くに配設されている。図1のA3及びA4は、デシカント装置4を通過して行われる屋外から屋内の暖房空間への給気及び屋内の暖房空間から屋外への排気の流れをそれぞれ示している。   The desiccant device 4 is disposed near the wall in the house 10. A3 and A4 in FIG. 1 respectively show the flow of air supply from the outdoor to the indoor heating space and the flow of exhaust from the indoor heating space to the outdoor performed through the desiccant device 4.

このヒートポンプ装置2は、暖房、冷房及び給湯に使用される。給湯での使用は、暖房での使用及び冷房での使用と同時に行うことができる。ヒートポンプ装置2が暖房用に作動している期間(以下、「暖房作動期間」という)は、ヒートポンプ装置2で加熱された熱媒体が熱媒体循環路92を循環して、端末としての床暖房装置6において放熱が行われる。これに対し、ヒートポンプ装置2が冷房用に作動している期間(以下、「冷房作動期間」という)は、ヒートポンプ装置2で冷却された熱媒体が熱媒体循環路92を循環して、冷房端末(図示せず)において吸熱が行われる。ヒートポンプ装置2が給湯用に作動している期間(以下、「給湯作動期間」という)は、貯湯タンク15内の湯水16が、貯湯水循環路89を循環し、その際、ヒートポンプ装置2で加熱されてから、貯湯タンク15に戻るようになっている。   This heat pump device 2 is used for heating, cooling and hot water supply. The use in hot water supply can be performed simultaneously with the use for heating and the use for cooling. During the period in which the heat pump device 2 is operating for heating (hereinafter referred to as “heating operation period”), the heat medium heated by the heat pump device 2 circulates in the heat medium circulation path 92 and serves as a floor heating device as a terminal. 6 radiates heat. On the other hand, during the period in which the heat pump device 2 is operating for cooling (hereinafter referred to as “cooling operation period”), the heat medium cooled by the heat pump device 2 circulates in the heat medium circulation path 92, and the cooling terminal Endothermic is performed at (not shown). During a period in which the heat pump device 2 is operating for hot water supply (hereinafter referred to as “hot water supply operation period”), the hot water 16 in the hot water storage tank 15 circulates in the hot water storage circuit 89 and is heated by the heat pump device 2 at that time. After that, it returns to the hot water storage tank 15.

デシカント装置4は、ヒートポンプ装置2の暖房作動期間では、空調空間(暖房空間)の加湿を行い、ヒートポンプ装置2の冷房作動期間では、空調空間(冷房空間)の除湿を行う。   The desiccant device 4 humidifies the air-conditioned space (heating space) during the heating operation period of the heat pump device 2, and dehumidifies the air-conditioned space (cooling space) during the cooling operation period of the heat pump device 2.

デシカント装置4には、導管33,34が接続される。導管33,34は、分流路58の一部を構成し、冷媒が循環するようになっている。デシカント装置4の詳細な構成については図3で後述する。   The desiccant device 4 is connected to conduits 33 and 34. The conduits 33 and 34 constitute a part of the branch flow path 58 so that the refrigerant circulates. The detailed configuration of the desiccant device 4 will be described later with reference to FIG.

図2はヒートポンプ装置2の構成図である。圧縮機50は、吸入側及び吐出側においてそれぞれ吸入流路51及び吐出流路52に接続され、三相誘導モータ53(図4)により回転駆動されて、吸入流路51の冷媒を圧縮して吐出流路52に吐出する。圧縮機50からの冷媒の吐出流量は、三相誘導モータ53による圧縮機50の駆動回転速度に比例し、該駆動回転速度は、インバータ(図示せず)から三相誘導モータ53への供給電流の周波数Fによって制御される。したがって、圧縮機50からの冷媒の吐出流量と周波数Fとには比例関係がある(圧縮機50からの冷媒の吐出流量∝周波数F)。   FIG. 2 is a configuration diagram of the heat pump device 2. The compressor 50 is connected to the suction flow path 51 and the discharge flow path 52 on the suction side and the discharge side, respectively, and is rotationally driven by a three-phase induction motor 53 (FIG. 4) to compress the refrigerant in the suction flow path 51. It discharges to the discharge flow path 52. The refrigerant discharge flow rate from the compressor 50 is proportional to the drive rotation speed of the compressor 50 by the three-phase induction motor 53, and the drive rotation speed is supplied from the inverter (not shown) to the three-phase induction motor 53. Is controlled by the frequency F. Therefore, there is a proportional relationship between the refrigerant discharge flow rate from the compressor 50 and the frequency F (the refrigerant discharge flow rate ∝ frequency F from the compressor 50).

四方切替弁55は、ポート55a,55b,55c,55dを有する。ポート55aには吐出流路52が接続され、ポート55bには合流路57が接続され、ポート55cには吸入流路51が接続され、ポート55dには合流路64が接続される。   The four-way switching valve 55 has ports 55a, 55b, 55c, and 55d. The discharge flow path 52 is connected to the port 55a, the combined flow path 57 is connected to the port 55b, the suction flow path 51 is connected to the port 55c, and the combined flow path 64 is connected to the port 55d.

四方切替弁55は、制御基板97(図4)からの制御信号により弁体の回転位置が切替えられる。図2に示される四方切替弁55のポート間の接続状態と冷媒について「→」で示す流れ方向とは、暖房作動期間のものを示している。   In the four-way switching valve 55, the rotational position of the valve body is switched by a control signal from the control board 97 (FIG. 4). The connection state between the ports of the four-way switching valve 55 shown in FIG. 2 and the flow direction indicated by “→” for the refrigerant indicate those during the heating operation period.

ヒートポンプ装置2の暖房作動期間の四方切替弁55の弁体の回転位置では、ポート55aとポート55bとが接続状態になり、ポート55cとポート55dとが接続状態になる。ヒートポンプ装置2の冷房作動期間の四方切替弁55の弁体の回転位置では、ポート55aとポート55dとが接続状態になり、ポート55bとポート55cとが接続状態になり、冷媒は暖房作動期間とは逆方向に循環する。   At the rotational position of the valve body of the four-way switching valve 55 during the heating operation period of the heat pump device 2, the port 55a and the port 55b are connected, and the port 55c and the port 55d are connected. At the rotational position of the valve body of the four-way switching valve 55 during the cooling operation period of the heat pump device 2, the port 55a and the port 55d are in a connected state, the port 55b and the port 55c are in a connected state, and the refrigerant is in a heating operation period. Circulates in the opposite direction.

デスーパーヒータ56は、吐出流路52に配設され、圧縮機50により圧縮された冷媒の過熱蒸気から飽和蒸気への変化時の放熱を利用して貯湯水循環路89内の湯水16を加熱する。合流路57の冷媒は、分流路58,59,60に分流し、合流路64で再び合流する。   The desuperheater 56 is disposed in the discharge flow path 52 and heats the hot water 16 in the hot water storage water circulation path 89 by using heat radiation when the refrigerant compressed by the compressor 50 changes from superheated steam to saturated steam. . The refrigerant in the combined flow path 57 is divided into the divided flow paths 58, 59, and 60 and merged again in the combined flow path 64.

吸入流路51、吐出流路52、合流路57、分流路58,59,60、及び合流路64は、所定の冷媒が封入されて循環する冷媒循環路を構成する。分流路58,59,60は、それぞれ本発明の第3分流路、第1分流路及び第2分流路に相当し、相互に並列接続された複数の分流路として、冷媒循環路の一部を構成する。   The suction flow path 51, the discharge flow path 52, the combined flow path 57, the branch flow paths 58, 59, 60, and the combined flow path 64 constitute a refrigerant circulation path in which a predetermined refrigerant is enclosed and circulated. The branch channels 58, 59, and 60 correspond to the third branch channel, the first branch channel, and the second branch channel of the present invention, respectively, and a part of the refrigerant circuit is formed as a plurality of branch channels connected in parallel to each other. Configure.

分流路58には、上流端部に膨張弁Ex4が配設され、下流端部に膨張弁Ex5が配設される。膨張弁Ex4等の膨張弁Exは、その開度がステップモータ(図示せず)により段階的に調整自在である開度調整弁である。開度の段階は、例えば0〜480stepの481段階が設定されている。膨張弁Exの全閉は0stepに対応し、膨張弁Exの全開は480stepに対応する。   In the branch flow path 58, an expansion valve Ex4 is disposed at the upstream end portion, and an expansion valve Ex5 is disposed at the downstream end portion. The expansion valve Ex such as the expansion valve Ex4 is an opening degree adjustment valve whose opening degree can be adjusted stepwise by a step motor (not shown). For example, 481 stages of 0 to 480 steps are set as the stage of opening. Full expansion of the expansion valve Ex corresponds to 0 step, and full expansion of the expansion valve Ex corresponds to 480 step.

分流路59には、冷媒の流れ方向に順番に、膨張弁Ex6、熱交換器70及び膨張弁Ex1が配設される。電磁開閉弁Mv1は膨張弁Ex6に対して並列に接続されている。電磁開閉弁Mv1等の電磁開閉弁Mvは、全開(開位置)と全閉(閉位置)との2位置のみを切替えられ、膨張弁Exのように、全開−全閉間の途中位置に開度を設定することはできない。   In the branch channel 59, an expansion valve Ex6, a heat exchanger 70, and an expansion valve Ex1 are arranged in order in the refrigerant flow direction. The electromagnetic on-off valve Mv1 is connected in parallel to the expansion valve Ex6. The electromagnetic open / close valve Mv such as the electromagnetic open / close valve Mv1 can be switched only between two positions of fully open (open position) and fully closed (closed position), and is opened at an intermediate position between fully open and fully closed like the expansion valve Ex. The degree cannot be set.

暖房作動期間では、分流路59の熱交換器70は凝縮器として機能する。熱媒体循環路92の熱媒体は、熱媒体循環路92の循環ポンプP2により循環させられるとともに、熱交換器70において分流路59の冷媒との熱交換により加熱される。   In the heating operation period, the heat exchanger 70 in the branch channel 59 functions as a condenser. The heat medium in the heat medium circulation path 92 is circulated by the circulation pump P <b> 2 in the heat medium circulation path 92 and is heated by heat exchange with the refrigerant in the branch flow path 59 in the heat exchanger 70.

温度センサS3,S4は、熱媒体循環路92において熱交換器70に対して熱媒体の出口側及び入口側にそれぞれ配設されている。温度センサS3等の温度センサSは、サーミスタから構成され、配設部位における熱媒体等の温度を検出する。   The temperature sensors S3 and S4 are disposed on the outlet side and the inlet side of the heat medium with respect to the heat exchanger 70 in the heat medium circuit 92, respectively. The temperature sensor S such as the temperature sensor S3 is composed of a thermistor and detects the temperature of the heat medium or the like at the arrangement site.

分流路60には、暖房作動期間の冷媒の流れ方向に順番に、電磁開閉弁Mv2、熱交換器74及び膨張弁Ex2が配設される。   In the branch path 60, an electromagnetic on-off valve Mv2, a heat exchanger 74, and an expansion valve Ex2 are arranged in order in the refrigerant flow direction during the heating operation period.

分流路60の熱交換器74は、暖房作動期間及び給湯作動期間に、凝縮器として作用して、貯湯水循環路89を循環する湯水16を加熱する。貯湯水循環路89は、図1の導管19,20と共に、貯湯タンク15とヒートポンプ装置2のデスーパーヒータ56及び熱交換器74との間を循環する湯水16の循環路を構成する。   The heat exchanger 74 of the diversion channel 60 acts as a condenser during the heating operation period and the hot water supply operation period, and heats the hot water 16 that circulates in the stored hot water circulation path 89. 1, together with the conduits 19 and 20 of FIG. 1, constitute a circulation path of the hot water 16 that circulates between the hot water storage tank 15 and the desuperheater 56 and the heat exchanger 74 of the heat pump device 2.

貯湯タンク15内の湯水16は、循環ポンプP3(図1)の作動により、貯湯水循環路89を、導管20、熱交換器74、デスーパーヒータ56、及び導管19の順番に循環して、貯湯タンク15に戻る。湯水16は、熱交換器74及びデスーパーヒータ56を通過する際に、冷媒循環路側の冷媒により加熱される。   The hot water 16 in the hot water storage tank 15 is circulated through the hot water storage circuit 89 in the order of the conduit 20, the heat exchanger 74, the desuperheater 56, and the conduit 19 by the operation of the circulation pump P3 (FIG. 1). Return to tank 15. When the hot water 16 passes through the heat exchanger 74 and the desuperheater 56, it is heated by the refrigerant on the refrigerant circuit side.

温度センサS5は、湯水16の貯湯水循環路89における貯湯タンク15からの戻り側の湯水16の温度を検出し、温度センサS6は、湯水16の貯湯水循環路89における貯湯タンク15への往き側の湯水16の温度を検出する。   The temperature sensor S 5 detects the temperature of the hot water 16 on the return side from the hot water storage tank 15 in the hot water circulation path 89 of the hot water 16, and the temperature sensor S 6 is on the return side of the hot water 16 to the hot water storage tank 15 in the hot water circulation path 89. The temperature of the hot water 16 is detected.

合流路64には、上流側から順番に、熱交換器77及び膨張弁Ex7が配設される。電磁開閉弁Mv3は膨張弁Ex7に対して並列に接続される。ヒートポンプ装置2の暖房作動期間では、電磁開閉弁Mv3は開位置にされ、熱交換器77を蒸発器として使用される。熱交換器77における冷媒の蒸発量は膨張弁Ex1,Ex2の開度の調整により調整される。   In the combined flow path 64, a heat exchanger 77 and an expansion valve Ex7 are disposed in order from the upstream side. The electromagnetic on-off valve Mv3 is connected in parallel to the expansion valve Ex7. During the heating operation period of the heat pump device 2, the electromagnetic on-off valve Mv3 is in the open position, and the heat exchanger 77 is used as an evaporator. The amount of refrigerant evaporated in the heat exchanger 77 is adjusted by adjusting the opening degree of the expansion valves Ex1 and Ex2.

分流路58の下流端は、合流路64において膨張弁Ex7より下流側に接続され、分流路59,60の下流端は、合流路64において熱交換器77より上流側に接続される。   The downstream end of the branch flow path 58 is connected to the downstream side of the expansion valve Ex7 in the combined flow path 64, and the downstream ends of the flow paths 59 and 60 are connected to the upstream side of the heat exchanger 77 in the combined flow path 64.

循環ポンプP1は、採熱用媒体循環路85において熱交換器77に対して採熱用媒体の出口側に配設され、採熱用媒体を採熱用媒体循環路85に循環させる。温度センサS1,S2は、採熱用媒体循環路85において熱交換器77に対してそれぞれ採熱用媒体の出口側及び入口側に配設され、配設部位の採熱用媒体の温度を検出する。   The circulation pump P <b> 1 is disposed on the outlet side of the heat collecting medium with respect to the heat exchanger 77 in the heat collecting medium circulation path 85, and circulates the heat collecting medium to the heat collecting medium circulation path 85. The temperature sensors S1 and S2 are arranged on the outlet side and the inlet side of the heat collecting medium with respect to the heat exchanger 77 in the heat collecting medium circulation path 85, respectively, and detect the temperature of the heat collecting medium at the arrangement site. To do.

制御基板97は、ヒートポンプ装置2の制御プログラムを実行するのに必要なマイクロプロセッサ及びその他の関連素子を備える。制御基板97の詳細な構成については図4で後述する。   The control board 97 includes a microprocessor and other related elements necessary for executing the control program of the heat pump apparatus 2. The detailed configuration of the control board 97 will be described later with reference to FIG.

図3はデシカント装置4の構成図である。デシカント装置4は、家屋10の屋外に連通する屋外吸入口101及び屋外排気口102と、家屋10内の空調空間(暖房空間又は冷房空間)としての所定の部屋に連通する屋内吸入口103及び屋内吐出口104とを備える。   FIG. 3 is a configuration diagram of the desiccant device 4. The desiccant device 4 includes an outdoor suction port 101 and an outdoor exhaust port 102 communicating with the outside of the house 10, and an indoor suction port 103 and an indoor space communicating with a predetermined room as an air-conditioned space (heating space or cooling space) in the house 10. And a discharge port 104.

給気通路108は、屋外吸入口101と屋内吐出口104とを連通する。排気通路109は、屋外排気口102と屋内吸入口103とを連通する。送風ファン110は、給気通路108の屋内吐出口104の近傍に配設され、屋外吸入口101から外気を吸入して、屋内吐出口104から部屋に供給する。送風ファン111は、排気通路109の屋外排気口102の近傍に配設され、屋内吸入口103から屋内空気を吸入して、屋外排気口102から屋外に排出する。   The supply passage 108 communicates the outdoor suction port 101 and the indoor discharge port 104. The exhaust passage 109 connects the outdoor exhaust port 102 and the indoor intake port 103. The blower fan 110 is disposed in the vicinity of the indoor discharge port 104 of the air supply passage 108, sucks outside air from the outdoor suction port 101, and supplies it to the room from the indoor discharge port 104. The blower fan 111 is disposed in the vicinity of the outdoor exhaust port 102 of the exhaust passage 109, sucks indoor air from the indoor suction port 103, and discharges the air from the outdoor exhaust port 102 to the outdoors.

デシカント装置4は、全熱交換器112を備える。全熱交換器112は、給気通路108の上流端部分における空気と、排気通路109の上流端部分の空気との間の熱交換を行って、暖房作動期間では、給気通路108の給気の空気を排気通路109の排気の空気により加熱する。   The desiccant device 4 includes a total heat exchanger 112. The total heat exchanger 112 performs heat exchange between the air at the upstream end portion of the air supply passage 108 and the air at the upstream end portion of the exhaust passage 109, and supplies air in the air supply passage 108 during the heating operation period. The air is heated by the exhaust air in the exhaust passage 109.

温湿度センサNaは、給気通路108における全熱交換器112の入口に配設され、温湿度センサNbは、排気通路109における全熱交換器112の入口に配設される。温湿度センサNcは、給気通路108における全熱交換器112の出口に配設され、温湿度センサNdは、排気通路109における全熱交換器112の出口に配設される。   The temperature / humidity sensor Na is disposed at the inlet of the total heat exchanger 112 in the supply passage 108, and the temperature / humidity sensor Nb is disposed at the inlet of the total heat exchanger 112 in the exhaust passage 109. The temperature / humidity sensor Nc is disposed at the outlet of the total heat exchanger 112 in the supply passage 108, and the temperature / humidity sensor Nd is disposed at the outlet of the total heat exchanger 112 in the exhaust passage 109.

温湿度センサNa〜Ndは、各配設箇所における空気の温度と湿度とを検出する。温湿度センサNaの空気の温度Ta及び湿度Ma、又は温湿度センサNcの空気の温度Tc及び湿度Mcから給気の露点温度を求めることができる。温湿度センサNbの空気の温度Tb及び湿度Mb、又は温湿度センサNdの空気の温度Td及び湿度Mdから排気の露点温度を求めることができる。   The temperature / humidity sensors Na to Nd detect the temperature and humidity of the air at each location. The dew point temperature of the supply air can be obtained from the air temperature Ta and humidity Ma of the temperature / humidity sensor Na or the air temperature Tc and humidity Mc of the temperature / humidity sensor Nc. The dew point temperature of the exhaust gas can be obtained from the air temperature Tb and humidity Mb of the temperature / humidity sensor Nb or the air temperature Td and humidity Md of the temperature / humidity sensor Nd.

デシカント114は、円形板状に形成され、各半円部がそれぞれ給気通路108及び排気通路109に位置するように、デシカント装置4に装備される。デシカント114は、回転自在になっており、180°の回転により給気通路108位置する半円部と排気通路109に位置する半円部とが交互に切り替えられるようになっている。デシカント114を加湿用として使用する時は、排気通路109に位置する半円部の水分吸着量が飽和状態になるか、給気通路108に位置する半円部における吸着水分量が所定の閾値より低くなると、デシカント114が180°回転される。   The desiccant 114 is formed in a circular plate shape, and is mounted on the desiccant device 4 so that the semicircular portions are located in the air supply passage 108 and the exhaust passage 109, respectively. The desiccant 114 is rotatable, and a semicircular portion located in the air supply passage 108 and a semicircular portion located in the exhaust passage 109 are alternately switched by rotation of 180 °. When the desiccant 114 is used for humidification, the amount of moisture adsorbed in the semicircular part located in the exhaust passage 109 becomes saturated, or the amount of adsorbed moisture in the semicircular part located in the air supply passage 108 falls below a predetermined threshold. When low, the desiccant 114 is rotated 180 °.

凝縮器120,121は、給気通路108においてデシカント114の半円部を給気の流れ方向にそれぞれ下流側及び上流側から挟むように配設される。蒸発器123,124は、排気通路109においてデシカント114の半円部を排気の流れ方向にそれぞれ下流側及び上流側から挟むように配設される。   The condensers 120 and 121 are disposed in the air supply passage 108 so as to sandwich the semicircular portion of the desiccant 114 from the downstream side and the upstream side, respectively, in the flow direction of the air supply. The evaporators 123 and 124 are disposed in the exhaust passage 109 so as to sandwich the semicircular portion of the desiccant 114 from the downstream side and the upstream side in the exhaust flow direction, respectively.

ヒートポンプ装置2の暖房作動期間では、分流路58の冷媒は、凝縮器120,121、膨張弁Ex3、蒸発器123,124の順番に通過する。なお、ヒートポンプ装置2の冷房作動期間では、分流路58の冷媒の流れ方向は、暖房作動期間と逆にされて、凝縮器120,121は蒸発器として作用し、蒸発器123,124は凝縮器として作用する。   In the heating operation period of the heat pump device 2, the refrigerant in the branch flow path 58 passes through the condensers 120 and 121, the expansion valve Ex3, and the evaporators 123 and 124 in this order. In the cooling operation period of the heat pump device 2, the flow direction of the refrigerant in the branch flow path 58 is reversed from that in the heating operation period, the condensers 120 and 121 function as an evaporator, and the evaporators 123 and 124 are condensers. Acts as

温度センサS7,S8は、給気通路108においてデシカント114に対して上流側に配設される凝縮器121からの分流路58の入口部位及び出口部位に配設されて、それらの部位の冷媒温度を検出する。温度センサS9,S10は、排気通路109においてデシカント114に対して上流側に配設される蒸発器124からの分流路58の入口部位及び出口部位に配設されて、それらの部位の冷媒温度を検出する。   The temperature sensors S7 and S8 are disposed at the inlet portion and the outlet portion of the branch flow path 58 from the condenser 121 disposed on the upstream side with respect to the desiccant 114 in the air supply passage 108, and the refrigerant temperatures at those portions. Is detected. The temperature sensors S9 and S10 are arranged at the inlet part and the outlet part of the diversion channel 58 from the evaporator 124 arranged upstream of the desiccant 114 in the exhaust passage 109, and the refrigerant temperatures at those parts are measured. To detect.

図4はヒートポンプ装置2の制御ブロック図である。制御基板97は、ヒートポンプ装置2に暖房運転制御及び冷房運転制御を行わせるプログラムを実行するマイクロプロセッサ(図示せず)を実装している。   FIG. 4 is a control block diagram of the heat pump device 2. The control board 97 is mounted with a microprocessor (not shown) that executes a program for causing the heat pump device 2 to perform heating operation control and cooling operation control.

制御基板97は、温度センサS1〜S10及び温湿度センサNa〜Ndからの入力に基づいて膨張弁Ex1〜Ex7、電磁開閉弁Mv1〜Mv3、循環ポンプP1〜P3、及び三相誘導モータ53を制御する。以降、温度センサS1〜S10により検出された温度は温度T1〜T10で表す。温湿度センサNa〜Ndにより検出された温度はTa〜Tdで表し、温湿度センサNa〜Ndにより検出された湿度はMa〜Mdで表す。また、膨張弁Ex1〜Ex7の開度はO1〜O7で表す。   The control board 97 controls the expansion valves Ex1 to Ex7, the electromagnetic on-off valves Mv1 to Mv3, the circulation pumps P1 to P3, and the three-phase induction motor 53 based on inputs from the temperature sensors S1 to S10 and the temperature and humidity sensors Na to Nd. To do. Hereinafter, the temperatures detected by the temperature sensors S1 to S10 are represented by temperatures T1 to T10. The temperatures detected by the temperature and humidity sensors Na to Nd are represented by Ta to Td, and the humidity detected by the temperature and humidity sensors Na to Nd is represented by Ma to Md. Moreover, the opening degree of expansion valve Ex1-Ex7 is represented by O1-O7.

制御基板97は、制御基板97のマイクロプロセッサ(図示せず)が所定の制御プログラムを実行することにより生成される機能部として、基板内素子制御部131、圧縮機制御部132、膨張弁制御部133、電磁開閉弁制御部134及びポンプ制御部135を備える。なお、マイクロプロセッサは、入力信号を入力ポートやA/D変換器(図示せず)を介して受け取り、出力信号を出力ポートやD/A変換器(図示せず)を介して出力する。   The control board 97 is a functional part generated when a microprocessor (not shown) of the control board 97 executes a predetermined control program, and includes an on-board element control unit 131, a compressor control unit 132, and an expansion valve control unit. 133, an electromagnetic on-off valve control unit 134 and a pump control unit 135 are provided. The microprocessor receives an input signal via an input port or an A / D converter (not shown), and outputs an output signal via an output port or a D / A converter (not shown).

基板内素子制御部131は、基板内素子としての圧縮機制御部132、膨張弁制御部133、電磁開閉弁制御部134及びポンプ制御部135との間で信号を授受して、それら基板内素子の作動及び停止を制御する。基板内素子制御部131は、さらに、処理制御部141を備える。   The in-substrate element control unit 131 exchanges signals with the compressor control unit 132, the expansion valve control unit 133, the electromagnetic on / off valve control unit 134, and the pump control unit 135 as in-substrate elements, and these in-substrate elements Control the operation and stop of the. The in-substrate element control unit 131 further includes a process control unit 141.

圧縮機制御部132は、三相誘導モータ53の周波数制御を介して圧縮機50の回転速度を制御する。膨張弁制御部133は、膨張弁Ex1〜Ex7の開度を制御し、さらに、給湯配分率制御部145及びデシカント制御部146を備える。電磁開閉弁制御部134は、電磁開閉弁Mv1〜Mv3の開閉を制御する。ポンプ制御部135は、循環ポンプP1〜P3の作動を制御する。   The compressor control unit 132 controls the rotational speed of the compressor 50 through frequency control of the three-phase induction motor 53. The expansion valve control unit 133 controls the opening degree of the expansion valves Ex1 to Ex7, and further includes a hot water supply distribution rate control unit 145 and a desiccant control unit 146. The electromagnetic on / off valve control unit 134 controls the opening / closing of the electromagnetic on / off valves Mv1 to Mv3. The pump control unit 135 controls the operation of the circulation pumps P1 to P3.

ヒートポンプ装置2は、リモコン(図示せず)や本体配備の操作部(図示せず)を備える。ユーザは、リモコン又は本体配備の操作部を操作して、ヒートポンプ装置2に対して各種の指示を出す。ユーザの指示には、ヒートポンプ装置2の運転開始及び終了、暖房運転と冷房運転との切替、並びに暖房機器等に送られる熱媒体の設定温度(図2の温度センサS3(往き側熱媒体用温度検出器)の部位の設定温度)等の設定等がある。   The heat pump device 2 includes a remote controller (not shown) and an operation unit (not shown) arranged on the main body. The user operates the remote controller or the operation unit provided on the main body to give various instructions to the heat pump device 2. The user's instruction includes start and end of operation of the heat pump device 2, switching between heating operation and cooling operation, and the set temperature of the heat medium sent to the heating device (temperature sensor S3 in FIG. There are settings such as the set temperature of the part of the detector.

次に、図5〜図8のフローチャートを参照して制御基板97のマイクロプロセッサがヒートポンプ装置2の暖房作動期間において実施する暖房運転制御について説明する。なお、ヒートポンプ装置2の暖房作動期間と制御基板97のマイクロプロセッサが暖房運転制御を実施する期間とは同一である。図5は暖房運転制御全体のフローチャートである。なお、熱交換器70は本発明の暖房用熱交換器に相当し、熱交換器77は本発明の採熱用熱交換器に相当する。   Next, heating operation control performed by the microprocessor of the control board 97 during the heating operation period of the heat pump device 2 will be described with reference to the flowcharts of FIGS. The heating operation period of the heat pump device 2 and the period during which the microprocessor of the control board 97 performs the heating operation control are the same. FIG. 5 is a flowchart of the entire heating operation control. The heat exchanger 70 corresponds to the heating heat exchanger of the present invention, and the heat exchanger 77 corresponds to the heat collecting heat exchanger of the present invention.

また、この暖房運転制御では、電磁開閉弁Mv2が開位置とされ、ヒートポンプ装置2が貯湯タンク15内の湯水16の加熱も一緒に行われる。すなわち、この暖房運転制御の実施中は、暖房作動期間であるとともに、給湯作動期間である。暖房作動期間に、ヒートポンプ装置2による給湯作動を停止するときは、電磁開閉弁Mv2が閉位置に切り替えられる。   In this heating operation control, the electromagnetic on-off valve Mv2 is set to the open position, and the heat pump device 2 heats the hot water 16 in the hot water storage tank 15 together. That is, during the execution of the heating operation control, it is a heating operation period and a hot water supply operation period. When the hot water supply operation by the heat pump device 2 is stopped during the heating operation period, the electromagnetic on-off valve Mv2 is switched to the closed position.

この暖房運転制御では、給湯作動も実施するために、電磁開閉弁Mv2が開位置に維持される外、電磁開閉弁Mv1は閉位置に維持されて、膨張弁Ex6の開度調整が有効にされる。さらに、膨張弁Ex4の開度調整を有効にするために、膨張弁Ex5は全開に維持される。   In this heating operation control, since the hot water supply operation is also performed, the electromagnetic on-off valve Mv2 is maintained at the open position, and the electromagnetic on-off valve Mv1 is maintained at the closed position, so that the opening degree adjustment of the expansion valve Ex6 is enabled. The Further, the expansion valve Ex5 is kept fully open in order to make the adjustment of the opening degree of the expansion valve Ex4 effective.

処理制御部141は、STEP1において、暖房運転制御の実施条件が成立しているか否かを判定する。処理制御部141は、具体的には、例えば、ユーザが、リモコン(図示せず)等を介してヒートポンプ装置2に対して暖房運転の開始を指示した後、暖房運転の終了を指示していなければ、暖房運転制御の実施条件が成立していると判定する。また、ユーザが、未だ暖房運転の開始を指示していなかったり、暖房運転の終了を指示した後であれば、暖房運転制御の実施条件が成立していないと判定する。なお、暖房運転制御期間と、ヒートポンプ装置2の暖房作動期間とは同一である。   The processing control unit 141 determines whether or not the execution condition of the heating operation control is satisfied in STEP1. Specifically, for example, the processing control unit 141 must instruct the heat pump device 2 to start the heating operation via the remote controller (not shown) and then instruct the end of the heating operation. If it is determined that the execution condition for the heating operation control is satisfied. Further, if the user has not yet instructed the start of the heating operation or has instructed the end of the heating operation, it is determined that the execution condition of the heating operation control is not satisfied. Note that the heating operation control period and the heating operation period of the heat pump device 2 are the same.

STEP2では、処理制御部141は、給湯配分率制御部145に給湯配分率制御を実施させる。なお、給湯配分率Bcとは、圧縮機50が吐出する冷媒の総流量Qに対する分流路60の分流流量Qcの割合(=Qc/Q)と定義する。STEP3では、処理制御部141は、デシカント制御部146にデシカント制御を実施させる。STEP4では、処理制御部141は、圧縮機制御部132に圧縮機制御を実施させる。処理制御部141は、STEP4の終了後、処理をSTEP1に戻す。   In STEP2, the process control unit 141 causes the hot water supply distribution rate control unit 145 to perform hot water supply distribution rate control. The hot water supply distribution ratio Bc is defined as the ratio (= Qc / Q) of the diversion flow rate Qc of the diversion channel 60 to the total flow rate Q of the refrigerant discharged from the compressor 50. In STEP3, the process control unit 141 causes the desiccant control unit 146 to perform desiccant control. In STEP4, the process control unit 141 causes the compressor control unit 132 to perform compressor control. The process control unit 141 returns the process to STEP 1 after STEP 4 ends.

すなわち、処理制御部141は、STEP2の給湯配分率制御部145による給湯配分率制御としての第1処理、STEP4の圧縮機制御部132による圧縮機制御としての第2処理、及びSTEP3のデシカント制御部146によるデシカント制御としての第3処理の3つの処理を、繰り返し実施する。なお、これら3つの処理のうち、1つの処理の実施中は、他の2つの処理は完全に中止されるとともに、各処理の処理対象の変更値は、該処理の次の再開時まで固定される。   That is, the process control unit 141 includes a first process as a hot water supply rate control by the hot water supply rate control unit 145 in STEP 2, a second process as a compressor control by the compressor control unit 132 in STEP 4, and a desiccant control unit in STEP 3. Three processes of the 3rd process as desiccant control by 146 are implemented repeatedly. Of these three processes, while one process is being performed, the other two processes are completely stopped, and the change value of the processing target of each process is fixed until the next restart of the process. The

具体的に述べると、処理制御部141は、給湯配分率制御(STEP2)の実施中は、かつ膨張弁Ex3,Ex4の開度をデシカント制御(STEP3)の前回の実施の終了時の開度に固定し、かつ圧縮機50の吐出流量を圧縮機制御(STEP4)の前回の終了時の吐出流量に固定する。処理制御部141は、圧縮機制御(STEP4)の実施中は、膨張弁Ex6の開度を給湯配分率制御(STEP2)の前回の終了時の開度に固定し、かつ膨張弁Ex3,Ex4の開度をデシカント制御(STEP3)の前回の終了時の開度に固定する。処理制御部141は、デシカント制御(STEP3)の実施中は、膨張弁Ex6の開度を給湯配分率制御(STEP2)の前回の終了時の開度に固定し、かつ圧縮機50の吐出流量を圧縮機制御(STEP4)の前回の終了時の吐出流量に固定する。   Specifically, the processing control unit 141 sets the opening degree of the expansion valves Ex3, Ex4 to the opening degree at the end of the previous execution of the desiccant control (STEP3) during the hot water supply distribution rate control (STEP2). The discharge flow rate of the compressor 50 is fixed to the discharge flow rate at the previous end of the compressor control (STEP 4). During the execution of the compressor control (STEP 4), the processing control unit 141 fixes the opening degree of the expansion valve Ex6 to the opening degree at the previous end of the hot water supply distribution rate control (STEP 2), and controls the expansion valves Ex3, Ex4. The opening is fixed to the opening at the previous end of the desiccant control (STEP 3). During the execution of the desiccant control (STEP 3), the processing control unit 141 fixes the opening of the expansion valve Ex6 to the opening at the previous end of the hot water supply distribution rate control (STEP 2), and the discharge flow rate of the compressor 50 is fixed. The discharge flow rate is fixed at the previous end of the compressor control (STEP 4).

図5のフローチャートでは、各STEPの実行後、直ちに次にSTEPが開始されることになっているが、STEP間に適当な休止時間を設けることが好ましい。すなわち、STEP2〜4でそれぞれ膨張弁Ex6の開度O6、膨張弁Ex4の開度O4、及び圧縮機50の回転速度を変更するが、開度や回転速度の変更を終了後、次のSTEPにおける変更対象(膨張弁Ex6の開度O6等)の変更値(開度O6の値等)算出の基礎になる冷媒分流量や冷媒吐出流量が定常値になるまで時間を要する(定常値になるまでの所要時間は状況により変化する)。それらが定常値になる前に、すなわち過渡状態の値で次のSTEPを実施すると、次のSTEPにおける適正な値の算出が阻害される。したがって、各STEPの変更対象の変更に伴って変化する冷媒分流量や冷媒吐出流量が定常値になるまでの時間をSTEP間の休止時間に設定することが好ましい。   In the flowchart of FIG. 5, the next STEP is started immediately after the execution of each STEP, but it is preferable to provide an appropriate pause time between the STEPs. That is, in STEP 2 to 4, the opening degree O 6 of the expansion valve Ex 6, the opening degree O 4 of the expansion valve Ex 4, and the rotational speed of the compressor 50 are changed. It takes time until the refrigerant partial flow rate and refrigerant discharge flow rate, which are the basis for calculating the change value (opening O6 value, etc.) of the change target (expansion valve Ex6 opening degree O6, etc.) reach a steady value (until it reaches a steady value) Time varies depending on the situation). If the next STEP is performed before they become steady values, that is, values in a transient state, calculation of appropriate values in the next STEP is hindered. Therefore, it is preferable to set the time until the refrigerant partial flow rate and the refrigerant discharge flow rate, which change with the change of each STEP change target, to steady values, is the pause time between STEPs.

図6は、給湯配分率制御部145が実施する給湯配分率制御(図5のSTEP2)のフローチャートである。STEP201では、給湯配分率制御部145は、採熱用媒体の戻り温度、すなわち温度T2を検出する。STEP202では、給湯配分率制御部145は、圧縮機50の制御周波数を取得する。圧縮機50の制御周波数とは、具体的には、圧縮機50を回転駆動する三相誘導モータ53の駆動電流の周波数Fのことである。三相誘導モータ53の駆動電流の周波数Fは、圧縮機制御部132が決めており、給湯配分率制御部145は、圧縮機制御部132から圧縮機50の制御周波数を処理制御部141を介して取得する。圧縮機50の回転速度、すなわち圧縮機50の冷媒吐出流量は、圧縮機50の制御周波数に比例する。   FIG. 6 is a flowchart of hot water supply distribution rate control (STEP 2 in FIG. 5) performed by hot water supply distribution rate control unit 145. In STEP 201, the hot water supply distribution rate control unit 145 detects the return temperature of the heat collecting medium, that is, the temperature T2. In STEP 202, the hot water supply distribution rate control unit 145 acquires the control frequency of the compressor 50. The control frequency of the compressor 50 is specifically the frequency F of the drive current of the three-phase induction motor 53 that rotationally drives the compressor 50. The frequency F of the driving current of the three-phase induction motor 53 is determined by the compressor control unit 132, and the hot water supply distribution rate control unit 145 determines the control frequency of the compressor 50 from the compressor control unit 132 via the processing control unit 141. Get. The rotational speed of the compressor 50, that is, the refrigerant discharge flow rate of the compressor 50 is proportional to the control frequency of the compressor 50.

STEP203では、給湯配分率制御部145は、湯水16の戻り温度としての温度T5を検出する。   In STEP 203, the hot water supply distribution rate control unit 145 detects the temperature T5 as the return temperature of the hot water 16.

STEP204では、給湯配分率制御部145は、暖房分流路用膨張弁、すなわち分流路59の膨張弁Ex6の開度O6の制御値を算出する。該制御値は、STEP201〜203で検出又は取得したT2、F及びT5を例えば次の(式1)に代入して算出される。   In STEP 204, the hot water supply distribution rate control unit 145 calculates a control value of the opening degree O6 of the expansion valve for heating distribution channel, that is, the expansion valve Ex6 of the distribution channel 59. The control value is calculated by substituting T2, F, and T5 detected or acquired in STEP 201 to 203 into the following (Equation 1), for example.

開度O6の制御値=c1・温度T2+c2・周波数F+c3・温度T5+切片Da+補正値Db・・・(式1)。   Control value of opening degree O6 = c1, temperature T2 + c2, frequency F + c3, temperature T5 + intercept Da + correction value Db (Expression 1).

(式1)において、左辺に制御値の単位は、膨張弁制御部133が、膨張弁Ex6の開度を調整するステップモータ(図示せず)に指示するstep値である。式1の右辺において、温度T2,T5の単位は℃、周波数Fの単位はc/s(サイクル/秒)であるので、c1,c2,c3は、係数値としての数値の他に、単位を℃又はc/sからstepへ変換する変換演算子を含む。   In (Expression 1), the unit of the control value on the left side is a step value that the expansion valve control unit 133 instructs to a step motor (not shown) that adjusts the opening degree of the expansion valve Ex6. In the right side of Equation 1, the units of the temperatures T2 and T5 are ° C., and the unit of the frequency F is c / s (cycle / second). Therefore, c1, c2, and c3 are units in addition to numerical values as coefficient values. Contains a conversion operator for converting from ° C or c / s to step.

なお、(式1)には、後述の図7のデシカント制御における膨張弁Ex4の開度O4に関連する項が存在しないが、該項を適宜、追加することもできる。該項が存在しなくても、右辺のc2・周波数Fの項の存在によって、流路58,59,60の冷媒の各熱流量を加熱先の要求熱量に整合させることができる。その理由については、後述する。   In (Equation 1), there is no term relating to the opening degree O4 of the expansion valve Ex4 in the desiccant control of FIG. 7 described later, but this term can be added as appropriate. Even if the term does not exist, the heat flow rate of the refrigerant in the flow paths 58, 59, and 60 can be matched with the required heat amount of the heating destination by the existence of the term of c2 and frequency F on the right side. The reason will be described later.

圧縮機50が吐出する冷媒の総流量Qは、前述の周波数Fにより一義に決まる。流量Qと温度T2とから熱交換器77における圧縮機50が吐出する冷媒の総熱流量Wが決まる。なお、圧縮機50から吐出される冷媒の単位体積当たりの熱量をhとすると、W=h・Qの関係がある。   The total flow rate Q of the refrigerant discharged from the compressor 50 is uniquely determined by the frequency F described above. The total heat flow W of the refrigerant discharged from the compressor 50 in the heat exchanger 77 is determined from the flow rate Q and the temperature T2. In addition, if the heat quantity per unit volume of the refrigerant discharged from the compressor 50 is h, there is a relationship of W = h · Q.

一方、深夜電力の時間帯内で、貯湯タンク15の湯水16の沸き上げを完了する熱流量としてのwh(本発明の設定加熱量に相当する)が予め設定される。例えば、wh={貯湯タンク15の容量×(沸き上がり温度−水道水温度)}/深夜電力の提供時間(一般的な例では、午後11時から翌日の午前7までの8時間)である。なお、whを単位時間(1秒)当たりのワットで表示するときは、深夜電力の時間は秒換算で表す。   On the other hand, wh (corresponding to the set heating amount of the present invention) as a heat flow rate for completing the boiling of the hot water 16 in the hot water storage tank 15 is preset in the time zone of midnight power. For example, wh = {capacity of hot water storage tank 15 × (boiling temperature−tap water temperature)} / providing time of late-night power (in a general example, 8 hours from 11:00 pm to 7 am on the next day). When wh is displayed in watts per unit time (1 second), the midnight power time is expressed in seconds.

分流路58,59,60への冷媒の分流流量をQa,Qb,Qcとする。Q=Qa+Qb+Qcとなる。圧縮機50が吐出する冷媒の総流量Qに対する分流路60の分流流量Qcの割合としての給湯配分率Bcは、前述したように、Bc=Qc/Qで表わされる。分流路58,59,60への熱量換算の冷媒の熱流量はh・Qa,h・Qb,h・Qcとなる。熱量換算で圧縮機50が吐出する冷媒の総熱流量はh・Qとなるので、熱量換算での分流路60の給湯配分率は、h・Qc/h・Q=・Qc/Q=Bcとなる。すなわち、体積流量としての流量の給湯配分率Bcと熱流量の給湯配分率h・Qc/h・Qとは同一である。   Let Qa, Qb, and Qc be the flow rates of the refrigerant divided into the diversion channels 58, 59, and 60, respectively. Q = Qa + Qb + Qc. As described above, the hot water supply distribution ratio Bc as a ratio of the diversion flow rate Qc of the diversion flow path 60 to the total flow rate Q of the refrigerant discharged from the compressor 50 is represented by Bc = Qc / Q. The heat flow rate of the refrigerant in terms of the amount of heat to the diversion channels 58, 59, 60 is h · Qa, h · Qb, h · Qc. Since the total heat flow rate of the refrigerant discharged from the compressor 50 in terms of heat quantity is h · Q, the distribution ratio of hot water supply in the branch flow path 60 in terms of heat quantity is h · Qc / h · Q = · Qc / Q = Bc. Become. That is, the hot water supply distribution rate Bc of the flow rate as the volume flow rate and the hot water supply distribution rate h · Qc / h · Q of the heat flow rate are the same.

(式1)は、T2,F,T5に対して、合流路57から分流路60へ分流する冷媒の熱流量が、whを確保される開度O6の制御値が算出されるように、c1,c2,c3,Da,Dbが設定されている。   (Equation 1) is calculated so that the control value of the opening degree O6 at which the heat flow rate of the refrigerant diverted from the combined flow path 57 to the diversion flow path 60 is secured with respect to T2, F, and T5 is calculated. , C2, c3, Da, Db are set.

c1,c2,c3,Da,Dbは、例えばヒートポンプ装置2の設計者が製造設計時に所定の試験を行って決定する。具体的には、最初に、T2、F及びT5に対して所定の基準値をT2r、Fr、及びT5rを定める。   c1, c2, c3, Da, and Db are determined by, for example, a designer of the heat pump apparatus 2 performing a predetermined test at the time of manufacturing design. Specifically, first, predetermined reference values T2r, Fr, and T5r are determined for T2, F, and T5.

例えば、周波数Fの基準値Frは、圧縮機50の吐出流量Qの下限Qzに対応する周波数Fzとする。圧縮機50の吐出流量Qの下限Qzは、給湯用の分流路60の冷媒流量が、給湯用加熱の加熱要求熱流量whを確保できる圧縮機50の吐出流量Qに設定される。すなわち、膨張弁Ex4,Ex6を共に全閉にして、圧縮機50から吐出される冷媒の全量が分流路60に供給されたときに、加熱要求熱流量whを確保できる流量QがQzとして設定される。   For example, the reference value Fr of the frequency F is a frequency Fz corresponding to the lower limit Qz of the discharge flow rate Q of the compressor 50. The lower limit Qz of the discharge flow rate Q of the compressor 50 is set to the discharge flow rate Q of the compressor 50 in which the refrigerant flow rate of the hot water supply diversion channel 60 can ensure the heating required heat flow rate wh of the hot water supply heating. That is, when the expansion valves Ex4 and Ex6 are both fully closed, and the entire amount of refrigerant discharged from the compressor 50 is supplied to the branch flow path 60, the flow rate Q that can secure the required heat flow rate wh is set as Qz. The

基準値T2rは、例えばヒートポンプ装置2の暖房作動期間の採熱媒体の温度T2(温度センサS2の位置の採熱媒体温度)について想定される温度範囲の下限温度T2zとする。基準値T5rは、例えば貯湯タンク15の湯水16の沸き上げ期間(深夜電力時間帯の期間)における湯水16の戻り温度T5(温度センサS5の位置の湯水16の温度)について想定される開始温度(湯水16についての最も低い時の温度)としてのT5zに設定される。   The reference value T2r is, for example, a lower limit temperature T2z of a temperature range assumed for the temperature T2 of the heat collecting medium during the heating operation period of the heat pump device 2 (the heat collecting medium temperature at the position of the temperature sensor S2). The reference value T5r is, for example, a start temperature assumed for a return temperature T5 of the hot water 16 (temperature of the hot water 16 at the position of the temperature sensor S5) during the boiling period of the hot water 16 in the hot water storage tank 15 (period of the midnight power time period). T5z as the lowest temperature for hot water 16).

c1の求め方は例えば次の通りである。F=Fr及びT5=T5rに固定して、Qcがwhを確保できる最低流量となるときの複数の組合わせ(T2,O6)を実験で求め、横軸(x軸)をT2、縦軸(y軸)をO6とする座標面に(T2,O6)をプロットして、回帰分析によりc1を求める。   For example, how to obtain c1 is as follows. By fixing F = Fr and T5 = T5r, a plurality of combinations (T2, O6) when Qc is the lowest flow rate that can secure wh is obtained by experiment, the horizontal axis (x axis) is T2, the vertical axis ( Plot (T2, O6) on a coordinate plane with y-axis) as O6, and obtain c1 by regression analysis.

c2の求め方は例えば次の通りである。T2=T2r及びT5=T5rに固定して、Qcがwhを確保できる最低流量となるときの複数の組合わせ(F,O6)を実験で求め、横軸(x軸)をF、縦軸(y軸)をO6とする座標面に(F,O6)をプロットして、回帰分析によりc2を求める。   The method for obtaining c2 is, for example, as follows. By fixing T2 = T2r and T5 = T5r, a plurality of combinations (F, O6) when Qc becomes the minimum flow rate that can secure wh is obtained by experiment, the horizontal axis (x axis) is F, and the vertical axis ( Plot (F, O6) on a coordinate plane with y-axis) as O6, and obtain c2 by regression analysis.

c3の求め方は例えば次の通りである。T2=T2r及びF=Frに固定して、Qcがwhを確保できる最低流量となるときの複数の組合わせ(T5,O6)を実験で求め、横軸(x軸)をT5、縦軸(y軸)をO6とする座標面に(T5,O6)をプロットして、回帰分析によりc3を求める。   For example, how to obtain c3 is as follows. By fixing T2 = T2r and F = Fr, a plurality of combinations (T5, O6) when Qc is the lowest flow rate that can secure wh is obtained by experiment, the horizontal axis (x axis) is T5, and the vertical axis ( Plot (T5, O6) on a coordinate plane with y-axis) as O6, and obtain c3 by regression analysis.

切片Daの求め方は例えば次の通りである。T2=T2z、F=Fz及びT5=T5zにして、Qcがwhを確保できる流量となるときのO6を(式1)の切片Daとする。(式1)では、c1・温度T2、c2・周波数F、及びc3・温度T5の単独項だけでも、whを確保できる流量となるときの開度O6の制御値が算出されるので、3項合わせると余裕が生じる。切片Daは、この余裕を相殺するように、設定される。   The method for obtaining the intercept Da is, for example, as follows. T2 = T2z, F = Fz, and T5 = T5z, and O6 when Qc has a flow rate that can secure wh is defined as an intercept Da in (Expression 1). In (Equation 1), the control value of the opening degree O6 when the flow rate can secure wh is calculated only by the single terms of c1, temperature T2, c2, frequency F, and c3, temperature T5. There is a margin when combined. The intercept Da is set so as to cancel out this margin.

補正値Dbの求め方は例えば次の通りである。補正値Dbは例えば暖房用加熱媒体の往き側温度の設定値To(熱媒体循環路92の温度センサS3の部位における温度T3の設定値)に関係する補正値とする。例えば、補正値Dbを、T2=T2z、F=Fz及びT5=T5zにして、かつ前述のようにして決定したDaを加えた(式1)において、Qcがwhを確保できる最低流量に所定の余剰分ΔQを加えた流量を確保するときの開度O6の制御値として設定する。そして、設定値Toが高くなるに連れて、ΔQが減少するように(ただし、Q≧Qzの条件付き)、すなわち余剰の流量が暖房用加熱の方へ徐々に振り向けられるように、換言すると、分流路59の方へ冷媒流量の付加分が徐々に増大するように、補正値Dbを設定値Toの関数として設定する。   The method for obtaining the correction value Db is, for example, as follows. The correction value Db is, for example, a correction value related to the setting value To (the setting value of the temperature T3 at the part of the temperature sensor S3 of the heat medium circulation path 92) of the forward temperature of the heating medium for heating. For example, when the correction value Db is set to T2 = T2z, F = Fz, T5 = T5z, and Da determined as described above is added (Expression 1), the predetermined flow rate is set to a minimum flow rate at which Qc can secure wh. It is set as the control value of the opening degree O6 when securing the flow rate to which the surplus ΔQ is added. And, as the set value To becomes higher, ΔQ decreases (however, with the condition of Q ≧ Qz), that is, the surplus flow rate is gradually directed toward the heating for heating, in other words, The correction value Db is set as a function of the set value To so that the additional amount of the refrigerant flow rate gradually increases toward the diversion channel 59.

c1等の一例を示すと、c1=2.00、c2=4.00、c3=3.48、Da=−201.65である。   For example, c1 = 2.00, c2 = 4.00, c3 = 3.48, and Da = −201.65.

なお、(式1)で算出される開度O6の制御値は、給湯用の分流路60に配設される膨張弁ではなく、暖房用の分流路59に配設される膨張弁Ex6のものになっている。したがって、(式1)で算出される開度O6の制御値の増減と、給湯用の分流路60の冷媒の流量Qc及び給湯配分率Bcの増減とは逆の関係になる。   The control value of the opening degree O6 calculated by (Equation 1) is not the expansion valve provided in the hot water supply diversion channel 60 but the expansion valve Ex6 provided in the heating diversion channel 59. It has become. Therefore, the increase / decrease in the control value of the opening degree O6 calculated by (Equation 1) is inversely related to the increase / decrease in the refrigerant flow rate Qc and the hot water supply distribution ratio Bc in the hot water supply diversion channel 60.

(式1)では、採熱用熱交換器としての熱交換器77の採熱用媒体入口側の採熱用媒体の温度が高いほど、給湯配分率Bcを小さくする開度に開度O6が変更されることになる。また、給湯用熱交換器としての熱交換器74の湯水入口側の湯水16の温度が高いほど、給湯配分率Bcを小さくする開度に開度O6が変更されることになる。   In (Formula 1), as the temperature of the heat collecting medium on the heat collecting medium inlet side of the heat exchanger 77 as the heat collecting heat exchanger 77 is higher, the opening degree O6 is set to an opening degree that decreases the hot water supply distribution ratio Bc. Will be changed. Further, as the temperature of the hot water 16 on the hot water inlet side of the heat exchanger 74 serving as a heat exchanger for hot water supply is higher, the opening degree O6 is changed to an opening degree that decreases the hot water supply distribution ratio Bc.

なお、(式1)の右辺において、第2項のc2・周波数Fの1項のみを残して、他の項は削除して、開度O6の制御値はwhを確保する制御値を算出することができる。また、(式1)の右辺において、第1項のc1・温度T2と、第2項のc2・周波数Fとの2項のみを残して、他の項は削除して、開度O6の制御値を算出することもできる。また、(式1)の右辺において、切片Da及び補正値Dbの少なくとも一方を省略してもよい。   In the right side of (Expression 1), only the second term c2 and frequency F are left, the other terms are deleted, and the control value of the opening degree O6 is calculated as a control value that secures wh. be able to. Further, on the right side of (Expression 1), only the two terms of c1 and temperature T2 of the first term and c2 and frequency F of the second term are left, and other terms are deleted, and the control of the opening degree O6 is performed. A value can also be calculated. Further, on the right side of (Expression 1), at least one of the intercept Da and the correction value Db may be omitted.

STEP205では、給湯配分率制御部145は、暖房分流路用膨張弁としての膨張弁Ex6の開度O6を、STEP204で算出した制御値に変更する。   In STEP 205, the hot water supply distribution rate control unit 145 changes the opening degree O6 of the expansion valve Ex6 as the expansion valve for the heating distribution passage to the control value calculated in STEP 204.

こうして、分流路60に分流する冷媒による熱流量がwh以上を確保されて、給湯配分率制御部145による膨張弁Ex6の開度O6の変更処理が終了する。   In this way, the heat flow rate by the refrigerant diverted to the diversion channel 60 is ensured to be wh or more, and the hot water supply distribution rate control unit 145 changes the opening degree O6 of the expansion valve Ex6.

図7は、デシカント制御部146が実施するデシカント制御(図5のSTEP3)のフローチャートである。デシカント装置4は、ヒートポンプ装置2の暖房作動期間に、室温上昇により空気が乾かないように、暖房空間の空気の加湿を行う。   FIG. 7 is a flowchart of the desiccant control (STEP 3 in FIG. 5) performed by the desiccant control unit 146. The desiccant device 4 humidifies the air in the heating space during the heating operation period of the heat pump device 2 so that the air does not dry due to an increase in room temperature.

ヒートポンプ装置2は、デシカント装置4による加湿(暖房作動期間の加湿)や除湿(冷房作動期間の除湿)の作動に対して、分流路58の冷媒流量が過不足状態にならないようにして、必要な加湿又は除湿を行いつつ、圧縮機50の駆動等に要するエネルギー消費量を抑制するようになっている。デシカント制御において、膨張弁Ex3,Ex4は、それぞれ本発明の第1調整弁及び第2調整弁に相当する。   The heat pump device 2 is necessary to prevent the refrigerant flow rate in the branch channel 58 from becoming excessive or insufficient with respect to the operation of humidification (humidification during the heating operation period) and dehumidification (dehumidification during the cooling operation period) by the desiccant device 4. While performing humidification or dehumidification, the energy consumption required for driving the compressor 50 is suppressed. In the desiccant control, the expansion valves Ex3 and Ex4 correspond to the first adjustment valve and the second adjustment valve of the present invention, respectively.

STEP301では、デシカント制御部146は、排気通路109の空気の露点温度Beを取得する。露点温度Beは、温湿度センサNbが検出する排気空気の温度Tb及び湿度Mb、又は温湿度センサNdが検出する排気空気の温度Td及び湿度Mdから、算出することができる。   In STEP 301, the desiccant control unit 146 acquires the dew point temperature Be of the air in the exhaust passage 109. The dew point temperature Be can be calculated from the temperature Tb and humidity Mb of the exhaust air detected by the temperature / humidity sensor Nb or the temperature Td and humidity Md of the exhaust air detected by the temperature / humidity sensor Nd.

STEP302では、デシカント制御部146は、露点温度Beに基づいて第1目標温度範囲を設定する。第1目標温度範囲とは、例えばBeより大きく、かつBe+βe以下である温度範囲とする(Be<第1目標温度範囲≦Be+βe)。ただし、βeは正の所定値である。デシカント114における水分吸着効率は、デシカント114を通過する空気の温度が低いほど増大する一方、蒸発器124を冷やし過ぎると、蒸発器124の表面に結露が生じる。第1目標温度範囲は、デシカント114における水分吸着効率を極力高めつつ、蒸発器124の表面に結露が生じない蒸発器124の冷媒温度範囲として設定される。   In STEP 302, the desiccant controller 146 sets the first target temperature range based on the dew point temperature Be. The first target temperature range is, for example, a temperature range that is greater than Be and less than or equal to Be + βe (Be <first target temperature range ≦ Be + βe). However, βe is a positive predetermined value. The moisture adsorption efficiency of the desiccant 114 increases as the temperature of the air passing through the desiccant 114 decreases. On the other hand, if the evaporator 124 is cooled too much, dew condensation occurs on the surface of the evaporator 124. The first target temperature range is set as a refrigerant temperature range of the evaporator 124 in which condensation on the surface of the evaporator 124 does not occur while increasing the moisture adsorption efficiency of the desiccant 114 as much as possible.

STEP303では、排気通路109の上流側蒸発器としての蒸発器124の冷媒入口側の冷媒温度(T9)及び冷媒出口側の冷媒温度(T10)を検出する。   In STEP 303, the refrigerant temperature (T9) on the refrigerant inlet side and the refrigerant temperature (T10) on the refrigerant outlet side of the evaporator 124 as the upstream evaporator of the exhaust passage 109 are detected.

STEP304では、デシカント制御部146は、温度T9,T10が共に第1目標温度範囲内にあるか否かを判定する。温度T9,T10の両方が第1目標温度範囲内にあるか否かを判定する理由は、常に、出口側温度T10>入口側温度T9とならず、状況によっては出口側温度T10<入口側温度T9のときもあるからである。デシカント制御部146は、判定結果が否(NO)であるとき、処理をSTEP305に進める。デシカント制御部146は、判定結果が正であるときは、処理をSTEP306に進める。   In STEP 304, the desiccant control unit 146 determines whether or not the temperatures T9 and T10 are both within the first target temperature range. The reason why it is determined whether or not both of the temperatures T9 and T10 are within the first target temperature range is not always the outlet side temperature T10> the inlet side temperature T9. Depending on the situation, the outlet side temperature T10 <the inlet side temperature. This is because it is sometimes T9. The desiccant control unit 146 advances the process to STEP 305 when the determination result is NO (NO). When the determination result is positive, the desiccant control unit 146 advances the processing to STEP 306.

STEP305では、デシカント制御部146は、蒸発量調整用膨張弁としての膨張弁Ex3の開度O3をΔe又は−Δeだけ変更する。ただし、Δe>0である。具体的には、温度T9及び温度T10の両方が、第1目標温度範囲の上限を上回っているときは、膨張弁Ex3の開度O3をΔeだけ減少して(蒸発量を増大させて)、蒸発器124の冷却力を増大させる。温度T9及び温度T10の少なくとも一方が、第1目標温度範囲の下限を下回っているときは、膨張弁Ex3の開度O3をΔeだけ増大させて(蒸発量を減少させて)、蒸発器124の冷却力を減少させる。   In STEP 305, the desiccant control unit 146 changes the opening degree O3 of the expansion valve Ex3 as the evaporation amount adjusting expansion valve by Δe or −Δe. However, Δe> 0. Specifically, when both the temperature T9 and the temperature T10 exceed the upper limit of the first target temperature range, the opening degree O3 of the expansion valve Ex3 is decreased by Δe (increase the evaporation amount), The cooling power of the evaporator 124 is increased. When at least one of the temperature T9 and the temperature T10 is below the lower limit of the first target temperature range, the opening degree O3 of the expansion valve Ex3 is increased by Δe (decreasing the evaporation amount), and the evaporator 124 Reduce cooling power.

デシカント制御部146は、STEP305の終了後、処理をSTEP303に戻す。   The desiccant control unit 146 returns the processing to STEP 303 after STEP 305 ends.

STEP306では、デシカント制御部146は、給気通路108の空気の露点温度Biを取得する。露点温度Biは、温湿度センサNaが検出する給気空気の温度Ta及び湿度Ma、又は温湿度センサNcが検出する給気空気の温度Tc及び湿度Mcから、算出することができる。露点温度Biは、また、排気通路109の配設された温湿度センサNbが検出する暖房空間の排気空気の温度Tb及び湿度Mbから算出された値とすることもできる。露点温度Biを、給気通路108の空気の露点温度Biに代えて、暖房空間から排気通路109に吸入した排気空気から算出する理由は、暖房空間の現実の湿度に応じて加湿を制御するためである。   In STEP 306, the desiccant control unit 146 acquires the dew point temperature Bi of the air in the supply passage 108. The dew point temperature Bi can be calculated from the temperature Ta and humidity Ma of the supply air detected by the temperature / humidity sensor Na or the temperature Tc and humidity Mc of the supply air detected by the temperature / humidity sensor Nc. The dew point temperature Bi can also be a value calculated from the temperature Tb and humidity Mb of the exhaust air in the heating space detected by the temperature / humidity sensor Nb in which the exhaust passage 109 is disposed. The reason why the dew point temperature Bi is calculated from the exhaust air sucked into the exhaust passage 109 from the heating space instead of the dew point temperature Bi of the air in the supply passage 108 is to control humidification according to the actual humidity of the heating space. It is.

STEP307では、デシカント制御部146は、露点温度Biに基づいて第2目標温度範囲を設定する。第2目標温度範囲は、例えばBiが属する温度区分に対応付けて該温度区分より所定量高い温度区分の範囲として設定される。デシカント114の再生効率(水分脱離効率)は、デシカント114を通過する空気の温度が高いほど増大するものの、再生飽和状態になると、それ以上空気温度を高くしても、効率はさほど上昇せず、空気の加熱が無駄になるだけである。Biが属する温度区分に対応付けて高からず低からずの第2目標温度範囲を設定することにより、デシカント114の再生効率を高めつつ、無駄な空気加熱を抑制して、無駄なエネルギー消費を抑制することができる。   In STEP 307, the desiccant controller 146 sets the second target temperature range based on the dew point temperature Bi. For example, the second target temperature range is set as a range of a temperature section that is higher than the temperature section by a predetermined amount in association with the temperature section to which Bi belongs. The regeneration efficiency (moisture desorption efficiency) of the desiccant 114 increases as the temperature of the air passing through the desiccant 114 increases. However, when the regeneration saturation state is reached, the efficiency does not increase so much even if the air temperature is increased further. Only the air heating is wasted. By setting a second target temperature range that is not high or low in association with the temperature category to which Bi belongs, the regeneration efficiency of the desiccant 114 is increased, while wasteful air heating is suppressed, and wasteful energy consumption is reduced. Can be suppressed.

STEP308では、給気通路108の上流側凝縮器としての凝縮器121の冷媒出口側の冷媒温度(T8)を検出する。   In STEP 308, the refrigerant temperature (T8) on the refrigerant outlet side of the condenser 121 as the upstream condenser of the air supply passage 108 is detected.

STEP309では、デシカント制御部146は、温度T8が第2目標温度範囲内にあるか否かを判定する。デシカント制御部146は、判定結果が否であるとき、処理をSTEP310に進める。   In STEP 309, the desiccant control unit 146 determines whether or not the temperature T8 is within the second target temperature range. When the determination result is negative, the desiccant control unit 146 proceeds with the process to STEP 310.

STEP310では、デシカント制御部146は、分流調整用膨張弁としての膨張弁Ex4の開度O4をΔi又は−Δiだけ変更する。ただし、Δi>0である。Δi=Δeとしてもよいし、Δi≠Δeとしてもよい。   In STEP 310, the desiccant controller 146 changes the opening degree O4 of the expansion valve Ex4 as the diversion adjusting expansion valve by Δi or −Δi. However, Δi> 0. Δi = Δe or Δi ≠ Δe.

詳細には、温度T8が、第2目標温度範囲の上限を上回っているときは、膨張弁Ex4の開度O4をΔiだけ減少させて、凝縮器121の加熱力を減少させる。温度T8が、第2目標温度範囲の下限を下回っているときは、膨張弁Ex4の開度O4をΔiだけ増大させて、凝縮器121の加熱力を増大させる。   Specifically, when the temperature T8 exceeds the upper limit of the second target temperature range, the opening degree O4 of the expansion valve Ex4 is decreased by Δi, and the heating power of the condenser 121 is decreased. When the temperature T8 is below the lower limit of the second target temperature range, the opening degree O4 of the expansion valve Ex4 is increased by Δi, and the heating power of the condenser 121 is increased.

デシカント制御部146は、STEP310の終了後、処理をSTEP308に戻す。   The desiccant control unit 146 returns the processing to STEP 308 after STEP 310 ends.

一方、デシカント制御部146は、STEP309において判定が正であれば、デシカント制御を終了する。   On the other hand, if the determination in STEP 309 is positive, the desiccant control unit 146 ends the desiccant control.

こうして、デシカント制御部146によるデシカント制御が終了時には、分流路58に分流する冷媒の流量は、排気通路109において、蒸発器124に結露が生じない範囲で、デシカント114における水分吸着効率を高めることを実現させるとともに、給気通路108では、余剰の空気加熱に因る無駄なエネルギー消費の抑制、及びデシカント114の再生効率の増大を実現した流量になる。   Thus, when the desiccant control by the desiccant control unit 146 is finished, the flow rate of the refrigerant diverted to the diversion channel 58 is to increase the moisture adsorption efficiency in the desiccant 114 in a range in which no condensation occurs in the evaporator 124 in the exhaust passage 109. At the same time, the air supply passage 108 has a flow rate that suppresses wasteful energy consumption due to excessive air heating and increases the regeneration efficiency of the desiccant 114.

図8は、圧縮機制御部132が実施する圧縮機制御のフローチャートである。STEP401では、圧縮機制御部132は、暖房用加熱媒体の往き側温度の設定値To(熱媒体循環路92の温度センサS3の部位における温度の設定値)を取得する。設定値Toは、ユーザがヒートポンプ装置2のリモコン等を介して手動で予め指示することになっている。したがって、ユーザが指示した設定値Toはメモリに記憶されているので、圧縮機制御部132は、メモリから設定値Toを読み出して、取得することができる。   FIG. 8 is a flowchart of compressor control performed by the compressor control unit 132. In STEP 401, the compressor control unit 132 obtains a setting value To of the heating-side heating medium temperature setting value (setting value of temperature at the temperature sensor S3 portion of the heat medium circulation path 92). The set value To is to be manually designated in advance by the user via the remote controller of the heat pump device 2 or the like. Therefore, since the set value To designated by the user is stored in the memory, the compressor control unit 132 can read and obtain the set value To from the memory.

STEP402では、圧縮機制御部132は、暖房用加熱の熱媒体の往き側温度(温度T3)を検出する。   In STEP 402, the compressor control unit 132 detects the forward temperature (temperature T3) of the heating medium for heating.

STEP403では、圧縮機制御部132は、暖房用加熱の熱媒体の往き側温度(温度センサS3の部位における温度)の設定値Toと検出値(温度T3)との差分D(=To−T3)を算出する。   In STEP 403, the compressor control unit 132 determines the difference D (= To−T3) between the set value To and the detected value (temperature T3) of the forward temperature of the heating medium for heating (the temperature at the site of the temperature sensor S3). Is calculated.

STEP404では、圧縮機制御部132は、差分D>所定値α(ただし、α>0)であるか否かを判定し、判定が正であれば、処理をSTEP405に進ませ、判定が否であれば、処理をSTEP406に進ませる。   In STEP 404, the compressor control unit 132 determines whether or not the difference D> predetermined value α (where α> 0). If the determination is positive, the process proceeds to STEP 405, and the determination is negative. If so, the process proceeds to STEP 406.

D>αは、分流路59の冷媒の熱流量が不足していることを示す。D<−αは、分流路59の冷媒の熱流量が余剰であることを示す。   D> α indicates that the heat flow rate of the refrigerant in the branch channel 59 is insufficient. D <−α indicates that the heat flow rate of the refrigerant in the branch channel 59 is excessive.

STEP405では、圧縮機制御部132は、圧縮機50の制御周波数F(=三相誘導モータ53の制御周波数F)をΔFだけ増大させる。これにより、圧縮機50の回転速度がΔFの相当分増大して、分流路59の冷媒の熱流量が所定量増大する。この後、圧縮機制御部132は、処理をSTEP402に戻す。   In STEP 405, the compressor control unit 132 increases the control frequency F of the compressor 50 (= the control frequency F of the three-phase induction motor 53) by ΔF. As a result, the rotational speed of the compressor 50 increases by a considerable amount ΔF, and the heat flow rate of the refrigerant in the branch flow path 59 increases by a predetermined amount. Then, the compressor control part 132 returns a process to STEP402.

STEP406では、圧縮機制御部132は、D<−αであるか否かを判定し、判定が正であれば、処理をSTEP407に進ませる。   In STEP 406, the compressor control unit 132 determines whether or not D <−α. If the determination is positive, the process proceeds to STEP 407.

STEP407では、圧縮機制御部132は、圧縮機50の制御周波数F(=三相誘導モータ53の制御周波数F)をΔFだけ減少させる。これにより、圧縮機50の回転速度がΔFの相当分減少して、分流路59の冷媒の熱流量が所定量減少する。この後、圧縮機制御部132は、処理をSTEP402に戻す。   In STEP 407, the compressor control unit 132 decreases the control frequency F of the compressor 50 (= control frequency F of the three-phase induction motor 53) by ΔF. As a result, the rotational speed of the compressor 50 is reduced by a considerable amount ΔF, and the heat flow rate of the refrigerant in the branch flow path 59 is reduced by a predetermined amount. Then, the compressor control part 132 returns a process to STEP402.

一方、圧縮機制御部132は、STEP406において判定が否であれば、圧縮機制御を終了する。こうして、分流路59の冷媒の流量は、暖房機器としての床暖房装置6が要求する熱流量を確保した流量となって、圧縮機制御(STEP4)を終了する。   On the other hand, if the determination in STEP 406 is negative, the compressor control unit 132 ends the compressor control. Thus, the flow rate of the refrigerant in the branch flow path 59 becomes a flow rate that secures the heat flow rate required by the floor heating device 6 as the heating device, and the compressor control (STEP 4) is terminated.

この後、図5に示されるように、STEP1を経て、STEP2〜4が1つずつ繰り返して再実施される。   Thereafter, as shown in FIG. 5, through STEP 1, STEP 2 to 4 are repeated one by one.

すなわち、給湯配分率制御(STEP2)及びデシカント制御(STEP3)では、分流路59の冷媒流量を考慮することなく、分流路60及び分流路58の各冷媒流量が、給湯用加熱及びデシカント制御用加熱の要求量に応じた値に適正化されるように、変更される。一方、この給湯配分率制御及びデシカント制御の実施により、分流路59の冷媒流量が、暖房用加熱の要求量に応じた適正値からずれる。このずれは、暖房機器としての床暖房装置6へ向かう往き側熱媒体について、該往き側熱媒体の設定温度Toと現在の検出温度T3との差分に反映される。   In other words, in the hot water supply distribution rate control (STEP 2) and the desiccant control (STEP 3), the refrigerant flow rates in the diversion channel 60 and the diversion channel 58 are adjusted to the hot water supply heating and the desiccant control heating without considering the refrigerant flow rate in the diversion channel 59. It is changed so as to be optimized to a value according to the requested amount. On the other hand, by performing the hot water supply distribution rate control and the desiccant control, the refrigerant flow rate in the diversion channel 59 deviates from an appropriate value according to the required amount of heating for heating. This deviation is reflected in the difference between the set temperature To of the going-side heat medium and the current detected temperature T3 for the going-side heat medium that goes to the floor heating device 6 as the heating device.

圧縮機制御(STEP4)では、差分D(=To−T3)の絶対値(|D|)が減少するように、圧縮機50の冷媒吐出流量が変更される。この変更は、分流路59の冷媒流量を暖房用加熱の要求量に応じた適正値に戻すだけでなく、開度調整弁としての膨張弁Ex6、第1調整弁としての膨張弁Ex3及び第2調整弁として膨張弁Ex4の現在の開度の下で分流路58,59,60の冷媒流量の合計の過不足分を緩和する。すなわち、圧縮機制御(STEP4)による圧縮機50の冷媒吐出流量の変更は、分流路58,59,60の全体での冷媒流量の過不足分を適当に補正することになる。このことは、分流路58,60の冷媒流量が、給湯配分率制御及びデシカント制御の前回の開始時の冷媒流量よりも、現在の給湯用加熱及びデシカント制御用加熱の要求量の対応値に接近したことを意味する。   In the compressor control (STEP 4), the refrigerant discharge flow rate of the compressor 50 is changed so that the absolute value (| D |) of the difference D (= To−T3) decreases. This change not only returns the refrigerant flow rate of the diversion channel 59 to an appropriate value according to the required amount of heating for heating, but also the expansion valve Ex6 as the opening adjustment valve, the expansion valve Ex3 as the first adjustment valve, and the second adjustment valve. As a regulating valve, the total excess / deficiency of the refrigerant flow rate of the branch flow paths 58, 59, 60 is reduced under the current opening of the expansion valve Ex4. That is, the change of the refrigerant discharge flow rate of the compressor 50 by the compressor control (STEP 4) appropriately corrects the excess or deficiency of the refrigerant flow rate in the entire branch flow paths 58, 59, 60. This means that the refrigerant flow rates in the diversion channels 58 and 60 are closer to the corresponding values of the current required amount of heating for hot water supply and heating for desiccant control than the refrigerant flow rate at the previous start of hot water supply distribution rate control and desiccant control. Means that

圧縮機制御(STEP4)に続く給湯配分率制御(STEP2)及びデシカント制御(STEP3)は、分流路60,58の冷媒流量が給湯配分率制御及びデシカント制御の前回の開始時のものより現在の給湯用加熱及びデシカント制御用加熱の要求量の対応値に接近したことを受けて、実施されることになる。したがって、給湯配分率制御及びデシカント制御の今回の実行により、分流路60及び分流路58の冷媒流量は、給湯配分率制御の前回の実行時よりも、現在の給湯用加熱及びデシカント制御用加熱の要求量の対応値に接近する。   In the hot water distribution rate control (STEP 2) and the desiccant control (STEP 3) following the compressor control (STEP 4), the coolant flow rate in the branch channels 60 and 58 is higher than that at the previous start of the hot water distribution rate control and the desiccant control. It will be implemented in response to having approached the corresponding value of the required amount of heating for desiccant and heating for desiccant control. Therefore, by the current execution of the hot water supply distribution rate control and the desiccant control, the refrigerant flow rates in the diversion channel 60 and the diversion channel 58 are higher than those in the previous execution of the hot water supply distribution rate control. It approaches the corresponding value of the required amount.

こうして、給湯配分率制御(STEP2)、デシカント制御(STEP3)及び圧縮機制御(STEP4)の実施が所定の順番で繰り返されていくうちに、分流路59、分流路60及び分流路58の冷媒流量は、それぞれ暖房用加熱、給湯用加熱及びデシカント制御用加熱の各要求量とに合致した値に収束、又は十分に接近していく。   Thus, while the hot water distribution rate control (STEP 2), the desiccant control (STEP 3), and the compressor control (STEP 4) are repeatedly performed in a predetermined order, the refrigerant flow rates in the distribution channel 59, the distribution channel 60, and the distribution channel 58 are repeated. Are converged to or sufficiently close to the values corresponding to the respective required amounts of heating for heating, heating for hot water supply and heating for desiccant control.

このように、この暖房運転制御(図5)は、分流路60の冷媒流量Qcを適正化するだけの単純な給湯配分率制御(STEP2)と、分流路58の冷媒流量Qaを適正化するだけの単純なデシカント制御(STEP3)と、暖房機器へ向かう往き側熱媒体について、該往き側熱媒体の設定温度と現在の検出温度との差分Dの絶対値|D|を減少させるように圧縮機50の冷媒吐出流量Qを変更するだけの単純な圧縮機制御(STEP4)とが実施を繰り返されるだけとなっている。そして、これにより、ヒートポンプ装置2の設置状況により暖房空間の容積や貯湯タンクの容量がまちまちであっても、適当な時間の経過後は、暖房空間及び貯湯タンクと共にデシカントの各時点の加熱要求量に応じた適切な流量で冷媒を供給することができる。   As described above, this heating operation control (FIG. 5) is merely a simple hot water supply distribution rate control (STEP 2) that optimizes the refrigerant flow rate Qc of the distribution channel 60 and only optimizes the refrigerant flow rate Qa of the distribution channel 58. The simple desiccant control (STEP 3) of the compressor and the compressor so as to reduce the absolute value | D | of the difference D between the set temperature of the forward heat medium and the current detected temperature for the forward heat medium toward the heating device The simple compressor control (STEP 4) that only changes the refrigerant discharge flow rate Q of 50 is repeated. As a result, even if the volume of the heating space and the capacity of the hot water storage tank vary depending on the installation state of the heat pump device 2, the heating request amount at each time point of the desiccant together with the heating space and the hot water storage tank after an appropriate time has elapsed. The refrigerant can be supplied at an appropriate flow rate according to the condition.

なお、(式1)には、膨張弁Ex4の開度O4に関連する項が存在しない。しかしながら、圧縮機制御(STEP4)における差分Dに基づく冷媒吐出流量の変更は、分流路58,59,60の全体での冷媒流量の過不足分を補正する機能も含んでいる。したがって、(式1)に膨張弁Ex4の開度O4に関連する項が存在しなくても、(式1)から算出される開度O6の制御値には、膨張弁Ex4の開度O4が反映される。   In (Equation 1), there is no term related to the opening degree O4 of the expansion valve Ex4. However, the change of the refrigerant discharge flow rate based on the difference D in the compressor control (STEP 4) also includes a function of correcting the excess or deficiency of the refrigerant flow rate in the entire branch flow paths 58, 59, 60. Therefore, even if there is no term related to the opening degree O4 of the expansion valve Ex4 in (Equation 1), the opening degree O4 of the expansion valve Ex4 is the control value of the opening degree O6 calculated from (Equation 1). Reflected.

すなわち、図7のデシカント制御(図5のSTEP3)による膨張弁Ex4の開度O4の変更は、分流路59における冷媒流量の変化を通じて、差分Dの値に反映される。そして、その後に実施される圧縮機制御では、差分Dに基づく冷媒吐出流量の変更がなされ、さらに、この冷媒吐出流量の変更を受けて、(式1)による開度O6の制御値が算出される。したがって、(式1)により算出される開度O6の制御値は、図7のデシカント制御(図5のSTEP3)による膨張弁Ex4の開度O4の変更を織り込んだものとなっている。   That is, the change in the opening degree O4 of the expansion valve Ex4 by the desiccant control in FIG. 7 (STEP 3 in FIG. 5) is reflected in the value of the difference D through the change in the refrigerant flow rate in the branch flow path 59. In the compressor control performed thereafter, the refrigerant discharge flow rate is changed based on the difference D, and further, the control value of the opening degree O6 according to (Equation 1) is calculated in response to the change in the refrigerant discharge flow rate. The Therefore, the control value of the opening degree O6 calculated by (Equation 1) incorporates the change in the opening degree O4 of the expansion valve Ex4 by the desiccant control of FIG. 7 (STEP 3 of FIG. 5).

しかしながら、(式1)には、膨張弁Ex4の開度O4に関連する項を含ませてもよい。その方が、(式1)で算出される開度O6の制御値がその収束値に近い値になり、各STEP2〜4の処理対象の値が収束状態になる時間が早まる。   However, (Equation 1) may include a term related to the opening degree O4 of the expansion valve Ex4. In that case, the control value of the opening degree O6 calculated by (Equation 1) becomes a value close to the convergence value, and the time during which the values to be processed in STEPs 2 to 4 are converged is advanced.

本発明の実施形態について説明したが、本発明は、該実施形態に限定されることなく、種々に変形して実施することができる。   Although the embodiment of the present invention has been described, the present invention is not limited to this embodiment, and can be implemented with various modifications.

例えば、実施形態のヒートポンプ装置2を装備する地中熱ヒートポンプシステム1は、デシカント装置4を備えるが、本発明のヒートポンプ装置は、デシカント装置4を備えない地中熱ヒートポンプシステム1にも適用することができる。デシカント装置4を備えない地中熱ヒートポンプシステム1では、図5のSTEP3の処理は省略される。   For example, the geothermal heat pump system 1 equipped with the heat pump device 2 of the embodiment includes the desiccant device 4, but the heat pump device of the present invention is also applied to the geothermal heat pump system 1 that does not include the desiccant device 4. Can do. In the geothermal heat pump system 1 that does not include the desiccant device 4, the processing of STEP 3 in FIG. 5 is omitted.

なお、貯湯タンク15の湯水16の沸き上げを確保する熱流量としてのwhを、wh={貯湯タンク15の容量×(沸き上がり温度−水道水温度)}/深夜電力の提供時間で設定したが、whは、貯湯水循環路89の径等により決まる上限がある。(式1)による開度O6の制御値の算出では、算出された制御値に対応する分流路60の冷媒の熱流量がwhの上限を越えてしまうことがある。この場合は、分流路60の冷媒の熱流量が無駄になる。したがって、(式1)による開度O6の制御値に、whの上限に対応する限界を設定し、制御値をその限界内に制限することが好ましい。   In addition, although wh as a heat flow rate for securing boiling of the hot water 16 in the hot water storage tank 15 is set by wh = {capacity of the hot water storage tank 15 × (boiling temperature−tap water temperature)} / providing time of late-night power. , Wh has an upper limit determined by the diameter of the hot water circulation circuit 89 and the like. In the calculation of the control value of the opening degree O6 according to (Equation 1), the heat flow rate of the refrigerant in the branch flow path 60 corresponding to the calculated control value may exceed the upper limit of wh. In this case, the heat flow rate of the refrigerant in the branch flow path 60 is wasted. Therefore, it is preferable to set a limit corresponding to the upper limit of wh in the control value of the opening degree O6 according to (Equation 1) and limit the control value within the limit.

実施形態では、熱交換器77(採熱用熱交換器)により、冷媒循環路において圧縮機50に吸入される前の冷媒を加熱している。しかしながら、本発明では、冷媒循環路において圧縮機に吸入される前の冷媒を加熱する冷媒加熱部として、熱交換器77に代えて電気ヒータやバーナを採用することもできる。   In the embodiment, the refrigerant before being sucked into the compressor 50 in the refrigerant circulation path is heated by the heat exchanger 77 (heat collecting heat exchanger). However, in the present invention, an electric heater or a burner may be employed instead of the heat exchanger 77 as a refrigerant heating unit that heats the refrigerant before being sucked into the compressor in the refrigerant circuit.

冷媒に対する冷媒加熱部による加熱力は(冷媒加熱部が熱交換器77である場合は、該加熱力は採熱媒体の温度だけでなく採熱媒体の循環流量にも関係する)、圧縮機50の冷媒吐出流量の増減に応じて増減するように、制御することが好ましい。しかしながら、冷媒加熱部の加熱力を少しだけ大きめに設定して、圧縮機50の冷媒吐出流量の増減に対する加熱力の制御は省略することもできる。なぜならば、加熱力に余裕がある場合には、冷媒が冷媒加熱部において一定時間当たりに加熱される量は、加熱力が一定であっても、圧縮機50の冷媒吐出流量の増減に応じて増減するからである。なお、実施形態では、循環ポンプP1の回転速度は、圧縮機50の冷媒吐出流量の増減に関係なく、一定に維持され、熱交換器77において圧縮機50の冷媒吐出流量の増減に応じた加熱側の制御は省略している。   The heating power of the refrigerant heating unit for the refrigerant (when the refrigerant heating unit is the heat exchanger 77, the heating power is related not only to the temperature of the heat collecting medium but also to the circulation flow rate of the heat collecting medium), the compressor 50 It is preferable to control so as to increase or decrease in accordance with the increase or decrease of the refrigerant discharge flow rate. However, the heating power of the refrigerant heating unit can be set slightly larger, and the control of the heating power with respect to the increase or decrease of the refrigerant discharge flow rate of the compressor 50 can be omitted. This is because when the heating power is sufficient, the amount of the refrigerant that is heated in the refrigerant heating unit per certain time depends on the increase or decrease in the refrigerant discharge flow rate of the compressor 50 even if the heating power is constant. This is because it increases or decreases. In the embodiment, the rotation speed of the circulation pump P1 is kept constant regardless of the increase or decrease of the refrigerant discharge flow rate of the compressor 50, and the heat exchanger 77 performs heating according to the increase or decrease of the refrigerant discharge flow rate of the compressor 50. Side control is omitted.

実施形態のヒートポンプ装置2は採熱媒体として地中熱の採熱媒体を利用している。しかしながら、本発明のヒートポンプ装置が利用する採熱媒体は、地中熱以外の例えは屋外空気の熱を利用するものであってもよい。   The heat pump device 2 of the embodiment uses a ground heat collection medium as the heat collection medium. However, the heat collection medium utilized by the heat pump device of the present invention may utilize heat of outdoor air, for example, other than underground heat.

デシカント装置4は、給気通路108及び排気通路109において、デシカント114の下流側にも、凝縮器120及び蒸発器123が配設されている。凝縮器120及び蒸発器123は、暖房運転制御期間において、暖房空間に供給する給気温度の制御には関係するものの、デシカント114における水分脱着量や水分吸着量を制御する給気温度及び排気温度の温度制御には関与しない。したがって、給気温度の制御を行わないデシカント装置4では、凝縮器120及び蒸発器123は省略することができる。   In the desiccant device 4, a condenser 120 and an evaporator 123 are also disposed downstream of the desiccant 114 in the air supply passage 108 and the exhaust passage 109. Although the condenser 120 and the evaporator 123 are related to the control of the supply air temperature supplied to the heating space during the heating operation control period, the supply air temperature and the exhaust gas temperature for controlling the moisture desorption amount and the moisture adsorption amount in the desiccant 114. It is not involved in the temperature control. Therefore, in the desiccant device 4 that does not control the supply air temperature, the condenser 120 and the evaporator 123 can be omitted.

Ex3・・・膨張弁(第1調整弁)、Ex4・・・膨張弁(第2調整弁)、Ex6・・・膨張弁(開度調整弁)、S2,S3,S5・・・温度センサ、2・・・ヒートポンプ装置、15・・・貯湯タンク、16・・・湯水、50・・・圧縮機、51・・・吸入流路(循環路)、52・・・吐出流路(循環路)、57・・・合流路(循環路)、58・・・分流路(第3分流路)、59・・・分流路(第1分流路)、60・・・分流路(第2分流路)、64・・・合流路(循環路)、70・・・熱交換器(暖房用熱交換器)、74・・・熱交換器(給湯用熱交換器)、77・・・熱交換器(冷媒加熱部又は採熱用熱交換器)、114・・・デシカント、121・・・凝縮器、124・・・蒸発器、141・・・処理制御部。 Ex3 ... expansion valve (first adjustment valve), Ex4 ... expansion valve (second adjustment valve), Ex6 ... expansion valve (opening adjustment valve), S2, S3, S5 ... temperature sensors, DESCRIPTION OF SYMBOLS 2 ... Heat pump apparatus, 15 ... Hot water storage tank, 16 ... Hot water, 50 ... Compressor, 51 ... Intake flow path (circulation path), 52 ... Discharge flow path (circulation path) 57... Combined flow path (circulation path), 58... Split flow path (third split flow path), 59... Split flow path (first split flow path), 60. 64 ... Combined flow path (circulation path), 70 ... Heat exchanger (heat exchanger for heating), 74 ... Heat exchanger (heat exchanger for hot water supply), 77 ... Heat exchanger ( Refrigerant heating unit or heat exchanger for heat collection), 114 ... desiccant, 121 ... condenser, 124 ... evaporator, 141 ... processing control unit.

Claims (4)

相互に並列接続された第1分流路及び第2分流路を含んで、冷媒が封入された冷媒循環路と、
前記冷媒循環路の途中に設けられて、上流側の冷媒を圧縮して、下流側に吐出する圧縮機と、
暖房機器を経由する暖房用循環路を流通する熱媒体と前記第1分流路を流通する冷媒との熱交換を行う暖房用熱交換器と、
貯湯タンクを経由する貯湯タンク用循環路を流通する湯水と前記第2分流路を流通する冷媒との熱交換を行う給湯用熱交換器と、
前記冷媒循環路において前記圧縮機に吸入される前の冷媒を加熱する冷媒加熱部と、
前記第1分流路又は前記第2分流路に配設されて開度が調整自在である開度調整弁と、
前記暖房用循環路を前記暖房用熱交換器から前記暖房機器へ向かう往き側熱媒体の温度を検出する往き側熱媒体用温度検出器と、
前記圧縮機を作動させて、前記暖房用熱交換器及び前記給湯用熱交換器による熱交換を行うときに、前記圧縮機の現在の吐出流量に対して、前記開度調整弁の開度を、前記第2分流路の冷媒流量が前記給湯用熱交換器における前記湯水の設定加熱量を確保できる開度に変更する第1処理と、往き側熱媒体について設定した設定温度と往き側熱媒体について前記往き側熱媒体用温度検出器が検出した現在の検出温度との差分の絶対値が減少するように前記圧縮機の冷媒吐出流量を変更する第2処理とを交互に実施するとともに、前記第1処理の実施中は前記圧縮機の吐出流量を前記第2処理の前回の終了時の吐出流量に固定し、前記第2処理の実施中は前記開度調整弁の開度を前記第1処理の前回の終了時の開度に固定する処理制御部とを備えることを特徴とするヒートポンプ装置。
A refrigerant circulation path including a first branch flow path and a second branch flow path connected in parallel with each other, and having a refrigerant sealed therein;
A compressor that is provided in the middle of the refrigerant circulation path, compresses the refrigerant on the upstream side, and discharges the refrigerant on the downstream side;
A heat exchanger for heating that exchanges heat between a heat medium that circulates through a heating circulation path that passes through a heating device and a refrigerant that circulates through the first branch flow path;
A hot water supply heat exchanger for exchanging heat between hot water flowing through the hot water tank circulation path passing through the hot water storage tank and the refrigerant flowing through the second branch flow path;
A refrigerant heating unit for heating the refrigerant before being sucked into the compressor in the refrigerant circulation path;
An opening degree adjusting valve disposed in the first branch path or the second branch path and having an adjustable opening degree;
A temperature detector for the forward heat medium that detects the temperature of the forward heat medium that travels from the heating heat exchanger to the heating equipment in the heating circuit;
When the compressor is operated and heat exchange is performed by the heat exchanger for heating and the heat exchanger for hot water supply, the opening of the opening adjustment valve is set with respect to the current discharge flow rate of the compressor. The first process of changing the flow rate of the refrigerant in the second branch channel to an opening degree that can secure the set heating amount of the hot water in the hot water supply heat exchanger, the set temperature set for the outgoing heat medium, and the outgoing heat medium And alternately performing a second process of changing the refrigerant discharge flow rate of the compressor so that the absolute value of the difference from the current detected temperature detected by the forward-side heat medium temperature detector decreases, and During the execution of the first process, the discharge flow rate of the compressor is fixed to the discharge flow rate at the previous end of the second process, and during the second process, the opening degree of the opening adjustment valve is set to the first flow rate. With a processing control unit that fixes the opening at the end of the previous processing Heat pump apparatus characterized by.
請求項1に記載のヒートポンプ装置において、
前記冷媒加熱部は、前記冷媒循環路において前記圧縮機に吸入される前の冷媒と所定の採熱用媒体との熱交換を行う採熱用熱交換器であり、
前記処理制御部は、前記第1処理では、前記採熱用熱交換器の採熱用媒体入口側の採熱用媒体の温度が高いほど、前記圧縮機の現在の吐出流量に対する前記第2分流路の冷媒流量の割合が小さくなるように、前記開度調整弁の開度を変更することを特徴とするヒートポンプ装置。
In the heat pump device according to claim 1,
The refrigerant heating unit is a heat collecting heat exchanger that exchanges heat between the refrigerant before being sucked into the compressor in the refrigerant circulation path and a predetermined heat collecting medium,
In the first process, the process control unit is configured to perform the second diversion with respect to the current discharge flow rate of the compressor as the temperature of the heat collecting medium on the heat collecting medium inlet side of the heat collecting heat exchanger increases. A heat pump device, wherein the opening degree of the opening degree adjusting valve is changed so that the ratio of the refrigerant flow rate in the passage is reduced.
請求項1又は2に記載のヒートポンプ装置において、
前記処理制御部は、前記第1処理では、前記給湯用熱交換器の湯水入口側の湯水の温度が高いほど、前記圧縮機の現在の吐出流量に対する前記第2分流路の冷媒流量の割合が小さくなるように、前記開度調整弁の開度を変更することを特徴とするヒートポンプ装置。
In the heat pump device according to claim 1 or 2,
In the first process, as the temperature of the hot water on the hot water inlet side of the hot water supply heat exchanger is higher, the processing control unit has a ratio of the refrigerant flow rate of the second branch flow path to the current discharge flow rate of the compressor. A heat pump device, wherein the opening of the opening adjustment valve is changed so as to be small.
請求項1〜3のいずれか1項に記載のヒートポンプ装置において、
前記第1分流路及び前記第2分流路の両方に対して並列に接続された第3分流路と、
屋外の空気を屋内の暖房空間に導く給気通路と屋内の前記暖房空間の空気を屋外に排出する排気通路とにまたがって配設されるデシカントと、
前記給気通路において前記デシカントの上流側に配設されて、前記デシカントを通過する前の空気を前記第3分流路の冷媒により加熱する凝縮器と、
前記第3分流路において前記凝縮器の下流側に配設されて開度が調整自在である第1調整弁と、
前記第3分流路において前記凝縮器の上流側に配設されて開度が調整自在である第2調整弁と、
前記排気通路において前記デシカントの上流側に配設されて、前記デシカントを通過する前の空気を、前記第1調整弁を通ってきた第3分流路の冷媒により冷却する蒸発器とを備え、
前記処理制御部は、
前記蒸発器の冷媒入口側及び冷媒出口側の冷媒温度が第1目標温度範囲内になるように前記第1調整弁の開度を調整してから、前記凝縮器の冷媒出口側の冷媒温度が第2目標温度範囲内になるように前記第2調整弁の開度を調整する第3処理を実施し、
前記第1処理、前記第2処理及び前記第3処理の3つの処理を所定の順番で繰り返し実施し、
前記第1処理の実施中は前記圧縮機の吐出流量を前記第2処理の前回の終了時の吐出流量に固定しかつ前記第1調整弁及び前記第2調整弁の開度を前記第3処理の前回の終了時の開度に固定し、
前記第2処理の実施中は前記開度調整弁の開度を前記第1処理の前回の終了時の開度に固定しかつ前記第1調整弁及び前記第2調整弁の開度を前記第3処理の前回の終了時の開度に固定し、
前記第3処理の実施中は前記開度調整弁の開度を前記第1処理の前回の終了時の開度に固定しかつ前記圧縮機の吐出流量を前記第2処理の前回の終了時の吐出流量に固定することを特徴とするヒートポンプ装置。
In the heat pump device according to any one of claims 1 to 3,
A third branch channel connected in parallel to both the first branch channel and the second branch channel;
A desiccant disposed across an air supply passage for guiding outdoor air to the indoor heating space and an exhaust passage for discharging the air in the indoor heating space to the outside;
A condenser that is disposed upstream of the desiccant in the air supply passage, and that heats the air before passing through the desiccant by the refrigerant in the third branch channel;
A first regulating valve disposed on the downstream side of the condenser in the third branch channel and having an adjustable opening;
A second regulating valve disposed on the upstream side of the condenser in the third branch channel and having an adjustable opening;
An evaporator disposed upstream of the desiccant in the exhaust passage and configured to cool the air before passing through the desiccant with a refrigerant in a third branch passage that has passed through the first adjustment valve;
The processing control unit
The refrigerant temperature on the refrigerant outlet side of the condenser is adjusted after the opening of the first adjustment valve is adjusted so that the refrigerant temperatures on the refrigerant inlet side and the refrigerant outlet side of the evaporator are within the first target temperature range. Performing a third process for adjusting the opening of the second adjustment valve so as to be within the second target temperature range;
The three processes of the first process, the second process and the third process are repeatedly performed in a predetermined order,
During the execution of the first process, the discharge flow rate of the compressor is fixed to the discharge flow rate at the previous end of the second process, and the opening degree of the first adjustment valve and the second adjustment valve is set to the third process. Fixed at the opening at the previous end of
During the execution of the second process, the opening of the opening adjustment valve is fixed to the opening at the previous end of the first process, and the opening of the first adjustment valve and the second adjustment valve is set to the first. 3 Fix the opening at the end of the previous process,
During the execution of the third process, the opening of the opening adjustment valve is fixed to the opening at the previous end of the first process, and the discharge flow rate of the compressor is the same as that at the previous end of the second process. A heat pump device characterized by being fixed at a discharge flow rate.
JP2015120179A 2015-06-15 2015-06-15 Heat pump equipment Active JP6095728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015120179A JP6095728B2 (en) 2015-06-15 2015-06-15 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015120179A JP6095728B2 (en) 2015-06-15 2015-06-15 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2017003236A JP2017003236A (en) 2017-01-05
JP6095728B2 true JP6095728B2 (en) 2017-03-15

Family

ID=57751829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015120179A Active JP6095728B2 (en) 2015-06-15 2015-06-15 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP6095728B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087335A1 (en) * 2017-11-01 2019-05-09 株式会社前川製作所 Livestock house system
US11421907B2 (en) 2018-04-04 2022-08-23 Mitsubishi Electric Corporation Controller of air conditioning system, outdoor unit, relay unit, heat source apparatus, and air conditioning system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030708A (en) * 2003-07-08 2005-02-03 Sunpot Co Ltd Cooling structure for semiconductor for controlling geothermal heat pump
JP4447259B2 (en) * 2003-07-08 2010-04-07 サンポット株式会社 Heating system
WO2005106346A1 (en) * 2004-04-28 2005-11-10 Toshiba Carrier Corporation Heat pump-type hot water supply apparatus
CA2526356A1 (en) * 2005-11-14 2007-05-14 Free Energy Solutions Inc. Geothermal exchange system using a thermally superconducting medium with a refrigerant loop
JP5078421B2 (en) * 2007-05-01 2012-11-21 日立アプライアンス株式会社 Heat pump hot water floor heater
JP4987610B2 (en) * 2007-07-31 2012-07-25 株式会社前川製作所 Geothermal heat pump cycle equipment
JP2009092321A (en) * 2007-10-10 2009-04-30 Panasonic Corp Cooling/heating hot water supply system and its operating method
JP2009264716A (en) * 2008-04-30 2009-11-12 Panasonic Corp Heat pump hot water system
JP2010145007A (en) * 2008-12-18 2010-07-01 Kansai Electric Power Co Inc:The Desiccant air conditioning system, and method for desiccant air conditioning using the same
JP4942785B2 (en) * 2009-03-24 2012-05-30 三菱電機株式会社 Air conditioning apparatus and air conditioning system
JP5776314B2 (en) * 2011-04-28 2015-09-09 株式会社ノーリツ Heat pump water heater
JP2013104596A (en) * 2011-11-11 2013-05-30 Mitsubishi Heavy Ind Ltd Hot water heating/supplying system
KR101985810B1 (en) * 2012-10-25 2019-09-03 삼성전자주식회사 Heat pump and control method thereof
GB2524673B (en) * 2013-01-07 2019-08-21 Mitsubishi Electric Corp Heat pump system
JP5981396B2 (en) * 2013-07-10 2016-08-31 サンポット株式会社 Heat pump heat source machine

Also Published As

Publication number Publication date
JP2017003236A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
CN109196287B (en) Air conditioning system
KR101201131B1 (en) a indoor cooling and heating system
JP6681896B2 (en) Refrigeration system
JP4224409B2 (en) Hot water supply system using natural energy
KR20160051596A (en) Air-conditioning system
JP6095728B2 (en) Heat pump equipment
JP2015004482A (en) Hot water supply and air conditioning system
JP6095360B2 (en) Thermal load treatment system
JP2010243002A (en) Air conditioning system
JP6071941B2 (en) Heat pump system
JP6156245B2 (en) Ventilation device and ventilation air conditioning system
JP6907653B2 (en) Air conditioning system
CN111023414B (en) Air conditioning system and dehumidification control method
CN104344550B (en) Heat pump water heater group
US11674706B2 (en) System and method for operating an air conditioner unit having an auxiliary electric heater
JP6645593B2 (en) Heat medium circulation system
JP7374633B2 (en) Air conditioners and air conditioning systems
JP5553888B2 (en) Air conditioning and hot water supply system
CN110736142B (en) Air conditioner and rapid dehumidification control method without cooling
JP4222714B2 (en) Hot water storage hot water source
JP7287809B2 (en) heating system
KR101604418B1 (en) Heat pump type cooling and heating system having hot water supplying function
JP7274896B2 (en) heating system
JP2014145588A (en) Fan coil type air conditioner for radiation panel with heat pump
JP5909102B2 (en) Air conditioning system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170214

R150 Certificate of patent or registration of utility model

Ref document number: 6095728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350