JP6086102B2 - Production planning method and program for steel products - Google Patents

Production planning method and program for steel products Download PDF

Info

Publication number
JP6086102B2
JP6086102B2 JP2014151289A JP2014151289A JP6086102B2 JP 6086102 B2 JP6086102 B2 JP 6086102B2 JP 2014151289 A JP2014151289 A JP 2014151289A JP 2014151289 A JP2014151289 A JP 2014151289A JP 6086102 B2 JP6086102 B2 JP 6086102B2
Authority
JP
Japan
Prior art keywords
processing time
equipment
outgoing
production
steel products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014151289A
Other languages
Japanese (ja)
Other versions
JP2016024799A (en
Inventor
幸太郎 石川
幸太郎 石川
小原 一樹
一樹 小原
裕史 津山
裕史 津山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014151289A priority Critical patent/JP6086102B2/en
Publication of JP2016024799A publication Critical patent/JP2016024799A/en
Application granted granted Critical
Publication of JP6086102B2 publication Critical patent/JP6086102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、複数の設備が並列に設置された工程で複数種類の鉄鋼製品を生産するにあたって、生産を最適化する鉄鋼製品の生産計画方法およびプログラムに関するものである。   The present invention relates to a steel product production planning method and program for optimizing production when producing a plurality of types of steel products in a process in which a plurality of facilities are installed in parallel.

従来から、鉄鋼業などの多工程から構成される製造プロセスにおいて、納期遵守、在庫削減、設備稼働率最大化などのための生産計画の最適スケジューリング方法が多数提案されている。鉄鋼業では、薄板系の精整ラインが需給の関係でボトルネックとなったり、能力が余力となったりするという特徴がある。これは、精整ラインが並列で複数に設置されている事が多いためであるが、これに対処すべく、例えば、特許文献1〜4に開示された技術がある。   Conventionally, in a manufacturing process composed of multiple processes such as the steel industry, a number of optimal scheduling methods for production plans have been proposed in order to comply with delivery dates, reduce inventory, and maximize the capacity utilization rate. The iron and steel industry is characterized by the fact that a thin plate-based finishing line becomes a bottleneck in relation to supply and demand, and the capacity becomes surplus. This is because there are many cases where a plurality of finishing lines are installed in parallel, and there are techniques disclosed in Patent Documents 1 to 4, for example, in order to cope with this.

特許文献1では、並列に複数設置されている製造設備において、設備の期毎の処理量の上下限、設備能力を制約条件として、損益最大化又は処理量最大化になるような製造設備毎の最適品種構成計画作成方法を提案している。   In Patent Document 1, in manufacturing facilities installed in parallel, the upper and lower limits of the processing amount for each period of equipment and the equipment capacity are set as constraints on the profit and loss or the processing amount is maximized for each manufacturing facility. A method for creating an optimal variety composition plan is proposed.

また、特許文献2では、並列に複数設置されている製造設備において、設備の期毎の上下限設備能力(処理量)を所定の期間毎(ターム、スパーン)に計算してこれらを制約条件にすることで長期間の損益最大化、もしくは設備能力最大化になるような製造設備毎の最適品種構成計画作成方法を提案している。   Moreover, in patent document 2, in the manufacturing facility installed in parallel, the upper and lower limit facility capacities (processing amount) for each period of the facility are calculated for each predetermined period (term, span), and these are used as constraints. By doing so, we have proposed a method for creating an optimum product composition plan for each manufacturing facility that maximizes profits and losses over the long term or maximizes facility capacity.

なお、鉄鋼業の精整ラインは、品質不良部の切捨てやスクラップコイル化、製品コイルの分割をするため、前工程の情報、製品諸元とは、精整ライン出側コイルの状態が異なってくる。特許文献3では、所定の時点での前工程の中間製品の製造実績を集計して、予定と実績の差を生産計画システムに反映させることにより、予実較差による生産計画への影響を最小にすることを提案している。   In addition, the finishing line of the steel industry cuts out defective parts, turns into scrap coils, and divides the product coil, so the state of the coil on the finishing line differs from the information in the previous process and product specifications. come. In Patent Document 3, the production results of the intermediate products of the previous process at a predetermined time point are aggregated, and the difference between the schedule and the results is reflected in the production planning system, thereby minimizing the influence on the production plan due to the difference between the actual results. Propose that.

さらに、特許文献4では、設備処理能力を精度良く予測するために、過去の操業実績を基に決定木ロジックから処理能力を算出するロジックを作成して、製品情報により、これらの処理能力を予測する方法を提案している。   Furthermore, in Patent Document 4, in order to accurately predict the facility processing capacity, a logic for calculating the processing capacity from the decision tree logic based on the past operation results is created, and the processing capacity is predicted based on the product information. Proposed method to do.

特開2007−26046号公報JP 2007-26046 A 特開2006−4414号公報JP 2006-4414 A 特開2004−145749号公報JP 2004-145749 A 特開2009−265699号公報JP 2009-265699 A

「ここまで解ける整数計画」,システム/制御/情報,Vol.50,No.9,pp. 363-368,2006」"Integer programming that can be solved so far," System / Control / Information, Vol.50, No.9, pp. 363-368, 2006 "

鉄鋼業の精整ラインの場合は、前工程の操業状況により、突発的に品質不良部の切捨てやスクラップコイル、製品コイルの分割が発生する。特に、スクラップコイル、製品コイルの分割が発生した場合は、このスクラップコイル、分割コイルは出側では1コイルとして扱う。精整ラインは、出側コイル1本当たりでピッチを持っているため、スクラップや分割コイルが増加した場合、出側では重量が低下したコイルが増えるという形になると、精整ライン処理能力(分/コイル)が変化(低下)することとなる。   In the case of a finishing line in the steel industry, depending on the operation status of the previous process, the quality defective part is cut off suddenly and scrap coils and product coils are divided. In particular, when the scrap coil and the product coil are divided, the scrap coil and the divided coil are handled as one coil on the outlet side. Since the finishing line has a pitch per output coil, if the number of scraps or split coils increases and the number of coils with reduced weight increases on the output side, the finishing line processing capacity (minute / Coil) will change (decrease).

しかしながら、特許文献1および2では、製品についての初期情報を維持して生産計画を作成しており、上述したライン処理能力の変化については考慮がなされていない。   However, in Patent Documents 1 and 2, a production plan is created while maintaining initial information about a product, and the above-described change in line processing capacity is not taken into consideration.

また、特許文献3では、オーダーに対する過不足についての予実較差については記述があるものの、上述したスクラップコイル等によるライン出側のコイル処理能力の変化については考慮がなされていない。   Further, in Patent Document 3, although there is a description of a preliminary actual difference regarding excess and deficiency with respect to orders, no consideration is given to a change in coil processing capacity on the line exit side due to the above-described scrap coil or the like.

さらに、特許文献4では、並列に複数の設備が設置されている場合を想定していないこととともに、上述したスクラップコイル等によるライン出側のコイル処理能力の変化については考慮がなされていない。   Furthermore, Patent Document 4 does not assume a case where a plurality of facilities are installed in parallel, and does not consider the change in the coil processing capacity on the line exit side due to the above-described scrap coil or the like.

本発明は、前記の課題に鑑みてなされたものであって、複数の設備が並列に設置された工程で複数種類の鉄鋼製品を生産するにあたって、精度良く生産計画の最適化を行うことができる、鉄鋼製品の生産計画方法およびプログラムを提供することを目的とする。   The present invention has been made in view of the above problems, and can accurately optimize a production plan when producing a plurality of types of steel products in a process in which a plurality of facilities are installed in parallel. An object of the present invention is to provide a production planning method and program for steel products.

上記課題を解決するための本発明の要旨は以下の通りである。
[1]複数種類の鉄鋼製品を並列に複数の設備が設置された工程で生産するにあたって、生産を最適化する鉄鋼製品の生産計画方法であって、
コンピュータを用いた、
前記工程で処理予定の材料を選定する、当該工程で処理予定の材料選定ステップと、
選定した材料における設備指定、速度パターン、および納期の諸元を読込む、材料諸元読込ステップと、
前記工程の上流である前工程における前記選定した材料の製造実績を読込む、前工程の材料製造実績読込ステップと、
前記工程の設備諸元およびコストを読込む、当該工程の設備諸元・コスト読込ステップと、
前記工程通過後の出側材料の状態を予測する、当該工程通過後の出側材料状態予測ステップと、
前記出側材料の設備毎の処理時間を計算し、計算した出側材料の設備毎の処理時間から入側材料の処理時間に換算し入側材料換算処理時間を計算する、出側材料の設備毎の処理時間計算ステップと、
前記入側材料換算処理時間に基づき、制約条件付き最適化問題として材料スケジューリングの求解を行う、制約条件付き最適化問題として材料スケジューリング求解ステップと、
を有することを特徴とする鉄鋼製品の生産計画方法。
[2]上記[1]に記載の鉄鋼製品の生産計画方法において、
前記出側材料状態予測ステップでは、
前記出側材料をスクラップ、分割無製品、および分割有製品の出側材料区分に分け、
前記出側材料の設備毎の処理時間計算ステップでは、
材料長と設備諸元から計算される処理時間と処理間時間の合計と、設備毎の出側ピッチとで時間の長い方を、出側材料の設備毎の処理時間と決定することを特徴とする鉄鋼製品の生産計画方法。
[3]上記[1]または[2]に記載の鉄鋼製品の生産計画方法において、
前記制約条件付き最適化問題として材料スケジューリング求解ステップでは、
各設備の材料処理可能時間、材料の指定設備、および納期を制約条件とすることを特徴とする鉄鋼製品の生産計画方法。
[4]上記[1]ないし[3]のいずれか1項に記載の鉄鋼製品の生産計画方法における各ステップを、コンピュータに実行させることを特徴とする鉄鋼製品の生産計画プログラム。
The gist of the present invention for solving the above problems is as follows.
[1] A production planning method for a steel product that optimizes production when producing a plurality of types of steel products in a process in which a plurality of facilities are installed in parallel.
Using a computer,
Selecting a material to be processed in the process, a material selection step to be processed in the process;
Material specification reading step for reading equipment specifications, speed pattern and delivery date specifications for the selected material,
Reading the production performance of the selected material in the previous process upstream of the process, reading the material production performance of the previous process;
Read the facility specifications and cost of the process, read the facility specifications and cost of the process,
Predicting the state of the outgoing material after passing through the process, predicting the outgoing material state after passing through the process;
Calculate the processing time for each equipment of the outgoing material, convert the calculated processing time for each equipment of the outgoing material to the processing time of the incoming material, and calculate the incoming material conversion processing time. Each processing time calculation step,
Based on the entry side material conversion processing time, a material scheduling solution is performed as a constrained optimization problem, a material scheduling solution is performed as a constrained optimization problem,
A production planning method for steel products, comprising:
[2] In the production planning method for steel products according to [1] above,
In the outgoing material state prediction step,
Dividing the outgoing material into scrap, split-free products, and split-withdrawal material categories,
In the processing time calculation step for each facility of the delivery material,
It is characterized in that the longer of the processing time and the processing time calculated from the material length and equipment specifications and the outgoing pitch of each equipment is determined as the processing time for each equipment of the outgoing material. Production planning method for steel products.
[3] In the production planning method for steel products according to [1] or [2] above,
In the material scheduling solution step as the constraint optimization problem,
A production planning method for steel products, characterized in that the material processing time of each facility, the designated facility for the material, and the delivery date are set as constraints.
[4] A production plan program for steel products, which causes a computer to execute each step in the production plan method for steel products according to any one of [1] to [3].

本発明によれば、複数の設備が並列に設置された工程で複数種類の鉄鋼製品を生産するにあたって、出側材料の設備毎の処理時間を予測し、逆に入側材料の処理時間へと換算を行い、この入側材料換算処理時間に基づいて、後述する制約条件付き最適化問題として材料スケジューリングの求解を行うことにより、精度良く最適な生産計画を作成することができる。   According to the present invention, in producing a plurality of types of steel products in a process in which a plurality of facilities are installed in parallel, the processing time for each facility of the outgoing side material is predicted, and conversely, the processing time of the incoming side material is reached. By performing conversion and solving the material scheduling as an optimization problem with constraints described later based on the entry side material conversion processing time, an optimal production plan can be created with high accuracy.

本発明が対象とする生産ラインの一例を示す図である。It is a figure which shows an example of the production line which this invention makes object. 本発明による鉄鋼製品の生産計画方法の処理手順を示す図である。It is a figure which shows the process sequence of the production plan method of the steel products by this invention.

図1は、本発明が対象とする生産ラインの一例を示す図である。前工程(例えば、熱間圧延ライン、冷間圧延ラインなど)を経た材料(中間製品、製品とも称する)は、在庫置場1に保管され、直ぐ出荷されるもの以外は、M1、M2、M3(例えば、スキンパスミル、テンパーミル、DCRミルなど)の複数設備が並列設置され構成される当該工程B(例えば、スキンパス工程など)に送られ処理される。当該工程Bで処理を終えた製品は、在庫置場2に保管される。ここで、在庫置場1から直ぐ出荷されるもの以外の、当該工程Bに送られる製品を、複数設備にどう振り分けて生産を行わせるかという生産計画を立てるのが本発明の主題である。   FIG. 1 is a diagram showing an example of a production line targeted by the present invention. Materials (also referred to as intermediate products or products) that have undergone previous processes (for example, hot rolling line, cold rolling line, etc.) are stored in the inventory storage 1 and are shipped immediately except M1, M2, M3 ( For example, a plurality of facilities such as a skin pass mill, a temper mill, a DCR mill, etc.) are sent to the process B (for example, a skin pass process) configured in parallel. The product that has been processed in the process B is stored in the inventory storage 2. Here, it is the subject of the present invention to make a production plan for how to distribute the products sent to the process B other than those shipped immediately from the inventory storage 1 to a plurality of facilities.

図2は、本発明による鉄鋼製品の生産計画方法の処理手順を示す図である。以下に説明する処理ステップは、コンピュータにおいて、プログラムとしてCPUにより読み出して実行することができる。また、プログラムは、CD−ROMやFD、DVDなどのリムーバブルな記憶媒体に記憶しておくことにより、さまざまなコンピュータの記憶装置にインストールすることが可能である。   FIG. 2 is a diagram showing a processing procedure of a production plan method for steel products according to the present invention. The processing steps described below can be read and executed by a CPU as a program in a computer. Further, the program can be installed in various computer storage devices by storing the program in a removable storage medium such as a CD-ROM, FD, or DVD.

先ず、Step01の材料選定では、当該工程で処理予定の材料を選定する。表1は、A01〜A36の在庫置場1に保管している材料のうち、次工程がBである入側材料(A01〜A30)を選定する様子を表している。なお、出側材料とは、当該工程Bで処理を終えた材料を指す。   First, in the material selection in Step 01, the material to be processed in the process is selected. Table 1 shows how to select the entry side material (A01 to A30) in which the next process is B among the materials stored in the inventory storage 1 of A01 to A36. Note that the outgoing material refers to the material that has been processed in the step B.

Figure 0006086102
Figure 0006086102

次に、Step02にて材料諸元を読込む。表2に、Step01で選択した入側材料についての材料諸元例を示す。材料毎に処理する設備を指定する設備指定、速度パターン、および納期をそれぞれ表している。   Next, the material specifications are read in Step02. Table 2 shows an example of material specifications for the entry side material selected in Step 01. The equipment designation, the speed pattern, and the delivery date for designating equipment to be processed for each material are shown.

Figure 0006086102
Figure 0006086102

次に、Step03にて前工程の材料製造実績を読込む。表3に、材料製造実績例を示す。入側材料毎に、材料重量、材料長、前工程で発生したコイルの不良部有無および不良部箇所(表中の「先」は材料の先端、「尾」は材料の尾端をそれぞれ表す)、先端・尾端不良部の長さ、および製品分割の有無を表している。   Next, in Step 03, the material manufacturing results of the previous process are read. Table 3 shows examples of material production results. For each incoming material, material weight, material length, presence / absence of defective coil and location of defective coil generated in the previous process ("tip" in the table represents the tip of the material, and "tail" represents the tail of the material) , The length of the tip / tail defective portion, and the presence or absence of product division.

Figure 0006086102
Figure 0006086102

さらに、Step04にて当該工程の設備諸元・コストを読込む。表4に、当該工程の設備(M1、M2,M3)毎の最高ライン速度、設備毎出側ピッチ、処理間時間(材料の入替え時間など実質的な処理以外に要する時間)及び設備毎の処理コストのコスト比率の例を示している。   In Step 04, the equipment specifications and costs of the process are read. Table 4 shows the maximum line speed for each equipment (M1, M2, M3) in the process, the delivery pitch per equipment, the processing time (time required for material replacement, such as material replacement time), and the processing for each equipment. An example of the cost ratio of costs is shown.

Figure 0006086102
Figure 0006086102

そして、Step05にて当該工程通過後の出側材料状態を予測する。Step03で読込んだ前工程の材料製造実績から当該工程通過後の出側材料状態を予測するものである。表5に、前工程で発生したコイルの不良部及び製品の分割の有無から、出側材料毎に、製品区分・材料長・材料重量を予測した例を示す。なお、製品区分のX1は分割無製品、X2は分割有製品、Yはスクラップをそれぞれ表す。   And in Step05, the outgoing material state after passing the said process is estimated. From the material manufacturing results of the previous process read in Step 03, the outgoing material state after passing through the process is predicted. Table 5 shows an example of predicting the product classification, material length, and material weight for each outgoing material from the defective portion of the coil generated in the previous process and the presence or absence of product division. In the product category, X1 represents a product without division, X2 represents a product with division, and Y represents scrap.

Figure 0006086102
Figure 0006086102

さらに、Step06にて出側材料の設備毎の処理時間を計算し、計算した出側材料の設備毎の処理時間から入側材料の処理時間に換算をする。   Further, in Step 06, the processing time for each facility of the delivery side material is calculated, and the calculated processing time for each facility of the delivery side material is converted into the processing time of the entry side material.

先ず、出側材料の設備毎の処理時間を計算する。材料長から計算される処理時間を材料長から処理時間と前述した処理間時間を加えた、(材料長から処理時間+処理間時間)と表4に示した(設備毎の出側ピッチ)との比較によって、時間の長い方を出側材料の設備毎の処理時間と決定する。上述した、材料長から処理時間は、表2に示した速度パターンと材料長から算出し、処理間時間は、表4に示した値を用いる。   First, the processing time for each equipment on the delivery side material is calculated. The processing time calculated from the material length is calculated by adding the processing time from the material length and the above-described inter-processing time (from the material length to the processing time + inter-processing time) and shown in Table 4 (the outgoing pitch for each facility) From this comparison, the longer one is determined as the processing time for each facility of the outgoing material. The processing time from the material length described above is calculated from the speed pattern and the material length shown in Table 2, and the values shown in Table 4 are used as the processing time.

出側材料の設備毎の処理時間は、以下のように決定する。
・設備毎の出側ピッチ > (材料長から処理時間+処理間時間)の場合は、
出側材料の設備毎の処理時間=設備毎の出側ピッチとし、
・設備毎の出側ピッチ < (材料長から処理時間+処理間時間)の場合は、
出側材料の設備毎の処理時間=(材料長から処理時間+処理間時間)とする。表6に、最終的決定した出側材料の設備毎の処理時間を最終ピッチとして、(材料長から処理時間+処理間時間)の値とともに、示している。
The processing time for each equipment on the delivery side material is determined as follows.
-Delivery pitch per equipment> (From material length to processing time + inter-processing time)
The processing time for each equipment on the delivery side = the delivery pitch for each equipment,
-When the delivery pitch for each facility <(from material length to processing time + processing time)
The processing time for each equipment on the delivery side material = (material length to processing time + inter-processing time). Table 6 shows the final determined processing time for each equipment of the delivery side material as the final pitch, together with the value of (material length to processing time + inter-processing time).

Figure 0006086102
Figure 0006086102

次に、このように計算した出側材料の設備毎の処理時間すなわち最終ピッチから、入側材料の処理時間へと換算を行う。以下の式に示すように、分割していた出側材料の設備毎の処理時間を足し合わせ、入側材料換算処理時間を計算する。このようにして、出側材料の設備毎の処理時間を予測し、逆に入側材料の処理時間へと換算を行い、この入側材料換算処理時間に基づいて、後述する制約条件付き最適化問題として材料スケジューリングの求解を行うことにより、精度良く最適な生産計画を作成することができる。表6に基づいて、入側材料ごとの入側材料換算処理時間を求めた結果を、表7に示す。   Next, the processing time for each facility of the delivery side material calculated in this way, that is, the final pitch, is converted into the processing time for the entry side material. As shown in the following formula, the processing time for each facility of the delivery-side material that has been divided is added, and the entry-side material conversion processing time is calculated. In this way, the processing time for each facility of the outgoing material is predicted, and conversely, the processing time is converted into the processing time of the incoming material, and based on this incoming material conversion processing time, optimization with constraints described later is performed. By solving material scheduling as a problem, an optimal production plan can be created with high accuracy. Table 7 shows the results of determining the incoming material conversion processing time for each incoming material based on Table 6.

入側材料換算処理時間=Σ(出側材料の設備毎の処理時間)   Incoming material conversion processing time = Σ (processing time for each equipment on the outgoing material)

Figure 0006086102
Figure 0006086102

そして、Step07にて制約条件付き最適化問題として材料スケジューリングの求解を行う。最適化にあたっては、各設備の材料処理可能時間、材料の指定設備、および納期といった条件を制約条件に、Step06で計算した入側材料換算処理時間に基づき、損益最大を狙うわけであるが、生産状況によって以下のように、評価関数を決める。   In Step 07, material scheduling is solved as an optimization problem with constraints. In optimization, we aim for maximum profit and loss based on the input material conversion processing time calculated in Step 06, with the conditions such as the material processing time of each facility, the designated equipment of the material, and the delivery date as constraints. The evaluation function is determined according to the situation as follows.

(ケース1)生産がタイトで拡販を狙う場合
評価関数は、当該工程の材料処理時間とし、これの最小化を図る。
(Case 1) When production is tight and sales expansion is aimed at, the evaluation function is the material processing time of the process, and this is minimized.

(ケース2)生産に余力があり拡販を狙う場合
評価関数は、当該工程のコストとし、これの最小化を図る。
(Case 2) In the case where there is a surplus in production and sales are aimed at, the evaluation function is the cost of the process, and the cost is minimized.

なお、いずれの場合も制約条件付き最適化問題の解法には、例えば、非特許文献1に記載の解法を用いるようにすればよい。   In any case, for example, the solution described in Non-Patent Document 1 may be used as a solution for the optimization problem with constraints.

上述した表1〜表7の条件にて、制約条件として、各設備の材料処理可能時間を5400秒/設備、短納期材は2500秒以内に処理、および材料の設備指定は厳守と同じ制約条件とした場合の(ケース1)、(ケース2)および従来の方法(ケース3)の材料スケジューリング結果比較を表8に示す。なお、(ケース3)は、材料の設備指定厳守は同じであるが、短納期材を各設備に均等に処理し、その他は入側材料の下2桁(前工程の処理完了順 例えば、A01、A02など)から順に均等に各設備で処理するという材料スケジューリングを行っている。   In the conditions of Table 1 to Table 7 above, the constraint conditions are the same as the strict adherence to the material processing time of each equipment as 5400 seconds / equipment, short delivery materials within 2500 seconds, and material equipment designation. Table 8 shows a comparison of material scheduling results between (Case 1), (Case 2), and the conventional method (Case 3). In (Case 3), the material designation of equipment is the same, but short delivery materials are processed equally to each equipment, and the other two digits of the incoming material (order of processing completion in the previous process) , A02, etc.), and material scheduling is performed so that the processing is equally performed in each facility.

(ケース1)では処理時間の最小が、(ケース2)ではコストの最小がそれぞれ達成できていることが確認できる。   It can be confirmed that the minimum processing time is achieved in (Case 1) and the minimum cost is achieved in (Case 2).

Figure 0006086102
Figure 0006086102

本発明は、複数種類の製品を並列に複数の設備が設置された工程で生産する対象に広く適用可能である。   The present invention can be widely applied to objects for producing a plurality of types of products in a process in which a plurality of facilities are installed in parallel.

Claims (4)

複数の設備が並列に設置された工程で複数種類の鉄鋼製品を生産するにあたって、生産を最適化する鉄鋼製品の生産計画方法であって、
コンピュータを用いた、
当該工程で処理予定の材料を選定する、材料選定ステップと、
選定した材料を処理する設備の設備指定、速度パターン、および納期といった諸元を読込む、材料諸元読込ステップと、
当該工程の上流である前工程における前記選定した材料の製造実績を読込む、前工程の材料製造実績読込ステップと、
当該工程の設備諸元およびコストを読込む、当該工程の設備諸元・コスト読込ステップと、
当該工程通過後の出側材料の状態を予測する、当該工程通過後の出側材料状態予測ステップと、
前記出側材料の設備毎の処理時間を計算し、計算した出側材料の設備毎の処理時間から入側材料の処理時間に換算し入側材料換算処理時間を計算する、出側材料の設備毎の処理時間計算ステップと、
前記入側材料換算処理時間に基づき、制約条件付き最適化問題として材料スケジューリングの求解を行う、制約条件付き最適化問題として材料スケジューリング求解ステップと、
を有することを特徴とする鉄鋼製品の生産計画方法。
A production plan method for steel products that optimizes production when producing multiple types of steel products in a process in which multiple facilities are installed in parallel,
Using a computer,
A material selection step for selecting a material to be processed in the process;
A material specification reading step for reading specifications such as equipment designation, speed pattern, and delivery date of equipment for processing the selected material,
A material production performance reading step of the previous process, which reads the production performance of the selected material in the previous process upstream of the process;
Read the equipment specifications and cost of the process, read the equipment specifications and cost of the process,
Predicting the state of the outgoing material after passing through the process, the outgoing material state predicting step after passing through the process,
Calculate the processing time for each equipment of the outgoing material, convert the calculated processing time for each equipment of the outgoing material to the processing time of the incoming material, and calculate the incoming material conversion processing time. Each processing time calculation step,
Based on the entry side material conversion processing time, a material scheduling solution is performed as a constrained optimization problem, a material scheduling solution is performed as a constrained optimization problem,
A production planning method for steel products, comprising:
請求項1に記載の鉄鋼製品の生産計画方法において、
前記出側材料状態予測ステップでは、
前記出側材料をスクラップ、分割無製品、および分割有製品の出側材料区分に分け、
前記出側材料の設備毎の処理時間計算ステップでは、
材料長と設備諸元から計算される処理時間と処理間時間の合計と、設備毎の出側ピッチとで時間の長い方を、出側材料の設備毎の処理時間と決定することを特徴とする鉄鋼製品の生産計画方法。
In the steel product production planning method according to claim 1,
In the outgoing material state prediction step,
Dividing the outgoing material into scrap, split-free products, and split-withdrawal material categories,
In the processing time calculation step for each facility of the delivery material,
It is characterized in that the longer of the processing time and the processing time calculated from the material length and equipment specifications and the outgoing pitch of each equipment is determined as the processing time for each equipment of the outgoing material. Production planning method for steel products.
請求項1または2に記載の鉄鋼製品の生産計画方法において、
前記制約条件付き最適化問題として材料スケジューリング求解ステップでは、
各設備の材料処理可能時間、材料の指定設備、および納期を制約条件とすることを特徴とする鉄鋼製品の生産計画方法。
In the production plan method of the steel product according to claim 1 or 2,
In the material scheduling solution step as the constraint optimization problem,
A production planning method for steel products, characterized in that the material processing time of each facility, the designated facility for the material, and the delivery date are set as constraints.
請求項1ないし3のいずれか1項に記載の鉄鋼製品の生産計画方法における各ステップを、コンピュータに実行させることを特徴とする鉄鋼製品の生産計画プログラム。 A production plan program for steel products, which causes a computer to execute each step in the production plan method for steel products according to any one of claims 1 to 3.
JP2014151289A 2014-07-25 2014-07-25 Production planning method and program for steel products Active JP6086102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014151289A JP6086102B2 (en) 2014-07-25 2014-07-25 Production planning method and program for steel products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014151289A JP6086102B2 (en) 2014-07-25 2014-07-25 Production planning method and program for steel products

Publications (2)

Publication Number Publication Date
JP2016024799A JP2016024799A (en) 2016-02-08
JP6086102B2 true JP6086102B2 (en) 2017-03-01

Family

ID=55271460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014151289A Active JP6086102B2 (en) 2014-07-25 2014-07-25 Production planning method and program for steel products

Country Status (1)

Country Link
JP (1) JP6086102B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368785B2 (en) * 2020-12-25 2023-10-25 富士通株式会社 Information processing device, identification method, and identification program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145749A (en) * 2002-10-25 2004-05-20 Jfe Steel Kk Production planning system for steel product
JP4786935B2 (en) * 2004-05-18 2011-10-05 株式会社神戸製鋼所 Production plan creation method, production plan creation device, and program
JP4754894B2 (en) * 2005-07-15 2011-08-24 株式会社神戸製鋼所 Production plan creation method, production plan creation device, and program
JP5114673B2 (en) * 2008-04-21 2013-01-09 新日鐵住金株式会社 Processing time prediction apparatus, method, program, and computer-readable storage medium

Also Published As

Publication number Publication date
JP2016024799A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
Boute et al. Dual sourcing and smoothing under nonstationary demand time series: Reshoring with SpeedFactories
JP5012660B2 (en) Product quality prediction and control method
Fithri et al. Analysis of inventory control by using economic order quantity model–A case study in PT semen padang
Sahoo et al. Lean philosophy: implementation in a forging company
JP5643502B2 (en) How to create production schedules for multiple factories
JP5309882B2 (en) Schedule creation system, schedule creation method, and schedule creation program
JP6561682B2 (en) Silicon wafer process planning system, process planning apparatus, process planning method and program
Khaimovich et al. Improvement of technological process of multiproduct production on the bases of simulation modeling of production unit
JP2010128679A (en) Manufacturing work period model creation device, delivery time achievement rate predication device, manufacturing start target period calculation device, manufacturing work period model creation method, delivery time achievement rate prediction method, manufacturing start target period calculation method, program and computer-readable storage medium
JP6086102B2 (en) Production planning method and program for steel products
WO2016079843A1 (en) Production plan adjustment assisting device and production plan adjustment assisting method
JP2007264682A (en) Production management method in steel plate manufacture
JP2019079208A (en) Inventory scale estimation device, energy consumption scale estimation device, cost estimation device, and program
JP5442526B2 (en) Schedule creation method, schedule creation program, and schedule creation device
JP6318623B2 (en) Manufacturing lead time prediction device, manufacturing lead time prediction method, and computer program
JP5803693B2 (en) Production logistics schedule creation system and production logistics schedule creation method
JP5803318B2 (en) Operation rule creation method and production logistics plan creation method
JP4893051B2 (en) production management system
JP5402621B2 (en) Manufacturing load prediction apparatus, method, computer program, and computer-readable storage medium
JP6793555B2 (en) Product profit / loss comparison device and product profit / loss comparison method
JP2019028819A (en) Production management assist system and method
JP2006309573A (en) Production plan preparation system and method for steel products
Felfel et al. A multi-site supply chain planning using multi-stage stochastic programming
Ji et al. Hybrid optimization approach for supply chain planning
JP2003256017A (en) Producing method for forecasted order product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170117

R150 Certificate of patent or registration of utility model

Ref document number: 6086102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250