JP2007264682A - Production management method in steel plate manufacture - Google Patents

Production management method in steel plate manufacture Download PDF

Info

Publication number
JP2007264682A
JP2007264682A JP2006084848A JP2006084848A JP2007264682A JP 2007264682 A JP2007264682 A JP 2007264682A JP 2006084848 A JP2006084848 A JP 2006084848A JP 2006084848 A JP2006084848 A JP 2006084848A JP 2007264682 A JP2007264682 A JP 2007264682A
Authority
JP
Japan
Prior art keywords
surplus
order
inventory
frequency
allocation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006084848A
Other languages
Japanese (ja)
Inventor
Kazunori Miyamoto
一範 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006084848A priority Critical patent/JP2007264682A/en
Publication of JP2007264682A publication Critical patent/JP2007264682A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an excess material allocating rate, and to reduce the comprehensive yield ratio and the staying time of stock. <P>SOLUTION: For production management of steel plates to be order-produced, as to excess materials to be generated due to a restriction on manufacturing, a database including information about the standard, size and specifications is provided. The excess material size is adjusted longer than the shortest size thereof so as to improve an allocation frequency for received order, and also reduce the yield ratio in order allocation and the staying time of the stock of stock plates according to the frequency of an ordered size for each standard and specification and to a database of existing excess materials. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼板製造における生産管理方法に係り、特に、小ロットで注文生産される厚鋼板などの在庫管理に用いるのに好適な、鋼板製造における生産管理方法に関する。   The present invention relates to a production management method in steel plate manufacturing, and more particularly to a production management method in steel plate manufacturing suitable for inventory management of thick steel plates that are custom-made in small lots.

鉄鋼業の製造管理に際して、特に受注生産方式の厚鋼板などでは、客先による注文に応じて、その仕様に応じた製造命令、製造開始を指示し、所定の納期までに製造を完了する生産管理方法がほとんどである。受注生産方式は、客先毎の仕様に応じるため、小ロット・多品種生産であることが多い。一方製造面では、大ロット・少品種生産がコスト面で有利であり、経済的である。   Production management in the iron and steel industry, especially for steel plates with a build-to-order production method, instruct production orders according to their specifications, start production according to customer orders, and complete production by a predetermined delivery date The method is almost. In order to meet the specifications of each customer, the build-to-order production method is often small lot / multi-product production. On the other hand, in terms of manufacturing, production of large lots and small varieties is advantageous in terms of cost and is economical.

そのため、小ロットのオーダを各工程の製造ロットにまとめる工程が、歩留まりをはじめとした生産性のみならず生産計画そのものに影響するため、非常に重要な工程である。   For this reason, the process of combining the orders of small lots into the production lots of each process is an extremely important process because it affects not only the productivity including the yield but also the production plan itself.

従来、この工程は、歩留まりを始めとした各種生産性の指標が最大となるように指向すべく、計算機を用いて、例えば特許文献1や2で示されているような各種最適化法を活用した、オーダの組み合わせ、ロット編成、素材引当てなどを行なっている。   Conventionally, in this process, various optimization methods such as those disclosed in Patent Documents 1 and 2 are used by using a computer in order to aim at maximizing various productivity indexes including yield. In addition, order combinations, lot organization, and material allocation are performed.

例えば特許文献1では、最適な組合せを求める生産計画及び板取りに際して、生産すべき製品のサイズを組合せて複数のロットを生成し、このロットを組合せ、総ロット数が最も少ない組合せを求めて生産計画を立案する場合に、近傍探索を用いた整数計画法により評価が最も良いロットの組合せを求めている。   For example, in Patent Document 1, a production plan for obtaining an optimal combination and a planing operation are performed by generating a plurality of lots by combining the sizes of products to be produced, combining the lots, and obtaining a combination having the smallest total number of lots. When making a plan, the combination of lots with the best evaluation is obtained by integer programming using neighborhood search.

又、特許文献2では、板取りに際して、組合せを遺伝的アルゴリズムを用いて組替えている。   Moreover, in patent document 2, the combination is rearranged using a genetic algorithm at the time of cutting.

又、特許文献3では、客先からの注文に応じて鋼板製品を製造する場合に、注文素材への最適な引当てを短時間で実現すると共に、余剰在庫及び歩留まりを最適状態に管理することができるようにする方法を示している。   Moreover, in patent document 3, when manufacturing a steel plate product according to the order from a customer, while realizing the optimal allocation to an order raw material in a short time, managing surplus stock and a yield to an optimal state. Shows how to be able to.

これらは、組合せロスによる歩留まり低下や余材引当て時のロス削減をねらったもので、歩留まりを始めとした生産性の向上を指向したものである。これらの余材引当ては、引当て可能な比較的大きなロット材(例えば汎用的な規格など)では、総合的な歩留まり、在庫管理面で非常に有効な手段である。   These are aimed at lowering the yield due to the combination loss and reducing the loss at the time of allocating surplus materials, and are aimed at improving the productivity including the yield. Such extra material allocation is a very effective means in terms of overall yield and inventory management for relatively large lot materials that can be allocated (for example, general-purpose standards).

一方、特許文献4では、コイルなどの薄板の製造に関して、受注したオーダに対してスラブ材料設計を行なう際に、特に繰り返されるオーダを考慮して、効率よくスラブを設計することにより、スラブ余剰量の最少化を図ることが記載されている。この方法によれば、将来を見越した受注の継続性を考慮して、余剰部が発生しないようなオーダの組合せを行なうことで、各種のオーダが与えられた場合でも、製品単重が大きく余剰部が少なくなるようなスラブ設計が可能となる。   On the other hand, in Patent Document 4, when a slab material is designed for an ordered order regarding the manufacture of a thin plate such as a coil, the slab surplus amount is obtained by efficiently designing the slab in consideration of repeated orders. It is described that the minimization of the system is to be minimized. According to this method, considering the continuity of orders in anticipation of the future, by combining orders that do not generate surplus parts, even if various orders are given, the product unit weight is large and surplus Slab design with fewer parts is possible.

特開平9−174387号公報JP-A-9-174387 特開平7−96311号公報Japanese Patent Laid-Open No. 7-96311 特開平6−149850号公報Japanese Patent Laid-Open No. 6-149850 特開平10−214104号公報JP-A-10-214104

しかしながら、特許文献1乃至3に記載の技術では、小ロット材については、歩留まり、生産性を考慮すると決して最適な組合せを得ることができず、熟練者の技能に依存していた。又、小ロット材については、引当て頻度が少なく、例えば余材寸法が合わず引当てができなかったりすることで、長期滞留在庫が増加したり、余材引当てができないことで小ロットのまま新規製造を行なわざるをえず、余材が更に増加する可能性があった。   However, in the techniques described in Patent Documents 1 to 3, an optimum combination cannot be obtained for a small lot material in consideration of yield and productivity, and it depends on the skill of a skilled worker. In addition, for small lot materials, the frequency of allocation is low. For example, if the remaining material dimensions do not match and cannot be allocated, the long-term residence inventory will increase, or the remaining materials will not be allocated. As a result, there was a possibility that surplus materials would be further increased.

一方、特許文献4に記載の技術は、製品単重を大きくすることが主で、又、余材部の付加も設備許容内で積極的に付加するもので、小ロットの様に、当初より製品単重の増加を期待できないものについては、余材ばかりが増加し、総合的な歩留まりの向上は期待できない。又、既に存在する在庫の状態を考慮せずに将来多く受注するであろうオーダに充当すべく余材を発生させるように製造するので、在庫管理の面や対象材のロットの大きさ、特徴によっては適当でない等の問題点を有していた。   On the other hand, the technique described in Patent Document 4 is mainly to increase the unit weight of the product, and also actively add extra material within the equipment allowance. For products that cannot be expected to increase in product weight, only surplus materials will increase, and overall yield cannot be improved. In addition, because it is manufactured so as to generate surplus materials to be used for orders that will be ordered in the future without taking into account the existing inventory status, inventory management and the size and characteristics of the target material lot Some of them have problems such as inappropriate.

本発明は、前記従来の問題点を解消するべくなされたもので、特に引当て頻度が少ない小ロット材について、新規製造時に設備制約等により余材が発生する場合、過去のオーダ寸法、特性、頻度から、在庫のシミュレーションを行うことで将来の余材引き当てを予測し、発生する余材寸法を調整することで、余材引当て率を向上し、総合的歩留まり及び在庫の滞留時間を削減することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, particularly for small-lot materials with a low allocation frequency, when surplus materials are generated due to equipment restrictions at the time of new production, the past order dimensions, characteristics, By predicting the allocation of future surplus materials by simulating inventory from the frequency, and adjusting the size of surplus material generated, the surplus material allocation rate is improved, and overall yield and inventory dwell time are reduced. This is the issue.

本発明は、注文生産される鋼板の生産管理に際し、製造上の制約により発生する余材について、その、規格、寸法、仕様の情報を有するデータベースを設け、規格、仕様毎の発注寸法の頻度及び既余材のデータベースより、スラブ設計段階で引当て頻度が向上するように、余材寸法を最短寸法より長めに調整して、オーダへの引当頻度を向上させると共に、在庫板のオーダ引当て時の歩留まりならびに在庫の滞留時間を削減するようにして、前記課題を解決したものである。   The present invention provides a database having information on standards, dimensions, and specifications of surplus materials generated due to manufacturing restrictions in production management of steel plates to be produced in order. In order to improve the frequency of allocation to the order by adjusting the size of the surplus material longer than the shortest dimension so that the allocation frequency is improved at the slab design stage from the database of the existing surplus materials, and at the time of allocation of the inventory plate order The above-mentioned problems have been solved by reducing the yield and stock residence time.

特に、前記余材寸法を、既余材の目標在庫との差を埋めるように調整することで、余材の在庫を最適化することができる。   In particular, it is possible to optimize the inventory of surplus materials by adjusting the surplus material dimensions so as to fill the difference from the target stock of the existing surplus materials.

本発明によれば、余材のオーダへの引当て頻度を向上させると共に、在庫板のオーダ引当て時の歩留まりならびに在庫の滞留時間を削減することができる。   According to the present invention, it is possible to improve the frequency of allocation of surplus materials to orders, and to reduce the yield and inventory retention time when allocating inventory plate orders.

以下、図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、鋼板の製造工程を示す概念図である。素材請求10は、出鋼12のロット、圧延14のロットなどの製造ロットへ集約する工程であり、設備制約内で歩留まりを始めとした生産性が最大となるように、システム、熟練者らにより試行錯誤しながらオーダの組合せが決定される。図1において、16は製品切断、18は精整、塗装等の諸工程、20は検査、22は余材の引当てである。   FIG. 1 is a conceptual diagram showing a manufacturing process of a steel plate. Material request 10 is a process of consolidating into production lots such as lots of tapping steel 12 and lots of rolling 14, so that the system and skilled workers can maximize productivity, including yield, within equipment constraints. The order combination is determined through trial and error. In FIG. 1, 16 is a product cutting, 18 is various processes such as refining and painting, 20 is an inspection, and 22 is an allocation of surplus materials.

例えば素材請求時に、図2のケース1に示すオーダの組合せロスや、ケース2に示す設備制約による余長が発生した場合、従来は、スクラップや端板が発生し、ある一定以上の大きさのものは余材として在庫を採取していた。これに対して本発明では、素材請求時に、過去の受注実績を下に、予めロス部や余長部の寸法を変更することで、余材の在庫板への引当て頻度を高め、総合的な歩留まりを向上させる。   For example, when an order combination loss shown in case 1 of FIG. 2 or a surplus length due to equipment constraints shown in case 2 occurs when requesting a material, conventionally, scraps and end plates are generated, and a certain size or more. Things were stocked as surplus materials. On the other hand, in the present invention, at the time of requesting materials, by changing the dimensions of the loss part and the surplus length part in advance based on the past orders received, the frequency of allocating surplus materials to the inventory board is increased, and comprehensive Improve the yield.

具体的には、図3にシステム構成例を示す如く、新規オーダの製造に際して、出鋼ロット、圧延ロットなどの製造ロットとするためにオーダの組合せを行なう。図において、100は、需要家、物件、規格、寸法(厚、幅、長)、仕様等の新規オーダ情報データベース(DB)、110は、同じく在庫情報DB、120は、同じく過去受注情報DB、130は、従来からあるオーダ組合せ計算装置、140は、本発明による過去受注情報解析装置、150は、本発明による余長、ロス判定及び余長制御を行う余長制御装置である。   Specifically, as shown in a system configuration example in FIG. 3, when a new order is manufactured, orders are combined in order to obtain a production lot such as a steel-out lot or a rolling lot. In the figure, 100 is a new order information database (DB) of customers, properties, standards, dimensions (thickness, width, length), specifications, etc. 110 is also inventory information DB, 120 is also past order information DB, 130 is a conventional order combination calculation device, 140 is a past order information analysis device according to the present invention, and 150 is a surplus length control device for performing surplus length, loss determination and surplus length control according to the present invention.

通常、オーダの組合せは、設備制約などの制約条件の下、種々の指標を最大或いは最小となるように組合せを決定するため、各種最適化法を用いる。ここで、オーダ組合せ計算装置130は、最適法を用いて組合せ計算ができるシステムを指している。又、製造は、新規に製造する場合と、在庫を充当する方法の二種類があるが、ここでは在庫で引当てができなかったオーダに対し、新規製造のための組合せを行なうものとする。   Usually, the order combination uses various optimization methods in order to determine the combination so that various indices are maximized or minimized under constraint conditions such as equipment constraints. Here, the order combination calculation device 130 refers to a system capable of performing combination calculation using an optimal method. In addition, there are two types of manufacturing: a case of newly manufacturing and a method of allocating inventory. Here, a combination for new manufacturing is performed for an order that could not be allocated in inventory.

このとき、組合せによりロスが発生したり、設備制約により余長が発生した場合、余長制御装置150で、需要家、規格、仕様にグルービングし、発注タイミングに寸法(厚、幅、長毎)の頻度を演算して、余長を制御する。   At this time, if a loss occurs due to the combination or a surplus length occurs due to equipment constraints, the surplus length control device 150 groups the customer, standard, and specification, and dimensions (thickness, width, length) at the ordering timing. The surplus length is controlled by calculating the frequency of.

余長の寸法を決定するに当たり、過去受注情報DB140を利用する。図4に更に詳しい処理手順を示す。   In determining the extra length dimension, the past order information DB 140 is used. FIG. 4 shows a more detailed processing procedure.

先ず、オーダ組合せ計算装置130内で実行されるステップS1で、従来と同様の方法により、組合せロスが最小、単重が最大となるように設備制約内で組合せを決定する。   First, in step S <b> 1 executed in the order combination calculation device 130, the combination is determined within the equipment constraints so that the combination loss is minimum and the unit weight is maximum by the same method as the conventional method.

次いで、余長制御装置150内で実行されるステップS2で、設備制約組合せロスの寸法が、例えば幅1mもしくは長さ2m以上か判定する。   Next, in step S2 executed in the surplus length control device 150, it is determined whether the size of the equipment constraint combination loss is, for example, a width of 1 m or a length of 2 m or more.

ステップS2の判定結果が否である場合は、余長を延長せず、ステップS6でそのままロスを発生させるようスラブを設計する。   If the determination result in step S2 is negative, the slab is designed so as to generate a loss as it is in step S6 without extending the surplus length.

一方、ステップS2の判定結果が正である場合は、過去受注情報解析装置140内で実行されるステップS3で、規定の期間内で同一仕様、同一鋼種の中から、受注頻度の高い寸法を抽出する。   On the other hand, when the determination result in step S2 is positive, in step S3 executed in the past order information analysis apparatus 140, a dimension with a high order frequency is extracted from the same specification and the same steel type within a specified period. To do.

次いで、余長制御装置150内で実行されるステップS4で、設備制約、組合せロスの寸法を上記の寸法に変更した後の余長込みの歩留まりが、所定の歩留まり以上か判定する。   Next, in step S4 executed in the surplus length control device 150, it is determined whether the yield including the surplus length after changing the size of the facility constraint and the combination loss to the above-mentioned size is equal to or more than a predetermined yield.

ステップS4の判定結果が正である場合は、ステップS5で余長部の寸法を拡大して、ステップS6でスラブを設計する。   If the determination result of step S4 is positive, the dimension of the extra length portion is enlarged in step S5, and the slab is designed in step S6.

一方、ステップS4の判定結果が否である場合は、ステップS1に戻る。   On the other hand, if the determination result of step S4 is negative, the process returns to step S1.

このようにして、対象材の同一板厚、同一鋼種、同一仕様でグルーピングを行なう。そして在庫レベルが管理範囲内となるように、過去の受注実績を元にした受注頻度から製品寸法範囲を決定後、受注頻度が高い順に余材寸法を逐次変更し、余材が充当されることを前提としたときの歩留まりが最も高くなるときの寸法へ余材寸法を変更する。但し、余材寸法を変更したときの歩留まり規定値以下であれば、この処理は適用せず、オーダの組み合わせのステージまで戻すものとする。   In this way, grouping is performed with the same plate thickness, the same steel type, and the same specifications of the target material. Then, after determining the product size range from the order frequency based on past orders received so that the inventory level is within the management range, the surplus material dimensions are sequentially changed in descending order of order frequency, and the surplus material is applied. The surplus material size is changed to the size when the yield is highest when the above is assumed. However, if the remaining material size is less than the specified yield value, this process is not applied and the order combination is returned to the stage.

余材部を拡大した場合には、在庫DB110に、その情報を記録し、新規オーダ受注時に在庫DB110で在庫及び在庫予定材を検索し紐付けする。   When the surplus material portion is expanded, the information is recorded in the inventory DB 110, and when the new order is received, the inventory and the inventory scheduled material are searched and linked in the inventory DB 110.

このようにして、既在庫板の製造情報、過去の受注情報(製品寸法、発注タイミング、リピートの有無)などのデータを蓄積するデータベースと、過去の受注情報から、鋼種や規格などのグループ単位における発注板厚毎の幅、長さ、納期の頻度を算出する方法と、オーダの組合せを行なって素材を請求する仕組みを有するので、設備制約や組合せにより余材が発生する場合、余材の寸法を調整をすることで、余材(在庫)引当て率を向上し、総合的な歩留まり及び在庫の滞留時間を削減することが可能となる。   In this way, from the database that accumulates data such as manufacturing information of existing stock plates, past order information (product dimensions, ordering timing, presence / absence of repeats), and past order information, it can be grouped by group such as steel grade and standard. Since there is a method to calculate the width, length, and delivery frequency for each order plate thickness, and to request materials by combining the orders, if there are surplus materials due to equipment restrictions or combinations, the dimensions of the surplus materials By adjusting the above, it is possible to improve the rate of allocation of surplus materials (inventory) and reduce the overall yield and the residence time of inventory.

図5に、余材部の寸法変更を行なった実施例を示す。ここでは、製品1、2を組合せた結果、製造可能寸法に達しないため、余材部を増やした例を示す。従来法は、余材(在庫板)への充当による歩留まりを考慮せずに、この時点で最も歩留まりが高くなるように、製造可能寸法まで余材を付与するだけであった。   FIG. 5 shows an embodiment in which the dimensions of the surplus portion are changed. Here, as a result of combining the products 1 and 2, since the manufacturable size is not reached, an example in which the surplus material portion is increased is shown. The conventional method does not consider the yield due to the allocation to the surplus material (stock board), but only gives the surplus material up to the manufacturable size so that the yield becomes the highest at this point.

図6に、同一鋼種で同一製造仕様、且つ過去の受注実績6か月以内の製品長分布と累積頻度を解析した例を示す。このように、長さ5,000(mm)以下の受注はほとんどなく、在庫へ引当てられる前に在庫処理されるケースが多い。一方、引当て頻度を上げるため80%程度とすると、在庫への引当て時に歩留まりロスが発生する可能性がある。引当て頻度をどのレベルにするかは、歩留まりと在庫レベルとの兼ね合いにより、生産環境、鋼種などにより個々に設定する。   FIG. 6 shows an example in which the product length distribution and the cumulative frequency within the same order of manufacture for the same steel type and the past order receipt record within 6 months are analyzed. As described above, there are almost no orders received with a length of 5,000 (mm) or less, and in many cases, inventory processing is performed before allocation to the inventory. On the other hand, if the allocation frequency is increased to about 80% in order to increase the allocation frequency, there is a possibility that a yield loss may occur when the inventory is allocated. The level of allocation frequency is individually set according to the production environment, steel grade, etc., in consideration of the yield and inventory level.

ここでは、引当て頻度を50%と設定し、製品長さ10,000(mm)とした。従来は5,000(mm)の余長付加であるが、本発明では10,000(mm)とし、余材(在庫)を採取する。   Here, the allocation frequency is set to 50%, and the product length is set to 10,000 (mm). Conventionally, the extra length of 5,000 (mm) is added, but in the present invention, the extra material (inventory) is collected with 10,000 (mm).

このときの効果として、総合歩留まりの変化を図7に、在庫滞留日の変化を図8に示す。この一連の処理により、在庫板のオーダ引当て時の歩留まり並びに在庫の滞留時間が削減されることがわかる。   As an effect at this time, FIG. 7 shows the change in the overall yield, and FIG. 8 shows the change in the inventory retention date. It can be seen that this series of processes reduces the yield when stock plate orders are allocated and the residence time of inventory.

なお、前記実施形態においては、本発明が、厚鋼板の製造管理に適用されて、本発明の適用対象はこれに限定されず、鋼板一般に同様に適用できることは明らかである。又、長さを伸ばすだけでなく、幅を広げても良い。   In addition, in the said embodiment, this invention is applied to manufacture management of a thick steel plate, and the application object of this invention is not limited to this, It is clear that it can apply to a steel plate generally similarly. In addition to extending the length, the width may be increased.

一般的な鋼板の製造工程を示す概念図Schematic diagram showing a general steel plate manufacturing process 鋼板製造におけるオーダ組み合わせ時のロスや設備制約によるロスを示す概念図Conceptual diagram showing losses due to order combinations in steel plate manufacturing and losses due to equipment constraints 本発明におけるシステム構成図System configuration diagram in the present invention 本発明の実施形態における情報処理の例を示す流れ図The flowchart which shows the example of the information processing in embodiment of this invention 同じく本発明による余材部の寸法変更を行なった実施例を示す図The figure which shows the Example which similarly performed the dimension change of the surplus material part by this invention 同じく本発明による過去の受注実績から受注頻度を解析した例を示す図The figure which shows the example which analyzed the order frequency from the past order results similarly by this invention 本発明による歩留まり改善例を示す図The figure which shows the example of yield improvement by this invention 同じく在庫滞留日数の改善例を示す図The figure which shows the example of improvement of stock residence days

符号の説明Explanation of symbols

100…新規オーダ情報データベース(DB)
110…在庫情報DB
120…過去受注情報DB
130…オーダ組合せ計算装置
140…過去受注情報解析装置
150…余長制御装置
100 ... New order information database (DB)
110 ... Inventory information DB
120 ... Past order information DB
130 ... Order combination calculation device 140 ... Past order information analysis device 150 ... Extra length control device

Claims (2)

注文生産される鋼板の生産管理に際し、
製造上の制約により発生する余材について、その、規格、寸法、仕様の情報を有するデータベースを設け、
規格、仕様毎の発注寸法の頻度及び既余材のデータベースより、スラブ設計段階で引当て頻度が向上するように、余材寸法を最短受注寸法より長めに調整して、オーダへの引当て頻度を向上させると共に、在庫板のオーダ引当て時の歩留まりならびに在庫の滞留時間を削減することを特徴とする鋼板製造における生産管理方法。
When managing production of custom-made steel plates,
Establish a database with information on standards, dimensions, and specifications for surplus materials generated due to manufacturing restrictions.
Frequency of ordering dimensions for each standard, specification, and surplus material database Adjust the surplus material length longer than the shortest order size so that the allocation frequency will improve at the slab design stage, and the allocation frequency to the order A production management method in steel plate production, characterized in that the yield when stock plate orders are allocated and the dwell time of inventory are reduced.
前記余材寸法を、既余材の目標在庫との差を埋めるように調整することを特徴とする請求項1に記載の鋼板製造における生産管理方法。   The production management method in steel plate manufacturing according to claim 1, wherein the surplus material dimensions are adjusted so as to fill a difference from a target stock of the surplus materials.
JP2006084848A 2006-03-27 2006-03-27 Production management method in steel plate manufacture Pending JP2007264682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006084848A JP2007264682A (en) 2006-03-27 2006-03-27 Production management method in steel plate manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006084848A JP2007264682A (en) 2006-03-27 2006-03-27 Production management method in steel plate manufacture

Publications (1)

Publication Number Publication Date
JP2007264682A true JP2007264682A (en) 2007-10-11

Family

ID=38637662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084848A Pending JP2007264682A (en) 2006-03-27 2006-03-27 Production management method in steel plate manufacture

Country Status (1)

Country Link
JP (1) JP2007264682A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017793A (en) * 2008-07-09 2010-01-28 Tenkumo Industry Co Ltd Method for cutting out product from long material
JP2013008268A (en) * 2011-06-27 2013-01-10 Kobe Steel Ltd Production schedule creation device and production schedule creation method
KR101484516B1 (en) * 2011-09-29 2015-01-21 주식회사 엘지화학 Method for Planning a Downsizing Plan of Polarizing Sheet and System for the Same
JP2016101590A (en) * 2014-11-27 2016-06-02 Jfeスチール株式会社 Blank layout method
JP2019049837A (en) * 2017-09-08 2019-03-28 フルサト工業株式会社 Production instruction device, production instruction method and program
CN112990751A (en) * 2021-04-07 2021-06-18 江苏金恒信息科技股份有限公司 Steel plate workpiece machining method and system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017793A (en) * 2008-07-09 2010-01-28 Tenkumo Industry Co Ltd Method for cutting out product from long material
JP2013008268A (en) * 2011-06-27 2013-01-10 Kobe Steel Ltd Production schedule creation device and production schedule creation method
KR101484516B1 (en) * 2011-09-29 2015-01-21 주식회사 엘지화학 Method for Planning a Downsizing Plan of Polarizing Sheet and System for the Same
JP2016101590A (en) * 2014-11-27 2016-06-02 Jfeスチール株式会社 Blank layout method
JP2019049837A (en) * 2017-09-08 2019-03-28 フルサト工業株式会社 Production instruction device, production instruction method and program
CN112990751A (en) * 2021-04-07 2021-06-18 江苏金恒信息科技股份有限公司 Steel plate workpiece machining method and system
CN112990751B (en) * 2021-04-07 2024-03-22 江苏金恒信息科技股份有限公司 Steel plate workpiece processing method and system

Similar Documents

Publication Publication Date Title
JP5309882B2 (en) Schedule creation system, schedule creation method, and schedule creation program
JP2007264682A (en) Production management method in steel plate manufacture
CN111352403B (en) Process design method for rolling plate
JP4757729B2 (en) Manufacturing load prediction apparatus, manufacturing load prediction method, computer program, and computer-readable storage medium
JP2009265699A (en) Processing time prediction device, method, program, and computer-readable storage medium
JP2009282740A (en) Product quality prediction and control method
JP4966831B2 (en) Material requirements planning device, material requirements planning method, and material requirements planning program
Arakawa et al. An optimization-oriented method for simulation-based job shop scheduling incorporating capacity adjustment function
JP2006228035A (en) Selecting method and system of inventory replenishment model
JP7261639B2 (en) Production control system and production control method
JP2006178920A (en) Method and device for simulating production distribution, and a production method
Modrák Case on manufacturing cell formation using production flow analysis
JP2013182348A (en) Production plan creation device, production plan creation system, and production plan creation program
WO2006077930A1 (en) Production scheduling system
JP2011134283A (en) Device and method for predicting manufacturing load, computer program, and computer-readable storage medium
JP6086102B2 (en) Production planning method and program for steel products
JP2005228128A (en) Production scheduling method, device and computer program
Lalmazloumian et al. A Simulation Model of Economic Production and Remanufacturing System Under Uncertainty
JP5803693B2 (en) Production logistics schedule creation system and production logistics schedule creation method
JP4308554B2 (en) PRODUCTION MANAGEMENT SUPPORT DEVICE, PRODUCTION MANAGEMENT SUPPORT COMPUTER PROGRAM, AND RECORDING MEDIUM CONTAINING THE COMPUTER PROGRAM
JP7221830B2 (en) Manufacturing support device, manufacturing support method and program
JP5734605B2 (en) Production plan creation device and production plan creation program
CN102004948A (en) Method and device for controlling mould exchanging time
JP2008073724A (en) Slab design method and slab design apparatus
KR101341223B1 (en) The management system of product structure and engineering changing