JP6082890B2 - Heat dissipating coating composition, heat dissipating coating film and article to be coated - Google Patents

Heat dissipating coating composition, heat dissipating coating film and article to be coated Download PDF

Info

Publication number
JP6082890B2
JP6082890B2 JP2013042247A JP2013042247A JP6082890B2 JP 6082890 B2 JP6082890 B2 JP 6082890B2 JP 2013042247 A JP2013042247 A JP 2013042247A JP 2013042247 A JP2013042247 A JP 2013042247A JP 6082890 B2 JP6082890 B2 JP 6082890B2
Authority
JP
Japan
Prior art keywords
heat
component
coating composition
coating film
heat dissipating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013042247A
Other languages
Japanese (ja)
Other versions
JP2013209645A (en
Inventor
岩村 栄治
栄治 岩村
理規 小林
理規 小林
靖孝 両角
靖孝 両角
尚弥 高橋
尚弥 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Pelnox Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Pelnox Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd, Pelnox Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2013042247A priority Critical patent/JP6082890B2/en
Publication of JP2013209645A publication Critical patent/JP2013209645A/en
Application granted granted Critical
Publication of JP6082890B2 publication Critical patent/JP6082890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、各種電気・電子機器における発熱する部位に放熱性に優れた塗膜を形成し得る放熱性塗料組成物、当該組成物からなる放熱性塗膜、および当該塗膜を有する被塗装物品に関する。   The present invention relates to a heat dissipating coating composition capable of forming a coating film excellent in heat dissipation at a site that generates heat in various electric / electronic devices, a heat dissipating coating film comprising the composition, and an article to be coated having the coating film About.

電気・電子機器では従来から熱対策が非常に重要視されている。例えば家電製品の高性能化や携帯機器の小型化・高密度実装化、マイクロプロセッサの高速化に伴い、電子デバイス部品1つあたりの消費電力は著しく増大しており、それに応じて発熱量が大きく増した結果、デバイスの劣化、ひいては製品の性能劣化が生じやすくなっている。   Conventionally, heat countermeasures have been very important for electrical and electronic devices. For example, power consumption per electronic device component has increased remarkably with higher performance of home appliances, downsizing and high-density mounting of portable devices, and higher speed of microprocessors. As a result, the deterioration of the device and the performance of the product is likely to occur.

さらに、近年、省エネルギーや代替自然エネルギーの観点より、LED電球や太陽電池の市場が拡大する傾向にあるが、これらデバイスは高輝度化ないし高集光化を図るべくエネルギーが集約化されており、使用の際非常に高温になる。そこで、こうした電気・電子機器においては通常、部品モジュールや完成品レベルでそれぞれ放熱対策がなされている。   Furthermore, in recent years, the market for LED bulbs and solar cells has been expanding from the viewpoint of energy saving and alternative natural energy. However, these devices have been concentrated in energy in order to achieve high brightness or high concentration. It becomes extremely hot. Therefore, in such electrical / electronic devices, heat radiation countermeasures are usually taken at the component module and finished product level.

ここに放熱対策とは、電気・電子機器の内部にある熱源(高温領域)から、外界の低温領域へ熱エネルギーを輸送して放出するために、熱伝導、対流および熱放射の各伝熱手段を組み合わせた最適手段を設計することをいう。従来は簡便で放熱効率が高い対流に頼った放熱対策が一般的であり、例えば半導体装置に使用される各種モジュールにおいては、半導体素子(LSI、パワーIC等)の上面に放熱フィンを設置し、半導体素子より発せられる熱を、放熱フィンの対流作用により外部環境に放出する試みがなされている(特許文献1、2を参照)。 Here, heat dissipation measures refer to heat conduction, convection, and heat radiation means for transporting and releasing heat energy from the heat source (high temperature region) inside the electric / electronic device to the low temperature region of the outside world. Designing an optimal means combining the above. Conventionally, heat radiation countermeasures relying on convection with simple and high heat radiation efficiency are common. For example, in various modules used in semiconductor devices, heat radiation fins are installed on the upper surface of a semiconductor element (LSI, power IC, etc.) Attempts have been made to release the heat generated from the semiconductor element to the external environment by the convection action of the radiation fins (see Patent Documents 1 and 2).

また、LED電球の場合には、熱源である発光ダイオードから生じた熱エネルギーを、アルミや銅などで構成された高熱伝導性の放熱板へと伝導させ、その表面より自然対流や冷却ファンを使った強制対流によって外界に放出する手段が一般に採用されている(特許文献3を参照)。   In the case of LED bulbs, the heat energy generated from the light-emitting diode, which is the heat source, is conducted to a highly heat-conductive heat sink made of aluminum or copper, and natural convection or a cooling fan is used from the surface. In general, a means for discharging to the outside by forced convection is employed (see Patent Document 3).

そうした物理構造にもとづく放熱手段においては、表面積をできるだけ大きくし、外部環境の雰囲気(空気)ができるだけ頻繁に入れ替わるようにすることが、放熱効率を高める点で重要になる。また、放熱板としてアルミや銅等といった熱伝導率が非常に高い材料を用い、内部熱源から前記物理的放熱手段の最表面(放熱表面)へとできるだけ多くの熱をなるべく早く輸送することも肝要である。   In the heat dissipation means based on such a physical structure, it is important to increase the heat dissipation efficiency by increasing the surface area as much as possible so that the atmosphere (air) of the external environment is switched as frequently as possible. It is also important to use a material with extremely high thermal conductivity such as aluminum or copper as the heat sink and transport as much heat as possible from the internal heat source to the outermost surface (heat dissipating surface) of the physical heat dissipating means as soon as possible. It is.

しかし、モジュールやセット機器が小型化すると、内部に放熱フィンや冷却ファン等を設置するスペースを確保し難くなるとともに、それらの軽量化、意匠性、経済性、携帯性等の観点より、アルミや銅等の重量がある金属の利用も制限される。さらに、一般的な電気・電子機器において放熱対策が必要な温度はせいぜい200℃程度よりも低く、比較的低温であるため、対流による放熱効果にも限界がある。そのため斯界では、対流、熱伝導および放射を組み合わせた最適な放熱設計の必要性が高まっており、その有効策として、セット機器の筐体や部品表面に放熱性塗料組成物を適用するケースが増えている。   However, when the module or set device is downsized, it becomes difficult to secure a space for installing a heat radiation fin, a cooling fan, etc., and from the viewpoint of weight reduction, design, economy, portability, etc. The use of heavy metals such as copper is also limited. Furthermore, in general electric / electronic devices, the temperature at which heat dissipation measures are required is at most lower than about 200 ° C. and is relatively low temperature, so that the heat dissipation effect by convection has a limit. For this reason, there is an increasing need for an optimal heat dissipation design that combines convection, heat conduction, and radiation. As an effective measure, the number of cases in which a heat-dissipating coating composition is applied to the case of a set device or the surface of a component has increased. ing.

放熱性塗料組成物とは一般的に、各種基材に対する密着性を担うバインダー樹脂に放熱性フィラー(無機粒子)を配合したものをいうが、塗膜の放熱効果を高めるためには内部熱源、基材、そして塗膜表面への熱エネルギーの輸送効率を大きくする必要があるため、放熱性フィラーとしては、熱伝導性に優れる各種セラミック粒子が適すると考えられる。この点、例えば、前記特許文献1の放熱材にも使用されている窒化アルミニウム(熱伝導率が100W/mK以上)は、特許文献4で指摘されているように、アルミナ(酸化アルミニウム)やシリカ等に比べて熱伝導率が一桁ないし二桁以上も高いため、放熱性塗膜の充填材として使用した場合にも塗膜の放熱性の寄与に貢献すると考えられる。   The heat-dissipating coating composition generally refers to a resin blended with a heat-dissipating filler (inorganic particles) in a binder resin that is responsible for adhesion to various substrates. To increase the heat-dissipating effect of the coating film, Since it is necessary to increase the efficiency of transport of thermal energy to the substrate and the coating film surface, various ceramic particles having excellent thermal conductivity are considered suitable as the heat dissipating filler. In this respect, for example, aluminum nitride (having a thermal conductivity of 100 W / mK or more) used in the heat dissipating material of Patent Document 1 is alumina (aluminum oxide) or silica as pointed out in Patent Document 4. Compared to the above, the thermal conductivity is higher by one digit or more than two digits, so it is considered that it contributes to the heat dissipation of the coating film even when used as a filler for the heat dissipation coating film.

特開平6−209057号公報Japanese Patent Laid-Open No. 6-209057 特開平6−132433号公報JP-A-6-132433 特開2004−55229号公報JP 2004-55229 A 特開平2−133450号公報Japanese Patent Laid-Open No. 2-133450

ところで、塗膜表面から単位面積および単位時間当たりに放出される熱量は塗膜の厚みに大きく依存するため、膜厚が小さければ小さいほど熱エネルギーの輸送効率も高くなる。この点、放熱塗料による塗膜の厚みはせいぜい数十μm程度であり、アルミ放熱フィン等の放熱部材の厚み(ミリオーダー)と比較すると二桁近くも薄い。よって、この考え方からいうと、窒化アルミニウムのように熱伝導率が高いフィラーを使用しなくとも、組み合わせるバインダー樹脂組成物次第では放熱性に優れる塗膜が得られる可能性がある。   By the way, the amount of heat released per unit area and unit time from the coating film surface greatly depends on the thickness of the coating film, so that the smaller the film thickness, the higher the heat energy transport efficiency. In this respect, the thickness of the coating film by the heat radiating paint is at most about several tens of μm, which is almost two orders of magnitude thinner than the thickness of the heat radiating member such as the aluminum heat radiating fin (millimeter order). Therefore, from this point of view, even without using a filler having high thermal conductivity such as aluminum nitride, depending on the binder resin composition to be combined, a coating film having excellent heat dissipation may be obtained.

なお、放熱性フィラーはその熱伝導率だけでなく化学的特性も考慮する必要があり、例えば前記した窒化アルミニウムは、特許文献4で同時に指摘されているように、大気中の水分と反応しやすく塗料中のバインダー樹脂組成物を経時劣化させる懸念があるため、この観点より放熱性塗膜には適さないともいえる。   In addition, it is necessary to consider not only the thermal conductivity but also the chemical characteristics of the heat dissipating filler. For example, the aluminum nitride described above easily reacts with moisture in the atmosphere as pointed out in Patent Document 4 at the same time. Since there is a concern that the binder resin composition in the paint may deteriorate with time, it can be said that it is not suitable for a heat-dissipating coating film from this viewpoint.

一方、バインダー樹脂組成物については、塗膜の放熱性を良好にするだけでなく、基材との密着性や機械的な強度を確保できるようなものを選択する必要がある。   On the other hand, it is necessary to select a binder resin composition that can not only improve the heat dissipation of the coating film but also ensure adhesion with the substrate and mechanical strength.

以上より、本発明は、窒化アルミニウムのように熱伝導の高いフィラーを用なくとも、放熱性、密着性および機械的強度に優れた塗膜を各種基材の表面に形成し得る、新規な塗料組成物を提供することを主たる課題とする。   As described above, the present invention is a novel paint capable of forming a coating film excellent in heat dissipation, adhesion and mechanical strength on the surface of various substrates without using a filler having high thermal conductivity such as aluminum nitride. The main problem is to provide a composition.

本発明者は鋭意検討した結果、熱伝導性が相対的に小さい放熱フィラーを配合するバインダー樹脂として所定の樹脂を組み合わせた組成物を採用することによって、前記課題を解決できる塗料組成物が得られることを見出した。   As a result of intensive studies, the present inventor can obtain a coating composition that can solve the above problems by adopting a composition in which a predetermined resin is combined as a binder resin containing a heat radiation filler with relatively low thermal conductivity. I found out.

即ち本発明は、アルキル基の炭素数が1〜18の(メタ)アクリル酸アルキルエステル類およびスチレン類を反応させてなるアクリル樹脂(a−1)、エポキシ樹脂(a−2)およびアミノ樹脂(a−3)からなるバインダー樹脂組成物(A)10〜70体積%と、熱伝導度が100W/mK未満の放熱性フィラー(B)90〜30体積%と、必要に応じて着色顔料(C)0〜20体積%とを有機溶剤(D)に配合してなる、液状またはペースト状の放熱性塗料組成物;当該放熱性塗料組成物からなる放熱性塗膜;当該放熱性塗膜を有する被塗装物品、に関する。   That is, the present invention relates to an acrylic resin (a-1), an epoxy resin (a-2), and an amino resin (a) obtained by reacting (meth) acrylic acid alkyl ester having 1 to 18 carbon atoms of alkyl group and styrene. a-3) binder resin composition (A) 10 to 70% by volume, heat-radiating filler (B) 90 to 30% by volume with a thermal conductivity of less than 100 W / mK, and a color pigment (C ) 0-20% by volume of an organic solvent (D) is blended into a liquid or paste heat dissipating paint composition; a heat dissipating coating film comprising the heat dissipating paint composition; The article to be coated.

本発明の放熱性塗料組成物によれば、放熱効率に優れるだけでなく、機械的強度や密着性も良好な塗膜を各種物品の表面に形成できる。また、本塗料組成物は塗膜の放熱効率が良好であるため、密閉ハウジングのように空気の流れが制限された空間で使用される機器・部品や、放熱板ないし放熱フィンの構造を造り込めないような小型のモジュール部品に特に好適である他、太陽電池、有機EL照明機器、駆動機器等、放熱対策が必要製品に使用することができる。   According to the heat dissipating coating composition of the present invention, it is possible to form a coating film not only with excellent heat dissipating efficiency but also with excellent mechanical strength and adhesion on the surface of various articles. In addition, since the coating composition has good heat dissipation efficiency of the coating film, it can be built into equipment / parts used in a space where air flow is restricted, such as a sealed housing, and the structure of a heat sink or heat sink. In addition to being particularly suitable for such a small module component, it can be used for products that require heat dissipation measures such as solar cells, organic EL lighting devices, and driving devices.

塗膜の放熱性評価装置の模式図である。It is a schematic diagram of the heat dissipation evaluation apparatus of a coating film.

本発明の放熱性塗料組成物は、アルキル基の炭素数が1〜18の(メタ)アクリル酸アルキルエステル類およびスチレン類よりえられるアクリル樹脂(a−1)(以下、(a−1)成分という)、エポキシ樹脂(a−2)(以下、(a−2)成分という)およびアミノ樹脂(a−3)(以下、(a−3)成分という)からなるバインダー樹脂(A)(以下、(A)成分という)、熱伝導度が100W/mK未満の放熱性フィラー(B)(以下、(B)成分という)、ならびに必要に応じて着色顔料(C)(以下、(C)成分という)を、有機溶剤(D)(以下、(D)成分という)に配合してなる、液状またはペースト状の組成物である。すなわち、当該放熱性塗料組成物は、粉体塗料(JIS-K5000:2000)のように有機溶剤を含まない、あるいは実質的に含まない組成物とは塗料の種類が異なる。   The heat-dissipating coating composition of the present invention is an acrylic resin (a-1) (hereinafter referred to as component (a-1) obtained from (meth) acrylic acid alkyl esters having 1 to 18 carbon atoms and styrenes. Binder resin (A) (hereinafter referred to as (a-3) component) and epoxy resin (a-2) (hereinafter referred to as (a-2) component) and amino resin (a-3) (hereinafter referred to as (a-3) component). (Referred to as component (A)), heat dissipating filler (B) (hereinafter referred to as component (B)) having a thermal conductivity of less than 100 W / mK, and, if necessary, colored pigment (C) (hereinafter referred to as component (C)) ) In an organic solvent (D) (hereinafter referred to as “component (D)”). That is, the heat-dissipating coating composition is different from a composition that does not contain or substantially does not contain an organic solvent, such as powder coating (JIS-K5000: 2000).

(A)成分をなす(a−1)成分は、アルキル基の炭素数が1〜18の(メタ)アクリル酸アルキルエステル類およびスチレン類から得られるアクリル樹脂であれば、各種公知のものを特に制限なく用いることができる。該(メタ)アクリル酸アルキルエステル類としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸N−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec−ブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸N−オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸オクタデセニル、(メタ)アクリル酸イコシル、(メタ)アクリル酸ドコシル(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル等が挙げられ、塗膜の密着性や強度の観点より、アルキル基の炭素数が好ましくは1〜12程度、いっそう好ましくは1〜5のものがよい。また、前記スチレン類としては、スチレン、α−メチルスチレン、t−ブチルスチレン、ジメチルスチレン、アセトキシスチレン、ヒドロキシスチレン、ビニルトルエン、クロルビニルトルエン等が挙げられ、入手が容易であり、かつ塗膜の密着性および強度にも寄与する点より、スチレンが好ましい。なお、(a−1)成分を構成する単量体としては、他にも必要に応じて、各種公知のαオレフィン類、ニトリル類、(メタ)アクリルアミド類、(メタ)アクリル酸ヒドロキシアルキルエステル類等を併用できる。   The component (a-1) constituting the component (A) is an acrylic resin obtained from (meth) acrylic acid alkyl esters having 1 to 18 carbon atoms and styrenes. Can be used without limitation. Examples of the (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, N-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate. , Tert-butyl (meth) acrylate, N-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate, ( Such as octadecyl (meth) acrylate, octadecenyl (meth) acrylate, icosyl (meth) acrylate, docosyl (meth) acrylate (cyclopentyl) methacrylate, cyclohexyl (meth) acrylate, etc. From the viewpoint of strength, the alkyl group preferably has about 1 to 12 carbon atoms, more Preferably from one 1 to 5. Examples of the styrenes include styrene, α-methylstyrene, t-butylstyrene, dimethylstyrene, acetoxystyrene, hydroxystyrene, vinyltoluene, chlorovinyltoluene, etc. Styrene is preferred because it contributes to adhesion and strength. In addition, as a monomer which comprises (a-1) component, various well-known alpha olefins, nitriles, (meth) acrylamides, (meth) acrylic-acid hydroxyalkyl esters other than that as needed. Etc. can be used together.

アルキル基の炭素数が1〜18の(メタ)アクリル酸アルキルエステル類、スチレン類およびその他の単量体の使用量は特に限定されないが、通常、全単量体を100モル%とした場合において、順に40〜60モル%程度、60〜40モル%程度、および0〜10モル%程度であり、好ましくは45〜55モル%、54.9〜45モル%、および0.1〜5モル%である。   The amount of alkyl (meth) acrylic acid alkyl ester having 1 to 18 carbon atoms in the alkyl group, styrenes and other monomers is not particularly limited, but usually when all the monomers are 100 mol% , About 40 to 60 mol%, about 60 to 40 mol%, and about 0 to 10 mol% in order, preferably 45 to 55 mol%, 54.9 to 45 mol%, and 0.1 to 5 mol% It is.

(a−1)成分の製造法は特に限定されず、各種公知の重合反応を採用できる。例えば、前記(メタ)アクリル酸アルキルエステル類、スチレン類およびその他の単量体を、前記使用量において、各種公知のラジカル重合開始剤の存在下、通常20〜120℃程度において2〜10時間程度反応させればよい。また、反応の際には後述の有機溶剤のうち適当なものを反応溶媒として使用できる。なお、ラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビスイソブチルニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等が挙げられる。なお、(a−1)成分は市販品を使用してもよく、例えば、三菱レイヨン製のアルマテックス785−5(商品名)等が挙げられる。   (A-1) The manufacturing method of a component is not specifically limited, Various well-known polymerization reactions are employable. For example, the (meth) acrylic acid alkyl esters, styrenes and other monomers are used in the above amounts in the presence of various known radical polymerization initiators, usually at about 20 to 120 ° C. for about 2 to 10 hours. What is necessary is just to make it react. In the reaction, any suitable organic solvent described later can be used as the reaction solvent. Examples of the radical polymerization initiator include potassium persulfate, ammonium persulfate, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobisisobutylnitrile, and 2,2′-azobis. (2,4-dimethylvaleronitrile) and the like. In addition, (a-1) component may use a commercial item, for example, the Almatex 785-5 (brand name) by Mitsubishi Rayon etc. are mentioned.

(a−2)成分としては、放熱性塗料組成物に利用可能なエポキシ樹脂であれば各種公知のものを特に制限なく使用することができる。具体的には、例えば、各種ビスフェノール類をグリシジル化してなるビスフェノール型エポキシ樹脂や当該ビスフェノール型エポキシ樹脂の水添物、フェノールノボラック樹脂、クレゾールノボラック樹脂にハロエポキシドを反応させて得られるノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等が挙げられる。また、前記ビスフェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールA等を例示できる。これらの中でも塗膜の強度や密着性等の点よりビスフェノール型エポキシ樹脂が、特にビスフェノールA型エポキシ樹脂が好ましい。なお、(a−2)成分は市販品を使用してもよく、例えば、三井化学(株)製のjER828(商品名)等が挙げられる。   As the component (a-2), various known resins can be used without particular limitation as long as they are epoxy resins that can be used in the heat-dissipating coating composition. Specifically, for example, a bisphenol type epoxy resin obtained by glycidylating various bisphenols, a hydrogenated product of the bisphenol type epoxy resin, a phenol novolac resin, a novolac type epoxy resin obtained by reacting a cresol novolac resin with a haloepoxide. And biphenyl type epoxy resin. Examples of the bisphenols include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A, and tetrachlorobisphenol. Examples thereof include A and tetrafluorobisphenol A. Among these, bisphenol type epoxy resins are preferable, and bisphenol A type epoxy resins are particularly preferable from the viewpoint of the strength and adhesion of the coating film. In addition, (a-2) component may use a commercial item, for example, jER828 (brand name) by Mitsui Chemicals, Inc., etc. are mentioned.

(A)成分をなす(a−3)成分としては、放熱性塗料組成物に利用可能なアミノ樹脂であれば各種公知のものを特に制限なく使用することができる。具体的には、例えば、メラミン(樹脂)、尿素(樹脂)、ベンゾグアナミン(樹脂)、アセトグアナミン(樹脂)、スピログアナミン(樹脂)、ジシアンジアミド等のアミノ成分とアルデヒドとの反応によって得られる公知の部分もしくは完全メチロール化アミノ樹脂が挙げられる。これらの中でもこれらの中でも塗膜の強度や密着性等の点よりメラミン(樹脂)が、好ましくはアルキル化メラミン(樹脂)が、さらに好ましくは炭素数1〜5のアルキル基で置換されたメラミン(樹脂)がよい。なお、(a−3)成分は市販品を使用してもよく、例えば、三井化学(株)製のユーバン20SE60(商品名)等が挙げられる。   As the component (a-3) constituting the component (A), various known resins can be used without particular limitation as long as they are amino resins that can be used in the heat-dissipating coating composition. Specifically, for example, known moieties obtained by reaction of amino components such as melamine (resin), urea (resin), benzoguanamine (resin), acetoguanamine (resin), spiroguanamine (resin), dicyandiamide and aldehyde Or a completely methylolated amino resin is mentioned. Among these, melamine (resin), preferably alkylated melamine (resin), more preferably a melamine substituted with an alkyl group having 1 to 5 carbon atoms in view of the strength and adhesion of the coating film among these ( Resin). In addition, (a-3) component may use a commercial item, for example, Mitsui Chemicals Co., Ltd. Euban 20SE60 (brand name) etc. are mentioned.

(A)成分は、前記(a−1)成分、(a−2)成分および(a−3)成分を各種公知の方法で混合することにより得られる。また、各成分の使用重量比は特に限定されないが、通常は(a−1)成分を100重量%(固形分換算)とした場合において、(a−2)成分および(a−3)成分いずれも順に1〜40重量%程度、好ましくは2〜30重量%程度である。   The component (A) can be obtained by mixing the component (a-1), the component (a-2) and the component (a-3) by various known methods. Further, the weight ratio of each component is not particularly limited. Usually, when the component (a-1) is 100% by weight (in terms of solid content), both the component (a-2) and the component (a-3) Is about 1 to 40% by weight, preferably about 2 to 30% by weight.

なお、(A)成分の熱伝導率は特に限定されないが、通常は1W/mK以下、具体的には0.1〜0.5W/mK程度である。   The thermal conductivity of the component (A) is not particularly limited, but is usually 1 W / mK or less, specifically about 0.1 to 0.5 W / mK.

(B)成分は、熱伝導度が100W/mK未満の放熱性フィラーであれば各種公知のものを特に制限なく使用することができる。具体的には、例えば、酸化ケイ素微粒子、フッ化カルシウム微粒子、窒化ホウ素微粒子、石英微粒子、カオリン微粒子、水酸化アルミニウム微粒子、ベントナイト微粒子、タルク微粒子、サリサイト微粒子、フォルステライト微粒子、マイカ微粒子、コージェライト微粒子、窒化ホウ素微粒子等が挙げられる。本発明においては、(A)成分をバインダー樹脂として選択したことにより、窒化アルミニウムや炭化ケイ素等よりも熱伝導性において劣る(B)成分を用いても放熱性に優れた塗膜が得られるようになる。この点より、(B)成分の熱伝導率は80W/mK以下、具体的には0.1〜65W/mK程度、より具体的には0.1〜40W/mK程度、さらに具体的には0.1〜15W/mK程度、いっそう具体的には0.1〜10W/mK程度であればよい。   As the component (B), various known materials can be used without particular limitation as long as the heat conductivity is less than 100 W / mK. Specifically, for example, silicon oxide particles, calcium fluoride particles, boron nitride particles, quartz particles, kaolin particles, aluminum hydroxide particles, bentonite particles, talc particles, salicite particles, forsterite particles, mica particles, cordierite. Examples thereof include fine particles and boron nitride fine particles. In the present invention, since the component (A) is selected as the binder resin, a coating film excellent in heat dissipation can be obtained even when the component (B), which is inferior in thermal conductivity to aluminum nitride, silicon carbide, or the like, is used. become. From this point, the thermal conductivity of the component (B) is 80 W / mK or less, specifically about 0.1 to 65 W / mK, more specifically about 0.1 to 40 W / mK, and more specifically. It may be about 0.1 to 15 W / mK, more specifically about 0.1 to 10 W / mK.

(B)成分としては、特に塗膜の放熱性の観点より、前記したマイカ微粒子、フォルステライト微粒子、酸化ケイ素微粒子、フッ化金属結晶微粒子および窒化ホウ素微粒子からなる群より選ばれる少なくとも1種が好ましい。   The component (B) is preferably at least one selected from the group consisting of the aforementioned mica fine particles, forsterite fine particles, silicon oxide fine particles, metal fluoride fine crystal particles, and boron nitride fine particles, particularly from the viewpoint of heat dissipation of the coating film. .

また、マイカ微粒子および/またはフォルステライト微粒子は、本発明の塗料組成物を適用する発熱性物品の到達温度が比較的低い温度域(具体的には、40℃以上70℃未満)に留まる場合に、好ましく採用できる。そのような発熱性物品としては、一般照明器具、一般家電製品、MEMS(Micro Electro Mechanical System)等が挙げられる。酸化ケイ素微粒子とフォルステライト微粒子を併用する場合は、体積%比が順に9.5:0.5〜2:8程度となるようにするのがよい。   Further, the mica fine particles and / or forsterite fine particles are used when the temperature reached by the exothermic article to which the coating composition of the present invention is applied is relatively low (specifically, 40 ° C. or more and less than 70 ° C.). Can be preferably employed. Examples of such exothermic articles include general lighting equipment, general household electrical appliances, and MEMS (Micro Electro Mechanical System). When silicon oxide fine particles and forsterite fine particles are used in combination, the volume% ratio is preferably about 9.5: 0.5 to 2: 8 in order.

また、酸化ケイ素微粒子および/またはフッ化金属結晶微粒子は、本発明の塗料組成物を適用する発熱性物品の到達温度が比較的中程度の温度域(具体的には、70℃以上100℃未満)に達するとき、好ましく採用できる。そのような発熱性物品としては、例えば、LEDを用いた照明器具、ディスプレイ、集光型太陽電池等が挙げられる。なお、前記酸化ケイ素微粒子は、高純度珪砂を原料としてケイ酸ソーダと硫酸を混合させて、ケイ酸ゾルを生成させ、これらのケイ酸ゾルを重合させて凝集体を形成しゲル化させる方法等により製造されるものであり(特開平9−71723等参照)、多孔性ないし非多孔性の粒子である。市販品としては、例えば富士シリシア(株)製のサイシリア730、サイシリア740、サイシリア770、サイシリア530、サイシリア540、サイシリア550(いずれも商標)等が挙げられる。また、前記フッ化金属結晶微粒子としては、例えば、フッ化リチウム、フッ化カルシウム、フッ化バリウム、フッ化マグネシウム等が挙げられる。酸化ケイ素微粒子とフッ化金属結晶微粒子を併用する場合は、体積%比が順に9.5:0.5〜2:8程度となるようにするのがよい。   In addition, the silicon oxide fine particles and / or the metal fluoride fine particles are a temperature range in which the ultimate temperature of the exothermic article to which the coating composition of the present invention is applied is relatively medium (specifically, 70 ° C. or more and less than 100 ° C. ) Can be preferably employed. Examples of such exothermic articles include lighting fixtures using LEDs, displays, concentrating solar cells, and the like. The silicon oxide fine particles are prepared by mixing sodium silicate and sulfuric acid using high-purity silica sand as a raw material to form a silicate sol, polymerizing these silicate sols to form aggregates, and the like. (See JP-A-9-71723, etc.) and are porous or non-porous particles. Examples of commercially available products include Cicilia 730, Cicilia 740, Cicilia 770, Cicilia 530, Cicilia 540, Cicilia 550 (all are trademarks) manufactured by Fuji Silysia Co., Ltd., and the like. Examples of the metal fluoride fine particles include lithium fluoride, calcium fluoride, barium fluoride, and magnesium fluoride. When silicon oxide fine particles and metal fluoride crystal fine particles are used in combination, the volume% ratio is preferably about 9.5: 0.5 to 2: 8 in order.

また、酸化ケイ素微粒子および/または窒化ホウ素微粒子は、本発明の塗料組成物を適用する発熱性物品の到達温度が比較的高い温度域(具体的には、100℃以上200℃未満)に達するとき、好ましく採用できる。そのような発熱性物品としては、例えば、パワー半導体やその周辺部品を複合化したモジュール部品が挙げられる。酸化ケイ素微粒子と窒化ホウ素微粒子を併用する場合は、体積%比が順に9.5:0.5〜2:8程度となるようにするのがよい。   In addition, when the silicon oxide fine particles and / or boron nitride fine particles reach a temperature range (specifically, 100 ° C. or more and less than 200 ° C.) where the exothermic article to which the coating composition of the present invention is applied reaches a relatively high temperature. Can be preferably employed. Examples of such exothermic articles include module parts in which a power semiconductor and its peripheral parts are combined. When silicon oxide fine particles and boron nitride fine particles are used in combination, the volume% ratio is preferably about 9.5: 0.5 to 2: 8 in order.

(B)成分の形状は特に限定されないが、塗膜の機械的強度及び意匠性(平滑性)と、塗膜の適度な凹凸に基づく放熱効率とを考慮して、通常、平均一次粒子径が0.1〜50μm程度、より好ましくは1〜50μmである。また、メディアン径D50は特に限定されないが、通常、50μm以下、好ましくは40μm以下であるのがよい。   The shape of the component (B) is not particularly limited, but the average primary particle size is usually in consideration of the mechanical strength and design properties (smoothness) of the coating film and the heat dissipation efficiency based on the appropriate unevenness of the coating film. It is about 0.1-50 micrometers, More preferably, it is 1-50 micrometers. The median diameter D50 is not particularly limited, but is usually 50 μm or less, preferably 40 μm or less.

(C)成分としては、各種公知のものを特に制限なく使用でき、例えば、酸化チタン、カーボンブラック、および酸化鉄等が挙げられる。なお、(C)成分の熱伝導率は特に限定されないが、通常は1〜30W/mK程度である。   As the component (C), various known compounds can be used without particular limitation, and examples thereof include titanium oxide, carbon black, and iron oxide. In addition, although the thermal conductivity of (C) component is not specifically limited, Usually, it is about 1-30 W / mK.

また、(C)成分の経常は特に限定されないが、塗膜の機械的強度及び意匠性(平滑性)と、塗膜の適度な凹凸に基づく放熱効率とを考慮して、通常、平均一次粒子径が前記(B)成分の平均一次粒子径の0.01〜10%である。また、かつメディアン径D50は特に限定されないが、通常、1μm以下であるのが好ましい。   Moreover, although the usual of (C) component is not specifically limited, In consideration of the mechanical strength and design property (smoothness) of a coating film, and the heat dissipation efficiency based on the moderate unevenness | corrugation of a coating film, normally an average primary particle The diameter is 0.01 to 10% of the average primary particle diameter of the component (B). Further, the median diameter D50 is not particularly limited, but it is usually preferably 1 μm or less.

本発明の塗料組成物は、前記(A)成分、(B)成分を(D)成分に配合してなるクリア塗料(JIS-K5000:2000)としても用いることができるが、意匠性等を考慮して、必要に応じて(C)成分を併用してなる着色塗料としても用いることができる。   The coating composition of the present invention can be used as a clear coating (JIS-K5000: 2000) in which the component (A) and the component (B) are blended with the component (D). And if necessary, it can also be used as a colored paint formed by using the component (C) in combination.

本発明の塗料組成物における(A)成分〜(C)成分の使用量は特に限定されないが、塗膜の放熱性や硬度、基材との密着性等を考慮すると、(A)成分〜(C)成分を100体積%とした場合において、順に10〜70体積%程度、90〜30体積%程度および0〜20体積%程度、好ましくは10〜50体積%程度、90〜50体積%程度および0〜15体積%程度であり、いっそう好ましくは10〜40体積%、80〜50体積%および5〜15体積%である。   Although the usage-amount of (A) component-(C) component in the coating composition of this invention is not specifically limited, when the heat dissipation of a coating film, hardness, adhesiveness with a base material, etc. are considered, (A) component- ( C) When the component is 100% by volume, about 10 to 70% by volume, about 90 to 30% by volume, and about 0 to 20% by volume, preferably about 10 to 50% by volume, about 90 to 50% by volume and It is about 0-15 volume%, More preferably, it is 10-40 volume%, 80-50 volume%, and 5-15 volume%.

(D)成分としては、例えばキシレンやエチルベンゼン、トルエン、トリメチルベンゼン等の芳香族炭化水素;イソパラフィン等の脂肪族炭化水素、メタノールやエタノール、プロパノール、イソプロパノール、ブチルアルコール、イソブチルアルコール等のモノアルコール;エチレングリコール等の多価アルコール;酢酸メチル、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のアセテート系溶剤;メチルエチルケトン、シクロヘキサノンなどのケトン;ナフサなどが挙げられる。これらの中でも、硬化や塗布時の作業性や塗膜として用いる場合の成膜性、硬化物として用いる場合の所期の硬度を損なわないようなものとして、特に沸点が100〜200℃程度のものが好ましい。また、有機溶剤としては、芳香族炭化水素を含むものを使用するのが好ましい。また、(D)成分の使用量は、本発明の塗料組成物の不揮発分が40〜70重量%程度となる範囲である。   Examples of the component (D) include aromatic hydrocarbons such as xylene, ethylbenzene, toluene, and trimethylbenzene; aliphatic hydrocarbons such as isoparaffin, monoalcohols such as methanol, ethanol, propanol, isopropanol, butyl alcohol, and isobutyl alcohol; ethylene Examples thereof include polyhydric alcohols such as glycol; acetate solvents such as methyl acetate, ethyl acetate, butyl acetate, and propylene glycol monomethyl ether acetate; ketones such as methyl ethyl ketone and cyclohexanone; Among these, workability at the time of curing and coating, film formability when used as a coating film, and those that do not impair the desired hardness when used as a cured product, especially those having a boiling point of about 100 to 200 ° C Is preferred. Moreover, it is preferable to use what contains an aromatic hydrocarbon as an organic solvent. Moreover, the usage-amount of (D) component is the range from which the non volatile matter of the coating composition of this invention will be about 40 to 70 weight%.

なお、本発明の塗料組成物には適宜、有機ベントナイト、カルボキシメチルセルロース、ポリビニルアルコール等の増粘剤や、ポリアクリル酸、ポリアクリル酸塩等の各種分散剤、その他艶消し剤、消泡剤、レベリング剤、たれ防止剤、表面調整剤、粘性調整剤、紫外線吸収剤、ワックス等の添加剤を配合してもよい。   The coating composition of the present invention suitably includes thickeners such as organic bentonite, carboxymethylcellulose, and polyvinyl alcohol, various dispersants such as polyacrylic acid and polyacrylate, other matting agents, antifoaming agents, You may mix | blend additives, such as a leveling agent, a dripping prevention agent, a surface regulator, a viscosity regulator, a ultraviolet absorber, and a wax.

本発明の放熱性塗膜は、本発明の放熱性塗料組成物を各種基材に塗工し、120〜200℃で焼付処理することにより得られる。塗工手段は特に限定されないが、生産性や経済性、微小基材への塗布性、意匠的なパターン形成性の観点より、特に、スプレー、ディップ、バーコート、スクリーン・ステンシル・パッド・スタンプ印刷、インクジェット印刷、ディスペンサー等が好ましい。また、塗膜最表面における放熱効果を高めたり意匠性を与えたりするために、塗膜表面に溝パターンやドットパターンを形成してもよい。   The heat dissipating coating film of the present invention is obtained by applying the heat dissipating coating composition of the present invention to various substrates and baking it at 120 to 200 ° C. The coating means is not particularly limited, but from the viewpoints of productivity, economic efficiency, coating properties on minute substrates, and design pattern formation, in particular, spray, dip, bar coating, screen stencil, pad stamp printing Ink jet printing, a dispenser and the like are preferable. Further, a groove pattern or a dot pattern may be formed on the surface of the coating film in order to enhance the heat dissipation effect on the outermost surface of the coating film or to give design properties.

また、当該塗膜中の(A)成分、(B)成分および必要に応じて用いる(C)成分の体積%は、本発明の放熱性塗料組成物について規定したそれと等しくなる。なぜならば、また、本発明の放熱性塗料組成物を発熱性物品に塗工し、硬化塗膜を形成させる際には、有機溶剤をほぼ蒸発させることになるためである。   Moreover, the volume% of (A) component in the said coating film, (B) component, and (C) component used as needed becomes equal to that prescribed | regulated about the heat-radiating coating composition of this invention. This is because, when the heat-radiating coating composition of the present invention is applied to an exothermic article to form a cured coating film, the organic solvent is almost evaporated.

本発明の被塗装物品は、放熱性塗膜を有するものであり、本発明の放熱性塗料組成物を塗工する物品としては、各種金属(鉄、アルミ、銅およびそれらの合金等)や耐熱性の素材、その他が挙げられる。   The article to be coated of the present invention has a heat-dissipating coating film, and the article to which the heat-dissipating coating composition of the present invention is applied includes various metals (iron, aluminum, copper and alloys thereof) and heat resistance. Sexual materials and others.

以下、実施例を通じ本発明について具体的に説明するが、それらにより本発明の範囲が限定されないことはもとよりである。   Hereinafter, the present invention will be described in detail through examples, but the scope of the present invention is not limited thereby.

調製例1
(a−1)成分として市販のアクリル樹脂(メタクリル酸メチル/アクリル酸n−ブチル/スチレンの三元共重合体(三井化学(株)製))、(a−2)成分として市販のビスフェノールA型樹脂(三井化学(株)製)、および(a−3)成分として市販のブチル化メラミン樹脂(三井化学(株)製)を、重量比が7.4:1:1となるように混合し、キシレンで希釈することによって、不揮発分47重量%のバインダー樹脂溶液を得た。次いで当該バインダー樹脂溶液と、(B)成分として多孔質シリカ粉末(商品名「サイシリア470」、富士シリシア化学(株)製、平均一次粒子径14.1μm、熱伝導率1.0W/mK)とを、体積%比が順に44.6%および55.4%となるよう容器に仕込み、目視確認可能な凝集物を解砕しながら撹拌混合した後、キシレンを加えて低粘度のスラリーを調製し、次いでホモジェナイザーを用いて均一混合することにより、不揮発分47重量%の放熱性塗料組成物を得た。
Preparation Example 1
(A-1) Commercially available acrylic resin (methyl methacrylate / n-butyl acrylate / styrene terpolymer (manufactured by Mitsui Chemicals)) as component, (a-2) commercially available bisphenol A as component Type resin (manufactured by Mitsui Chemicals) and commercially available butylated melamine resin (manufactured by Mitsui Chemicals) as component (a-3) are mixed so that the weight ratio is 7.4: 1: 1 Then, by diluting with xylene, a binder resin solution having a nonvolatile content of 47% by weight was obtained. Next, the binder resin solution and porous silica powder (trade name “Cycilia 470”, manufactured by Fuji Silysia Chemical Ltd., average primary particle size 14.1 μm, thermal conductivity 1.0 W / mK) as component (B) Are mixed in a container so that the volume% ratio is 44.6% and 55.4% in order, and the agglomerates that can be visually confirmed are stirred and mixed, and then xylene is added to prepare a low-viscosity slurry. Subsequently, the mixture was uniformly mixed using a homogenizer to obtain a heat-dissipating coating composition having a nonvolatile content of 47% by weight.

調製例2〜9、比較調製例1〜4
(A)成分の体積%比と、(B)成分の種類及び体積%比と、(B)成分以外の放熱フィラーの種類及び体積%比とを表1で示すように変更した他は調製例1と同様にして放熱性塗料組成物(いずれも不揮発分47重量%)を得た。なお、比較調製例4は、前記バインダー樹脂溶液をそのまま用いたものである。
Preparation Examples 2-9, Comparative Preparation Examples 1-4
(A) Volume% ratio of component, type of (B) component and volume% ratio, and preparation example other than changing type and volume% ratio of heat radiation filler other than (B) component as shown in Table 1 In the same manner as in No. 1, a heat-dissipating coating composition (both having a nonvolatile content of 47% by weight) was obtained. In Comparative Preparation Example 4, the binder resin solution was used as it was.

マイカ・・・市販のマイカ微粒子(商品名「PDM−8DF」、トピー工業(株)製、平均一次粒子径12.0μm)
フォルステライト・・・市販のフォルステライト微粒子(商品名「FF−200・M40」、丸ス釉薬合資会社製、平均一次粒子径2.5μm)
SiO・・・市販の多孔質シリカ微粒子(商品名「サイシリア470」、富士シリシア化学(株)製、平均一次粒子径14.1μm)
CaF・・・市販のフッ化カルシウム粉末(商品名「FLUORITE POWDER CALCIUM FLUORIDE」、China Tuhsu Flavours & Fragrances Import & Export Co. Lt製、平均一次粒子径38.0μm)
BN・・・市販の窒化ホウ素微粒子(商品名「BORONID S3」、ESK Ceramics社製、平均一次粒子径10.0μm)
TiO・・市販のチタニア粉末(商品名「TI TONE R−32」、堺化学工業(株)製;平均一次粒子径0.1μm、熱伝導率25W/mK)
AlN・・・市販の高純度窒化アルミ粉末(商品名「Hグレード」、(株)トクヤマ製、平均一次粒子径平均粒径1.1μm)
SiC・・・市販の炭化ケイ素粉末(商品名「シナノランダムGP−3000」、信濃電気製錬(株)製;平均一次粒子径2.0μm)
中・・・70℃以上100℃未満の中温域での使用を意図した設計であることを意味する。
低・・・40℃以上70℃未満の低温域での使用を意図した設計であることを意味する。
高・・・100℃以上200℃未満の高温域での使用を意図した設計であることを意味する。
Mica: Commercially available mica fine particles (trade name “PDM-8DF”, manufactured by Topy Industries, Ltd., average primary particle size 12.0 μm)
Forsterite: Commercially available forsterite fine particles (trade name “FF-200 · M40”, manufactured by Marusu Shakusha Limited, average primary particle size 2.5 μm)
SiO 2 ... Commercially available porous silica fine particles (trade name “Cycilia 470”, manufactured by Fuji Silysia Chemical Ltd., average primary particle size 14.1 μm)
CaF 2 ... Commercially available calcium fluoride powder (trade name “FLUORITE POWDER CALCIUM FLUORIDE”, China Tuhsu Flavors & Fragrances Import & Export Co. Ltd, average primary particle size 38.0 μm)
BN: Commercially available boron nitride fine particles (trade name “BORONID S3”, manufactured by ESK Ceramics, average primary particle size 10.0 μm)
TiO 2 .. Commercially available titania powder (trade name “TI TONE R-32”, manufactured by Sakai Chemical Industry Co., Ltd .; average primary particle size 0.1 μm, thermal conductivity 25 W / mK)
AlN: Commercially available high-purity aluminum nitride powder (trade name “H grade”, manufactured by Tokuyama Corporation, average primary particle diameter average particle diameter 1.1 μm)
SiC: Commercially available silicon carbide powder (trade name “Shinano Random GP-3000”, manufactured by Shinano Denki Smelting Co., Ltd .; average primary particle size 2.0 μm)
Medium: It means that the design is intended for use in an intermediate temperature range of 70 ° C. or more and less than 100 ° C.
Low means that the design is intended for use in a low temperature range of 40 ° C. or more and less than 70 ° C.
High: means that the design is intended for use in a high temperature range of 100 ° C. or more and less than 200 ° C.

<中温域の使用を意図した放熱性塗膜の形成、性能評価>
調製例1の放熱性塗料組成物をアルミニウム板(2mm厚×50mm幅×100mm長さ:JIS H4000仕様、品名A1050P)上にアプリケーター(50〜100μmギャップ)を用いて目標膜厚が40〜50μmとなるよう塗布した。次いで約5分間室内で放置した後、乾燥器中にて160℃×30分間、焼付け処理をした。調製例2〜5ならびに比較調製例1および2の放熱性塗料組成物についても同様にし、焼付処理板を得た。
<Formation of heat-dissipating coating intended for use in the middle temperature range, performance evaluation>
Using the applicator (50-100 μm gap) on the aluminum plate (2 mm thickness × 50 mm width × 100 mm length: JIS H4000 specification, product name A1050P), the target film thickness is 40-50 μm. It applied so that it might become. Next, after leaving it indoors for about 5 minutes, it was baked in a dryer at 160 ° C. for 30 minutes. Similarly, the heat-dissipating coating compositions of Preparation Examples 2 to 5 and Comparative Preparation Examples 1 and 2 were subjected to baking treatment plates.

調製例6〜9の放熱性塗料組成物については、他のアプリケーター(75〜100μmギャップ)を用い、目標膜厚が70〜90μmとなるよう前記アルミニウム板に塗布した以外は同様にして焼付処理板を得た。比較調製例3の放熱性塗料組成物についても同様にし、焼付処理板を得た。   For the heat-dissipating coating compositions of Preparation Examples 6 to 9, using other applicators (75 to 100 μm gap), the same baking treatment plate was applied except that the target film thickness was 70 to 90 μm. Got. The heat dissipation coating composition of Comparative Preparation Example 3 was similarly treated to obtain a baking-treated plate.

比較調製例4に係る、無機粒子を含まない塗料組成物については、他のアプリケーター(150〜200μmギャップ)を用い、目標膜厚が30〜50μmとなるよう前記アルミニウム板に塗布した以外は同様にして焼付処理板を得た。   About the coating composition which does not contain an inorganic particle based on the comparative preparation example 4, it applied similarly to the said aluminum plate so that a target film thickness might be set to 30-50 micrometers using another applicator (150-200 micrometers gap). Thus, a baking-treated plate was obtained.

また、前記アルミニウム板それ自体をブランク試験(参照例)用に供した。   Moreover, the said aluminum plate itself was used for the blank test (reference example).

<塗膜の放熱性能評価>
実施例1
図1で示すように、断熱材で形成された測定ボックスの上端開口部に、調製例1に係る焼付処理板を、測定ボックス内に予め設置した熱源(シャント抵抗器、PCN社製、型番PBH1ΩD、定格電力10W、サイズ約2cm長×約1.5cm幅×約0.2cm厚)の表面に面接触するようにセットした。次いで、当該焼付処理板の放熱性塗膜面と熱源下面に熱電対を垂直方向において同位置となるよう接触させた後、一定の電流(2.75A)を印加し、上面の測定ポイント(温度T1)と下面の測定ポイント(温度T2)の温度の時間変化をデータロガー温度計により記録した。表2には定常状態のT1とT2の値を示す。
<Evaluation of heat dissipation performance of coating film>
Example 1
As shown in FIG. 1, a heat source (shunt resistor, manufactured by PCN, model number PBH1ΩD) in which the baking treatment plate according to Preparation Example 1 is installed in the measurement box in the upper end opening of the measurement box formed of a heat insulating material. , Rated power 10 W, size about 2 cm long × about 1.5 cm width × about 0.2 cm thick). Next, a thermocouple is brought into contact with the heat-dissipating coating film surface and the heat source lower surface of the baking treatment plate so as to be in the same position in the vertical direction, and then a constant current (2.75 A) is applied to measure the upper surface measurement point (temperature The time change of the temperature at T1) and the measurement point on the lower surface (temperature T2) was recorded with a data logger thermometer. Table 2 shows the values of T1 and T2 in the steady state.

実施例2〜9、比較例1〜4、参照例1
調製例2〜9,比較調製例1〜3および比較調製例6に係る焼付処理板、ならびにブランク板についても同様にT1とT2を測定した。
Examples 2 to 9, Comparative Examples 1 to 4, Reference Example 1
T1 and T2 were measured in the same manner for the baking treatment plates and blank plates according to Preparation Examples 2 to 9, Comparative Preparation Examples 1 to 3 and Comparative Preparation Example 6.

なお、実施例1に係る焼付処理板、比較調製例2に係る焼付処理版および参照例1で用いたブランク板についてはさらに、印加電流を2.00Aとした以外は実施例1と同様にして、T1とT2を測定した。   The baking treatment plate according to Example 1, the baking treatment plate according to Comparative Preparation Example 2 and the blank plate used in Reference Example 1 were further the same as in Example 1 except that the applied current was 2.00 A. T1 and T2 were measured.

[塗膜の放熱作用の評価]
実施例1に係る焼付処理板の放熱性塗膜面の実測温度と、比較例6の焼付処理板の放熱性塗膜(バインダー樹脂のみ)の表面実測温度との差(Δ1 ℃)、ならびに、実施例1に係る焼付処理板の放熱性塗膜面の実測温度と、参照例1のブランク板の表面実測温度との差(Δ2 ℃)を表2に示す。当該実測温度が小さいほど、すなわち温度差Δ1およびΔ2の数値が大きいほど塗膜の放熱作用が高いことを意味している。また、実施例2〜9、比較例1〜3および比較例6に係る焼付処理板についても同様にして放熱性塗膜実測温度、Δ1およびΔ2を表2に示す。
[Evaluation of heat dissipation effect of coating film]
The difference (Δ1 ° C.) between the actually measured temperature of the heat dissipating coating surface of the baking treatment plate according to Example 1 and the surface measurement temperature of the heat dissipating coating plate (only the binder resin) of the baking treatment plate of Comparative Example 6, and Table 2 shows the difference (Δ2 ° C.) between the actually measured temperature of the heat dissipating coating film surface of the baking treatment plate according to Example 1 and the actually measured surface temperature of the blank plate of Reference Example 1. It means that the smaller the measured temperature, that is, the larger the numerical values of the temperature differences Δ1 and Δ2, the higher the heat dissipation effect of the coating film. Table 2 also shows the actually measured heat radiation coating temperatures, Δ1 and Δ2 for the baking treatment plates according to Examples 2 to 9, Comparative Examples 1 to 3 and Comparative Example 6.

[塗膜の放熱作用による熱源(シャント抵抗)の昇温抑制効果]
実施例1に係る焼付処理板に接触させたシャント抵抗(熱源)の下面温度と、比較例4の焼付処理板に接触させたシャント抵抗の下面温度との実測温度差(Δ3 ℃)、ならびに、実施例1に係る焼付処理板に接触させたシャント抵抗(熱源)の下面温度と、参照例1のブランク板の接触させたシャント抵抗の下面温度との実測温度差(Δ4 ℃)を表2に示す。当該実測温度が小さいほど、すなわち温度差Δ3およびΔ4の数値が大きいほど、塗膜の放熱作用によりシャント抵抗自体の温度上昇が抑えられていることを意味する。また、実施例2〜9、比較例1〜3および比較例6に係る焼付処理板についても同様にして放熱性塗膜実測温度、Δ3およびΔ4を表2に示す。
[Temperature suppression effect of heat source (shunt resistance) due to heat dissipation action of coating film]
The measured temperature difference (Δ3 ° C.) between the lower surface temperature of the shunt resistor (heat source) brought into contact with the baking treatment plate according to Example 1 and the lower surface temperature of the shunt resistance made into contact with the baking treatment plate of Comparative Example 4, and Table 2 shows the measured temperature difference (Δ4 ° C.) between the lower surface temperature of the shunt resistor (heat source) brought into contact with the baking treatment plate according to Example 1 and the lower surface temperature of the shunt resistor brought into contact with the blank plate of Reference Example 1. Show. It means that the smaller the measured temperature, that is, the larger the numerical values of the temperature differences Δ3 and Δ4, the more the temperature increase of the shunt resistor itself is suppressed by the heat dissipation action of the coating film. Table 2 also shows the actually measured heat-dissipating coating temperature, Δ3 and Δ4 for the baking treatment plates according to Examples 2 to 9, Comparative Examples 1 to 3 and Comparative Example 6.

<密着力の評価:碁盤目試験>
実施例1に係る焼付処理板について、塗膜の密着力をJIS D0202で定める碁盤目試験に準拠して評価した。具体的には、塗膜表面にカッターナイフで100個の碁盤目を作成し、市販の粘着テープを圧着させた後1〜2分放置し、垂直方向に剥離したときの塗膜の残存程度を以下の基準で目視評価した。実施例2〜9および比較例1〜3に係る焼付処理板についても同様にして評価した。結果を表2に示す。
<Evaluation of adhesion strength: cross cut test>
About the baking processing board which concerns on Example 1, the adhesive force of the coating film was evaluated based on the cross-cut test defined by JISD0202. Specifically, 100 grids were prepared on the surface of the coating film with a cutter knife, and a commercially available adhesive tape was pressure-bonded and left for 1 to 2 minutes, and the remaining degree of the coating film when peeled in the vertical direction was determined. Visual evaluation was performed according to the following criteria. It evaluated similarly about the baking process board which concerns on Examples 2-9 and Comparative Examples 1-3. The results are shown in Table 2.

1:密着性良好(残存率95以上100%以下)
2:密着性やや良好(残存率65%以上95%未満)
3:密着性不良(残存率65%未満〜全剥離)
1: Good adhesion (residual rate 95% to 100%)
2: Slightly good adhesion (residual rate 65% or more and less than 95%)
3: Poor adhesion (residual rate less than 65% to total peeling)

<密着力の評価:スクラッチ試験>
実施例1に係る焼付処理板について、塗膜の力学的強度をスクラッチ試験により評価した。具体的には、ダイヤモンド圧子(先端径R0.2mm)を塗膜面に接触させ、荷重を0Nから20Nまで増加させながら当該処理板を水平方向に40mm移動させた(速度1.4mm/s)。そして、塗膜が剥離した位置を顕微鏡とアコースティックエミッションセンサーにて検出し、以下の基準で密着性を評価した。結果を表2に示す。
<Evaluation of adhesion strength: scratch test>
About the baking processing board which concerns on Example 1, the mechanical strength of the coating film was evaluated by the scratch test. Specifically, a diamond indenter (tip diameter R 0.2 mm) was brought into contact with the coating surface, and the processing plate was moved 40 mm in the horizontal direction while increasing the load from 0 N to 20 N (speed: 1.4 mm / s). . And the position which the coating film peeled was detected with the microscope and the acoustic emission sensor, and the adhesiveness was evaluated on the following references | standards. The results are shown in Table 2.

1:密着性良好(塗膜剥離位置におけるダイヤモンド圧子の荷重が20N以上)
2:密着性不良(塗膜剥離位置におけるダイヤモンド圧子の荷重が20N未満)
1: Good adhesion (the load of the diamond indenter at the coating film peeling position is 20 N or more)
2: Adhesion failure (diamond indenter load at coating film peeling position is less than 20N)

表2より、本発明の放熱性塗料組成物を用いた塗膜(実施例1〜9)は、熱源温度が高い場合(印加電流2.75A)であっても、高熱伝導性フィラーとして周知の窒化アルミニウム微粒子を用いた塗膜(比較例1)や炭化ケイ素微粒子を用いた塗膜(比較例2)、(B)成分が過剰に使用されている塗膜(比較例3)、および(B)成分を使用していない塗膜(比較例6)と比較して、15〜65%程度放熱性能の向上が得られることがわかる。特に比較例1と2の結果より、本発明は所定のバインダー樹脂組成物を採用したことによって、窒化アルミニウム微粒子や炭化ケイ素微粒子のような高熱伝導性のフィラーを用いなくとも、放熱性、密着性および機械的特性に優れる塗膜が得られることが判明した。   From Table 2, the coating films (Examples 1 to 9) using the heat dissipating coating composition of the present invention are well known as highly thermally conductive fillers even when the heat source temperature is high (applied current 2.75 A). Coating film using aluminum nitride fine particles (Comparative Example 1), coating film using silicon carbide fine particles (Comparative Example 2), coating film in which component (B) is excessively used (Comparative Example 3), and (B ) It can be seen that an improvement in heat dissipation performance of about 15 to 65% can be obtained as compared with the coating film not using the component (Comparative Example 6). In particular, from the results of Comparative Examples 1 and 2, the present invention employs a predetermined binder resin composition, so that heat dissipation and adhesion can be achieved without using high thermal conductive fillers such as aluminum nitride fine particles and silicon carbide fine particles. It was also found that a coating film having excellent mechanical properties can be obtained.

また、熱源温度が低い場合(印加電流2.00A)においても、本発明の放熱性塗料組成物を用いた塗膜(実施例1)は、(B)成分以外の無機粒子を含む塗料組成物を用いた塗膜(比較例2)と比較して、やはり少なくとも35%程度の放熱性能の向上が得られる。   Further, even when the heat source temperature is low (applied current of 2.00 A), the coating film (Example 1) using the heat dissipating coating composition of the present invention contains a coating composition containing inorganic particles other than the component (B). Compared with the coating film using the film (Comparative Example 2), the heat radiation performance is improved by at least about 35%.

また、参照例1のブランク板に関し、印加電流2.75Aのときの表面実測温度(105.2℃)と印加電流2.00Aのときの参照例2のブランク板のそれ(72.5℃)とを加味すると、本発明の塗料組成物が放熱性に優れた塗膜を与えていることが一層明らかになる。   Further, regarding the blank plate of Reference Example 1, the measured surface temperature at the applied current of 2.75 A (105.2 ° C.) and that of the blank plate of Reference Example 2 at the applied current of 2.00 A (72.5 ° C.) In view of the above, it becomes clearer that the coating composition of the present invention gives a coating film excellent in heat dissipation.

なお、72.5〜105.2℃の温度範囲は、例えばLED電球のような照明器具の使用時の温度に該当するため、本発明の塗料組成物をLED電球の筺体外面に塗工した場合、その放熱効果によって、おそらく10000〜30000hrの寿命改善、そして10%以上の輝度向上効果が期待できる(シャープ技報,99(2009.9)、17p−19p、および松下電工技報,99(2008.9), 22p−26p参照)。   In addition, since the temperature range of 72.5-105.2 degreeC corresponds to the temperature at the time of use of lighting fixtures, such as an LED bulb, for example, when the coating composition of this invention is applied to the housing outer surface of an LED bulb By the heat dissipation effect, it is possible to expect a life improvement of 10000 to 30000 hr and a brightness improvement effect of 10% or more (Sharp Technical Report, 99 (2009. 9), 17p-19p, and Matsushita Electric Engineering Technical Report, 99 (2008). .9), 22p-26p).

<低温域での使用を意図した放熱性塗膜の作製>
実施例10
調製例10の放熱性塗料組成物をアルミニウム板(2mm厚×50mm幅×100mm長さ:JIS H4000仕様、品名A1050P)上にアプリケーター(50〜100μmギャップ)を用いて膜厚が40〜50μmとなるよう塗布した。次いで約5分間室内で放置した後、乾燥器中にて160℃×30分間、焼付け処理をした。調製例11および12についても同様にし、焼付処理板を得た。
<Preparation of heat dissipation coating intended for use in low temperature range>
Example 10
Using the applicator (50-100 μm gap) on the aluminum plate (2 mm thickness × 50 mm width × 100 mm length: JIS H4000 specification, product name A1050P), the heat dissipating coating composition of Preparation Example 10 has a film thickness of 40-50 μm. It was applied as follows. Next, after leaving it indoors for about 5 minutes, it was baked in a dryer at 160 ° C. for 30 minutes. Similarly to Preparation Examples 11 and 12, a baking-treated plate was obtained.

比較例5
前記比較調製例2の放熱性塗料組成物(炭化ケイ素微粒子含有)について、実施例10と同様の方法に従い、焼付処理板を得た。
Comparative Example 5
About the heat-radiating coating composition of Comparative Preparation Example 2 (containing silicon carbide fine particles), a baking treatment plate was obtained in the same manner as in Example 10.

比較例6
前記比較調製例5の放熱性塗料組成物(マイカ微粒子を相対的に多く含有)について、実施例10と同様の方法に従い、焼付処理板を得た。
Comparative Example 6
About the heat-radiating coating composition of Comparative Preparation Example 5 (containing a relatively large amount of mica fine particles), a baking treatment plate was obtained in the same manner as in Example 10.

比較例7
前記比較調製例4に係る放熱性塗料組成物(無機微粒子含有せず)について、実施例10と同様の方法に従い、焼付処理板を得た。
Comparative Example 7
About the heat-radiating coating composition (not containing inorganic fine particles) according to Comparative Preparation Example 4, a baking treatment plate was obtained in the same manner as in Example 10.

また、前記アルミニウム板それ自体をブランク試験(参照例2)に供した。   The aluminum plate itself was subjected to a blank test (Reference Example 2).

<塗膜の放熱性能評価>
実施例10
前記した、中温域の使用を意図した放熱性塗膜の性能評価の項目に準じ、実施例10に係る処理板の放熱性塗膜面と熱源下面とに熱電対を、それらが垂直方向において同位置となるよう接触させた後、一定の電流(1.90A)を印加し、上面の測定ポイント(温度T1)と下面の測定ポイント(温度T2)の温度の時間変化をデータロガー温度計により記録した。結果を表3に示した。
<Evaluation of heat dissipation performance of coating film>
Example 10
In accordance with the performance evaluation items of the heat-dissipating coating film intended to be used in the middle temperature range, thermocouples are provided on the heat-dissipating coating surface and the heat source lower surface of the treatment plate according to Example 10 in the vertical direction. After making contact so as to be in position, a constant current (1.90 A) is applied, and the time change of the temperature at the upper measurement point (temperature T1) and the lower measurement point (temperature T2) is recorded by a data logger thermometer. did. The results are shown in Table 3.

実施例11〜12、比較例5〜7、参照例2
実施例11〜12および比較例5〜7のそれぞれに係る試験板、ならびに参照例2に係るブランク板についても同様にして、印加電流が1.90AのときのT1とT2を測定した。結果を表3に示した。
Examples 11-12, Comparative Examples 5-7, Reference Example 2
The test plates according to Examples 11 to 12 and Comparative Examples 5 to 7 and the blank plate according to Reference Example 2 were similarly measured for T1 and T2 when the applied current was 1.90A. The results are shown in Table 3.

なお、実施例10に係る焼付処理板、比較例5に係る焼付処理版および参照例2に係るブランク板についてはさらに、印加電流を1.50Aとした以外は実施例10と同様にして、T1およびT2を測定した。結果を表3に示した。   In addition, about the baking process board which concerns on Example 10, the baking process plate which concerns on the comparative example 5, and the blank board which concerns on the reference example 2, it is T1 similarly to Example 10 except having applied electric current to 1.50A. And T2. The results are shown in Table 3.

[塗膜の放熱作用の評価]
中温度域向けの放熱塗膜の評価方法に準じ、高温度域向けの放熱塗膜についてもΔ1およびΔ2を評価し、値を表3に示した。
[Evaluation of heat dissipation effect of coating film]
According to the evaluation method of the heat radiation coating film for the medium temperature range, Δ1 and Δ2 were also evaluated for the heat radiation coating film for the high temperature region, and the values are shown in Table 3.

[塗膜の放熱作用による熱源(シャント抵抗)の昇温抑制効果]
中温度域向けの放熱塗膜の評価方法に準じ、高温度域向けの放熱塗膜についてもΔ3およびΔ4を評価し、値を表3に示した。
[Temperature suppression effect of heat source (shunt resistance) due to heat dissipation action of coating film]
According to the evaluation method of the heat radiation coating film for the medium temperature range, Δ3 and Δ4 were also evaluated for the heat radiation coating film for the high temperature region, and the values are shown in Table 3.

<密着力の評価:碁盤目試験およびスクラッチ試験>
中温度域向けの放熱塗膜の評価方法に準じ、碁盤目試験およびスクラッチ試験を実施し、結果を表3に示した。
<Evaluation of adhesion: cross-cut test and scratch test>
A cross-cut test and a scratch test were performed according to the evaluation method of the heat radiation coating film for the middle temperature range, and the results are shown in Table 3.

表3より、低温域向けの放熱性塗料組成物を用いた塗膜(実施例10〜12)は、熱源温度が高い場合(印加電流1.90A)であっても、(B)成分以外の無機粒子を含む塗料組成物を用いた塗膜(比較例5)や、無機粒子を含まない塗膜(比較例7)と比較して、少なくとも16%程度以上は放熱性能において向上していることがわかる。   From Table 3, the coating films (Examples 10 to 12) using the heat-dissipating coating composition for the low temperature range are other than the component (B) even when the heat source temperature is high (applied current 1.90 A). Compared to a coating film using a coating composition containing inorganic particles (Comparative Example 5) and a coating film not containing inorganic particles (Comparative Example 7), at least about 16% or more is improved in heat dissipation performance. I understand.

また、熱源温度が低い場合(印加電流1.50A)においても、本発明の放熱性塗料組成物を用いた塗膜(実施例10)は、(B)成分以外の無機粒子を含む塗料組成物を用いた塗膜(比較例5)と比較して、少なくとも18%程度以上は放熱性能において向上していることがわかる。   Even when the heat source temperature is low (applied current 1.50 A), the coating film (Example 10) using the heat dissipating coating composition of the present invention contains a coating composition containing inorganic particles other than the component (B). It can be seen that at least about 18% or more is improved in heat dissipation performance as compared with the coating film using (Comparative Example 5).

また、参照例2に係る、印加電流が1.90Aのときのブランク板の表面実測温度(66.2℃)と、印加電流が1.50Aのときのそれ(47.4℃)とを 加味すると、本発明の塗料組成物は、少なくとも被塗装物品の温度が47.4℃〜66.2℃の低い温度域である場合においても、放熱性に優れた塗膜を与えていることが判る。   In addition, the blank surface measurement temperature (66.2 ° C.) when the applied current is 1.90 A according to Reference Example 2 and that (47.4 ° C.) when the applied current is 1.50 A are taken into account. Then, it turns out that the coating composition of this invention has given the coating film excellent in heat dissipation even when the temperature of a to-be-coated article is a low temperature range of 47.4 degreeC-66.2 degreeC. .

<高温域での使用を意図した放熱性塗膜の作製>
実施例13
調製例10の放熱性塗料組成物をアルミニウム板(2mm厚×50mm幅×100mm長さ:JIS H4000仕様、品名A1050P)上にアプリケーター(50〜100μmギャップ)を用いて膜厚が40〜50μmとなるよう塗布した。次いで約5分間室内で放置した後、乾燥器中にて160℃×30分間、焼付け処理をした。調製例14および15についても同様にし、焼付処理板を得た。
<Preparation of heat-dissipating coating film intended for use in high temperature range>
Example 13
Using the applicator (50-100 μm gap) on the aluminum plate (2 mm thickness × 50 mm width × 100 mm length: JIS H4000 specification, product name A1050P), the heat dissipating coating composition of Preparation Example 10 has a film thickness of 40-50 μm. It was applied as follows. Next, after leaving it indoors for about 5 minutes, it was baked in a dryer at 160 ° C. for 30 minutes. In the same manner as in Preparation Examples 14 and 15, a baking-treated plate was obtained.

比較例8
前記比較調製例2の放熱性塗料組成物(炭化ケイ素微粒子含有)について、実施例13と同様の方法に従い、焼付処理板を得た。
Comparative Example 8
About the heat-radiating coating composition of Comparative Preparation Example 2 (containing silicon carbide fine particles), a baking treatment plate was obtained in the same manner as in Example 13.

比較例9
前記比較調製例5の放熱性塗料組成物(窒化ホウ素微粒子を相対的に多く含有)について、実施例13と同様の方法に従い、焼付処理板を得た。
Comparative Example 9
About the heat-radiating coating composition of Comparative Preparation Example 5 (containing a relatively large amount of boron nitride fine particles), a baking treatment plate was obtained in the same manner as in Example 13.

比較例10
前記比較調製例4に係る放熱性塗料組成物(無機微粒子含有せず)について、実施例13と同様の方法に従い、焼付処理板を得た。
Comparative Example 10
About the heat-radiating coating composition (not containing inorganic fine particles) according to Comparative Preparation Example 4, a baking treatment plate was obtained in the same manner as in Example 13.

また、前記アルミニウム板それ自体をブランク試験(参照例3)に供した。   The aluminum plate itself was subjected to a blank test (Reference Example 3).

<塗膜の放熱性能評価>
実施例13
前記した、中温域の使用を意図した放熱性塗膜の性能評価の項目に準じ、実施例13に係る処理板の放熱性塗膜面と熱源下面とに熱電対を、それらが垂直方向において同位置となるよう接触させた後、一定の電流(4.80A)を印加し、上面の測定ポイント(温度T1)と下面の測定ポイント(温度T2)の温度の時間変化をデータロガー温度計により記録した。結果を表4に示した。
<Evaluation of heat dissipation performance of coating film>
Example 13
In accordance with the performance evaluation items of the heat-dissipating coating film intended to be used in the middle temperature range, thermocouples are provided on the heat-dissipating coating surface and the heat source lower surface of the treatment plate according to Example 13 in the vertical direction. After making contact so as to be in position, a constant current (4.80 A) is applied, and the time change of the temperature at the upper measurement point (temperature T1) and lower measurement point (temperature T2) is recorded with a data logger thermometer did. The results are shown in Table 4.

実施例14〜15
実施例11〜12のそれぞれに係る試験板についても同様にして、印加電流が4.80AのときのT1とT2を測定し、結果を表4に示した。
Examples 14-15
Similarly, for the test plates according to Examples 11 to 12, T1 and T2 were measured when the applied current was 4.80 A. The results are shown in Table 4.

比較例8
比較例8に係る試験板については、印加電流が5.20AのときのT1とT2を測定し、結果を表4に示した。
Comparative Example 8
For the test plate according to Comparative Example 8, T1 and T2 were measured when the applied current was 5.20 A. The results are shown in Table 4.

比較例9
比較例9係る試験板については、印加電流が4.80AのときのT1とT2を測定し、結果を表4に示した。
Comparative Example 9
For the test plate of Comparative Example 9, T1 and T2 were measured when the applied current was 4.80 A. The results are shown in Table 4.

比較例10
比較例9係る試験板については、印加電流が5.20AのときのT1とT2を測定し、結果を表4に示した。
Comparative Example 10
For the test plate of Comparative Example 9, T1 and T2 were measured when the applied current was 5.20 A. The results are shown in Table 4.

参照例3
参照例3に係るブランク板については、印加電流が5.60AのときのT1とT2を測定し、結果を表4に示した。
Reference example 3
For the blank plate according to Reference Example 3, T1 and T2 were measured when the applied current was 5.60 A. The results are shown in Table 4.

なお、実施例13に係る焼付処理板および比較例8に係る焼付処理版についてはさらに、印加電流を3.20AにしたときのT1およびT2を測定した。また、参照例3に係るブランク板については、印加電流が3.50AのときのT1およびT2を更に測定し、結果を表4に示した。   In addition, T1 and T2 when the applied current was set to 3.20 A were further measured for the baking treatment plate according to Example 13 and the baking treatment plate according to Comparative Example 8. For the blank plate according to Reference Example 3, T1 and T2 when the applied current was 3.50 A were further measured, and the results are shown in Table 4.

[塗膜の放熱作用の評価]
中温度域向けの放熱塗膜の評価方法に準じ、高温度域向けの放熱塗膜についてもΔ1およびΔ2を評価し、値を表4に示した。
[Evaluation of heat dissipation effect of coating film]
According to the evaluation method of the heat radiation coating film for the medium temperature range, Δ1 and Δ2 were also evaluated for the heat radiation coating film for the high temperature region, and the values are shown in Table 4.

[塗膜の放熱作用による熱源(シャント抵抗)の昇温抑制効果]
中温度域向けの放熱塗膜の評価方法に準じ、高温度域向けの放熱塗膜についてもΔ3およびΔ4を評価し、値を表4に示した。
[Temperature suppression effect of heat source (shunt resistance) due to heat dissipation action of coating film]
According to the evaluation method of the heat radiation coating film for the medium temperature range, Δ3 and Δ4 were also evaluated for the heat radiation coating film for the high temperature region, and the values are shown in Table 4.

<密着力の評価:碁盤目試験およびスクラッチ試験>
中温度域向けの放熱塗膜の評価方法に準じ、碁盤目試験およびスクラッチ試験を実施し、結果を表4に示した。
<Evaluation of adhesion: cross-cut test and scratch test>
A cross-cut test and a scratch test were performed according to the evaluation method of the heat radiation coating film for the middle temperature range, and the results are shown in Table 4.

表4より、本発明の放熱性塗料組成物を用いた塗膜(実施例13〜15)は、熱源温度が高い場合であっても、(B)成分以外の無機粒子を含む塗料組成物を用いた塗膜(比較例8)や、無機粒子を含まない塗膜(比較例10)と比較して、少なくとも20%程度以上は放熱性能が向上していることがわかる。   From Table 4, the coating films (Examples 13 to 15) using the heat dissipating coating composition of the present invention are coating compositions containing inorganic particles other than the component (B) even when the heat source temperature is high. It can be seen that the heat dissipation performance is improved by at least about 20% compared to the coating film used (Comparative Example 8) and the coating film not containing inorganic particles (Comparative Example 10).

また、高温域において相対的に熱源温度が低い場合においても、本発明の放熱性塗料組成物を用いた塗膜(実施例13)は、(B)成分以外の無機粒子を含む塗料組成物を用いた塗膜(比較例8)と比較して、やはり少なくとも30%程度以上は放熱性能が向上していることがわかる。   Further, even when the heat source temperature is relatively low in the high temperature region, the coating film using the heat dissipating coating composition of the present invention (Example 13) is a coating composition containing inorganic particles other than the component (B). Compared with the coating film used (Comparative Example 8), it can be seen that the heat dissipation performance is improved by at least about 30% or more.

また、参照例3に係る、印加電流が5.60Aのときのブランク板の表面実測温度(203.7℃)と、印加電流が3.50Aのときのブランク板のそれ(121.4℃)とを加味すると、本発明の塗料組成物は、少なくとも被塗装物品の温度が121.4℃〜203.7℃の高い温度域である場合においても、放熱性に優れた塗膜を与えていることが判る。


Further, according to Reference Example 3, the surface temperature of the blank plate measured when the applied current is 5.60 A (203.7 ° C.) and that of the blank plate when the applied current is 3.50 A (121.4 ° C.). , The coating composition of the present invention gives a coating film having excellent heat dissipation even at least when the temperature of the article to be coated is a high temperature range of 121.4 ° C. to 203.7 ° C. I understand that.


Claims (10)

アルキル基の炭素数が1〜18の(メタ)アクリル酸アルキルエステル類およびスチレン類を反応させてなるアクリル樹脂(a−1)、エポキシ樹脂(a−2)およびアミノ樹脂(a−3)からなるバインダー樹脂組成物(A)10〜70体積%と、熱伝導度が100W/mK未満の放熱性フィラー(B)90〜30体積%と、必要に応じて着色顔料(C)0〜20体積%とを有機溶剤(D)に配合してなる、液状またはペースト状の放熱性塗料組成物。 From an acrylic resin (a-1), an epoxy resin (a-2) and an amino resin (a-3) obtained by reacting a (meth) acrylic acid alkyl ester having 1 to 18 carbon atoms of an alkyl group and styrenes The binder resin composition (A) 10 to 70% by volume, the heat dissipating filler (B) 90 to 30% by volume less than 100 W / mK, and the color pigment (C) 0 to 20% by volume as necessary. % Or an organic solvent (D), and a liquid or paste heat-dissipating coating composition. (B)成分が、マイカ微粒子、フォルステライト微粒子、酸化ケイ素微粒子、フッ化金属結晶微粒子および窒化ホウ素微粒子からなる群より選ばれる少なくとも1種である、請求項1の放熱性塗料組成物。 The heat-radiating coating composition according to claim 1, wherein the component (B) is at least one selected from the group consisting of mica fine particles, forsterite fine particles, silicon oxide fine particles, metal fluoride fine crystal particles, and boron nitride fine particles. (a−2)成分がビスフェノール型エポキシ樹脂である請求項1または2の放熱性塗料組成物。 The heat dissipating coating composition according to claim 1 or 2, wherein the component (a-2) is a bisphenol type epoxy resin. (a−3)成分がメラミン樹脂である請求項1〜3のいずれかの放熱性塗料組成物。 (A-3) A component is a melamine resin, The heat-radiating coating composition in any one of Claims 1-3. (B)成分の平均一次粒子径が0.1〜50μmである、請求項1〜4のいずれかの放熱性塗料組成物。 (B) The heat-radiating coating composition in any one of Claims 1-4 whose average primary particle diameter of a component is 0.1-50 micrometers. (C)成分が酸化チタン、カーボンブラック、および酸化鉄からなる群より選ばれる少なくとも1種である、請求項1〜5のいずれかの放熱性塗料組成物。 The heat dissipating coating composition according to claim 1, wherein the component (C) is at least one selected from the group consisting of titanium oxide, carbon black, and iron oxide. (C)成分の平均一次粒子径が(B)成分の平均一次粒子径の0.01〜10%である、請求項1〜6のいずれかの放熱性塗料組成物。 The heat-radiating coating composition according to any one of claims 1 to 6, wherein the average primary particle diameter of the component (C) is 0.01 to 10% of the average primary particle diameter of the component (B). (D)成分が芳香族炭化水素系溶剤を含む、請求項1〜7のいずれかの放熱性塗料組成物。 (D) The heat-radiating coating composition according to any one of claims 1 to 7, wherein the component contains an aromatic hydrocarbon solvent. 請求項1〜8のいずれかの放熱性塗料組成物からなる放熱性塗膜。 A heat dissipating coating film comprising the heat dissipating coating composition according to claim 1. 請求項9の放熱性塗膜を有する被塗装物品。 An article to be coated having the heat-radiating coating film according to claim 9.
JP2013042247A 2012-03-02 2013-03-04 Heat dissipating coating composition, heat dissipating coating film and article to be coated Active JP6082890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042247A JP6082890B2 (en) 2012-03-02 2013-03-04 Heat dissipating coating composition, heat dissipating coating film and article to be coated

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012046903 2012-03-02
JP2012046903 2012-03-02
JP2013042247A JP6082890B2 (en) 2012-03-02 2013-03-04 Heat dissipating coating composition, heat dissipating coating film and article to be coated

Publications (2)

Publication Number Publication Date
JP2013209645A JP2013209645A (en) 2013-10-10
JP6082890B2 true JP6082890B2 (en) 2017-02-22

Family

ID=49527762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042247A Active JP6082890B2 (en) 2012-03-02 2013-03-04 Heat dissipating coating composition, heat dissipating coating film and article to be coated

Country Status (1)

Country Link
JP (1) JP6082890B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104804618B (en) * 2014-01-24 2017-11-07 江苏联科纳米科技有限公司 A kind of water-based cooling coating and preparation method thereof
KR101755773B1 (en) 2014-12-03 2017-07-10 현대자동차주식회사 Coating composite for heat dissipation and method of manufacturing the same
JP2016216584A (en) * 2015-05-19 2016-12-22 株式会社リコー Active energy ray curable composition, active energy ray curable ink, composition accommodation container, formation method and formation device of image and molding processed article
CN104987032A (en) * 2015-06-08 2015-10-21 杭州赤田能源科技有限公司 Fouling and slagging resistance and high temperature and corrosion resistance ceramic paint and preparation and usage method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101035A (en) * 1975-03-05 1976-09-07 Kansai Paint Co Ltd HISUIBUNSANGATANETSUKOKASEIAKURIRUJUSHITORYO
US5359174A (en) * 1993-08-31 1994-10-25 Eaton Corporation Thermally conductive, insulating, arc-quenching coating compositions for current interrupters
JP3764777B2 (en) * 1996-03-26 2006-04-12 三菱レイヨン株式会社 Thermosetting coating composition

Also Published As

Publication number Publication date
JP2013209645A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
US9346993B2 (en) Heat dissipating coating composition and heat dissipating coating film
KR101099258B1 (en) Acrylic-based thermally conductive composition and thermally conductive sheet
JP6082890B2 (en) Heat dissipating coating composition, heat dissipating coating film and article to be coated
CN102159633B (en) Heat conduction composition
KR20160078340A (en) Resin composition, heat-dissipating material, and heat-dissipating member
JP5921970B2 (en) Thermally conductive adhesive composition
JP2009136848A (en) Heat radiation coated metal plate
KR102155811B1 (en) The manufacturing method for heat radiation adhesive and heat radiation tape with excellent in-plane thermal conductivity comprising the same
WO2013172429A1 (en) Stretchable heat-radiation sheet, and article having same attached thereto
KR100865771B1 (en) Coating agent composition for heat sink
JP2005101025A (en) Heat dissipating
TW201336963A (en) Adhesive raw material and thermally conductive adhesive sheet
KR20170036332A (en) Sheets with phase change material for heat sink and heat sink coated the same
CN105315923B (en) A kind of Halogen thermal plastic insulation and preparation method thereof
KR101132668B1 (en) Steel sheet having superior heat-resistance, chemical resistance, thermo-conductivity, heat emissivity and adhesiveness
TW201404586A (en) Heat-conductive adhesive sheet
TW397772B (en) Heat-conductive and pressure-sensitive adhesive sheets and method for fixing electronic parts to heat-radiating members using the same
JPH11292998A (en) Heat-conductive sheet
CN109705725A (en) A kind of heat radiating type polyamide powder coating
CN107573446A (en) Boron nitride nanosheet and carbopol gel composite heat interfacial material and preparation method
JP7077526B2 (en) Composite member
JP2009120841A (en) Acrylic thermally conductive composition and article including the same
JP2013119595A (en) Thermally conductive self-adhesive sheet
KR102438096B1 (en) Low dielectric heat dissipation adhesive sheet
JP2007045876A (en) Ink composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R150 Certificate of patent or registration of utility model

Ref document number: 6082890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250