JP6064539B2 - Powder core powder manufacturing method and dust core powder - Google Patents

Powder core powder manufacturing method and dust core powder Download PDF

Info

Publication number
JP6064539B2
JP6064539B2 JP2012254490A JP2012254490A JP6064539B2 JP 6064539 B2 JP6064539 B2 JP 6064539B2 JP 2012254490 A JP2012254490 A JP 2012254490A JP 2012254490 A JP2012254490 A JP 2012254490A JP 6064539 B2 JP6064539 B2 JP 6064539B2
Authority
JP
Japan
Prior art keywords
powder
heat treatment
crushing
mass
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012254490A
Other languages
Japanese (ja)
Other versions
JP2014103267A (en
Inventor
拓也 高下
拓也 高下
中村 尚道
尚道 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012254490A priority Critical patent/JP6064539B2/en
Publication of JP2014103267A publication Critical patent/JP2014103267A/en
Application granted granted Critical
Publication of JP6064539B2 publication Critical patent/JP6064539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、高い磁束密度を有しかつ低鉄損である圧粉磁芯を製造するための圧粉磁芯用粉末の製造方法および圧粉磁芯用粉末に関するものである。   The present invention relates to a method for producing a dust core powder for producing a dust core having a high magnetic flux density and low iron loss, and to a dust core powder.

モーターやトランスなどに用いられる磁芯には、磁束密度が高くかつ鉄損が低いという特性が要求される。従来、このような磁芯には電磁鋼板を積層したものが用いられてきたが、近年、モーター用磁芯材料として圧粉磁芯が注目されている。
この圧粉磁芯の最大の特徴は、三次元的な磁気回路が形成可能な点にある。すなわち、電磁鋼板は、積み重ねによって磁芯を成形することから形状の自由度に限界があるが、圧粉磁芯は絶縁被覆された軟磁性粒子をプレスして成形するため、金型さえあれば形状に制約がなく、電磁鋼板を上回る形状の自由度を得ることが出来る。
また、電磁鋼板の場合は、鋼板表面が絶縁されたものを積層するため、鋼板面方向と面垂直方向とで磁気特性が異なり、面垂直方向の磁気特性に劣ることが、欠点になっている。一方、圧粉磁芯は粒子一つ一つが絶縁被覆に覆われており、あらゆる方向に対して磁気特性が均一であるため、3次元的な磁気回路に用いるのに適している。このような特性面での優位性に加えて、圧粉磁芯とするプレス成形は、鋼板の積み重ね処理に比べて工程が短く歩留まりが高いため、原料粉末が安価であることと相まったコスト面での優位性も活かすことが期待されている。
Magnetic cores used in motors and transformers are required to have high magnetic flux density and low iron loss. Conventionally, a laminate of electromagnetic steel sheets has been used as such a magnetic core, but in recent years, a dust core has attracted attention as a magnetic core material for motors.
The greatest feature of the dust core is that a three-dimensional magnetic circuit can be formed. In other words, electromagnetic steel sheets form magnetic cores by stacking, so there is a limit to the degree of freedom of shape. However, dust cores are formed by pressing soft magnetic particles with insulation coating, so there is only a mold. There is no restriction on the shape, and it is possible to obtain a degree of freedom in shape that exceeds that of the electromagnetic steel sheet.
In addition, in the case of electromagnetic steel sheets, since the steel sheet surfaces are insulated, the magnetic properties are different between the steel plate surface direction and the surface vertical direction, and the magnetic properties in the surface vertical direction are inferior. . On the other hand, the dust core is suitable for use in a three-dimensional magnetic circuit because each particle is covered with an insulating coating and has uniform magnetic characteristics in all directions. In addition to the superiority in such characteristics, press molding with a dust core has a short process and a high yield compared to the stacking process of steel sheets, so the cost is combined with the low price of the raw material powder. It is expected to take advantage of

上述のように、圧粉磁芯は三次元磁気回路を設計する上で不可欠な素材であり、且つコストパフォーマンスに優れることから、近年はモーターの小型化、レアアースフリー化、低コスト化などの観点から、圧粉磁芯を利用した三次元磁気回路を有する、モーターの研究開発が盛んに行われている。   As mentioned above, the dust core is an indispensable material for designing a three-dimensional magnetic circuit and is excellent in cost performance. In recent years, the viewpoints of miniaturization of motors, rare earth free, cost reduction, etc. Therefore, research and development of motors having a three-dimensional magnetic circuit using a dust core have been actively conducted.

ここで、モーター用の軟磁性材料に最も要求される磁気特性は、高磁束密度並びに低鉄損の2つである。磁束密度を高める為には、粉末の成分が高純度であること、粉末内部の結晶組織が粗大であることが好ましい。これにより粉末が軟化し、高い成形体密度が得られるため磁束密度が向上する。また、鉄損を下げる為には、粉末の成分が高純度であること、粉末内部の結晶組織が粗大であること、金型への粉末の充填率(見掛密度)が高いこと、が好ましい。これにより成形時に蓄積される歪の量が減少し、鉄損が低減する。なお、成分の高純度化は、組織を清浄化して磁化を容易にすることで鉄損を低減する効果もある。   Here, two of the magnetic properties most required for a soft magnetic material for motors are high magnetic flux density and low iron loss. In order to increase the magnetic flux density, it is preferable that the components of the powder are high purity and the crystal structure inside the powder is coarse. As a result, the powder is softened, and a high compact density is obtained, so that the magnetic flux density is improved. Moreover, in order to reduce iron loss, it is preferable that the component of the powder is high purity, the crystal structure inside the powder is coarse, and the filling rate (apparent density) of the powder into the mold is high. . This reduces the amount of strain accumulated during molding and reduces iron loss. Note that increasing the purity of the component also has the effect of reducing iron loss by cleaning the structure and facilitating magnetization.

上述のような要求に応えるために、例えば特許文献1では、NbおよびTiを添加したアトマイズ鉄粉を800℃〜900℃の還元性雰囲気中で熱処理し、次いで粉末の凝集分離を目的として、極力歪が加わらないように機械的な粉砕を行い、歪導入の懸念がある場合は歪取熱処理を実施し、絶縁被覆を施して圧粉磁芯用粉末とする技術が開示されている。この技術は、NbおよびTiの添加によって磁気特性に有害な固溶元素を凝集析出させ無害化するという成分の高純度化に相当する技術と、粉砕後の熱処理による鉄粉の歪取技術を組み合わせたものであるが、金型への充填率を高める、すなわち見掛密度を向上させる試みがなされていないことから、優れた磁気特性を得る為には改善の余地があった。なお、「粉末の凝集分離を目的とした機械的な粉砕」が行われているが、このような粉砕はハンマーミル等の衝撃式の粉砕機を用いて行うのが一般的である。しかし、粉砕により見掛密度を上げるためには粉末に対して積極的に一定のせん断歪を導入する必要があり、上記の極力歪が加わらない機械的粉砕では鉄損の低い圧粉磁芯を得ることは難しかった。   In order to meet the above-described requirements, for example, in Patent Document 1, atomized iron powder to which Nb and Ti are added is heat-treated in a reducing atmosphere at 800 ° C. to 900 ° C., and then for the purpose of coagulating and separating the powder as much as possible. A technique is disclosed in which mechanical pulverization is performed so as not to add strain, and when there is a concern about introduction of strain, a strain removing heat treatment is performed and an insulating coating is applied to obtain powder for a dust core. This technology combines technology equivalent to high purity of components that coagulates and precipitates solute elements harmful to magnetic properties by adding Nb and Ti, and technology for straining iron powder by heat treatment after grinding. However, since no attempt has been made to increase the filling rate into the mold, that is, to increase the apparent density, there is room for improvement in order to obtain excellent magnetic properties. In addition, “mechanical pulverization for the purpose of agglomeration and separation of powder” is performed, but such pulverization is generally performed using an impact pulverizer such as a hammer mill. However, in order to increase the apparent density by pulverization, it is necessary to positively introduce a certain shear strain to the powder. In mechanical pulverization that does not add the strain as much as possible, a dust core having a low iron loss is required. It was difficult to get.

また、特許文献2および特許文献3では、水アトマイズ鉄粉に対して回転式の解砕機による解砕を行うことで見掛密度を向上させる技術が開示されている。しかしながら、特許文献2及び特許文献3に記載の技術は、粉末に非常に大きな歪が導入される条件で行われているため、歪取焼鈍後の粉末内部の結晶組織が微細化する結果、鉄損が増加する不利がある。   Moreover, in patent document 2 and patent document 3, the technique which improves an apparent density by performing crushing with a rotary crusher with respect to water atomized iron powder is disclosed. However, since the techniques described in Patent Document 2 and Patent Document 3 are performed under a condition in which a very large strain is introduced into the powder, the crystal structure inside the powder after strain relief annealing is refined. There is a disadvantage that the loss increases.

特開2011−202213JP2011-202213 特開昭64−21001JP-A 64-21001 特開平4−48001JP 4-48001

上述のように、従来技術では成形後に高磁束密度かつ低鉄損を確実にそなえる軟磁性鉄粉を得ることは難しいものであった。
本発明の目的は、高磁束密度かつ低鉄損の特性を成形後の圧粉磁芯に与えられる圧粉磁芯用粉末およびその製造方法を提供することにある。
As described above, in the prior art, it has been difficult to obtain soft magnetic iron powder having a high magnetic flux density and a low iron loss after molding.
An object of the present invention is to provide a powder for a dust core that is provided with a high magnetic flux density and low iron loss characteristics to a dust core after molding, and a method for producing the same.

発明者らは、上記3つの先行技術を踏まえ、見掛密度と純度が高く圧縮性に優れ、かつ優れた磁気特性(高磁束密度、低鉄損)を成形品に与えることが出来る鉄系軟磁性粉末の製造方法について検討を重ねてきた。その結果、高温での水素還元で成分を高純度化し、続く粉砕および解砕工程にて、高温水素還元で凝集した粉末の見掛密度を回復、さらには高めて、この解砕工程後に900℃未満で歪取焼鈍を行うことで粉末の凝集を防ぎつつ粉末内に導入された歪を開放し、最後に粉末に対して絶縁被覆を施すことによって、成形後に低鉄損かつ高磁束密度の特性を与えることが可能な鉄系軟磁性粉末を得ることに成功した。   Based on the above three prior arts, the inventors have an iron-based soft material that has high apparent density and purity, excellent compressibility, and excellent magnetic properties (high magnetic flux density, low iron loss). Studies have been conducted on the production method of magnetic powder. As a result, the components were purified by hydrogen reduction at a high temperature, and the apparent density of the powder aggregated by the high temperature hydrogen reduction was recovered and further increased in the subsequent pulverization and pulverization processes. Less strain loss annealing is performed to release the strain introduced in the powder while preventing powder aggregation, and finally the insulation coating is applied to the powder, resulting in low iron loss and high magnetic flux density after molding. Has succeeded in obtaining an iron-based soft magnetic powder capable of imparting a high temperature.

すなわち、本発明の要旨は、以下の通りである。
1.圧粉磁芯用鉄系軟磁性粉末の製造方法であって、
アトマイズ法によって鉄系軟磁性粉末を得る工程と、
該鉄系軟磁性粉末に、950℃以上の水素雰囲気で熱処理を施す還元熱処理工程と、
該還元熱処理工程後に粉砕を行う粉砕工程と、
該粉砕工程を経た粉末に回転体によるせん断力を与えて解砕を行う解砕工程と、
該解砕工程後に500℃以上900℃未満の温度での歪取熱処理を行う歪取熱処理工程と、
該歪取熱処理工程後に前記粉末の表面に粉末質量に対して0.05mass%以上0.3mass%未満の絶縁被覆を施す工程と
を含み、
前記解砕工程は、前記回転体の周速(m/s)と解砕処理時間(s)との積が1000m以上22000m以下となる条件下に行うことを特徴とする圧粉磁芯用粉末の製造方法。
That is, the gist of the present invention is as follows.
1. A method for producing an iron-based soft magnetic powder for a dust core,
Obtaining an iron-based soft magnetic powder by an atomizing method;
A reduction heat treatment step of heat-treating the iron-based soft magnetic powder in a hydrogen atmosphere at 950 ° C. or higher;
A pulverization step for pulverization after the reduction heat treatment step;
A crushing step of crushing the powder after the crushing step by applying a shearing force by a rotating body;
A strain relief heat treatment step of performing a strain relief heat treatment at a temperature of 500 ° C. or more and less than 900 ° C. after the crushing step;
Including a step of applying an insulation coating of 0.05 mass% or more and less than 0.3 mass% to the surface of the powder after the distortion removing heat treatment step,
The powder for a dust core, wherein the crushing step is performed under a condition that a product of a peripheral speed (m / s) of the rotating body and a crushing time (s) is 1000 m or more and 22000 m or less. Manufacturing method.

2.前記1に記載の製造方法によって得られる圧粉磁芯用粉末。 2. A powder for a dust core obtained by the production method according to 1 above.

3.C量0.003mass%以下およびO量0.1mass%以下であることを特徴とする前記2に記載の圧粉磁芯用粉末。 3. The powder for a dust core according to 2, wherein the C content is 0.003 mass% or less and the O content is 0.1 mass% or less.

4.見掛密度4.0g/cm以上であることを特徴とする前記2または3に記載の圧粉磁芯用粉末。 4). 4. The powder for a dust core according to 2 or 3, wherein the apparent density is 4.0 g / cm 3 or more.

本発明によれば、成形した圧粉磁芯を高磁束密度かつ低鉄損とする、圧粉磁芯用粉末を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the powder for powder magnetic cores which makes the shape | molded powder magnetic core high magnetic flux density and low iron loss can be provided.

以下、本発明を具体的に説明する。
本発明の圧粉磁芯用粉末の原料となる、鉄系軟磁性粉末は、アトマイズ法によって得られるものを用いる。ここで、アトマイズ法に限定した理由は、酸化物還元法や電解析出法によって得られる粉末は、見掛密度が低い為、解砕を行ったとしても十分な見掛密度の向上効果が得られないためである。アトマイズ法であれば、ガス、水、ガス+水、遠心など種類は問わない。しかし、実用面を考えると一度に大量の粉末を製造でき、かつコスト面で最も優れる水アトマイズ法を用いるのが好ましい。
Hereinafter, the present invention will be specifically described.
The iron-based soft magnetic powder used as a raw material for the powder for a dust core of the present invention is obtained by an atomizing method. Here, the reason for limiting to the atomization method is that the powder obtained by the oxide reduction method or the electrolytic deposition method has a low apparent density, so that even if it is pulverized, a sufficient effect of improving the apparent density is obtained. It is because it is not possible. As long as the atomizing method is used, any kind of gas, water, gas + water, centrifugal, etc. may be used. However, in view of practical use, it is preferable to use a water atomizing method that can produce a large amount of powder at a time and is most excellent in terms of cost.

軟磁性粉末の組成は、鉄を主成分とするものであれば良い。その様な軟磁性粉末としては、純鉄、Fe-Si、Fe-Cr、Fe-Co、Fe-Al、Fe-Ni、Fe-Si-AlおよびFe-Ni-Co等がある。特に、原料価格が安くかつ水アトマイズ法での製造が容易な、純鉄粉末を用いることが好ましい。純鉄粉を用いる場合、不可避的不純物として、C≦1.0mass%、O≦1.0mass%、Al≦0.01mass%、Si≦0.03mass%、Mn≦0.1mass%およびCr≦0.05mass%の混入が許容される。   The composition of the soft magnetic powder may be anything that contains iron as a main component. Such soft magnetic powders include pure iron, Fe—Si, Fe—Cr, Fe—Co, Fe—Al, Fe—Ni, Fe—Si—Al, Fe—Ni—Co, and the like. In particular, it is preferable to use a pure iron powder that is inexpensive and easy to manufacture by the water atomization method. When pure iron powder is used, inevitable impurities include C ≦ 1.0 mass%, O ≦ 1.0 mass%, Al ≦ 0.01 mass%, Si ≦ 0.03 mass%, Mn ≦ 0.1 mass%, and Cr ≦ 0.05 mass%. Permissible.

また、後述の仕上熱処理中に粉末内の結晶組織を十分粗大化させるために、粉末の平均粒子径が100μm以上の粉末を用いることが好ましい。ここで、平均粒子径は、重量累積分布のメジアン径D50とする。メジアン径D50は、JIS Z8801−1に規定される篩を用いて粒度分布を測定することによって決定できる。すなわち、平均粒子径が100μm未満では、粉末内の結晶組織の粗大化が不十分となり、圧粉磁芯成形後のヒステリシス損が増加する。従って、平均粒子径が100μm以上の粉末を用いることが好ましい。   In order to sufficiently coarsen the crystal structure in the powder during the finish heat treatment described later, it is preferable to use a powder having an average particle diameter of 100 μm or more. Here, the average particle diameter is the median diameter D50 of the cumulative weight distribution. The median diameter D50 can be determined by measuring the particle size distribution using a sieve defined in JIS Z8801-1. That is, when the average particle size is less than 100 μm, the crystal structure in the powder is not sufficiently coarsened, and the hysteresis loss after the dust core molding is increased. Therefore, it is preferable to use a powder having an average particle size of 100 μm or more.

さらに、粉末の見掛密度は高い方が好ましく、3.5g/cm以上のものを用いるのが良い。ここで、見掛密度とは、粉末の充填率の程度を示す指標であり、JIS Z2504に規定される試験方法によって測定することができる。すなわち、見掛密度が3.5g/cm未満になると、解砕後に見掛密度4.0g/cm3以上の粉末を得ることが困難となる。なお、解砕後の見掛密度を4.0g/cm3以上とする必要があるのは、後述のとおりである。 Further, the apparent density of the powder is preferably higher, and it is better to use a powder having a density of 3.5 g / cm 3 or more. Here, the apparent density is an index indicating the degree of powder filling rate and can be measured by a test method defined in JIS Z2504. That is, when the apparent density is less than 3.5 g / cm 3, it becomes difficult to obtain a powder having an apparent density of 4.0 g / cm 3 or more after pulverization. The apparent density after crushing needs to be 4.0 g / cm 3 or more as described later.

得られた鉄系軟磁性粉末は、必要に応じて粒度分布調整を行う。具体的には、45μm以下の微粉末を除去する。これにより、後工程で平均結晶粒径50μm以上とするのが容易になる。
なお、粒度分布調整の方法としては、JIS Z8801−1に規定される篩を用いた篩い分けがある。
The obtained iron-based soft magnetic powder is subjected to particle size distribution adjustment as necessary. Specifically, fine powder of 45 μm or less is removed. Thereby, it becomes easy to set the average crystal grain size to 50 μm or more in a subsequent process.
In addition, as a method for adjusting the particle size distribution, there is a sieving method using a sieve defined in JIS Z8801-1.

次に、水素雰囲気での還元熱処理を行う。この還元熱処理の目的は、粉末におけるC量の低減、O量の低減および結晶粒の粗大化である。
すなわち、Cは、粉末の硬度や保磁力を増加させ成形時の圧縮性の低下と圧粉磁芯の鉄損の増加を招くため、0.003mass%以下、さらには0.002mass%以下とするのが好ましい。Oは、粉末表面に酸化物の状態で存在し、この酸化物が圧粉磁芯の鉄損の増加を招く。従って、0.1mass%以下、さらには0.08mass%以下とするのが好ましい。
Next, a reduction heat treatment is performed in a hydrogen atmosphere. The purpose of this reduction heat treatment is to reduce the amount of C in the powder, to reduce the amount of O, and to coarsen the crystal grains.
That is, C increases the hardness and coercive force of the powder, leading to a decrease in compressibility at the time of molding and an increase in iron loss of the dust core, so 0.003 mass% or less, and further 0.002 mass% or less. preferable. O exists in an oxide state on the powder surface, and this oxide causes an increase in iron loss of the dust core. Therefore, it is preferably 0.1 mass% or less, more preferably 0.08 mass% or less.

また、粉末内の結晶組織が微細であると、C量が多いときと同様に粉末の圧縮性の低下と圧粉磁芯の鉄損の増加を招く。従って、粉末内の結晶組織は粗大である方が良く、平均結晶粒径が50μm以上とすることが好ましい。なお、平均結晶粒径の上限は特に設ける必要はないが、その上限は粉末の粒径によって自ずと制限される。   In addition, if the crystal structure in the powder is fine, the compressibility of the powder is reduced and the iron loss of the dust core is increased as in the case where the amount of C is large. Therefore, the crystal structure in the powder is preferably coarse, and the average crystal grain size is preferably 50 μm or more. The upper limit of the average crystal grain size is not particularly required, but the upper limit is naturally limited by the particle size of the powder.

ここで、本発明における平均結晶粒径は、以下の方法によって求めることができる。
まず、被測定物である鉄粉末を、熱可塑性樹脂粉に混合し混合粉としたのち、該混合粉を適当な型に装入後、加熱し樹脂を溶融させたのち冷却固化させ、鉄粉含有樹脂固形物とする。ついで、該鉄粉含有樹脂固形物を適当な断面で切断し、該切断した面を研磨し腐蝕したのち、光学顕微鏡または走査型電子顕微鏡(100倍)を用いて鉄粉粒子の断面組織を観察及び/又は撮像する。撮像した視野内の任意の粒に対して、粒を横切るように線を5本引く。このとき、線はそれぞれ非平行となるようにし、かつ粒子の中心近傍を横切るように引く。粒子内に含まれる線の全長を、それぞれの線が横切った粒の個数で割ることにより結晶粒径とする。上記の様な結晶粒測定を、1視野当り10個以上の粉末、4視野以上で行うことで少なくとも40個の粉末の結晶粒を測定する。
Here, the average crystal grain size in the present invention can be determined by the following method.
First, iron powder, which is the object to be measured, is mixed with a thermoplastic resin powder to obtain a mixed powder, and then the mixed powder is charged into an appropriate mold, heated to melt the resin, and then solidified by cooling. Let it be a contained resin solid. Next, after cutting the iron powder-containing resin solid material with a suitable cross section, polishing and corroding the cut surface, observe the cross-sectional structure of the iron powder particles using an optical microscope or scanning electron microscope (100 times) And / or image. For a given grain in the field of view, five lines are drawn across the grain. At this time, the lines are made non-parallel, and are drawn so as to cross the vicinity of the center of the particle. A crystal grain size is obtained by dividing the total length of the lines contained in the grains by the number of grains traversed by each line. By measuring the crystal grains as described above with 10 or more powders per field of view and 4 fields or more, crystal grains of at least 40 powders are measured.

上記したC量およびO量、平均結晶粒径に従う粉末を得る為には、上記還元熱処理を950℃以上で行う必要がある。なぜなら、950℃未満ではC量およびO量の低減と、結晶粒径の粗大化が不十分となるためである。一方、上限は、粉末の過度の凝集を防ぐため、1100℃以下とすることが好ましい。   In order to obtain a powder according to the above-mentioned C amount and O amount and the average crystal grain size, it is necessary to perform the above reduction heat treatment at 950 ° C. or higher. This is because when the temperature is lower than 950 ° C., the amount of C and O is reduced and the crystal grain size is not sufficiently increased. On the other hand, the upper limit is preferably set to 1100 ° C. or lower in order to prevent excessive aggregation of the powder.

さらに、処理時間は、60〜120minとすることが好ましい。すなわち、処理時間が60min未満では、C量およびO量の低減と、結晶粒径の粗大化が不十分となるためであり、一方、処理時間が120minを超えると、粉末の凝集が進行して、後工程の粉砕、解砕の負荷が増加するためである。   Furthermore, the treatment time is preferably 60 to 120 minutes. That is, if the treatment time is less than 60 minutes, the reduction of the amount of C and O and the coarsening of the crystal grain size become insufficient, while if the treatment time exceeds 120 minutes, the powder aggregation proceeds. This is because the load of crushing and crushing in the subsequent process increases.

なお、還元熱処理における還元雰囲気としては例えば水素雰囲気が好ましい。この水素雰囲気は、前半を露点60℃以下の湿水素、後半を乾水素とし、前半の湿水素雰囲気での熱処理は、総熱処理時間の半分以下であることが好ましい。なぜなら、湿水素雰囲気は脱炭のために必要であるが、過度に湿水素雰囲気を導入するとO量が増加するためである。また、湿水素雰囲気を前半としたのは、前半で脱炭を行うことで、Cによる熱処理中の結晶粒成長抑制の影響を小さくするためである。   For example, a hydrogen atmosphere is preferable as the reducing atmosphere in the reduction heat treatment. In this hydrogen atmosphere, the first half is wet hydrogen having a dew point of 60 ° C. or lower, the second half is dry hydrogen, and the heat treatment in the first half wet hydrogen atmosphere is preferably half or less of the total heat treatment time. This is because a wet hydrogen atmosphere is necessary for decarburization, but when the wet hydrogen atmosphere is introduced excessively, the amount of O increases. The reason why the wet hydrogen atmosphere is the first half is that decarburization is performed in the first half, thereby reducing the influence of suppressing the crystal grain growth during the heat treatment by C.

前記の還元熱処理を施された鉄粉は強く結合している。従って、粉末の凝集を解くために、粉砕および解砕を行う必要がある。まず、粉砕は、続く解砕における装置への負荷を低減することが目的であり、粉末の凝集がある程度解くことができれば、どのような条件および手法で行っても構わないが、少なくとも粉砕後に500μm以下となる粒子が質量比で全体の80%以上となるような条件に従って行うことが好ましい。この粉砕を行う装置としては、ハンマーミルやジョークラッシャー等がある。また、粉砕後に粒径500μm以上となる粒子が存在する場合はそれを除去することが好ましい。なお、粒径500μm以上の粒子を除去する方法としては、JIS Z8801−1に規定される篩を用いた篩い分けがある。   The iron powder subjected to the reduction heat treatment is strongly bonded. Therefore, it is necessary to perform pulverization and crushing in order to break up the aggregation of the powder. First, the purpose of pulverization is to reduce the load on the apparatus in the subsequent pulverization, and any conditions and techniques may be used as long as the powder aggregation can be solved to some extent, but at least 500 μm after pulverization. It is preferable to carry out in accordance with conditions such that the following particles have a mass ratio of 80% or more of the total. As an apparatus for performing this pulverization, there are a hammer mill and a jaw crusher. Further, when there are particles having a particle diameter of 500 μm or more after pulverization, it is preferable to remove them. In addition, as a method for removing particles having a particle size of 500 μm or more, there is a sieving method using a sieve defined in JIS Z8801-1.

この粉砕を行った後に解砕を行うことが肝要である。解砕は、粉末の見掛密度を向上させることが主目的であり、解砕によって少なくとも4.0g/cm3以上の見掛密度を得ることが好ましい。なぜなら、4.0g/cm3を下回ると成形時に粉末に多量の歪が導入されるため、鉄損が増加してしまうからである。 It is important to crush after this crushing. The main purpose of crushing is to improve the apparent density of the powder, and it is preferable to obtain an apparent density of at least 4.0 g / cm 3 or more by crushing. This is because if it is less than 4.0 g / cm 3 , a large amount of strain is introduced into the powder at the time of molding, so that iron loss increases.

そのためには、粉砕にて用いた装置のような、衝撃式の粉砕装置を用いるのではなく、粉末一つ一つに強いせん断力を与えることが可能な装置を用いる必要が有る。このような解砕を行う装置としては、ヘンシェルミキサー、パルペライザー、インペラーミル、ハイスピードミキサーなどの、回転体(羽やローター)によって粉末に強いせん断力を与える装置が好適である。
しかし、過度にせん断力を与えると、粉末に大量の歪が導入され、後工程の歪取り焼鈍で再結晶が起こり、結晶粒が微細化する不利をまねく。そこで、解砕工程は、上記回転体の周速と処理時間との積算(周速(m/s)×処理時間(s))が1000m以上22000m以下となる条件で実施することが好ましい。すなわち、上記積算量が1000m未満では、上記した4.0g/cm3以上の見掛密度を得ることが困難であり、一方22000mを超えると、粉末に多量の歪が導入され、鉄損が増加するからである。ここで、回転体の周速とは、回転体最外周縁での周速のことを指す。なお、回転体の数は特に限定する必要はなく、例えば回転羽の枚数は任意でよい。
For this purpose, it is necessary to use an apparatus capable of applying a strong shearing force to each powder, instead of using an impact-type pulverizing apparatus such as the apparatus used in pulverization. As an apparatus for performing such crushing, an apparatus that gives a strong shearing force to the powder by a rotating body (feather or rotor) such as a Henschel mixer, a pulverizer, an impeller mill, or a high speed mixer is suitable.
However, if an excessive shear force is applied, a large amount of strain is introduced into the powder, and recrystallization occurs during the subsequent strain relief annealing, leading to the disadvantage that the crystal grains become finer. Therefore, the crushing step is preferably performed under the condition that the integral of the peripheral speed of the rotating body and the processing time (peripheral speed (m / s) × processing time (s)) is 1000 m or more and 22000 m or less. That is, if the integrated amount is less than 1000 m, it is difficult to obtain the above-mentioned apparent density of 4.0 g / cm 3 or more. On the other hand, if it exceeds 22000 m, a large amount of strain is introduced into the powder and iron loss increases. Because. Here, the peripheral speed of the rotating body refers to the peripheral speed at the outermost peripheral edge of the rotating body. Note that the number of rotating bodies is not particularly limited. For example, the number of rotating blades may be arbitrary.

次に、解砕の後に粉末内に導入された歪を開放するために歪取熱処理を行う。歪を開放することで成形後の鉄損が低減し、圧縮性が改善する。歪取熱処理は、粉末が凝集しない温度と時間で実施することが好ましく、900℃未満で90分以下とするのが良い。また、温度が低すぎては歪が開放されないため、500℃以上で実施する。同様に、処理時間が短いと、歪が開放されないため、10分以上で実施することが好ましい。   Next, a strain removing heat treatment is performed in order to release the strain introduced into the powder after crushing. By releasing the strain, iron loss after molding is reduced and compressibility is improved. The strain relief heat treatment is preferably performed at a temperature and a time at which the powder does not aggregate, and is preferably less than 900 ° C. and 90 minutes or less. Further, since the strain is not released if the temperature is too low, it is carried out at 500 ° C. or higher. Similarly, when the treatment time is short, the distortion is not released, and therefore it is preferable to carry out the treatment in 10 minutes or more.

歪取熱処理後は、粉末に対して絶縁被覆を施す。絶縁被覆は圧粉磁芯成形後の鉄損の増加を防止するために行う。絶縁被覆は、圧粉磁芯成形後も絶縁性を保てるものなら何でも良く、その様な絶縁被覆としては、シリコーン樹脂、リン酸金属塩やホウ酸金属塩をベースとしたガラス質の絶縁性アモルファス層や、MgO、フォルステライト、タルクおよびAl2O3などの金属酸化物、或いはSiO2をベースとした結晶質の絶縁層などがある。
なお、絶縁被覆の被覆量は、粉末全体で、0.05〜0.3mass%の範囲とすることが好ましい。被覆量が0.05mass%未満では被覆が不均一となり、絶縁性の低下を招くからであり、一方0.3mass%を超えて多くなると、圧粉磁芯中の圧粉磁芯用粉末の占める割合が少なくなり、成形体の密度が著しく低下するからである。
After the strain relief heat treatment, an insulating coating is applied to the powder. Insulation coating is performed to prevent an increase in iron loss after molding of the dust core. The insulating coating may be anything as long as it can maintain insulation even after molding of the dust core, and as such an insulating coating, a glassy insulating amorphous material based on silicone resin, metal phosphate or metal borate is used. Layers, metal oxides such as MgO, forsterite, talc and Al 2 O 3 , or crystalline insulating layers based on SiO 2 .
In addition, it is preferable that the coating amount of insulation coating shall be the range of 0.05-0.3 mass% with the whole powder. This is because if the coating amount is less than 0.05 mass%, the coating becomes non-uniform, resulting in a decrease in insulation. On the other hand, if the coating amount exceeds 0.3 mass%, the ratio of the powder for the dust core in the dust core becomes large. This is because the density of the molded body is significantly reduced.

以下、実施例に基づいて本発明を具体的に述べる。
(還元熱処理工程)
試料として、篩い分けによる粒度分布が45〜250μm、平均粒径D50が120μm、見掛密度が3.8g/cmである、水アトマイズ鉄粉を用いた。ここで、篩い分けとD50を決定する為の粒度分布測定には、JIS Z8801−1に規定される篩を用いた。また、見掛密度は、JIS Z2504に規定される試験方法によって決定した。熱処理前の粉末のC量およびO量は、C:0.163mass%およびO:0.298mass%であった。得られた粉末に対して、5つの条件で熱処理を施した結果を表1に示す。なお、熱処理は全て水素雰囲気で、昇温から保持時間10分までを露点60℃の湿水素、そして残りの時間を乾水素で行った。また、CおよびO以外の不可避不純物については、全ての試料で上述した規定量以下となっていた。
Hereinafter, the present invention will be specifically described based on examples.
(Reduction heat treatment process)
As a sample, water atomized iron powder having a particle size distribution by sieving of 45 to 250 μm, an average particle size D50 of 120 μm, and an apparent density of 3.8 g / cm 3 was used. Here, a sieve defined in JIS Z8801-1 was used for sieving and particle size distribution measurement for determining D50. The apparent density was determined by the test method specified in JIS Z2504. The amounts of C and O of the powder before the heat treatment were C: 0.163 mass% and O: 0.298 mass%. Table 1 shows the results of heat treatment of the obtained powder under five conditions. All the heat treatments were carried out in a hydrogen atmosphere, from a temperature rise to a holding time of 10 minutes with wet hydrogen having a dew point of 60 ° C. and the remaining time with dry hydrogen. Further, unavoidable impurities other than C and O were not more than the prescribed amount described above for all samples.

Figure 0006064539
Figure 0006064539

表1より、本発明の条件を満たしている記号3、4および5では、C量、O量および結晶粒が良好な磁気特性を得るのに適した値となっていた。また、熱処理温度を上げる、もしくは熱処理時間を長くすることによって、CおよびO量が更に下がり、且つ結晶粒径が更に粗大になり、優れた鉄損を得るのに好ましい粉末となっていた。   From Table 1, in symbols 3, 4 and 5 satisfying the conditions of the present invention, the C content, the O content and the crystal grains were values suitable for obtaining good magnetic properties. Further, by increasing the heat treatment temperature or lengthening the heat treatment time, the amount of C and O is further reduced, the crystal grain size is further coarsened, and the powder is preferable for obtaining excellent iron loss.

次いで、上記の還元熱処理を行った粉末に対して、ハンマーミルによる粉砕を行った。粉砕後の平均粒径D50は107μmであった。一部の粉末(枝番C以外)に対してハイスピードミキサー(深江パウテック株式会社製、LFS-GS-2J型)による解砕を、回転羽の周速:10m/sおよび処理時間:30min、すなわち周速×処理時間=18000mで実施した。この解砕により見掛密度は4.1g/cmとなった。更に解砕を行った試料の一部に歪取熱処理を行った。歪取熱処理の条件は、表2に示すとおりである。 Subsequently, the powder subjected to the above reduction heat treatment was pulverized by a hammer mill. The average particle diameter D50 after pulverization was 107 μm. For some powders (except branch No. C), crushing with a high speed mixer (Fukae Powtech Co., Ltd., LFS-GS-2J type), rotating blade peripheral speed: 10 m / s and processing time: 30 min. That is, it was carried out at peripheral speed x processing time = 18000m. This crushing resulted in an apparent density of 4.1 g / cm 3 . Further, a part of the crushed sample was subjected to strain relief heat treatment. The conditions for strain relief heat treatment are as shown in Table 2.

Figure 0006064539
Figure 0006064539

表2において、枝番C以外の試料は、歪取熱処理後に手で容易に解砕することが出来たが、枝番Cについては歪取熱処理による粉末の凝集が強く、解砕によって多量の歪が加わってしまうため、後工程の樹脂被覆、成形、磁気測定を行わなかった。枝番Cを除く全ての試料はシリコーン樹脂による絶縁被覆(絶縁被覆量:0.25mass%)を施した。ここで、シリコーン樹脂はトルエンに溶解させて、樹脂分が1.0mass%となるような樹脂希釈溶液を作製し、その後粉末に対する樹脂添加率が0.25mass%となるように粉末と樹脂希釈溶液を混合し、大気中で乾燥させた。乾燥後に大気中で200℃×120minの樹脂焼付け処理を行うことにより被覆鉄基軟磁性粉末を得た。これらの粉末を成形圧1470MPa(15000kgf/cm)、金型潤滑で成形し、外径:38mm、内径:25mmおよび高さ:6mmのリング状試験片を作製した。
作製した試験片は窒素中で700℃×45minの熱処理を行った。その後、巻き線を行い(1次巻100ターン、二次巻100ターン)、磁束密度(10000A/m、メトロン技研製直流磁化測定装置にて測定)と鉄損(1.0T、 400Hz、メトロン技研製高周波鉄損測定装置にて測定)を測定した。その測定結果を表3に示す。
In Table 2, samples other than branch number C could be easily crushed by hand after the strain-removing heat treatment. Therefore, the resin coating, molding, and magnetic measurement in the subsequent process were not performed. All samples except branch number C were subjected to an insulating coating (insulating coating amount: 0.25 mass%) with silicone resin. Here, the silicone resin is dissolved in toluene to prepare a resin diluted solution with a resin content of 1.0 mass%, and then the powder and the resin diluted solution are mixed so that the resin addition ratio to the powder is 0.25 mass%. And dried in air. A coated iron-based soft magnetic powder was obtained by performing a resin baking process at 200 ° C. for 120 minutes in the air after drying. These powders were molded at a molding pressure of 1470 MPa (15000 kgf / cm 2 ) and die lubrication to produce ring-shaped test pieces having an outer diameter of 38 mm, an inner diameter of 25 mm, and a height of 6 mm.
The prepared test piece was heat-treated at 700 ° C. for 45 minutes in nitrogen. Then, winding was performed (primary volume 100 turns, secondary volume 100 turns), magnetic flux density (10000 A / m, measured with Metron Giken DC magnetometer) and iron loss (1.0 T, 400 Hz, Metron Giken) Measured with a high-frequency iron loss measuring apparatus). The measurement results are shown in Table 3.

Figure 0006064539
Figure 0006064539

以上の実施例1では、合格基準を、磁束密度が上述の特許文献1に記載の実施例と同等レベル(≧1.50T)に、鉄損が上述の特許文献1を下回る(≦40.0W/kg)こととした。表3より、発明例である3−D、3−E、3−F、3−G、4−D、4−E、4−F、4−G、5−D、5−E、5−F及び5−Gはいずれも、磁気特性が合格基準を満たしている。一方、他の条件(比較例)は一部で鉄損が合格基準を満たしているものがあるが、全て磁束密度が合格基準に未達であった。   In Example 1 described above, the acceptance criteria are set such that the magnetic flux density is the same level (≧ 1.50 T) as that of the above-described Patent Document 1, and the iron loss is less than that of Patent Document 1 (≦ 40.0 W / kg). ) From Table 3, 3-D, 3-E, 3-F, 3-G, 4-D, 4-E, 4-F, 4-G, 5-D, 5-E, 5- Both F and 5-G have acceptable magnetic properties. On the other hand, some of the other conditions (comparative examples) have iron loss satisfying the acceptance criteria, but all of the magnetic flux densities did not meet the acceptance criteria.

(絶縁被覆)
実施例1の試料5−Dについて、絶縁被覆量を種々に変更した試料を作製した。成形条件、成形後の熱処理条件、磁気測定条件は、実施例1と同じである。その結果を、表4に示す。
(Insulation coating)
With respect to Sample 5-D of Example 1, samples having various insulation coating amounts were produced. The molding conditions, the heat treatment conditions after molding, and the magnetic measurement conditions are the same as those in Example 1. The results are shown in Table 4.

Figure 0006064539
Figure 0006064539

表4より、絶縁被覆量が0.05〜0.3mass%の範囲に含まれる5−D−3〜5−D−6は磁束密度が1.50Tを上回り、かつ鉄損が40.0W/kgを下回っていた。中でも、絶縁被覆量が0.05mass%および0.10mass%である5−D−3および5−D−4は磁束密度が1.6Tを上回っており、極めて優れた磁気特性を有している。一方、絶縁被覆を施さない5−D−1、および絶縁被覆量が0.03mass%である5−D−2は鉄損が高すぎて測定出来ず、絶縁被覆量が0.35mass%であった5−D−7および、0.50mass%であった5−D−8は磁束密度が1.50Tを下回っていた。   From Table 4, 5-D-3 to 5-D-6 included in the range of the insulation coating amount of 0.05 to 0.3 mass% had a magnetic flux density of more than 1.50 T and an iron loss of less than 40.0 W / kg. . Among them, 5-D-3 and 5-D-4, whose insulation coating amounts are 0.05 mass% and 0.10 mass%, have a magnetic flux density exceeding 1.6 T, and have extremely excellent magnetic characteristics. On the other hand, 5-D-1 with no insulation coating and 5-D-2 with an insulation coating amount of 0.03 mass% were too high to be measured, and the insulation coating amount was 0.35 mass%. The magnetic flux density of -D-7 and 5-D-8, which was 0.50 mass%, was lower than 1.50T.

実施例1の表1の記号5の粉末について、ハンマーミルでの粉砕を行ったのち、ハイスピードミキサー(深江パウテック社製 LFS-GS-2J型)による解砕の条件を種々に変更して粉末を作製した。解砕条件と解砕後の見掛密度は表5に示す通りである。   About the powder of the symbol 5 of Table 1 of Example 1, after grind | pulverizing with a hammer mill, the conditions of the crushing by a high speed mixer (FFS Kyushu LFS-GS-2J type) were changed variously, and the powder Was made. Table 5 shows the crushing conditions and the apparent density after crushing.

Figure 0006064539
Figure 0006064539

これらの粉末に対して、800℃×60分の歪取熱処理を実施した。歪取熱処理後、シリコーン樹脂による絶縁被覆(絶縁被覆量:0.25mass%)を施した。ここで、シリコーン樹脂はトルエンに溶解させて、樹脂分が1.0mass%となるような樹脂希釈溶液を作製し、その後粉末に対する樹脂添加率が0.25mass%となるように粉末と樹脂希釈溶液を混合し、大気中で乾燥させた。乾燥後に大気中で200℃×120minの樹脂焼付け処理を行うことにより被覆鉄基軟磁性粉末を得た。これらの粉末を成形圧1470MPa(15000kgf/cm)、金型潤滑で成形し、外径:38mm、内径:25mmおよび高さ:6mmのリング状試験片を作製した。
作製した試験片は窒素中で700℃×45minの熱処理を行った。その後、巻き線を行い(1次巻100ターン、二次巻100ターン)、磁束密度(10000A/m、メトロン技研製直流磁化測定装置にて測定)と鉄損(1.0T、400Hz、メトロン技研製高周波鉄損測定装置にて測定)を測定した。その測定結果を表6に示す。
These powders were subjected to heat treatment for strain relief at 800 ° C. for 60 minutes. After the strain relief heat treatment, an insulating coating (insulating coating amount: 0.25 mass%) with silicone resin was applied. Here, the silicone resin is dissolved in toluene to prepare a resin diluted solution with a resin content of 1.0 mass%, and then the powder and the resin diluted solution are mixed so that the resin addition ratio to the powder is 0.25 mass%. And dried in air. A coated iron-based soft magnetic powder was obtained by performing a resin baking process at 200 ° C. for 120 minutes in the air after drying. These powders were molded at a molding pressure of 1470 MPa (15000 kgf / cm 2 ) and die lubrication to produce ring-shaped test pieces having an outer diameter of 38 mm, an inner diameter of 25 mm, and a height of 6 mm.
The prepared test piece was heat-treated at 700 ° C. for 45 minutes in nitrogen. After that, winding was performed (primary volume 100 turns, secondary volume 100 turns), magnetic flux density (10000 A / m, measured with a DC magnetometer manufactured by Metron Giken) and iron loss (1.0 T, 400 Hz, made by Metron Giken) Measured with a high-frequency iron loss measuring apparatus). The measurement results are shown in Table 6.

Figure 0006064539
Figure 0006064539

本実施例でも、実施例1および2と同様の合格基準を用いた。また、磁束密度については5−1以外の試料は全て合格基準に達していた。表5および6より、本発明の条件である周速×処理時間が22000m以下を満たしているものは、鉄損が40.0W/kg以下となって、合格基準を満たしていた。一方、周速×処理時間が発明範囲から外れる22000m超の試料は、見掛密度は高いものの鉄損が上昇した。特に、記号5−13と5−15は他の例に比べて30〜50%程度大きくなっている。   In this example, the same acceptance criteria as in Examples 1 and 2 were used. Moreover, about the magnetic flux density, all samples other than 5-1 reached the acceptance standard. From Tables 5 and 6, those satisfying the condition of the present invention, peripheral speed x treatment time of 22000 m or less, had an iron loss of 40.0 W / kg or less and met the acceptance criteria. On the other hand, the sample with a peripheral speed × processing time exceeding 22000 m, which is out of the scope of the invention, has an increased iron loss although the apparent density is high. In particular, symbols 5-13 and 5-15 are about 30 to 50% larger than the other examples.

Claims (1)

圧粉磁芯用鉄系軟磁性粉末の製造方法であって、
アトマイズ法によって鉄系軟磁性粉末を得る工程と、
該鉄系軟磁性粉末に、950℃以上の水素雰囲気で熱処理を施す還元熱処理工程と、
該還元熱処理工程後に粉砕を行う粉砕工程と、
該粉砕工程を経た粉末に回転体によるせん断力を与えて解砕を行う解砕工程と、
該解砕工程後に500℃以上900℃未満の温度での歪取熱処理を行う歪取熱処理工程と、
該歪取熱処理工程後に前記粉末の表面に粉末質量に対して0.05mass%以上0.3mass%未満の絶縁被覆を施す工程と
を含み、
前記解砕工程は、前記回転体の周速(m/s)と解砕処理時間(s)との積が1000m以上22000m以下となる条件下に行うことを特徴とする圧粉磁芯用粉末の製造方法。
A method for producing an iron-based soft magnetic powder for a dust core,
Obtaining an iron-based soft magnetic powder by an atomizing method;
A reduction heat treatment step of heat-treating the iron-based soft magnetic powder in a hydrogen atmosphere at 950 ° C. or higher;
A pulverization step for pulverization after the reduction heat treatment step;
A crushing step of crushing the powder after the crushing step by applying a shearing force by a rotating body;
A strain relief heat treatment step of performing a strain relief heat treatment at a temperature of 500 ° C. or more and less than 900 ° C. after the crushing step;
Including a step of applying an insulation coating of 0.05 mass% or more and less than 0.3 mass% to the surface of the powder after the distortion removing heat treatment step,
The powder for a dust core, wherein the crushing step is performed under a condition that a product of a peripheral speed (m / s) of the rotating body and a crushing time (s) is 1000 m or more and 22000 m or less. Manufacturing method.
JP2012254490A 2012-11-20 2012-11-20 Powder core powder manufacturing method and dust core powder Active JP6064539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012254490A JP6064539B2 (en) 2012-11-20 2012-11-20 Powder core powder manufacturing method and dust core powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254490A JP6064539B2 (en) 2012-11-20 2012-11-20 Powder core powder manufacturing method and dust core powder

Publications (2)

Publication Number Publication Date
JP2014103267A JP2014103267A (en) 2014-06-05
JP6064539B2 true JP6064539B2 (en) 2017-01-25

Family

ID=51025513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254490A Active JP6064539B2 (en) 2012-11-20 2012-11-20 Powder core powder manufacturing method and dust core powder

Country Status (1)

Country Link
JP (1) JP6064539B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11692250B2 (en) 2018-08-02 2023-07-04 Kabushiki Kaisha Toshiba Plurality of flaky magnetic metal particles, pressed powder material, and rotating electric machine
JP7258646B2 (en) * 2018-08-02 2023-04-17 株式会社東芝 Plural flat magnetic metal particles, compacted powder materials and rotating electric machines
JP7413786B2 (en) * 2020-01-15 2024-01-16 セイコーエプソン株式会社 Manufacturing method of powder magnetic core and powder magnetic core
CN113539662B (en) * 2021-07-19 2023-02-10 安徽瑞德磁电科技有限公司 Preparation method of low-loss soft magnetic composite material

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120703A (en) * 1974-08-14 1976-02-19 Nippon Steel Corp Denjotetsupun
JPS6421001A (en) * 1987-07-17 1989-01-24 Kobe Steel Ltd Production of iron powder having high apparent density
JPH0448001A (en) * 1990-06-18 1992-02-18 Kawasaki Steel Corp Manufacture of spheroidizing iron powder having high apparent density
JP2001303111A (en) * 2000-04-25 2001-10-31 Fukuda Metal Foil & Powder Co Ltd Method for producing flat soft magnetic metal powder
JP2005129556A (en) * 2003-10-21 2005-05-19 Sumitomo Metal Mining Co Ltd Rare earth-transition metal-nitrogen magnetic powder and its manufacturing method
JP2005272925A (en) * 2004-03-24 2005-10-06 Hitachi Metals Ltd R-t-n based magnetic powder and its manufacturing method
JP4701797B2 (en) * 2005-04-04 2011-06-15 Jfeスチール株式会社 Coated iron-based powder for dust core and dust core
JP4723442B2 (en) * 2006-09-11 2011-07-13 株式会社神戸製鋼所 Powder cores and iron-based powders for dust cores
JP4630251B2 (en) * 2006-09-11 2011-02-09 株式会社神戸製鋼所 Powder cores and iron-based powders for dust cores
JP5470683B2 (en) * 2007-05-31 2014-04-16 Jfeスチール株式会社 Metal powder for dust core and method for producing dust core
JP2009032880A (en) * 2007-07-26 2009-02-12 Kobe Steel Ltd Iron-based soft magnetic powder for dust core for high frequency, and dust core
CN101615465B (en) * 2008-05-30 2012-10-17 株式会社日立制作所 Soft magnetic powder for compact powder body and compact powder body using the same
JP2012136771A (en) * 2010-12-10 2012-07-19 Agc Seimi Chemical Co Ltd Method of producing surface-modified copper particle, method of producing composition for forming conductor, method of producing conductor film, and article having the conductor film

Also Published As

Publication number Publication date
JP2014103267A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP4609339B2 (en) Powder for powder magnetic core and method for producing powder magnetic core
JP6064539B2 (en) Powder core powder manufacturing method and dust core powder
JP2006077264A (en) METHOD FOR RECYCLING RARE-EARTH SINTERED MAGNET AND TRANSITION-METAL BASED SCRAP, AND METHOD FOR MANUFACTURING MAGNETIC-MATERIAL POWDER FOR GHz BAND WAVE ABSORBER AND METHOD FOR MANUFACTURING WAVE ABSORBER
CN109215920B (en) Dust core
JP6052419B2 (en) Method for selecting iron powder for dust core and iron powder for dust core
CA2891206C (en) Iron powder for dust cores
JP6056862B2 (en) Iron powder for dust core and insulation coated iron powder for dust core
JP2019021906A (en) Dust core
JP6947344B1 (en) Manufacturing method of RTB-based sintered magnet and RTB-based sintered magnet
CN113365764A (en) Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
JP7215044B2 (en) Method for producing RTB based sintered magnet
WO2019124224A1 (en) Amorphous alloy particles, and method for producing amorphous alloy particles
JP5929819B2 (en) Iron powder for dust core
US20240186043A1 (en) Powder for magnetic core, method for manufacturing same, and dust core
JP6073066B2 (en) Method for producing soft magnetic iron-based powder for dust core
JP2023181663A (en) Iron-based soft magnetic powder
JP2022186290A (en) Soft magnetic particle, manufacturing method thereof and soft magnetic body
JP2023103144A5 (en)
JP2011199069A (en) Method for manufacturing rare earth sintered magnet, and material for the rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R150 Certificate of patent or registration of utility model

Ref document number: 6064539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250