JP2023103144A5 - - Google Patents

Download PDF

Info

Publication number
JP2023103144A5
JP2023103144A5 JP2022013691A JP2022013691A JP2023103144A5 JP 2023103144 A5 JP2023103144 A5 JP 2023103144A5 JP 2022013691 A JP2022013691 A JP 2022013691A JP 2022013691 A JP2022013691 A JP 2022013691A JP 2023103144 A5 JP2023103144 A5 JP 2023103144A5
Authority
JP
Japan
Prior art keywords
less
powder
soft magnetic
magnetic metal
nanocrystalline soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022013691A
Other languages
Japanese (ja)
Other versions
JP2023103144A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2022013691A priority Critical patent/JP2023103144A/en
Priority claimed from JP2022013691A external-priority patent/JP2023103144A/en
Priority to PCT/JP2022/042779 priority patent/WO2023135933A1/en
Publication of JP2023103144A publication Critical patent/JP2023103144A/en
Publication of JP2023103144A5 publication Critical patent/JP2023103144A5/ja
Pending legal-status Critical Current

Links

Description

実施例1~12および比較例1、2、4、7で使用したナノ結晶軟磁性金属扁平粉末の作製には、単ロール法により作製した厚み20μmのFe83.3Si7.72.0Nb5.7Cu1.3(wt%)組成のアモルファス薄帯を出発原料として用いた。これをAr雰囲気中で実施例1~5と比較例1、2、4は420℃で、実施例6~12と比較例はそれぞれ220℃で1時間脆化処理した後に、ボールミルで74μm以下に粉砕した。次いで粉砕粉末を、アトライターでエタノールを用いた湿式条件により扁平加工した。さらにAr雰囲気中560℃で1時間のナノ結晶化処理を行った。 To prepare the nanocrystalline soft magnetic metal flat powder used in Examples 1 to 12 and Comparative Examples 1, 2, 4 , and 7, Fe 83.3 Si 7.7 B 2. An amorphous ribbon having a composition of 0 Nb 5.7 Cu 1.3 (wt%) was used as a starting material. This was subjected to embrittlement treatment in an Ar atmosphere at 420°C for Examples 1 to 5 and Comparative Examples 1, 2, and 4 , and at 220°C for Examples 6 to 12 and Comparative Example 7 for 1 hour, and then milled with a ball mill to a diameter of 74 μm or less. It was crushed. The pulverized powder was then flattened using an attritor under wet conditions using ethanol. Furthermore, nanocrystallization treatment was performed at 560° C. for 1 hour in an Ar atmosphere.

実施例1~12、比較例1、2、4、7では得られたナノ結晶軟磁性金属扁平粉末を用い、全固形分に対して50vol%となるように、耐熱温度150℃の熱硬化型アクリルゴム系混合樹脂をトルエンで希釈した樹脂溶液に配合後に分散させて、コーティング用の塗料を作製した。この塗料をコンマコーターで0.05mm厚みに塗布し、磁場配向を行った後に50℃で乾燥し溶剤を除去した。乾燥後のシートを6枚積層して150℃で10MPaの圧力で熱プレスし、厚み0.15mmの性能評価用の樹脂複合シートを得た。次に外形20mm、内径10mmのドーナツ状に抜き加工し、透磁率と保磁力とコアロスを測定した。各温度での透磁率の実数部(μ’)は1MHz、虚数部(μ’’)は10MHzで測定した。 In Examples 1 to 12 and Comparative Examples 1, 2, 4 , and 7, the obtained nanocrystalline soft magnetic metal flat powder was used, and a thermosetting type with a heat resistance temperature of 150 ° C. A coating material for coating was prepared by blending an acrylic rubber-based mixed resin into a resin solution diluted with toluene and then dispersing it. This paint was applied to a thickness of 0.05 mm using a comma coater, oriented in a magnetic field, and then dried at 50°C to remove the solvent. Six dried sheets were laminated and hot pressed at 150° C. and a pressure of 10 MPa to obtain a resin composite sheet with a thickness of 0.15 mm for performance evaluation. Next, it was punched into a donut shape with an outer diameter of 20 mm and an inner diameter of 10 mm, and its magnetic permeability, coercive force, and core loss were measured. The real part (μ') of magnetic permeability at each temperature was measured at 1 MHz, and the imaginary part (μ'') was measured at 10 MHz.

表1に実施例1~5、比較例1、2、4、5を示す。実施例1~5は樹脂複合シートのフレキシビリティーを重視して、ナノ結晶金属扁平粉末の平均粒径が20μm~40μm未満で、かつ平均厚みが0.2~1.5μm未満で、ナノ結晶化処理後に所定のかさ密度/真密度の扁平粉末が得られるように扁平加工条件を調整した。さらに扁平加工工程で、ナノ結晶化処理後の保磁力が最低となるように、微粉末の発生を抑え、扁平粉末の輪郭が平滑になるように、スラリー濃度、粉砕メディアの衝突エネルギーなどの扁平加工条件を最適化した。同時に、扁平粉末の面内に制御された適度なマイクロクラックを導入した。 Table 1 shows Examples 1 to 5 and Comparative Examples 1, 2, 4, and 5. Examples 1 to 5 focused on the flexibility of the resin composite sheet, and the nanocrystalline metal flat powder had an average particle size of 20 μm to less than 40 μm and an average thickness of 0.2 to less than 1.5 μm, and Flattening conditions were adjusted so that flattened powder with a predetermined bulk density/true density could be obtained after the chemical treatment. Furthermore, in the flattening process, the slurry concentration, the collision energy of the crushing media, etc. Optimized processing conditions. At the same time, moderately controlled microcracks were introduced within the plane of the flat powder.

表2に実施例6~12、比較例7、10、11を示す。実施例6~12は樹脂複合シートの透磁率を重視して、ナノ結晶軟磁性金属扁平粉末の平均粒径が40μm~100μm未満で、かつ平均厚みが1.5~5μm未満で、ナノ結晶化処理後に所定のかさ密度/真密度の扁平粉末が得られるように扁平加工条件を調整した。さらに扁平加工工程で、ナノ結晶化処理後の保磁力が最低となるように、微粉末の発生を抑え、扁平粉末の輪郭が平滑になるように、スラリー濃度、粉砕メディアの衝突エネルギーなどの扁平加工条件を最適化した。同時に、扁平粉末の面内に制御された適度なマイクロクラックを導入した。実施例8~10では空気分級により、保磁力の高い微粉末と、内在亀裂が磁気ギャップとなり軟磁気特性に影響を及ぼす粗大扁平粉末をそれぞれ5wt%除去した。 Table 2 shows Examples 6 to 12 and Comparative Examples 7, 10, and 11 . Examples 6 to 12 focused on the magnetic permeability of the resin composite sheet, and the nanocrystalline soft magnetic metal flat powder had an average particle size of 40 μm to less than 100 μm and an average thickness of 1.5 to less than 5 μm, and was nanocrystallized. Flattening conditions were adjusted so that flattened powder having a predetermined bulk density/true density could be obtained after treatment. Furthermore, in the flattening process, the slurry concentration, the collision energy of the crushing media, etc. are adjusted to suppress the generation of fine powder and to make the outline of the flat powder smooth so that the coercive force after nanocrystallization is the lowest. Optimized processing conditions. At the same time, moderately controlled microcracks were introduced within the plane of the flat powder. In Examples 8 to 10, air classification was used to remove 5 wt % of each of fine powder with high coercive force and coarse flat powder in which inherent cracks become magnetic gaps and affect soft magnetic properties.

Figure 2023103144000001
Figure 2023103144000001

Figure 2023103144000002
Figure 2023103144000002

表1より、実施例1~5はいずれも実数(1MHz)および虚数透磁率(10MHz)の温度係数Kが-40℃~150℃の範囲で0≦K1≦0.20、-0.10≦K2≦0.10、-0.15≦K3≦0.05を満たしており、測定温度の透磁率への影響が軽微である。また、比較例1、2、4よりも高い実数および虚数透磁率を0℃で有しているとともに、コアロスがいずれも低い。比較例5のガスアトマイズ法により作製したFe84.8Al5.6Si9.6(wt%)組成の合金粉末を用いた金属扁平粉末では、0℃で透磁率が最大になり、85℃、150℃での透磁率の低下が顕著である。さらに、0℃での透磁率が大幅に不足しているともに、コアロスが高い。 From Table 1, in Examples 1 to 5, the temperature coefficient K of real number (1 MHz) and imaginary number permeability (10 MHz) is 0≦K1≦0.20, -0.10≦ in the range of -40°C to 150°C. K2≦0.10 and -0.15≦K3≦0.05 are satisfied, and the influence of the measured temperature on the magnetic permeability is slight. Further, it has higher real and imaginary magnetic permeability at 0° C. than Comparative Examples 1, 2, and 4 , and all have low core loss. In the flat metal powder using the alloy powder with the composition of Fe 84.8 Al 5.6 Si 9.6 (wt%) produced by the gas atomization method of Comparative Example 5, the magnetic permeability reached its maximum at 0°C, and the magnetic permeability reached the maximum at 85°C. The decrease in magnetic permeability at 150°C is significant. Furthermore, the magnetic permeability at 0° C. is significantly insufficient and the core loss is high.

Claims (6)

ナノ結晶粒子の粒径が5nm~30nm未満、結晶化度が65%~95%未満であるナノ結晶軟磁性金属扁平粉末であって、平均粒径D50付近の粒径の粉末におけるアスペクト比が20~80未満、保磁力が20A/m~150A/m未満で、さらに該ナノ結晶軟磁性金属扁平粉末を使用した、樹脂複合シート、または、樹脂複合組成物を成形した物の透磁率の温度係数Kn(nは1、2、3)が、-40℃~150℃以下の範囲で下記式(1)(2)(3)で示され、0≦K1≦0.20、-0.10≦K2≦0.10、-0.15≦K3≦0.05の範囲にあることを特徴とする、ナノ結晶軟磁性金属扁平粉末。
K1=(μ(0℃)-μ(-40℃))/μ(-40℃) (1)
K2=(μ(85℃)-μ(-40℃))/μ(-40℃) (2)
K3=(μ(150℃)-μ(-40℃))/μ(-40℃) (3)
μ:透磁率(μ’:実数透磁率、μ”:虚数透磁率)、μ(0℃):0℃の透磁率
A nanocrystalline soft magnetic metal flat powder in which the nanocrystalline particles have a particle size of 5 nm to less than 30 nm and a crystallinity of 65% to less than 95%, and the aspect ratio of the powder with a particle size around the average particle size D50 is 20. temperature coefficient of magnetic permeability of a resin composite sheet or a molded resin composite composition using the nanocrystalline soft magnetic metal flat powder with a coercive force of 20 A/m to less than 150 A/m. Kn (n is 1, 2, 3) is represented by the following formulas (1), (2), and (3) in the range of -40°C to 150°C, 0≦K1≦0.20, -0.10≦ A nanocrystalline soft magnetic metal flat powder, characterized in that K2≦0.10, -0.15≦K3≦0.05.
K1=(μ(0℃)−μ(−40℃))/μ(−40℃) (1)
K2=(μ(85℃)−μ(−40℃))/μ(−40℃) (2)
K3=(μ(150℃)−μ(−40℃))/μ(−40℃) (3)
μ: magnetic permeability (μ': real magnetic permeability, μ'': imaginary magnetic permeability), μ (0℃): magnetic permeability at 0℃
請求項1に記載のナノ結晶軟磁性金属扁平粉末で、平均粒径D50=20μm~40μm未満で、D50平均粒径付近の平均厚みが0.2μm~1.5μm未満であって、該ナノ結晶軟磁性金属扁平粉末を使用した、樹脂複合シートの保磁力が20A/m~100A/m未満であることを特徴とするナノ結晶軟磁性金属扁平粉末。 The nanocrystalline soft magnetic metal flat powder according to claim 1, wherein the nanocrystalline powder has an average particle size D50 of 20 μm to less than 40 μm and an average thickness around the D50 average particle size of 0.2 μm to less than 1.5 μm. A nanocrystalline soft magnetic metal flat powder characterized in that the coercive force of the resin composite sheet is from 20 A/m to less than 100 A/m. 請求項1に記載のナノ結晶軟磁性金属扁平粉末で、平均粒径D50=40μm~100μm未満で、D50平均粒径付近の平均厚みが1.5μm~5μm未満であって、該ナノ結晶軟磁性金属扁平粉末を使用した、樹脂複合シートの保磁力が20A/m~80A/m未満であることを特徴とするナノ結晶軟磁性金属扁平粉末。 The nanocrystalline soft magnetic metal flat powder according to claim 1, wherein the average particle size D50 is 40 μm to less than 100 μm and the average thickness around the D50 average particle size is 1.5 μm to less than 5 μm, A nanocrystalline soft magnetic metal flat powder, characterized in that the coercive force of a resin composite sheet using the metal flat powder is from 20 A/m to less than 80 A/m. 請求項1から3のいずれかに記載のナノ結晶軟磁性金属扁平粉末の製造方法であって、A method for producing a nanocrystalline soft magnetic metal flat powder according to any one of claims 1 to 3, comprising:
原料となるFe基非晶質合金箔帯をナノ結晶化温度以下で脆化処理する工程と、A step of embrittling a Fe-based amorphous alloy foil strip serving as a raw material at a temperature below the nanocrystallization temperature,
前記脆化処理後に粉砕して扁平加工用原料粉末を得る工程と、A step of pulverizing after the embrittlement treatment to obtain a raw material powder for flattening;
蒸留水もしくは有機溶剤の存在下で扁平加工を行い、当該扁平加工時に前記扁平加工用原料粉末の面内に制御された適度なマイクロクラックを導入する工程と、A step of performing flattening in the presence of distilled water or an organic solvent, and introducing controlled moderate microcracks within the plane of the raw material powder for flattening during the flattening;
前記扁平加工後に得られる扁平粉末を窒素ガス雰囲気、不活性ガス雰囲気あるいは真空中にて結晶化温度以上で熱処理してナノ結晶相を生成させて、当該扁平粉末がナノ結晶化に伴う体積収縮で自己破断して小径化する工程とを行うことを特徴とするナノ結晶軟磁性金属扁平粉末の製造方法。The flat powder obtained after the flattening process is heat-treated at a temperature higher than the crystallization temperature in a nitrogen gas atmosphere, an inert gas atmosphere, or a vacuum to generate a nanocrystalline phase, so that the flat powder undergoes volume shrinkage due to nanocrystallization. 1. A method for producing flat nanocrystalline soft magnetic metal powder, the method comprising the step of self-rupturing to reduce the diameter.
請求項1から3のいずれかに記載のナノ結晶軟磁性金属扁平粉末と樹脂よりなり、保磁力が20A/m~100A/m未満で、さらに外径20mm-内径10mmで厚みが0.15mmのリング状サンプルを3枚重ねた物を用いて、Bmと周波数が50mT-100kHzの条件で測定した時のコアロスが50~300kW/m未満であることを特徴とする、樹脂複合シート。 It is made of the flat nanocrystalline soft magnetic metal powder according to any one of claims 1 to 3 and a resin, has a coercive force of 20 A/m to less than 100 A/m, and further has an outer diameter of 20 mm - an inner diameter of 10 mm and a thickness of 0.15 mm. A resin composite sheet characterized by having a core loss of 50 to less than 300 kW/m 3 when measured using a stack of three ring-shaped samples under conditions of Bm and frequency of 50 mT to 100 kHz. 請求項1から3のいずれかに記載のナノ結晶軟磁性金属扁平粉末と樹脂よりなり、外径12.8mm-内径7.5mmで厚み5mmに成形加工した物を用いて、Bmと周波数が50mT-100kHzの条件で測定した時のコアロスが100~600kW/m未満であることを特徴とする、成形加工用の樹脂複合組成物。 A product made of the flat nanocrystalline soft magnetic metal powder according to any one of claims 1 to 3 and a resin, molded to have an outer diameter of 12.8 mm - an inner diameter of 7.5 mm and a thickness of 5 mm, has a Bm and a frequency of 50 mT. A resin composite composition for molding, characterized in that the core loss is less than 100 to 600 kW/m 3 when measured at -100 kHz.
JP2022013691A 2022-01-13 2022-01-13 Soft magnetic metal flat powder, resin composite sheet, and resin composite composition using the same Pending JP2023103144A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022013691A JP2023103144A (en) 2022-01-13 2022-01-13 Soft magnetic metal flat powder, resin composite sheet, and resin composite composition using the same
PCT/JP2022/042779 WO2023135933A1 (en) 2022-01-13 2022-11-11 Soft magnetic flaky metal powder, and resin composite sheet and resin composite composition using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022013691A JP2023103144A (en) 2022-01-13 2022-01-13 Soft magnetic metal flat powder, resin composite sheet, and resin composite composition using the same

Publications (2)

Publication Number Publication Date
JP2023103144A JP2023103144A (en) 2023-07-26
JP2023103144A5 true JP2023103144A5 (en) 2024-01-25

Family

ID=87278876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022013691A Pending JP2023103144A (en) 2022-01-13 2022-01-13 Soft magnetic metal flat powder, resin composite sheet, and resin composite composition using the same

Country Status (2)

Country Link
JP (1) JP2023103144A (en)
WO (1) WO2023135933A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269509A (en) * 1998-03-19 1999-10-05 Hitachi Metals Ltd Flat nano-crystal soft magnetic powder excellent in noise inhibiting effect, and its production
JP2003209010A (en) * 2001-11-07 2003-07-25 Mate Co Ltd Soft magnetic resin composition, its manufacturing method and molded body
JP2009059753A (en) * 2007-08-30 2009-03-19 Hitachi Chem Co Ltd Flame-retardant noise suppressing sheet
JP6558887B2 (en) * 2014-11-14 2019-08-14 株式会社リケン Soft magnetic alloys and magnetic parts
JP7041819B2 (en) * 2020-01-11 2022-03-25 株式会社メイト Soft magnetic metal flat powder, resin composite sheet using it, and resin composite compound for molding processing

Similar Documents

Publication Publication Date Title
JP6215163B2 (en) Method for producing composite magnetic material
JP6230513B2 (en) Method for producing composite magnetic material
JP4274897B2 (en) Method for producing Fe-based amorphous metal powder and method for producing soft magnetic core using the same
US8840800B2 (en) Magnetic material, method for producing magnetic material, and inductor element
US10804014B2 (en) Flat soft magnetic powder and production method therefor
JP5958571B1 (en) Soft magnetic metal dust core
JP6530164B2 (en) Nanocrystalline soft magnetic alloy powder and dust core using the same
US7622012B2 (en) Flat soft magnetic metal powder and composite magnetic material including the soft magnetic metal powder
US10576539B2 (en) Flat soft magnetic powder and production method therefor
JP2009541986A (en) Magnet core and manufacturing method thereof
JP4449077B2 (en) Fe-Ni-Mo-based flat metal soft magnetic powder and magnetic composite material including the soft magnetic powder
JP6064539B2 (en) Powder core powder manufacturing method and dust core powder
JP2006219714A (en) Fe-Ni-(Nb, V, Ta) BASED FLAT METAL SOFT MAGNETIC POWDER AND MAGNETIC COMPOSITE MATERIAL COMPRISING THE SOFT MAGNETIC POWDER
JP2023103144A5 (en)
JP6515719B2 (en) Flat soft magnetic metal powder for magnetic sheet, magnetic sheet, and antenna coil
CN111423226A (en) Permanent magnetic ferrite and preparation method and application thereof
KR101607483B1 (en) Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same
WO2023135933A1 (en) Soft magnetic flaky metal powder, and resin composite sheet and resin composite composition using same
TWI758222B (en) Magnet and method of fabricating same
TWI835100B (en) Magnet and method of fabricating the same
JP6738502B2 (en) Method for producing soft magnetic flat powder
CN112521657B (en) Electromagnetic wave absorbing material and preparation method thereof
JP6500670B2 (en) Flat soft magnetic metal powder for magnetic sheet, magnetic sheet, and antenna coil
CN102416467B (en) Preparation method of metal-semiconductor electromagnetic wave absorption type nano composite material
JP2022186290A (en) Soft magnetic particle, manufacturing method thereof and soft magnetic body