JP6060818B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP6060818B2
JP6060818B2 JP2013115204A JP2013115204A JP6060818B2 JP 6060818 B2 JP6060818 B2 JP 6060818B2 JP 2013115204 A JP2013115204 A JP 2013115204A JP 2013115204 A JP2013115204 A JP 2013115204A JP 6060818 B2 JP6060818 B2 JP 6060818B2
Authority
JP
Japan
Prior art keywords
voltage
grid
current
circuit
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013115204A
Other languages
English (en)
Other versions
JP2014235229A (ja
Inventor
政士 濱谷
政士 濱谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2013115204A priority Critical patent/JP6060818B2/ja
Publication of JP2014235229A publication Critical patent/JP2014235229A/ja
Application granted granted Critical
Publication of JP6060818B2 publication Critical patent/JP6060818B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Color Electrophotography (AREA)

Description

本発明は、帯電器や電圧印加回路に流れる過電流を抑制する技術に関する。
下記特許文献1には、1つの電圧印加回路で複数の帯電器に電圧を印加する構成において、グリッド電圧を定電圧化する演算制御回路に流れる電流を考慮してグリッド電流を定電流化する技術が開示されている。
特開2012−048032号公報
しかしながら、上記特許文献1の画像形成装置の場合、感光ドラムや電圧印加回路に流れる過電流を抑制するには、電圧印加回路の出力電圧を停止又は下げる必要があり、それに伴って、一部の帯電器ではグリッド電流が基準値を下回り、感光ドラムの帯電量が不足する問題があった。
本発明は上記のような事情に基づいて完成されたものであって、帯電出力を複数の帯電器で共通化する構成において、グリッド電流を基準値以上に維持しつつ、過電流を抑制する術を提供することを目的とする。
本明細書によって開示される画像形成装置は、少なくとも1つの感光体と、ワイヤ及びグリッド電極を有し、前記感光体を帯電させる複数のスコロトロン帯電器と、各前記スコロトロン帯電器を互いに接続する共通ラインと、前記共通ラインを介して各前記ワイヤに電圧を印加する電圧印加回路と、各前記グリッド電極に対応して設けられ、各前記グリッド電極の電圧を調整する電圧調整回路と、前記感光体又は前記電圧印加回路に流れる電流を検出する電流検出部と、制御装置と、を備え、前記電圧調整回路は、前記グリッド電極と基準電位との間に接続され、前記グリッド電極の電圧を調整する可変インピーダンスを備え、前記制御装置は、各前記グリッド電極に流れるグリッド電流のうち最小のグリッド電流が基準値以上になるように、前記電圧印加回路の出力電圧を前記電流検出回路の検出値に基づいてフィードバック制御する処理と、前記電流検出部の検出値に基づいて、前記感光体又は前記電圧印加回路に過電流が流れているか否かを判定する判定処理と、前記判定処理において前記過電流が流れていると判定した場合、前記過電流が小さくなるように、前記電圧調整回路の可変インピーダンスを調整するインピーダンス調整処理とを行う。
この構成では、電圧調整回路の可変インピーダンスの調整により過電流を抑制するため、最小のグリッド電流を基準値以上に維持しつつ、過電流を下げることが出来る。すなわち、各感光体の帯電量を目標レベル以上に維持したまま、過電流を解消できる。
上記画像形成装置の実施態様として以下の構成が好ましい。
前記制御装置は、前記インピーダンス調整処理において、最大のグリッド電流に対応する電圧調整回路の可変インピーダンスを増加方向に調整する。電流調整回路の可変インピーダンスを増加方向に調整すれば、グリッド電流は小さくなるので、過電流を下げることが可能となる。
前記制御装置は、前記インピーダンス調整処理において、最小のグリッド電流に対応する電圧調整回路の可変インピーダンスを減少方向に調整する減少調整処理を実行する。電流調整回路の可変インピーダンスを減少方向に調整すれば、グリッド電極に流れるグリッド電流は大きくなる。しかし、グリッド電流が最小の帯電器は、制御装置により、グリッド電流が基準値以上になるように制御されているから、可変インピーダンスを減少方向に調整した場合、電圧印加回路は、出力電圧を下げる方向に調整される。従って、グリッド電流が最小でない、それ以外の帯電器では、グリッド電流が下がる方向に調整されることになり、過電流を下げることが出来る。
前記制御装置は、前記インピーダンス調整処理において、最大のグリッド電流に対応する電圧調整回路の可変インピーダンスを増加方向に調整する増加調整処理を、最小のグリッド電流に対応する電圧調整回路の可変インピーダンスを減少方向に調整する減少調整処理よりも優先的に実行する。グリッド電流が最大の帯電器はフィードバック制御の対象外である。従って、最大のグリッド電流に対応する電圧調整回路の可変インピーダンスを増加方向に調整する増加調整処理を優先させるようにすれば、減少調整処理を優先させる場合に比べて、フィードバック制御に及ぼす影響を小さくすることが出来る。
尚、「優先的」という言葉の意味は、2つの処理の実行順位に優劣を付ける意味に加え、処理の重みに優劣を付ける意味を含む。また、「処理の重みに優劣を付ける」の例としては、可変インピーダンスの調整量に差を付ける場合が含まれる。
各前記グリッド電極に対応して設けられ、各前記グリッド電極に流れるグリッド電流を検出する第1電流検出部を備え、前記制御装置は、前記判定処理において、各前記グリッド電極に流れるグリッド電流を検出する前記1電流検出部による検出値の最大値が第1制限値以上となる場合、前記感光体に過電流が流れていると判定する。この構成では、グリッド電極に流れるグリッド電流の最大値が、第1制限値以上となる場合に、感光体に過電流が流れていると判定される。
前記電圧印加回路の出力電流を検出する第2電流検出部を備え、前記制御装置は、前記判定処理において、前記第2電流検出部の検出値が、第2制限値以上となる場合、前記電圧印加回路に過電流が流れていると判定する。この構成では、電圧印加回路の出力電流が第2制限値以上となる場合に、過電流と判定される。
本発明によれば、帯電出力を複数の帯電器で共通化する構成において、最小のグリッド電流を基準値以上に維持しつつ、過電流を抑制することが出来る。
本発明の実施形態1に係るプリンタの内部構成を表す概略断面図 ブラックのプロセスユニット周辺のプリンタの内部構成を示す概略断面図 帯電器の構造を模式的に示した図 プリンタの電気的構成を示すブロック図 高圧電源回路の電気的構成を示すブロック図 高圧電源回路の詳細図(回路構成を示す) メインモータ及び高圧電源回路の制御手順を示すフローチャート図 図7の示すS50の処理の詳細を示す図
<実施形態1>
本発明の実施形態1を図1ないし図8によって説明する。
1.プリンタの全体構成
図1は、本実施形態のプリンタ1(「画像形成装置」の一例)の内部構成を表す概略断面図である。以下の説明では、各構成要素について、色毎に区別する場合は各部の符号にB(ブラック)、Y(イエロー),M(マゼンタ),C(シアン),の添え字を付し、区別しない場合は添え字を省略する。
プリンタ1は、給紙部3、画像形成部5、搬送機構7、定着部9、ベルトクリーニング機構20および高圧電源回路100を含む構成である。給紙部3は、プリンタ1の最下部に設けられており、シート(用紙、OHPシートなど)15を収容するトレイ17と、ピックアップローラ19とを備える。トレイ17に収容されたシート15は、ピックアップローラ19により1枚ずつ取り出され、搬送ローラ11,レジストレーションローラ12を介して搬送機構7に送られる。
搬送機構7は、シート15を搬送するものであり、プリンタ1内において給紙部3の上側に設置されている。搬送機構7は、駆動ローラ31、従動ローラ32、およびベルト34を含み、ベルト34は、駆動ローラ31と従動ローラ32との間に架け渡されている。駆動ローラ31が回動すると、ベルト34は、感光ドラム41B、41Y、41M、41Cと対向する側の表面が、図1中の右方向から左方向へ移動する。これにより、レジストレーションローラ12から送られてきたシート15が、画像形成部5下へと搬送される。
また、ベルト34には、4つの感光ドラム41B、41Y、41M、41Cに対応して、4つの転写ローラ33B、33Y、33M、33Cが設けられている。各転写ローラ33は、ベルト34を間に挟みつつ各感光ドラム41B、41Y、41M、41Cに対して向かい合う位置に配置されている。
画像形成部5は4個のプロセスユニット40B、40Y、40M、40Cおよび4個の露光装置49B、49Y、49M、49Cを含む。各プロセスユニット40B、40Y、40M、40Cは、シート15の搬送方向(図1の左右方向)に一列状に配置されている。
各プロセスユニット40は同一構造であり、図1や図2に示すように、各色の感光ドラム(「感光体」の一例)41B、41Y、41M、41C、現像剤である各色のトナー(例えば正帯電性の非磁性1成分トナー)を収容するトナーケース43、現像ローラ(「現像器」の一例)45及び帯電器50B、50Y、50M、50Cを含む構造となっている。
各感光ドラム41B、41Y、41M、41Cは、例えばアルミニウム製の基材上に、正帯電性の感光層が形成されたものであり、アルミニウム製の基材がプリンタ1のグラウンドに接地されている。
現像ローラ45は、トナーケース43の下部にて供給ローラ46と対向配置されており、両間をトナーが通過するときに回転に伴う摩擦によりトナーを正極性に摩擦帯電させ、均一な薄層として感光ドラム41B、41Y、41M、41C上へ供給する機能を果たす。
各帯電器50B、50Y、50M、50Cは、スコロトロン型の帯電器であり、図2、図3に示すように、シールドケース51、ワイヤ53及び金属製のグリッド電極55を有する。シールドケース51は、感光ドラム41の回転軸方向に長い角筒型をしている。シールドケース51のうち、感光ドラム41との対向面は放電口52として開口している。
ワイヤ53は例えばタングステン線からなる。ワイヤ53は、シールドケース51内において回転軸方向(図3の左右方向)に張り渡されており、後述する電圧印加回路200により高電圧が印加される。ワイヤ53は高電圧の印加により、シールドケース51内においてコロナ放電を生じさせる。そして、コロナ放電により生じたイオンが放電口52から感光ドラム41側に放電電流として流れることで、感光ドラム41の表面を一様に正極性に帯電させる。
そして、シールドケース51の放電口52には、スリットや透孔を有する板状のグリッド電極55が取り付けられている。このグリッド電極55に電圧を加え、その加えた電圧を制御することで、感光ドラム41の帯電電圧を制御することが可能となっている。
また、帯電器50B、50Y、50M、50Cにはワイヤクリーナ57が設けられている。ワイヤクリーナ57はワイヤ53に沿って摺動自在な構成となっている。このワイヤクリーナ57を、オペレータがワイヤ53に沿って往復させることで、ワイヤ53の汚れを落とすことが出来る。
各露光装置49B、49Y、49M、49Cは、例えば、感光ドラム41B、41Y、41M、41Cの回転軸方向に沿って一列状に並んだ複数の発光素子(例えばLEDやレーザ光源)を有し、外部より入力される画像データに応じて発光することにより、各感光ドラム41B、41Y、41M、41Cの表面に静電潜像を形成する機能を果たす。
上記のように構成されたレーザプリンタ1による一連の画像形成処理について簡単に説明すると、プリンタ1は印刷データDを受信すると(図4参照)、印刷処理を開始する。これにより、各感光ドラム41B、41Y、41M、41Cの表面は、その回転に伴って、各帯電器50B、50Y、50M、50Cにより一様に正帯電される。そして、各露光装置49から各感光ドラム41B、41Y、41M、41Cに向けてレーザ光がそれぞれ照射される。これにより、各感光ドラム41B、41Y、41M、41Cの表面には、印刷データに応じた所定の静電潜像が形成、すなわち一様に正帯電された感光ドラム41B、41Y、41M、41Cの表面のうち、レーザ光が照射された部分は電位が下がる。
次いで、現像ローラ45の回転により、現像ローラ45上に担持されかつ正帯電されているトナーが、各感光ドラム41B、41Y、41M、41Cの表面上に形成される静電潜像に供給される。これにより、各感光ドラム41B、41Y、41M、41Cの静電潜像は、可視像化され、感光ドラム41B、41Y、41M、41Cの表面には、反転現像によるトナー像が担持される。
また、上記したトナー像を形成するための処理と並行して、シート15を搬送する処理が行われる。すなわち、ピックアップローラ19の回動により、トレイ17からシート15が一枚ずつ用紙搬送経路Yへと送り出される。用紙搬送経路Yに送り出されたシート15は、搬送ローラ11、ベルト34により、転写位置(感光ドラム41と転写ローラ33とが接触する点)に運ばれる。
すると、この転写位置を通るときに、各転写ローラ33に印加される転写バイアスによって、各感光ドラム41の表面上に担持された各色のトナー像(現像剤像)がシート15の表面に順次、重畳転写される。かくして、シート15上には、カラーのトナー像(現像剤像)が形成される。その後、ベルト34の後方に設けられた定着部9を通過するときに、転写されたトナー像(現像剤像)は熱定着され、シート15は排紙トレイ60上に排紙される。
次にプリンタ1の電気的構成を、図4を参照して説明する。プリンタ1は、制御装置80、表示部70、感光ドラム41等の回転体を回転させるメインモータM、高圧電源回路100、通信部75を備える。高圧電源回路100は、帯電器50や現像ローラ45等に印加する高電圧を生成する回路である。制御装置80はCPU81、ROM83、RAM85等により構成され、メインモータMや高圧電源回路100を制御する機能を果たすものである。
2.高圧電源回路100の構成
次に図5、図6を参照して高圧電源回路の説明を行う。図5は高圧電源回路のブロック図、図6は高圧電源回路の詳細図である。
高圧電源回路100は、図5に示すように、電圧印加回路200、グリッド電圧調整回路250B、250Y、250M、250C(総称して250)、グリッド電流検出抵抗270B、270Y、270M、270C(総称して270)、出力電流検出抵抗290を備えている。
尚、以下の説明において各チャンネルCHとは、各帯電器50B、50Y、50M、50Cを指すものとし、この例では帯電器50BをCH1、帯電器50YをCH2、帯電器50MをCH3、帯電器50CをCH4とする。尚、グリッド電流検出抵抗270が「第1電流検出部」の一例であり、出力電流検出抵抗290が「第2電流検出部」の一例である。
電圧印加回路200は、DC24Vの入力電圧から6kV〜8kV程度の高電圧を生成して、各帯電器50に印加する機能を果たすものである。本実施形態では、電圧印加回路200に自励式のフライバックコンバータ(RCC)を用いており、電圧印加回路200は、図6に示すように、PWM信号平滑回路210と、トランス201と、トランス201の二次側に設けられた平滑回路203と、トランス201の一次側に設けられたトランジスタTr1、トランジスタTr2とを備えてなる。
PWM信号平滑回路210は、抵抗とコンデンサから構成された積分回路である。PWM信号平滑回路210は、制御装置80のPWMポートP0から出力されるPWM信号S0を平滑し、平滑した信号を、ドライブ用トランジスタTr2を介してトランジスタTr1のベースに出力するものである。ドライブ用トランジスタTr2は、いわゆるエミッタフォロアタイプであり、ベースに入力した信号をエミッタ側から出力する構成となっている。
トランジスタTr1は、トランス201をスイッチングするものであり、エミッタをグランドに接続し、コレクタをトランス201の一次側の巻き線に接続している。そして、ベースには、トランス201の一次コイルの副巻線(帰還コイル)205、ドライブ用トランジスタTr2を介してPWM信号平滑回路210が接続されている。
電圧印加回路200の出力ラインLoには、各チャンネルCH1〜CH4の帯電器50B、50Y、50M、50Cのワイヤ53が共通接続されている。これにより、電圧印加回路200の出力電圧Voが各チャンネルの帯電器50B、50Y、50M、50Cのワイヤ53に印加される構成となっている。尚、出力ラインLoが「共通ライン」の一例である。
図5に示すように、各チャンネルCHには、グリッド電圧調整回路250とグリッド電流検出抵抗270がそれぞれ個別に設けられている。グリッド電圧調整回路250とグリッド電流検出抵抗270は、グリッド電極55とグランドGNDとの間にて直列接続されている。すなわち、各グリッド電圧調整回路250は、各チャンネルCHのグリッド電極55を、グリッド電流検出抵抗270を介してグランドに接続している。尚、グランドGNDが「基準電位」の一例である。また、グリッド電圧調整回路250が「電圧調整回路」の一例である。
そして、図6に示すように、各チャンネルCHのグリッド電圧調整回路250と制御装置80との間は信号線で接続されていて、制御装置80の出力ポートP1から各グリッド電圧調整回路250に制御信号(後述するPWM信号)S1が出力される構成となっている。各グリッド電圧調整回路250は、制御信号S1の入力に応答して、抵抗値を可変させることで、各グリッド電極55のグリッド電圧Vgを調整する機能を果たす。
また、各チャンネルCHのグリッド電流検出抵抗270と制御装置80の入力ポートP2の間も信号線で接続されていて、制御装置80は、グリッド電流検出抵抗270から入力ポートP2に入力される検出信号S2の電圧をモニタすることで、各チャンネルCHのグリッド電流を検出する構成となっている。
また、電圧印加回路200には、図5や図6に示すように、電圧印加回路200の出力電流Itを検出する出力電流検出抵抗290が設けられており、制御装置80は、出力電流検出抵抗290から入力ポートP4に入力される検出信号S4の電圧レベルに基づいて、電圧印加回路200の出力電流Itを検出できる構成となっている。
次にグリッド電圧調整回路250の具体的な回路構成を説明する。尚、図6には、1番目と2番目のチャンネルCH1、CH2のグリッド電圧調整回路250B、250Yのみ示しているが、他チャンネルCH3〜CH4のグリッド電圧調整回路250M、250Cも構成は共通している。
グリッド電圧調整回路250は、PWM信号平滑回路251と、アンプAと、トランジスタQと、電圧検出回路260とを備えてなる。PWM信号平滑回路251は、抵抗とコンデンサから構成された積分回路であり、制御装置80のPWMポートP1から出力されるPWM信号S1を平滑して、アンプAの入力端子に出力するものである。尚、PWM信号S1は、グリッド電圧Vgの目標値を設定する制御信号であり、目標値に応じたPWM値を持つ。
アンプAは、入力を増幅して、トランジスタQに出力する。トランジスタQは、NPNトランジスタであり、エミッタを、グランド接続し、コレクタを、グリッド電極55に接続している。そして、トランジスタQのベースは、抵抗とコンデンサからなる平滑回路253を介して、アンプAの出力端子に接続されている。
トランジスタQは、ベース電流の大きさによってコレクタ抵抗が変化し、可変抵抗として機能する。すなわち、ベース電流を大きくすることで抵抗値が下がり、反対にベース電流を小さくすることで、抵抗値が上がる。尚、コレクタ抵抗とは、コレクタ−エミッタ間電圧をコレクタ電流で割った抵抗値である。
上記のグリッド電圧調整回路250によれば、PWM信号S1のPWM値を増加させると、アンプAの出力がプラスになり、トランジスタQのベース電流が増加傾向となる。そのため、トランジスタQのコレクタ抵抗が小さくなり、グリッド電圧Vgをプラス方向に調整できる。また、反対に、PWM信号S1のPWM値を減少させると、アンプAの出力がマイナスになり、トランジスタQのベース電流が減少傾向となる。そのため、トランジスタQのコレクタ抵抗が大きくなり、グリッド電圧Vgをマイナス方向に調整することができる。
電圧検出回路260は、グリッド電圧Vgを検出する機能を担うものであり、グリッド電極55とグランドGND間に設けられている。電圧検出回路260は、直列接続された2つの検出抵抗RA、RBから構成されている。検出抵抗RA、RBの中間接続点は、信号線を介して、制御装置80の入力ポートP3に接続されている。そのため、制御装置80は、電圧検出回路260から入力ポートP3に入力される検出信号S3の電圧をモニタすることで、各チャンネルCHのグリッド電圧Vgを検出できる構成となっている。
3.グリッド電流の定電流制御と過電流制御
帯電器50の放電量は、ワイヤ53の汚れが進むに連れ、ワイヤ53のインピーダンスが上昇することによって低下するため、ワイヤ53の汚れが進むと、感光ドラム41の帯電量が不足し画質を低下させる恐れがある。そのため、本プリンタ1では、各チャンネルCHのグリッド電流Igをグリッド電流検出抵抗270により検出し、電流値の最も小さいチャンネルCHminを対象に、グリッド電流IgMINが基準値(一例として、225μA)になるように、電圧印加回路200の出力電圧を、制御装置80にてフィードバック制御する。
帯電器50のワイヤ53から感光ドラム41に流れる放電電流と、グリッド電流Igは概ね比例するため、上記の制御を行うことで、各帯電器50側から各感光ドラム41に対して、画質を低下させないだけの適量の放電電流が流れる状態となり、各感光ドラム41の帯電量を目標レベル以上にできる。
上記のように、最小のグリッド電流IgMINを基準値に制御する場合、グリッド電流Igが最小でない帯電器50ではグリッド電流Igが基準値以上に制御されるため、感光ドラム41の帯電量が増える傾向となる。感光ドラム41の帯電量が多くなり過ぎると、感光ドラム41を劣化させる恐れがある。従って、グリッド電流Igが最小でない帯電器50については、グリッド電流Igが制限値(一例として、270μA)を超えないように、過電流を抑制する制御を行うことが好ましい。
また、電圧印加回路200の出力電流Itが制限値を超えると、電圧印加回路200を構成する部品の劣化を早めるので、電圧印加回路200の出力電流Itについても、制限値(一例として1160μA)を超えないように、過電流を抑制する制御を行うことが好ましい。
そこで、本プリンタ1では、電流値の最も小さいチャンネルCHmimのグリッド電流IgMINが基準値になるように、電圧印加回路200のフィードバック制御を行った上で、過電流が検出された場合には、フィードバック制御と並行して、以下のインピーダンス調整処理を実行する。
(A)グリッド電流Igが最大のチャンネルCHmaxについて、グリッド電圧調整回路250のトランジスタQのコレクタ抵抗を、増加方向に調整する増加調整処理(図7に示すS110の処理)
(B)グリッド電流Igが最小のチャンネルCHminについて、グリッド電圧調整回路250のトランジスタQのコレクタ抵抗を、減少方向に調整する減少調整処理(図7に示すS130の処理)
増加調整処理を行うことにより、トランジスタQのコレクタ抵抗が大きくなるため、チャンネルCHmaxのグリッド電流IgMAXが小さくなる。したがって、過電流を下げることが可能となる。そして、増加調整処理では、チャンネルCHmax以外のチャンネルは、トランジスタQのコレクタ抵抗の値が維持されるため、チャンネルCHmax以外のチャンネルではグリッド電流Igの変化は、ほとんどない。そのため、過電流の抑制に伴って、チャンネルCHminを含む各チャンネルCHについて、感光ドラム41の帯電量が目標レベルを下回ることがなく、画質を担保できる。
また、減少調整処理を行うと、チャンネルCHminのグリッド電流IgMINが大きくなる。しかし、グリッド電流IgMINは制御装置80により、基準値に制御される。そのため、グリッド電圧調整回路250のトランジスタQのコレクタ抵抗を減少方向に調整した場合、電圧印加回路200は、出力電圧を下げる方向に調整される。従って、チャンネルCHmin以外のチャンネルでは、グリッド電流Igが下がる。従って、減少調整処理の実行により、過電流を下げることが出来る。また、増加調整処理と同様、過電流の抑制に伴って、チャンネルCHminを含む各チャンネルCHについて、感光ドラム41の帯電量が目標レベルを下回ることがなく、画質を担保できる。
本プリンタ1では、グリッド電流IgMINを基準値に維持したまま、過電流を下げることが出来る。そのため、画質を維持しつつ、過電流を抑制できる。尚、グリッド電圧調整回路250が「電圧調整回路」の一例であり、トランジスタQが「可変インピーダンス」の一例である。
4.メインモータ及び高圧電源回路の制御フロー
次に、メインモータM及び高圧電源回路100の制御フローについて図6、図7を参照して説明を行う。
図4に示すように、ホストコンピュータなどの上位装置から印刷データDが出力されると、その印刷データDは通信部75を通じてプリンタ1にて受信される。その後、制御装置80は、メインモータMを通電する。これにより、各感光ドラム41が回転を開始する(S10)。
その後、制御装置80は、高圧電源回路100を起動する。具体的には、制御装置80のPWMポートP0から出力するPWM信号S0のPWM値を固定して、電圧印加回路200を制御する(S20)。これにより、電圧印加回路200を介して、各チャンネルCH1〜CH4の帯電器50B、50Y、50M、50Cに対して帯電電圧(一例として7kV)が印加される。
帯電電圧の印加により、各チャンネルCHでは、グリッド電流Igが、図5に示す一点鎖線の経路、すなわちグリッド電極55、グリッド電圧調整回路250、グリッド電流検出抵抗270の経路で流れ始める。
そして、制御装置80は高圧電源回路100を起動させた後、各チャンネルCHについてグリッド電圧Vg1〜Vg4の設定値を決定する処理(S30)を行い、更に、各チャンネルCHについて現像電圧を決定する処理が実行される(S40)。ここでは、各チャンネルCH1〜4ともに、グリッド電圧Vgの設定値は「700(初期値)」Vに設定され、現像電圧の設定値は「300(初期値)」Vに設定される。
その後、処理はS50に移行する。S50では、制御装置80による高圧電源回路100の制御が開始される。S50の高圧電源制御は、図8に示すS51〜S66の処理から構成されている。
順に説明をしてゆくと、まず、制御装置80は、入力ポートP2の電圧レベルを検出して、各チャンネルCHのグリッド電流Igをモニタする処理を実行する(S51)。その後、制御装置80は、各チャンネルCHのグリッド電流Igの大きさを比較して、グリッド電流Igが最小のチャンネルCHminを選択する処理を行う(S52)。ここでは、CH1〜CH4のうち、CH1のグリッド電流Igが最も小さく、最小のチャンネルCHminに「CH1」が選択されたものとする。
その後、処理はS53に移行して、最小チャンネルCH1のグリッド電流IgMINが、基準値(この例では、225μA)よりも小さいかどうかを、判定する処理が制御装置80にて実行される。グリッド電流IgMINが基準値よりも小さい場合、S53ではYES判定され、S54に移行する。そして、S54では、制御装置80から電圧印加回路200に出力するPWM信号S0のPWM値を「+2」増加させる処理が実行される。
一方、グリッド電流IgMINが基準値より大きい場合、S53ではNO判定され、S55に移行する。S55では、最小チャンネルCH1のグリッド電流IgMINが、基準値(この例では、225μA)よりも大きいかどうかを、判定する処理が、制御装置80にて実行される。グリッド電流IgMINが基準値よりも大きい場合、S55にてYES判定され、S56に移行する。S56では、制御装置80から電圧印加回路200に出力するPWM信号S0のPWM値を「−2」減少させる処理が実行される。
すなわち、最小チャンネルCH1のグリッド電流IgMINが基準値よりも小さい場合(S53:YES)は、高圧電圧印加回路200の出力電圧が増加方向に調整されるので(S54)、最小チャンネルCH1のグリッド電流IgMINは基準値に近づく。一方、グリッド電流IgMINが基準値よりも大きい場合(S55:YES)、高圧電圧印加回路200の出力電圧が減少方向に調整されるので(S56)、やはり、最小チャンネルCH1のグリッド電流IgMINは基準値に近づく。また、最小チャンネルCH1のグリッド電流IgMINが基準値に等しい場合には、S53、S55にていずれもNO判定されるため、PWM信号S0のPWM値は維持される。そのため、高圧電圧印加回路200の出力電圧も維持される。
そして、グリッド電流を調整する処理(S53〜S56)の実行後は、S57に移行して「2m」Sec程度の短い時間、待機する処理が実行され、更にグリッド電圧Vgを調整する処理(S61〜S66)が実行される。
具体的に説明すると、S61では、制御装置80は、入力ポートP3の電圧からグリッド電圧Vgをモニタする。そして、制御装置80は、グリッド電圧Vgが設定値(この例では、700V)よりも小さいかどうかを判定する処理を行う。グリッド電圧Vgが設定値よりも小さい場合、S61ではYES判定され、S62に移行する。S62では、グリッド電圧調整用のPWM信号S1のPWM値が「0」か、判定する処理が行われる。そして、PWM信号S1のPWM値が「0」でない場合には、S62にてNO判定され、S63に移行する。S63では、制御装置10からグリッド電圧調整回路250に出力するPWM信号S1のPWM値を「−1」減少させる処理が実行される。PWM信号S1のPWM値を減少させると、ベース電流が減少することから、グリッド電圧調整回路250を構成するトランジスタQのコレクタ抵抗が増加調整する。尚、PWM値が「0」の場合には、S62にてYES判定され、S50の高圧電源制御は終了する。
一方、グリッド電圧Vgが設定値よりも大きい場合、S61ではNO判定され、S64に移行する。S64では、グリッド電圧Vgが設定値よりも大きいかどうかを判定する処理が、制御装置80にて実行される。グリッド電圧Vgが設定値よりも大きい場合、S64にてYES判定され、S65に移行する。S65では、グリッド電圧調整用のPWM信号S1のPWM値が「100」か、判定する処理が行われる。そして、PWM信号S1のPWM値が「100」でない場合には、S65にてNO判定され、S66に移行する。S66では、制御装置80からグリッド電圧調整回路250に出力するPWM信号S1のPWM値を「+1」増加させる処理が実行される。PWM信号S1のPWM値を増加させると、ベース電流が増加することから、グリッド電圧調整回路250を構成するトランジスタQのコレクタ抵抗が減少調整する。尚、PWM値が「100」の場合には、S65にてYES判定され、S50の高圧電源制御は終了する。
このように、グリッド電圧Vgが設定値よりも小さい場合は、グリッド電圧調整回路250の抵抗値(トランジスタQのコレクタ抵抗)が増加方向に調整されるので(S63)、グリッド電圧は設定値に近づく。一方、グリッド電圧Vgが設定値よりも大きい場合、グリッド電圧調整回路250の抵抗値(トランジスタQのコレクタ抵抗)が減少方向に調整されるので(S66)、グリッド電圧は設定値に近づく。また、グリッド電圧Vgが設定値に等しい場合には、S61、S64にていずれもNO判定されるため、PWM信号S1のPWM値は維持される。そのため、グリッド電圧Vgは設定値(ここでは、700V)に維持される。尚、図8にて一点鎖線枠で示すS61〜S66の処理(グリッド電圧Vgを調整する処理)は、各チャンネルCHについて個別に実行される。
S51〜S66の処理が終了すると、図7の制御フローに戻り、S70の過電流判定処理と、S80の過電流判定処理が、制御装置80により実行される。S70の過電流判定処理は電圧印加回路200の出力電流Itが過電流か判定する処理である。S70では、入力ポートP4の電圧レベルに基づいて電圧印加回路200の出力電流Itを検出し、検出した出力電流Itが制限値Imax2(一例として1160μA)を超えているか、判定する処理が実行される。尚、制限値Imax2が「第2制限値」の一例である。
また、S80の過電流判定処理は、グリッド電流Igが過電流か判定する処理である。具体的には、入力ポートP2の電圧レベルに基づいて各チャンネルCHのグリッド電流Igを検出する。そして、各チャンネルCHのグリッド電流Igの大きさを比較して最大グリッド電流IgMAXを選択し、最大グリッド電流IgMAXが制限値Imax1(一例として、270μA)を超えているか、判定する処理が実行される。尚、制限値Imax1が「第1制限値」の一例である。
そして、出力電流Itと最大グリッド電流IgMAXの双方とも過電流でない場合、S70、S80でいずれもNO判定され、処理はS90に移行する。S90では、印刷終了かどうかを判定する処理が実行される。印刷が終了していない場合は、S90ではNO判定され、S50の高圧電源制御に戻る。
従って、出力電流Itと最大グリッド電流IgMAXの双方とも過電流でない場合、印刷処理中、図7にてR矢印で示すようにS50→S70(NO)→S80(NO)→S90(NO)→S50の処理を繰り返す状態となる。
そのため、所定周期でS50の高圧電源制御が繰り返されることになり、印刷処理中、最小チャンネルCH1のグリッド電流IgMINが基準値である225μAになるように電圧印加回路200が制御される。また、グリッド電圧Vgが設置値である700Vになるように、各チャンネルCHのグリッド電圧調整回路250が制御される。
そして、印刷が終了すると、S90にてYES判定され、S100の処理が実行される。S100では、高圧電源回路100とメインモータMを停止させる処理が制御装置80により実行され、一連の処理は終了する。
一方、出力電流Itが制限値Imax2を超えている場合(過電流である場合)はS70でYES判定され、最大グリッド電流IgMAXが制限値Imax1を超えている場合(過電流の場合)はS80でYES判定される。S70でYES判定された場合と、S80でYES判定された場合は、いずれも、S110に移行する。
そして、S110に移行すると、グリッド電流Igが最も大きいチャンネルCHmaxを対象に、グリッド電圧Vgの設定値を「+20」V増加させる処理が、制御装置80により実行される。従って、例えば、チャンネルCH2のグリッド電流Igが最大である場合、初回に行われるS110の処理では、チャンネルCH2について、グリッド電圧Vgの設定値が「700V」から「720V」に変更されることになる。
尚、本プリンタ1では、グリッド電圧調整回路250は、可変インピーダンスであるトランスタQのコレクタ抵抗値を調整することにより、グリッド電圧Vgを調整する。そのため、S110にて、グリッド電圧Vgの設定値を増加させることは、可変インピーダンスであるトランスタQのコレクタ抵抗値を大きくする事と、実質的に同じである。すなわち、グリッド電圧Vgの設定値を増加させるS110の処理は、トランジスタQのコレクタ抵抗を、増加方向に調整する増加調整処理である。
その後、処理はS120に移行する。S120では、チャンネルCHmaxのグリッド電圧Vgの設定値が、上限値(一例として「800」V)以下か判定する処理が、制御装置80により実行される。S110の処理を1回実行した段階では、チャンネルCH2のグリッド電圧Vgの設定値は「720V」であり、上限値よりも小さいので、S120ではYES判定され、その後、処理はS130に移行する。
そして、S130に移行すると、今度は、グリッド電流Igが最小のチャンネルCHminを対象に、グリッド電圧Vgの設定値を「−10」V減少させる処理が、制御装置80により実行される。従って、この例では、チャンネルCH1のグリッド電流Igが最小であるため、初回に行われるS130の処理では、チャンネルCH1について、グリッド電圧Vgの設定値が「700V」から「690V」に変更されることになる。
尚、本プリンタ1では、グリッド電圧調整回路250は、可変インピーダンスであるトランスタQのコレクタ抵抗値を調整することにより、グリッド電圧Vgを調整する。そのため、S130にて、グリッド電圧Vgの設定値を減少させることは、可変インピーダンスであるトランスタQのコレクタ抵抗値を小さくする事と、実質的に同じである。すなわち、グリッド電圧Vgの設定値を減少させるS130の処理は、トランジスタQのコレクタ抵抗を、減少方向に調整する減少調整処理である。
その後、処理はS140に移行する。そして、S140では、チャンネルCHminのグリッド電圧Vgの設定値が、下限値(一例として「650」V)以上か判定する処理が実行される。S130の処理を1回実行した段階では、チャンネルCH1のグリッド電圧Vgの設定値は「690V」であり、下限値よりも大きいので、S140ではYES判定される。その後、処理はS50に戻り、制御装置80により、高圧電源制御が実行されることになる。
S50の高圧電源制御では、先に説明したように、最小のグリッド電流IgMINが基準値になるように電圧印加回路200の出力を調整する処理(S53〜S56)と、グリッド電圧Vgが設定値になるようにグリッド電圧調整回路250の出力を調整する処理(S61〜S66)が実行される。
ここで、設定値変更前の状態では、チャンネルCH2のグリッド電圧Vgは設定電圧の「700」Vに制御されている。そのため、設定値変更後、モニタされるグリッド電圧Vgは「700」Vであり、変更後の設定値「720」Vを下回る状態となる。そのため、S61〜S66の処理を行うと、S61でYES判定された後、PWM信号S1のPWM値がゼロでなければ、S63に移行して、PWM信号S1のPWM値がマイナス調整されることになる。
これにより、ベース電流が小さく調整されることから、チャンネルCH2では、グリッド電圧調整回路250のトランジスタQのコレクタ抵抗の抵抗値が大きく調整される。そして、トランジスタQのコレクタ抵抗の抵抗値が大きく調整されると、グリッド電流Igが流れ難くなることから、チャンネルCH2のグリッド電流IgMAXは減少傾向となる。
また、同様に、チャンネルCH1では、設定値変更後、モニタされるグリッド電圧Vgは「700」Vであり、変更後の設定値「690」Vを上回る状態となる。そのため、S61〜S66の処理を行うと、S61でNO、S64でYES判定された後、PWM信号S1のPWM値が100でなければ、S66に移行して、PWM信号S1のPWM値がプラス調整されることになる。
これにより、ベース電流が小さく調整されることから、チャンネルCH1では、グリッド電圧調整回路250のトランジスタQのコレクタ抵抗の抵抗値が小さく調整される。そして、トランジスタQのコレクタ抵抗の抵抗値が小さく調整されると、グリッド電流Igが流れ易くなることから、チャンネルCH1のグリッド電流IgMINは増加傾向となる。
そして、S50の処理後は、S70、S80に移行するが、チャンネルCH1やチャンネルCH2のグリッド電圧Vgが設定値に制御されるには、数サイクルが必要であることから、数サイクルはS70、S80をスキップして、S50の処理がくり返される。
これにより、チャンネルCH2では、グリッド電圧Vgが設定電圧である「720」Vに上昇するまで、トランジスタQのコレクタ抵抗の抵抗値が大きく調整されるので、抵抗値の増加に伴って、グリッド電流IgMAXは減少する。
また、チャンネルCH1では、グリッド電圧Vgが設定電圧である「690」Vに下降するまで、トランジスタQのコレクタ抵抗の抵抗値が小さく調整されるので、抵抗値の減少に伴って、グリッド電流IgMAXは増加する。しかし、チャンネルCH1は、フィードバック制御の対象チャンネルであるため、グリッド電流IgMINが基準値を超えると、次のサイクルのS50の処理(S51〜S56)で、電圧印加回路200が、出力電圧を下げる方向に調整される。従って、チャンネルCH1のグリッド電圧Vgの設定値を下げた場合、グリッド電流IgMINは基準値に維持され、チャンネルCH1以外の他のチャンネルCH2〜CH4のグリッド電流Igが下がる傾向となる。
そして、S50の処理が数サイクル実行されると、その後、S70にて出力電流Itが過電流か判定する処理が実行され、S80では最大グリッド電流IgMAXが過電流か判定する処理が実行される。
出力電圧Itと最大グリッド電流IgMAXの双方とも過電流が解消されている場合は、S70、S80でNO判定されることになる。その後、処理の流れとしては、図7にてR矢印で示すようにS50→S70(NO)→S80(NO)→S90(NO)→S50の処理を繰り返す状態となる。そして、印刷が終了すると、S90にてYES判定される。その後、S100に移行して、高圧電源回路100とメインモータMを停止させる処理が実行され、一連の処理は終了する。
一方、出力電圧Itと最大グリッド電流IgMAXのどちらか一方でも、過電流が解消されていない場合は、S70の判定処理かS80の判定処理のいずれかでNO判定されることになる。この場合、初回にNO判定された場合と同様に、S110〜S140の処理が実行され、2回目のS110の処理では、チャンネルCH2についてグリッド電圧Vgの設定値が「720V」から「740V」に変更されることになる。また、2回目のS130の処理では、チャンネルCH2についてグリッド電圧Vgの設定値が「690V」から「680V」に変更されることになる。
従って、過電流が解消されていない間は、S110、S130の処理を1回行うたびに、チャンネルCH2では、グリッド電圧Vgの設定値が「20V」ずつプラスされ、チャンネルCH1では、グリッド電圧Vgの設定値が「10V」ずつマイナスされる。そして、チャンネルCH2のグリッド電圧Vgの設定値が上限値である800Vを超えるか、チャンネルCH1のグリッド電圧Vgの設定値が下限値である650Vを下回る状態になると、S120か、S140の判定処理を行った時にNO判定され、処理はS150に移行する。S150では、制御装置80により、高圧電源回路100とメインモータMを停止させる処理が実行される。その後、S160に移行して、表示部70に対してエラーメッセージを表示する処理が、制御装置80により実行される。
尚、「前記制御装置は、各前記グリッド電極に流れるグリッド電流のうち最小のグリッド電流が基準値以上になるように、前記電圧印加回路の出力電圧を前記電流検出回路の検出値に基づいてフィードバック制御する処理」は、制御装置80により実行されるS51〜S56の処理により実現されている。また、「前記電流検出部の検出値に基づいて、前記感光体又は前記電圧印加回路に過電流が流れているか否かを判定する判定処理」は、制御装置80により実行されるS70の処理と、S80の処理により実現されている。また、「前記判定処理において前記過電流が流れていると判定した場合、前記過電流が小さくなるように、前記電圧調整回路の可変インピーダンスを調整するインピーダンス調整処理」は、制御装置80により実行されるS110の処理(増加調整処理)と、S130の処理(減少調整処理)により実現されている。
5.効果説明
本プリンタ1ではグリッド電流IgMINを基準値に維持したまま、過電流を下げることが出来る。そのため、画質を維持しつつ過電流を抑制できる。
また、本プリンタ1では、グリッド電流Ig、出力電流Itが過電流である場合、チャンネルCHmax側は、グリッド電圧Vgの設定値を「20」V単位で調整し、チャンネルCHmim側は、グリッド電圧Vgの設定値を「10」V単位で調整する。
チャンネルCHmaxはフィードバック制御の対象外である。そのため、チャンネルCHmax側のグリッド電圧Vgの調整量を大きくするようにすれば、チャンネルCHmin側の調整量を大きくする場合に比べて、フィードバック制御に及ぼす影響を小さくすることが出来る。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施形態では、制御装置80を、1つのCPU、ROM、RAMにより構成した例を示したが、特定用途向け集積回路(ASIC)等の1つ以上のハード回路や、CPUとハード回路の組み合わせにより構成することが可能である。
(2)上記実施形態では、電圧印加回路200に対して4チャンネル全ての帯電器50B、50Y、50M、50Cを共通接続した例を示したが、例えば、1チャンネルは専用に電圧印加回路を設け、残る3チャンネルで電圧印加回路を共用する構成としてもよい。
(3)上記実施形態では、チャンネルCHmaxのグリッド電圧Vgの設定値を変更する処理(トランジスタQのコレクタ抵抗を大きくする処理)と、チャンネルCHmimのグリッド電圧Vgの設定値を変更する処理(トランジスタQのコレクタ抵抗を小さくする処理)の双方を行う例を示した。これら2つの処理は、必ずしも、同時に行う必要はなく、例えば、チャンネルCHmaxのグリッド電圧Vgの設定値を変更する処理(トランジスタQのコレクタ抵抗を大きくする処理)の実行順位を先にして、チャンネルCHmaxのグリッド電圧Vgの設定値を変更する処理(トランジスタQのコレクタ抵抗を大きくする処理)を優先的に行うようにし、チャンネルCHmaxのグリッド電圧Vgが上限値を超えた場合に、チャンネルCHmimのグリッド電圧Vgの設定値を変更する処理(トランジスタQのコレクタ抵抗を小さくする処理)を実行するようにしてもよい。
(4)上記実施形態では、チャンネルCHmaxのグリッド電圧Vgの設定値を変更する処理(トランジスタQのコレクタ抵抗を大きくする処理)と、チャンネルCHmimのグリッド電圧Vgの設定値を変更する処理(トランジスタQのコレクタ抵抗を小さくする処理)の双方を行う例を示した。これら2つの処理は、少なくともいずれか一方が実行されていればよく、どちらかの処理だけを行うようにしてもよい。
(5)上記実施形態では、可変インピーダンスの一例にトランジスタQを例示したが、インピーダンスの値を電気的な操作により変更できるものであればよく、例えば、デジタルポテンショメータ等により構成してもよい。
(6)上記実施形態では、S53にてグリッド電流IgMINが基準値(225μA)より小さいか判定する処理を行い、S55にてグリッド電流IgMINが基準値(μA)より大きいか判定する処理を行った。上記実施形態では、S53、S55の判定処理を、同じ基準値としたが、S53の基準値よりも、S55の基準値を大きく設定(S53の基準値<S55の基準値)してもよい。基準値に差を付けることで、ヒステリシスを設けることが出来ることから、基準値前後で電圧印加回路200による出力電圧の調整が繰り返されることがなく、制御が安定し易くなる。
(7)上記実施形態では、S61にてグリッド電圧Vgが設定値(例えば、700V)より小さいか判定する処理を行い、S64にてグリッド電圧Vgが設定値(例えば、700V)より大きいか判定する処理を行った。上記実施形態では、S61、S64の判定処理を、同じ設定値としたが、S61の設定値よりも、S64の設定値を大きく設定(S61の設定値<S64の設定値)してもよい。設定値に差を付けることで、ヒステリシスを設けることが出来ることから、設定値前後でグリッド電圧調整回路250によるグリッド電圧の調整が繰り返されることがなく、制御が安定し易くなる。
(8)上記実施形態では、プリンタ1では、感光ドラム41を、各色ごとに設けた例を示したが、感光ドラム41は1つであってよい。すなわち、各色間で、感光ドラム41を共用する構成にしてもよい。
1...プリンタ
41B、41Y、41M、41C(総称して41)...感光ドラム
50B、50Y、50M、50C(総称して50)...スコロトロン帯電器
45B、45Y、45M、45C(総称して45)...現像ローラ
53...ワイヤ
55...グリッド電極
80...制御装置
100...高圧電源回路
200...電圧印加回路
250B、250Y、250M、250C(総称して250)...グリッド電圧調整回路
270B、270Y、270M、270C(総称して270)...グリッド電流検出抵抗(第1電流検出部)
290...出力電流検出抵抗(第2電流検出部)
Q...トランジスタ(可変インピーダンス)

Claims (6)

  1. 少なくとも1つの感光体と、
    ワイヤ及びグリッド電極を有し、前記感光体を帯電させる複数のスコロトロン帯電器と、
    各前記スコロトロン帯電器を互いに接続する共通ラインと、
    前記共通ラインを介して各前記ワイヤに電圧を印加する電圧印加回路と、
    各前記グリッド電極に対応して設けられ、各前記グリッド電極の電圧を調整する電圧調整回路と、
    前記感光体又は前記電圧印加回路に流れる電流を検出する電流検出部と、
    制御装置と、を備え、
    前記電圧調整回路は、前記グリッド電極と基準電位との間に接続され、前記グリッド電極の電圧を調整する可変インピーダンスを備え、
    前記制御装置は、各前記グリッド電極に流れるグリッド電流のうち最小のグリッド電流が基準値以上になるように、前記電圧印加回路の出力電圧を前記電流検出回路の検出値に基づいてフィードバック制御する処理と、
    前記電流検出部の検出値に基づいて、前記感光体又は前記電圧印加回路に過電流が流れているか否かを判定する判定処理と、
    前記判定処理において前記過電流が流れていると判定した場合、前記過電流が小さくなるように、前記電圧調整回路の可変インピーダンスを調整するインピーダンス調整処理とを行う、画像形成装置。
  2. 前記制御装置は、
    前記インピーダンス調整処理において、最大のグリッド電流に対応する電圧調整回路の可変インピーダンスを増加方向に調整する増加調整処理を実行する請求項1に記載の画像形成装置。
  3. 前記制御装置は、
    前記インピーダンス調整処理において、最小のグリッド電流に対応する電圧調整回路の可変インピーダンスを減少方向に調整する減少調整処理を実行する請求項1に記載の画像形成装置。
  4. 前記制御装置は、
    前記インピーダンス調整処理において、
    最大のグリッド電流に対応する電圧調整回路の可変インピーダンスを増加方向に調整する増加調整処理を、最小のグリッド電流に対応する電圧調整回路の可変インピーダンスを減少方向に調整する減少調整処理よりも優先的に実行する請求項1ないし請求項3のいずれか一項に記載の画像形成装置。
  5. 各前記グリッド電極に対応して設けられ、各前記グリッド電極に流れるグリッド電流を検出する第1電流検出部を備え、
    前記制御装置は、
    前記判定処理において、各前記グリッド電極に流れるグリッド電流を検出する前記1電流検出部による検出値の最大値が第1制限値以上となる場合、前記感光体に過電流が流れていると判定する請求項1ないし請求項4のいずれか一項に記載の画像形成装置。
  6. 前記電圧印加回路の出力電流を検出する第2電流検出部を備え、
    前記制御装置は、前記判定処理において、前記第2電流検出部の検出値が第2制限値以上となる場合、前記電圧印加回路に過電流が流れていると判定する請求項1ないし請求項4のいずれか一項に記載の画像形成装置。
JP2013115204A 2013-05-31 2013-05-31 画像形成装置 Active JP6060818B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013115204A JP6060818B2 (ja) 2013-05-31 2013-05-31 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013115204A JP6060818B2 (ja) 2013-05-31 2013-05-31 画像形成装置

Publications (2)

Publication Number Publication Date
JP2014235229A JP2014235229A (ja) 2014-12-15
JP6060818B2 true JP6060818B2 (ja) 2017-01-18

Family

ID=52138004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013115204A Active JP6060818B2 (ja) 2013-05-31 2013-05-31 画像形成装置

Country Status (1)

Country Link
JP (1) JP6060818B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6939151B2 (ja) * 2017-06-30 2021-09-22 ブラザー工業株式会社 画像形成装置及び制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333865B2 (ja) * 2010-07-29 2013-11-06 ブラザー工業株式会社 画像形成装置
JP5397362B2 (ja) * 2010-11-24 2014-01-22 ブラザー工業株式会社 画像形成装置
JP5862203B2 (ja) * 2011-10-28 2016-02-16 ブラザー工業株式会社 画像形成装置

Also Published As

Publication number Publication date
JP2014235229A (ja) 2014-12-15

Similar Documents

Publication Publication Date Title
JP5862203B2 (ja) 画像形成装置
JP5333865B2 (ja) 画像形成装置
US8019241B2 (en) Image forming apparatus
JP5382462B2 (ja) 画像形成装置
JP5533461B2 (ja) 画像形成装置
US8538282B2 (en) Image forming apparatus and method for controlling charger
JP5521921B2 (ja) 画像形成装置
JP2012053168A (ja) 画像形成装置
JP6015015B2 (ja) 画像形成装置
JP6060818B2 (ja) 画像形成装置
JP5974478B2 (ja) 画像形成装置
JP6965599B2 (ja) 画像形成装置
JP6613695B2 (ja) 画像形成装置およびその制御方法
JP6056156B2 (ja) 画像形成装置
JP6060819B2 (ja) 画像形成装置
JP5903933B2 (ja) 画像形成装置
JP6520839B2 (ja) 画像形成装置
US9740146B2 (en) Image forming apparatus with updates for speed-based setting of transfer voltage
JP6188336B2 (ja) 電源装置及び画像形成装置
JP6379856B2 (ja) 画像形成装置、制御方法、及びプログラム
JP2024003620A (ja) 画像形成装置
JP2023143467A (ja) 画像形成装置
JP2018045085A (ja) 画像形成装置
JP2012048122A (ja) 画像形成装置および画像形成方法
JP2011069872A (ja) 帯電装置,画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6060818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150