JP6060332B2 - Solar power generation equipment and cleaning method for solar power generation equipment - Google Patents

Solar power generation equipment and cleaning method for solar power generation equipment Download PDF

Info

Publication number
JP6060332B2
JP6060332B2 JP2014167027A JP2014167027A JP6060332B2 JP 6060332 B2 JP6060332 B2 JP 6060332B2 JP 2014167027 A JP2014167027 A JP 2014167027A JP 2014167027 A JP2014167027 A JP 2014167027A JP 6060332 B2 JP6060332 B2 JP 6060332B2
Authority
JP
Japan
Prior art keywords
power generation
photovoltaic power
panel
receiving surface
generation panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014167027A
Other languages
Japanese (ja)
Other versions
JP2015144547A (en
Inventor
梶谷孝啓
梶谷優太
Original Assignee
梶谷 孝啓
梶谷 孝啓
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 梶谷 孝啓, 梶谷 孝啓 filed Critical 梶谷 孝啓
Priority to JP2014167027A priority Critical patent/JP6060332B2/en
Priority to PCT/JP2015/064834 priority patent/WO2015152431A1/en
Publication of JP2015144547A publication Critical patent/JP2015144547A/en
Application granted granted Critical
Publication of JP6060332B2 publication Critical patent/JP6060332B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cleaning In General (AREA)
  • Photovoltaic Devices (AREA)

Description

太陽電池パネルや反射鏡の受光面を経済的に安全に清掃できる太陽光発電設備及び太陽光発電設備の清掃方法に関するものである。   The present invention relates to a solar power generation facility capable of economically and safely cleaning a light receiving surface of a solar cell panel and a reflecting mirror, and a method for cleaning the solar power generation facility.

近年、大規模な、太陽電池発電設備及び太陽光反射鏡集光式による太陽熱発電設備(以下、太陽電池発電設備及び太陽熱発電設備を太陽光発電設備と総称する。)の普及が進みつつある。これらの大規模太陽光発電設備には、多数の太陽電池パネルや反射鏡(以下、太陽電池パネル及び反射鏡を太陽光発電パネルと総称する。)が設置されている。
太陽光発電設備は、中東などの砂漠地域に設置されることが多いため、砂塵により太陽光発電パネルの受光面が汚れやすい。 しかし、これらの地域では、水資源が貴重なため、自動化適正に優れた水洗浄方式を選択することが難しい。また、これら気温が高い地域では、作業環境の悪さから、手作業による清掃が困難になる場合もある。降雪がある地域に設置された太陽光発電設備の場合にも、太陽光発電パネルの受光面に積もった雪を掃除する必要がある。しかし、この場合においても、自動適正に優れた水洗浄方式を選択することは、洗浄水が凍結するという不具合を起こすため難しい。また、低温環境下での手作業による清掃は、作業員の負担が大きい。
手作業による清掃は、作業者の安全面の問題に加えて、作業員の不注意により作業対象である太陽光発電パネルの受光面を傷つけるという問題も有している。さらに、発電システムの規模が大きくなると、清掃コストは比例して大きくなってしまい、太陽光発電設備のスケールメリットが得られないという問題を有している。
一方で、ロボットにより、太陽光発電パネルの受光面を、自動的に清掃することも考えられている。これらの受光面掃除ロボットは、太陽光発電パネルの受光面を、清掃しながら自走移動することができる。また、位置を検出するためのセンサーで、自らの位置を確認しながら、予め設定されたプログラムにより自動的に清掃をする受光面掃除ロボットも開発されている。
一般的に、太陽光発電設備には、多数の太陽光発電パネルが設置され、それらは、それぞれメンテナンススペースで隔てられている。このため、ひとつの太陽光発電パネルの清掃が終了した際には、受光面掃除ロボットを、隣り合う太陽光発電パネルへ移動させる必要があった。そのため、ひとつの太陽光発電パネルから、それに隣り合う太陽光発電パネルに、受光面掃除ロボットを移動させるための搬送ロボットが開発されている。(特許文献1)
しかし、このような搬送ロボットは、高価であり、コストアップとなる問題があった。また、このロボットが太陽光発電パネルの間を移動するために必要なスペースを確保しなければならず、その分、太陽光発電パネルの設置スペースが減少するという問題もあった。
In recent years, large-scale solar battery power generation equipment and solar thermal power generation equipment using a solar reflector concentrating type (hereinafter, solar battery power generation equipment and solar thermal power generation equipment are collectively referred to as solar power generation equipment) are becoming popular. In these large-scale solar power generation facilities, a large number of solar cell panels and reflectors (hereinafter, solar cell panels and reflectors are collectively referred to as solar power generation panels) are installed.
Since solar power generation facilities are often installed in desert areas such as the Middle East, the light-receiving surface of the solar power generation panel tends to become dirty with dust. However, since water resources are valuable in these areas, it is difficult to select a water cleaning method that is excellent in automation. In these high-temperature areas, manual cleaning may be difficult due to the poor working environment. Even in the case of a photovoltaic power generation facility installed in an area where there is snowfall, it is necessary to clean the snow accumulated on the light receiving surface of the photovoltaic power generation panel. However, even in this case, it is difficult to select a water cleaning method that is excellent in automatic appropriateness because the cleaning water freezes. Moreover, manual cleaning in a low temperature environment places a heavy burden on workers.
Manual cleaning has a problem of damaging the light receiving surface of the photovoltaic power generation panel, which is a work target, due to carelessness of the worker, in addition to the safety problem of the worker. Furthermore, when the scale of the power generation system increases, the cleaning cost increases in proportion, and there is a problem that the scale merit of the solar power generation facility cannot be obtained.
On the other hand, it is also considered that the light receiving surface of the photovoltaic power generation panel is automatically cleaned by a robot. These light receiving surface cleaning robots can self-run while cleaning the light receiving surface of the photovoltaic power generation panel. In addition, a light receiving surface cleaning robot has been developed that uses a sensor for detecting a position and automatically cleans it according to a preset program while checking its own position.
Generally, a large number of photovoltaic power generation panels are installed in a photovoltaic power generation facility, and they are separated by a maintenance space. For this reason, when cleaning of one photovoltaic power generation panel is completed, it is necessary to move the light receiving surface cleaning robot to the adjacent photovoltaic power generation panel. Therefore, a transfer robot for moving the light receiving surface cleaning robot from one photovoltaic power generation panel to a neighboring photovoltaic power generation panel has been developed. (Patent Document 1)
However, such a transfer robot is expensive and has a problem of increasing costs. In addition, a space necessary for the robot to move between the photovoltaic power generation panels must be secured, and there is a problem that the installation space for the photovoltaic power generation panel is reduced correspondingly.

特開2010−155308号公報JP 2010-155308 A

太陽光発電設備で使用される太陽電池パネルや反射鏡などの受光面を、作業性良く且つ経済的に清掃することができる太陽光発電設備及び太陽光発電設備の掃除方法を提供する。   Provided are a photovoltaic power generation facility and a cleaning method for the photovoltaic power generation facility that can clean a light receiving surface such as a solar battery panel or a reflector used in the photovoltaic power generation facility with good workability and economically.

本発明は、複数の太陽光発電パネルが所定の間隔をあけて配設された太陽光発電設備であって、受光面上を自走可能な受光面掃除ロボットをひとつの前記太陽光発電パネルからそれに隣り合う太陽光発電パネルに走行移動させるための移動手段を備えることを最も主要な特徴とする。   The present invention is a photovoltaic power generation facility in which a plurality of photovoltaic power generation panels are arranged at predetermined intervals, and a light receiving surface cleaning robot capable of self-propelling on a light receiving surface is formed from one of the photovoltaic power generation panels. The main feature is to provide a moving means for running and moving the solar power generation panel adjacent thereto.

本発明の太陽光発電設備及び太陽光発電設備の清掃方法は、太陽光発電設備で使用される複数の太陽光発電パネルの受光面を、自走可能な受光面掃除ロボットで清掃するにあたり、連続的に、作業性良く、且つ経済的に清掃することができるという利点がある。
The cleaning method of the photovoltaic power generation facility and the photovoltaic power generation facility according to the present invention is a continuous process in cleaning the light receiving surfaces of a plurality of photovoltaic power generation panels used in the photovoltaic power generation facility with a self-propelled light receiving surface cleaning robot. Therefore, there is an advantage that the cleaning can be performed with good workability and economically.

図1は、本発明の実施例を示した図である。FIG. 1 is a diagram showing an embodiment of the present invention. 図2は、移動手段が平面状の板状部材である実施例を示した図である。FIG. 2 is a view showing an embodiment in which the moving means is a planar plate-like member. 図3は、移動手段が直線状の軌道である実施例を示した図である。FIG. 3 is a diagram showing an embodiment in which the moving means is a linear track. 図4は、移動手段が曲面状の板状部材または曲線状の軌道である実施例を横から見た状態を示した図である。FIG. 4 is a view showing a state in which the moving means is a curved plate-like member or a curved orbit as viewed from the side. 図5は、太陽光発電パネルの傾斜角度を調整することができる機構を備え、前記太陽光発電パネルの端辺に、移動手段として、平面状の板状部材が取り付けられてある、本発明の実施例を示した図である。FIG. 5 includes a mechanism capable of adjusting the inclination angle of the photovoltaic power generation panel, and a planar plate-like member is attached to the edge of the photovoltaic power generation panel as a moving means. It is the figure which showed the Example. 図6は、太陽光発電パネルの傾斜角度を調整することができる機構を備え、前記太陽光発電パネルの端辺に、移動手段として、平面状の板状部材が取り付けられてある、本発明の実施例を横から見た状態を示した図である。FIG. 6 includes a mechanism capable of adjusting the inclination angle of the photovoltaic power generation panel, and a planar plate-like member is attached to the edge of the photovoltaic power generation panel as a moving means. It is the figure which showed the state which looked at the Example from the side. 図7は、太陽光発電パネルが略水平になるように調整され、それらの端辺同士が、移動手段により略隙間なく連結されている、本発明の実施例を示した図である。FIG. 7 is a view showing an embodiment of the present invention in which the photovoltaic power generation panels are adjusted so as to be substantially horizontal, and their end sides are connected to each other by the moving means without a substantial gap. 図8は、太陽光発電パネルが略水平になるように調整され、それらの端辺同士が、移動手段により略隙間なく連結されている、本発明の実施例を横から見た状態を示した図である。FIG. 8 shows a state of the embodiment of the present invention viewed from the side, in which the photovoltaic power generation panels are adjusted so as to be substantially horizontal, and their ends are connected to each other by the moving means without a substantial gap. FIG.

以下、本発明を実施例に基づき説明する。ただし、本発明は、以下の実施例に限定されるものではない。
本発明の太陽光発電設備としては、太陽電池発電設備あるいは太陽光反射鏡集光式による太陽熱発電設備がある。本発明において、太陽光発電パネルとは、太陽光発電設備が太陽電池発電設備である場合には太陽電池パネルであり、太陽光発電設備が太陽熱発電設備である場合には反射鏡である。
図1は、本発明の太陽光発電設備が太陽電池発電設備の場合の実施例を示した図である。図1において、1は太陽光発電パネルであり、3は太陽光発電パネル1の受光面上を自走しながら自動的に受光面を清掃することができる受光面掃除ロボットである。また、2は、受光面掃除ロボット3が、ひとつの太陽光発電パネル1の清掃が終了した後に、それに隣り合う太陽光発電パネルに、メンテナンススペースを越えて、自走しながら移動するための、移動手段である。
本発明の太陽光発電設備は、受光面掃除ロボットが、自走しながら、全ての太陽光発電パネル1を順々に清掃できる様に、前記太陽光発電設備を構成する全ての太陽光発電パネル1が、移動手段2により、相互に連結されていることが好ましい。
本発明における移動手段2は、受光面掃除ロボット3が、ひとつの太陽光発電パネル1からそれに隣り合う太陽光発電パネル1に自走移動することができれば、その形状は特に限定されないが、平面状または曲面状の板状部材、あるいは直線状または曲線状の軌道が好適に使用できる。これらの移動手段2の材質も特に限定されないが、太陽光発電パネル1が太陽電池パネルの場合、発電面積をより多くするため、移動手段2を太陽電池パネルで構成することもできる。
図2は、移動手段が平面状板状部材2aである太陽光発電設備の実施例を示した図である。本発明における板状部材からなる移動手段は、受光面掃除ロボット3が移動手段から落下することなく安全に自走移動するための十分な幅を必要とする。本発明の太陽光発電設備において、板状部材からなる移動手段には、受光面掃除ロボット3の位置検知センサーが感知しうる誘導目印を設けることができる。また、板状部材の表面には、必要に応じて、滑り止めを設けたり、複数の小孔を開けたりしてもよい。
本発明の移動手段は、直線状の軌道とすることができるが、この場合には、必要に応じて、軌道は複数の軌道を一組として設置してもよい。また、本発明における軌道からなる移動手段は、受光面掃除ロボット3が軌道を保持しながら自走移動できるような断面形状や表面形状とすることが好ましい。図3は、移動手段が直線状の軌道2bである太陽光発電設備の実施例を示した図である。
通常、太陽光発電パネルは、可能な限り多くの太陽光を受光するため、南北に傾斜させて設置されている。このため、南北に隣り合う太陽光発電パネルを連絡する連絡手段は、受光面掃除ロボットができるだけスムーズに移動できるように、それぞれの受光面を段差なく連続して連結することが望ましい。このため、図4に実施例を示したように、移動手段を、曲面状の板状部材または曲線状の軌道からなる移動手段2cとすることが好ましい。移動手段を、曲面状の板状部材または曲線状の軌道からなる移動手段2cとすることで、移動手段の表面及び前記移動手段により連結された相互に隣り合う太陽光発電パネルの表面を、ひとつの連続面上に配置することができ、受光面掃除ロボットの移動が容易となる。
本発明の太陽光発電設備は、太陽光発電パネルの傾斜角度を調整することができる機構を備え、前記太陽光発電パネルの端辺にとりつけられた移動手段により、前記太陽光発電パネル及びそれに隣り合う太陽光発電パネルが略水平に調整された際に、それらの端辺を、前記移動手段が略隙間なく連結できるようにすることで、受光面掃除ロボットが、よりスムーズに移動できるようになる。
図5は、太陽光発電パネル1の傾斜角度を調整することができる機構4を備え、前記太陽光発電パネル1の端辺に、移動手段として平面状の板状部材2aが取り付けられており、前記太陽光発電パネル1の傾斜角度が太陽光を効率よく受光できる角度に調整されている状態の、本発明の太陽光発電設備の実施例を示している。図6は、図5の太陽光発電設備を横から見た図である。
図7は、図5及び図6に示した太陽光発電設備の全ての太陽光発電パネル1が、略水平になるように調整され、それらの端辺同士が移動手段2aにより略隙間なく連結された状態を示している。図8は、図7の実施例を横から見た図である。
本発明の太陽光発電設備においては、太陽光発電パネルが略水平になるように調整され、それらの端辺同士が移動手段により略隙間なく連結される場合には、移動手段の表面及び移動手段により連結された相互に隣り合う二つの太陽光発電パネルの表面は、ひとつの連続面上にあることが好ましい。移動手段の表面及び移動手段により連結された相互に隣り合う二つの太陽光発電パネルの表面が、ひとつの連続面上にあり、且つ連結部分に略隙間が無いことにより、受光面掃除ロボット3が、ひとつの太陽光発電パネル1からそれに隣り合う太陽光発電パネルに移動する際に、障害が無くなり、容易に移動可能となる。
自動的に太陽光を追尾することができる太陽電池パネルや反射鏡の場合、移動手段はそれらの動きに追従することができる構造であることが好ましい。また、移動手段は常時設置されていてもよいし、受光面掃除ロボットを使用して太陽光発電設備を清掃する際のみに取り付けて、通常は撤去しておいてもよい。
本発明の太陽光発電設備において、太陽光発電パネルの傾斜角度を調整することができる機構は、動力を用いても良いし人力を用いても良い。また、太陽光発電パネルの傾斜角度を、受光面掃除ロボットの移動の際に、移動に係るパネルのみを略水平になるように調整し、移動後は元の傾斜角度に戻すこともできる。さらに、太陽光発電パネルの傾斜角度の調整機構は、自動的に太陽光を追尾する機能を備えることもできる。
本発明で使用される受光面掃除ロボットは、受光面上及び移動手段上を自走移動することができ、且つ太陽光発電パネル受光面を清掃することができる機能を有するロボットであれば特に限定されない。本発明で使用される受光面掃除ロボットは、清掃機能としては、回転運動や往復運動をするブラシやスポンジ、あるいは、水噴射ノズル及び水タンクを装備するものがあるが、これらに限定されるものではない。
本発明で使用される受光面掃除ロボットは、自走しながら、受光面上に付着または堆積している、汚れ、砂塵、あるいは雪などを、除去清掃できる機能を有するものである。本発明で使用される受光面掃除ロボットは、有線や無線の通信手段を用いて自動制御可能なものが好ましい。また、受光面掃除ロボットが自ら位置を検知し、予め入力されたプログラムに従って自動的に自走移動しながら清掃をすることが好ましい。自らの位置検知の方法としては、予め太陽光発電パネル受光面に設置された誘導目印や太陽光発電パネル端部をセンサーで検知したり、グローバル・ポジショニング・システム(GPS)を利用したりする方法が考えられる。
Hereinafter, the present invention will be described based on examples. However, the present invention is not limited to the following examples.
Examples of the solar power generation facility of the present invention include a solar cell power generation facility or a solar thermal power generation facility using a solar reflector concentrating type. In the present invention, the solar power generation panel is a solar cell panel when the solar power generation facility is a solar cell power generation facility, and is a reflecting mirror when the solar power generation facility is a solar thermal power generation facility.
FIG. 1 is a diagram showing an embodiment in which the solar power generation facility of the present invention is a solar cell power generation facility. In FIG. 1, 1 is a photovoltaic power generation panel, and 3 is a light receiving surface cleaning robot that can automatically clean the light receiving surface while traveling on the light receiving surface of the photovoltaic power generation panel 1. In addition, 2 is for the light receiving surface cleaning robot 3 to move to the solar power generation panel adjacent to the solar power generation panel 1 adjacent to it, while moving on its own, after self-running. It is a moving means.
The photovoltaic power generation facility of the present invention is such that all of the photovoltaic power generation panels constituting the photovoltaic power generation facility are configured so that the light-receiving surface cleaning robot can sequentially clean all the photovoltaic power generation panels 1 while running on its own. It is preferable that 1 are mutually connected by the moving means 2.
The moving means 2 in the present invention is not particularly limited in shape as long as the light-receiving surface cleaning robot 3 can be self-propelled from one photovoltaic power generation panel 1 to the adjacent photovoltaic power generation panel 1, but the planar shape is not limited. Alternatively, a curved plate member, or a linear or curved track can be preferably used. Although the material of these moving means 2 is not particularly limited, in the case where the photovoltaic power generation panel 1 is a solar cell panel, the moving means 2 can be configured by a solar cell panel in order to increase the power generation area.
FIG. 2 is a diagram showing an example of a photovoltaic power generation facility in which the moving means is a planar plate-like member 2a. The moving means made of a plate-like member in the present invention requires a sufficient width for the light-receiving surface cleaning robot 3 to move safely without being dropped from the moving means. In the photovoltaic power generation facility of the present invention, a guide mark that can be sensed by the position detection sensor of the light receiving surface cleaning robot 3 can be provided on the moving means made of a plate-like member. Further, the surface of the plate-like member may be provided with a non-slip or a plurality of small holes as necessary.
The moving means of the present invention can be a linear track, but in this case, the track may be installed as a set of a plurality of tracks as necessary. Moreover, it is preferable that the moving means which consists of a track | orbit in this invention is set as the cross-sectional shape and surface shape which the light-receiving surface cleaning robot 3 can carry out self-propelled movement, hold | maintaining a track | orbit. FIG. 3 is a diagram showing an example of a photovoltaic power generation facility in which the moving means is a linear track 2b.
Usually, a photovoltaic power generation panel is installed in a slanted direction from north to south in order to receive as much sunlight as possible. For this reason, it is desirable that the communication means for connecting the solar power generation panels adjacent to the north and south continuously connect the respective light receiving surfaces without steps so that the light receiving surface cleaning robot can move as smoothly as possible. For this reason, as shown in the embodiment in FIG. 4, the moving means is preferably a moving means 2c composed of a curved plate-like member or a curved orbit. The moving means is the moving means 2c formed of a curved plate-like member or a curved orbit, so that the surface of the moving means and the surfaces of the photovoltaic panels connected to each other connected by the moving means are one. The light receiving surface cleaning robot can be easily moved.
The photovoltaic power generation facility of the present invention includes a mechanism capable of adjusting the inclination angle of the photovoltaic power generation panel, and the photovoltaic power generation panel and the adjacent one are moved by a moving means attached to an edge of the photovoltaic power generation panel. When the matching photovoltaic power generation panels are adjusted to be substantially horizontal, the light-receiving surface cleaning robot can move more smoothly by allowing the moving means to connect the end sides without any gaps. .
FIG. 5 includes a mechanism 4 that can adjust the inclination angle of the photovoltaic power generation panel 1, and a planar plate-like member 2 a is attached to the end side of the photovoltaic power generation panel 1 as a moving means. The Example of the photovoltaic power generation equipment of this invention of the state in which the inclination angle of the said photovoltaic power generation panel 1 is adjusted to the angle which can receive sunlight efficiently is shown. 6 is a side view of the photovoltaic power generation facility of FIG.
In FIG. 7, all the photovoltaic power generation panels 1 of the photovoltaic power generation facilities shown in FIG. 5 and FIG. 6 are adjusted so as to be substantially horizontal, and their end sides are connected to each other by the moving means 2a without a substantial gap. Shows the state. FIG. 8 is a side view of the embodiment of FIG.
In the photovoltaic power generation facility of the present invention, when the photovoltaic power generation panels are adjusted to be substantially horizontal and their ends are connected to each other by the moving means without a substantial gap, the surface of the moving means and the moving means It is preferable that the surfaces of the two photovoltaic panels adjacent to each other connected by the above are on one continuous surface. Since the surface of the moving means and the surfaces of the two photovoltaic power generation panels adjacent to each other connected by the moving means are on one continuous surface and there is almost no gap in the connecting portion, the light receiving surface cleaning robot 3 When moving from one photovoltaic power generation panel 1 to a neighboring photovoltaic power generation panel, there is no obstacle and it can be moved easily.
In the case of a solar cell panel or a reflector that can automatically track sunlight, the moving means preferably has a structure that can follow their movements. Further, the moving means may be always installed, or may be attached only when the photovoltaic power generation equipment is cleaned using the light receiving surface cleaning robot, and usually removed.
In the photovoltaic power generation facility of the present invention, the mechanism that can adjust the inclination angle of the photovoltaic power generation panel may use power or human power. In addition, when the light receiving surface cleaning robot moves, the inclination angle of the photovoltaic power generation panel can be adjusted so that only the panel related to the movement becomes substantially horizontal, and after the movement, the original inclination angle can be restored. Furthermore, the adjustment mechanism of the inclination angle of the photovoltaic power generation panel can also have a function of automatically tracking sunlight.
The light-receiving surface cleaning robot used in the present invention is particularly limited as long as it is a robot that can move on the light-receiving surface and the moving means and has a function of cleaning the light-receiving surface of the photovoltaic power generation panel. Not. The light-receiving surface cleaning robot used in the present invention has, as a cleaning function, a brush or sponge that rotates or reciprocates, or a device equipped with a water injection nozzle and a water tank, but is not limited thereto. is not.
The light receiving surface cleaning robot used in the present invention has a function capable of removing and cleaning dirt, dust, snow or the like adhering to or depositing on the light receiving surface while self-propelled. The light-receiving surface cleaning robot used in the present invention is preferably one that can be automatically controlled using a wired or wireless communication means. Moreover, it is preferable that the light receiving surface cleaning robot detects the position itself and performs cleaning while automatically moving according to a program inputted in advance. As a method of detecting its own position, a method of detecting a guide mark or an end of the photovoltaic power generation panel that has been previously installed on the light receiving surface of the photovoltaic power generation panel with a sensor or using a global positioning system (GPS) Can be considered.

水資源が乏しく砂塵により受光面が汚れやすい砂漠地域や降雪地域に設置される太陽光発電設備として好適に使用できる。太陽電池パネルや反射鏡などの受光面を、自動で、連続的に、低コストで清掃する用途に適用できる。   It can be suitably used as a photovoltaic power generation facility installed in a desert region or snowfall region where water resources are scarce and the light-receiving surface is easily soiled by sand dust. It can be applied to a purpose of automatically and continuously cleaning a light receiving surface such as a solar cell panel or a reflecting mirror at a low cost.

1 太陽光発電パネル
2 移動手段
2a 平面状板状部材である移動手段
2b 直線状軌道である移動手段
2c 曲面状板状部材または曲線上軌道である移動手段
3 受光面掃除ロボット
4 傾斜角度調整機構
DESCRIPTION OF SYMBOLS 1 Photovoltaic power generation panel 2 Moving means 2a Moving means 2b which is a planar plate-shaped member Moving means 2c which is a linear track 3 Moving means 3 which is a curved plate-shaped member or a curved track 3 A light-receiving surface cleaning robot 4 An inclination angle adjusting mechanism

Claims (2)

複数の太陽光発電パネルが所定の間隔をあけて配設され、前記太陽光発電パネルの傾斜角度を調整することができる機構を備えた太陽光発電設備であって、前記太陽光発電パネルの受光面上を自走可能な受光面掃除ロボットをひとつの前記太陽光発電パネルからそれに隣り合う太陽光発電パネルに走行移動させるため、移動手段として平面状の板状部材が前記太陽光発電パネルの端辺に取り付けられており、ひとつの前記太陽光発電パネル及びそれに隣り合う太陽光発電パネルが略水平に調整された際に、それらの端辺が、前記平面状の板状部材により略隙間なく連結されることを特徴とする太陽光発電設備 A photovoltaic power generation facility having a mechanism in which a plurality of photovoltaic power generation panels are arranged at a predetermined interval and capable of adjusting an inclination angle of the photovoltaic power generation panel, wherein the photovoltaic power generation panel receives light. In order to move and move the light-receiving surface cleaning robot capable of self-propelled on the surface from one photovoltaic power generation panel to the neighboring photovoltaic power generation panel, a planar plate member is used as a moving means at the end of the photovoltaic power generation panel. When one of the photovoltaic panels and the neighboring photovoltaic panel are adjusted to be substantially horizontal, their end sides are connected to each other without any gap by the planar plate-like member. Solar power generation facility characterized by 所定の間隔をあけて配設された複数の太陽光発電パネルの受光面を、受光面掃除ロボットを使用して連続的に清掃する太陽光発電設備の清掃方法であって、前記太陽光発電パネルが傾斜角度を調整することができる機構を備え、前記太陽光発電パネルの端辺に平面状の板状部材が取り付けられており、ひとつの前記太陽光発電パネル及びそれに隣り合う太陽光発電パネルを略水平に調整し、それらの端辺を前記平面状の板状部材により略隙間なく連結し、前記受光面掃除ロボットが前記平面状の板状部材を利用して、ひとつの前記太陽光発電パネルからそれに隣り合う太陽光発電パネルに走行移動しながら前記複数の太陽光発電パネルの表面を連続的に清掃することを特徴とする太陽光発電設備の清掃方法 A photovoltaic power generation facility cleaning method for continuously cleaning the light receiving surfaces of a plurality of photovoltaic power generation panels arranged at predetermined intervals using a light receiving surface cleaning robot, wherein the photovoltaic power generation panel Is provided with a mechanism capable of adjusting the inclination angle , a planar plate-like member is attached to an end of the photovoltaic power generation panel, and the one photovoltaic power generation panel and the photovoltaic power generation panel adjacent thereto are arranged. The photovoltaic power generation panel is adjusted to be substantially horizontal, the ends thereof are connected by the planar plate-like member without a substantially gap, and the light-receiving surface cleaning robot uses the planar plate-like member , Cleaning the surface of the plurality of photovoltaic panels while continuously moving from one solar panel to the next photovoltaic panel
JP2014167027A 2014-06-09 2014-08-19 Solar power generation equipment and cleaning method for solar power generation equipment Expired - Fee Related JP6060332B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014167027A JP6060332B2 (en) 2014-06-09 2014-08-19 Solar power generation equipment and cleaning method for solar power generation equipment
PCT/JP2015/064834 WO2015152431A1 (en) 2014-06-09 2015-05-24 Photovoltaic installation and photovoltaic installation cleaning method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014119142 2014-06-09
JP2014119142 2014-06-09
JP2014167027A JP6060332B2 (en) 2014-06-09 2014-08-19 Solar power generation equipment and cleaning method for solar power generation equipment

Publications (2)

Publication Number Publication Date
JP2015144547A JP2015144547A (en) 2015-08-06
JP6060332B2 true JP6060332B2 (en) 2017-01-18

Family

ID=53889236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014167027A Expired - Fee Related JP6060332B2 (en) 2014-06-09 2014-08-19 Solar power generation equipment and cleaning method for solar power generation equipment

Country Status (2)

Country Link
JP (1) JP6060332B2 (en)
WO (1) WO2015152431A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199197A1 (en) * 2014-06-25 2015-12-30 株式会社未来機械 Work system utilizing self-propelled robot
KR101837176B1 (en) * 2016-07-22 2018-03-12 (주)에코브라이트코리아 Robot apparatus for cleaning solar cell panel
US10498288B2 (en) * 2017-01-26 2019-12-03 Evermore United S.A. Waterless cleaning system and method for solar trackers using an autonomous robot
US11201583B2 (en) 2017-01-26 2021-12-14 Evermore United S.A. Waterless cleaning system and method for solar trackers using an autonomous robot
US10797636B2 (en) 2017-01-26 2020-10-06 Evermore United S.A. Waterless cleaning system and method for solar trackers using an autonomous robot
CN107052012A (en) * 2017-04-25 2017-08-18 山东豪沃电气有限公司 A kind of solar panel cleans and uses intelligent mobile conveying device
CN107081320A (en) * 2017-05-03 2017-08-22 苏州富锐联自动化设备有限公司 The automatic operational system of high stable retentivity solar photovoltaic assembly
US11357512B2 (en) 2017-05-12 2022-06-14 Robert Fishel Mechanism and device for left atrial appendage occlusion with electrical isolation
CN107737746A (en) * 2017-11-23 2018-02-27 浙江国自机器人技术有限公司 A kind of photovoltaic array cleaning equipment
CN107743014B (en) * 2017-11-29 2024-02-23 西南交通大学 Photovoltaic board storage device
CN108247645B (en) * 2017-12-22 2018-12-11 中民新科(北京)能源技术研究院有限公司 It is a kind of to realize that photovoltaic module sweeping robot more clears the device and method swept
EP3817222B1 (en) 2018-06-28 2023-12-13 Fuji Seiko Co., Ltd. Solar panel cleaning system
CN109047248B (en) * 2018-07-24 2024-04-19 中昱博新能源科技南京有限公司 Photovoltaic board clearance robot walking support
JP2020145873A (en) * 2019-03-07 2020-09-10 株式会社ゼニス Cleaning method of solar panel and bridging plate used for the same
CN109951144A (en) * 2019-03-11 2019-06-28 杭州耀晗光伏技术有限公司 A kind of solar energy support frame device increasing solar energy light-receiving surface
CN111495836B (en) * 2020-04-23 2022-03-29 南京赤研科技有限公司 Intelligent photovoltaic cleaning robot system
DE102020120030A1 (en) 2020-07-29 2022-02-03 Frenell Gmbh SOLAR FIELD WITH A SERVICE ROBOT MOVABLE BETWEEN SOLAR PANELS
US11757403B2 (en) * 2020-10-30 2023-09-12 Nomadd Desert Solar Solutions Pte. Ltd. Telescopic guide assembly for bridging solar panel tables in a solar array
CN113037184B (en) * 2021-02-25 2023-03-28 深圳市名洋能源科技有限公司 Solar cell panel device based on angle modulation and clean function
CN113263002A (en) * 2021-05-03 2021-08-17 深圳怪虫机器人有限公司 Method for continuous operation of photovoltaic cleaning robot across photovoltaic array
CN113522916A (en) * 2021-06-20 2021-10-22 深圳怪虫机器人有限公司 Full-automatic cleaning photovoltaic array layout method
CN113778100B (en) * 2021-09-18 2024-04-05 仁洁智能科技有限公司 Cleaning robot control method and device and terminal equipment
DE202022101279U1 (en) 2021-11-18 2022-04-05 Avi Elkayam Apparatus for energy efficient cleaning of surfaces of solar modules constructed in inverted V-shaped configuration structures
CN114942635A (en) 2022-04-30 2022-08-26 苏州瑞得恩光能科技有限公司 Robot, linear traveling control method thereof and data processing equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130048752A1 (en) * 2010-02-25 2013-02-28 Yoel Gilon Systems and methods for arranging, maintaining, or operating heliostats in a solar field
US8726458B1 (en) * 2011-05-26 2014-05-20 Scott Reinhold Mahr Solar collector washing device
EP2559956B1 (en) * 2011-08-16 2014-07-09 Manu Systems AG Transferring device for transferring a service robot for solar modules
IL222558A (en) * 2012-10-18 2013-12-31 Moshe Saraf Solar panel cleaning system
JP5600195B1 (en) * 2013-05-31 2014-10-01 健夫 宮本 Solar panel cleaning device
JP6179346B2 (en) * 2013-10-24 2017-08-16 シンフォニアテクノロジー株式会社 Solar panel cleaning device

Also Published As

Publication number Publication date
JP2015144547A (en) 2015-08-06
WO2015152431A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP6060332B2 (en) Solar power generation equipment and cleaning method for solar power generation equipment
JP6179346B2 (en) Solar panel cleaning device
US20190009313A1 (en) Robotic waterless cleaning and inspection system with an assistive robotic docking train system and method
JP4477685B1 (en) Cleaning robot system and control method thereof
CN107617616B (en) Cleaning device and photovoltaic array
US10020774B2 (en) Self-propelled cleaning robot
US10615740B2 (en) Washing system for solar panels
Patil et al. A review on cleaning mechanism of solar photovoltaic panel
Khadka et al. Smart solar photovoltaic panel cleaning system
US10498288B2 (en) Waterless cleaning system and method for solar trackers using an autonomous robot
US20170194898A1 (en) Solar panel cleaning system capable of cleaning a plurality of solar arrays
JP6409252B2 (en) Solar panel cleaning device
US20140109334A1 (en) Solar panel cleaning system
US20210265944A1 (en) Solar panel cleaning sysytem
Anderson et al. Robotic device for cleaning photovoltaic panel arrays
JP2016535666A5 (en)
US20150349704A1 (en) Solar panel curtain device
US10985691B1 (en) Waterless cleaning system and method for solar trackers using an autonomous robot
JP6318675B2 (en) Solar panel cleaning device
WO2016042791A1 (en) Solar cell panel washing apparatus
KR102385469B1 (en) Method & system apparatus for removing dirt on solar cell panel.
US20210234504A1 (en) Waterless cleaning system and method for solar trackers using an autonomous robot
WO2019171400A1 (en) Robots to clean inclined smooth surfaces
KR102156916B1 (en) Automatic Cleaning Robot for Solar Panel
JP2019188346A (en) Washing apparatus and washing method for sunlight panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160526

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160526

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6060332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees