JP6058195B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP6058195B2
JP6058195B2 JP2016137712A JP2016137712A JP6058195B2 JP 6058195 B2 JP6058195 B2 JP 6058195B2 JP 2016137712 A JP2016137712 A JP 2016137712A JP 2016137712 A JP2016137712 A JP 2016137712A JP 6058195 B2 JP6058195 B2 JP 6058195B2
Authority
JP
Japan
Prior art keywords
light
emitting device
layer
light emitting
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016137712A
Other languages
Japanese (ja)
Other versions
JP2016187051A (en
Inventor
正宏 小西
正宏 小西
正樹 近藤
正樹 近藤
隆昭 堀尾
隆昭 堀尾
孝信 松尾
孝信 松尾
幡 俊雄
俊雄 幡
太田 清久
清久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JP2016187051A publication Critical patent/JP2016187051A/en
Application granted granted Critical
Publication of JP6058195B2 publication Critical patent/JP6058195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Description

本発明は、発光ダイオード(LED)チップと、当該LEDチップからの光を効率よく外部に取り出すための反射層とを備えた発光装置に関し、特に、上記反射層の変質、劣化、ならびに反射率の低下を防ぐ発光装置に関するものである。   The present invention relates to a light emitting device including a light emitting diode (LED) chip and a reflective layer for efficiently extracting light from the LED chip to the outside, and in particular, alteration, deterioration, and reflectance of the reflective layer. The present invention relates to a light emitting device that prevents a decrease.

図11は、LTCC(低温同時焼成セラミックス)基板を使用した従来の発光装置を示す断面図である(特許文献1参照)。上記発光装置は、LTCC基板50、銀エポキシ52、反射障壁51、透明エポキシ53、およびLEDダイ54から成っている。本従来例において、LEDダイ54からの出射光は反射障壁51によって反射され、出射光のロスが低減されている。またLEDダイ54からの熱は、反射障壁51によって、関連する熱拡散部(図示せず)、及びLTCC基板50に放熱される。LTCC基板を用いた発光装置のLTCCパッケージングは、密に詰め込まれたLEDダイまたはLEDアレイによって発生した熱を分散するのに特に適する。   FIG. 11 is a cross-sectional view showing a conventional light emitting device using an LTCC (low temperature co-fired ceramics) substrate (see Patent Document 1). The light emitting device includes an LTCC substrate 50, a silver epoxy 52, a reflective barrier 51, a transparent epoxy 53, and an LED die 54. In this conventional example, the emitted light from the LED die 54 is reflected by the reflection barrier 51, and the loss of the emitted light is reduced. Further, the heat from the LED die 54 is radiated to the related thermal diffusion part (not shown) and the LTCC substrate 50 by the reflection barrier 51. LTCC packaging of light emitting devices using LTCC substrates is particularly suitable for dissipating heat generated by closely packed LED dies or LED arrays.

図12は、ワイヤボンディングを有するLTCCチップキャリアを示す断面図である(特許文献2参照)。このLTCCチップキャリアはマザーボード65上に順にヒートスプレッダ67、第2層LTCC61、及び頂部層LTCC60を備えている。頂部層LTCC60は中央に空洞を有している。空洞内には第2層LTCC61を貫くように形成された熱的ビア62上に、1つのLEDチップ4が接着剤等で固定されている。LEDチップ4は第2層LTCC61上に形成された第2層端子64に、ワイヤ90によりワイヤ・ボンディング接続されている。第2層端子64は、頂部層LTCC60上に形成された頂部端子63にビア68を介して接続されている。さらに頂部端子63は、マザーボード65上に形成された外部端子66に、ワイヤ91によりワイヤ・ボンディング接続されている。頂部端子63、第2層端子64、外部端子66、及びヒートスプレッダ67は同時焼成可能な導体により形成される。LEDチップを含む頂部層LTCC60内の空洞は、エポキシ樹脂69または他の有機材料によって封止される。さらに熱散逸のために、マザーボード65の下側に、種々の方法によってヒートシンク70が設置される。   FIG. 12 is a cross-sectional view showing an LTCC chip carrier having wire bonding (see Patent Document 2). The LTCC chip carrier includes a heat spreader 67, a second layer LTCC61, and a top layer LTCC60 on a mother board 65 in this order. The top layer LTCC 60 has a cavity in the center. In the cavity, one LED chip 4 is fixed with an adhesive or the like on a thermal via 62 formed so as to penetrate the second layer LTCC 61. The LED chip 4 is connected by wire bonding to a second layer terminal 64 formed on the second layer LTCC 61 by a wire 90. Second layer terminal 64 is connected to top terminal 63 formed on top layer LTCC 60 via via 68. Further, the top terminal 63 is connected to an external terminal 66 formed on the mother board 65 by wire bonding. The top terminal 63, the second layer terminal 64, the external terminal 66, and the heat spreader 67 are formed of a conductor that can be fired simultaneously. The cavities in the top layer LTCC 60 containing the LED chip are sealed with epoxy resin 69 or other organic material. Further, for heat dissipation, a heat sink 70 is installed under the mother board 65 by various methods.

LTCCは、有機材料より高い固有の熱伝導率を有している。また熱的ビア62及びメタライゼーションされた導体面を備えることでさらに熱伝導率を高め、発光装置の放熱性を改善することができる。   LTCC has a higher intrinsic thermal conductivity than organic materials. Further, by providing the thermal via 62 and the metallized conductor surface, the thermal conductivity can be further increased and the heat dissipation of the light emitting device can be improved.

また、LEDの発光効率を向上するための技術として、LEDの発光層と支持基板との間に、金属反射層を設ける技術が提案されている(非特許文献1参照)。これは、LEDから照射される支持基板側への光を金属反射層が反射することにより、LEDの発光量を高めることができるというものである。   Further, as a technique for improving the light emission efficiency of the LED, a technique of providing a metal reflection layer between the light emitting layer of the LED and the support substrate has been proposed (see Non-Patent Document 1). This is because the amount of light emitted from the LED can be increased by reflecting the light emitted from the LED toward the support substrate by the metal reflection layer.

特表2007−533082号公報(2007年11月15日公表)Special Table 2007-533082 (announced November 15, 2007) 特開2007−129191号公報(2007年5月24日公開)JP 2007-129191 A (published May 24, 2007)

HITACHI Cable(日立電線株式会社)、”65ルーメン/ワットの高輝度赤色LEDチップを開発”、ニュースリリース:製品、[online]、2007年12月17日、日立電線株式会社、[2008年5月1日検索]、インターネット(http://www.hitachi-cable.co.jp/products/news/20071217.html)HITACHI Cable (Hitachi Cable Co., Ltd.), “Developing 65 Lumen / Watt High Brightness Red LED Chip”, News Release: Product, [online], December 17, 2007, Hitachi Cable Co., Ltd. [May 2008 1 day search], Internet (http://www.hitachi-cable.co.jp/products/news/20071217.html)

しかしながら、上記従来の構成では、下記の問題を生じる。   However, the conventional configuration causes the following problems.

LTCC基板は、セラミックスとガラスとの複合材料から成る基板である。材料によってはLTCC基板がLEDチップからの光を透過または吸収することにより、発光出力の低下を招く。しかしながら、特許文献1、2に挙げた上記従来の構成では、LTCC基板表面での光反射および光透過対策については何ら対策がとられていない。また、上記従来の構成では、LEDチップ搭載面の横に段差がある構造をとっているため出射光のロスとなる。そのため、上記従来の構成は、ハイパワーLEDを実現する構成になっていない。   The LTCC substrate is a substrate made of a composite material of ceramics and glass. Depending on the material, the LTCC substrate transmits or absorbs light from the LED chip, leading to a decrease in light emission output. However, in the conventional configurations described in Patent Documents 1 and 2, no measures are taken for light reflection and light transmission countermeasures on the surface of the LTCC substrate. Moreover, in the said conventional structure, since the structure which has a level | step difference on the side of a LED chip mounting surface is taken, it becomes a loss of emitted light. Therefore, the conventional configuration is not a configuration that realizes a high-power LED.

また、非特許文献1が示す構成では、上記金属反射層は、例えば外界の水分または酸素等により、変質または劣化、さらにはそれに起因した反射率の低下が生じるという問題がある。   Further, in the configuration shown in Non-Patent Document 1, there is a problem that the metal reflective layer is altered or deteriorated due to, for example, external moisture or oxygen, and the reflectance is reduced due to it.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、光の取り出し効率を高くした発光装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a light emitting device with high light extraction efficiency.

本発明の一態様に係る発光装置は、セラミックス基板と、外部に露出しており、上記セラミックス基板上に設けられた第1の外部端子および第2の外部端子と、上記セラミックス基板上に設けられた金属層と、上記第1の外部端子および上記第2の外部端子と電気的に接続され、かつ、上記金属層の上面の上方に設けられた発光ダイオードチップと、上記金属層の厚さより大きい厚さを有し、上記金属層の下側に接続されている複数の金属ビアと、上記発光ダイオードチップを覆う蛍光体含有樹脂と、上記蛍光体含有樹脂上に設けられており、ドーム型の外形形状を有する透明樹脂とを備え、上記第1の外部端子は上記セラミックス基板の表面に沿って延伸する第1の水平部を有し、上記第2の外部端子は上記セラミックス基板の表面に沿って延伸する第2の水平部を有し、上記第1の水平部は外部に露出した第1の外部露出部を有し、上記第2の水平部は外部に露出した第2の外部露出部を有し、上記第1の外部露出部が上記金属層に対向するように、上記第1の外部露出部は上記セラミックス基板の上記表面に対して垂直な方向において上記金属層と重なり、上記第2の外部露出部が上記金属層に対向するように、上記第2の外部露出部は上記セラミックス基板の上記表面に対して垂直な方向において上記金属層と重なり、上記セラミックス基板は長方形の形状を有し、上記セラミックス基板の上記表面に対して垂直な方向から見たとき、上記透明樹脂の直径は上記セラミックス基板のそれぞれの辺より小さいThe light-emitting device according to one embodiment of the present invention is provided on the ceramic substrate, the ceramic substrate, the first external terminal and the second external terminal that are exposed to the outside, and the ceramic substrate. A metal layer, a light emitting diode chip electrically connected to the first external terminal and the second external terminal , and provided above the upper surface of the metal layer, and larger than the thickness of the metal layer A plurality of metal vias having a thickness and connected to the lower side of the metal layer, a phosphor-containing resin that covers the light-emitting diode chip, and provided on the phosphor-containing resin. and a transparent resin having an outer shape, the first external terminal has a first horizontal portion extending along the surface of the ceramic substrate, the second external terminal along the surface of the ceramic substrate A second horizontal portion extending; the first horizontal portion including a first external exposed portion exposed to the outside; and the second horizontal portion including a second external exposed portion exposed to the outside. And the first external exposed portion overlaps the metal layer in a direction perpendicular to the surface of the ceramic substrate so that the first external exposed portion faces the metal layer, and the second external exposed portion The second externally exposed portion overlaps the metal layer in a direction perpendicular to the surface of the ceramic substrate so that the externally exposed portion of the ceramic substrate faces the metal layer, and the ceramic substrate has a rectangular shape. When viewed from a direction perpendicular to the surface of the ceramic substrate, the diameter of the transparent resin is smaller than each side of the ceramic substrate .

本発明の一態様によれば、出射光のロスを減少させ有効に活用できるため、発光装置の発光量を高めることができるという効果を奏する。   According to one embodiment of the present invention, since the loss of emitted light can be reduced and effectively used, the light emission amount of the light emitting device can be increased.

実施の形態1の発光装置を示す概略平面図である。1 is a schematic plan view showing a light emitting device of Embodiment 1. FIG. 上記発光装置の発光部の配線パターンを示す概略平面図である。It is a schematic plan view which shows the wiring pattern of the light emission part of the said light-emitting device. 上記発光装置の製造工程を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing process of the said light-emitting device. 上記発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the said light-emitting device. 上記発光装置を用いた蛍光灯形LED照明器具を示す斜視図である。It is a perspective view which shows the fluorescent lamp type LED lighting fixture using the said light-emitting device. 上記発光装置を用いた電球形LED照明器具を示す側面図である。It is a side view which shows the lightbulb type LED lighting fixture using the said light-emitting device. (a)は実施の形態2の発光装置を示す概略断面図であり、(b)はその概略平面図である。(A) is a schematic sectional drawing which shows the light-emitting device of Embodiment 2, (b) is the schematic plan view. 実施の形態3の発光装置を示す概略断面図である。6 is a schematic cross-sectional view showing a light emitting device according to Embodiment 3. FIG. 実施の形態4の発光装置を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a light emitting device according to a fourth embodiment. 実施の形態5の発光装置を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing a light emitting device according to a fifth embodiment. 従来の発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the conventional light-emitting device. 従来の発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the conventional light-emitting device. 実施の形態6の発光装置の構造を示す平面図および断面図である。FIG. 10 is a plan view and a cross-sectional view illustrating a structure of a light emitting device according to a sixth embodiment. 発光装置の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a light-emitting device. 積層体の構成を示す断面図である。It is sectional drawing which shows the structure of a laminated body. 発光装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of a light-emitting device. 実施の形態7の発光装置の構造を示す断面図である。FIG. 10 is a cross-sectional view illustrating a structure of a light emitting device according to a seventh embodiment. 実施の形態8の発光装置の構造を示す断面図である。FIG. 10 is a cross-sectional view illustrating a structure of a light emitting device according to an eighth embodiment. 実施の形態9の面光源の構造を示す模式図である。FIG. 20 is a schematic diagram showing a structure of a surface light source according to a ninth embodiment.

[実施の形態1]
図1に本発明の実施の形態の一つによる発光装置1000を上面から見た模式図を示す。発光装置1000は、低温同時焼成セラミックス(LTCC)基板1上に、順に銀反射層(図示せず)及びガラス層(被覆層)3が形成された構造を持ち、その上に発光部1001を備えている。発光部1001は蛍光体含有封止樹脂6で封止されている。LTCC基板1上にはさらに、正電極外部接続端子8及び負電極外部接続端子7が設けられており、それぞれの外部接続端子には外部配線15が接続されている。外部配線15はLTCC基板1に設けられた外部配線用穴16を通って外部に配線される。LTCC基板1は発光装置1000をネジによって他の装置へ固定するための取り付け部13を有する。ここで、発光装置1000の外形形状をほぼ正方形状にし、発光部1001の形状はほぼ長方形状とした。
[Embodiment 1]
FIG. 1 shows a schematic view of a light emitting device 1000 according to one embodiment of the present invention as viewed from above. The light emitting device 1000 has a structure in which a silver reflective layer (not shown) and a glass layer (covering layer) 3 are formed in this order on a low temperature co-fired ceramic (LTCC) substrate 1, and a light emitting unit 1001 is provided thereon. ing. The light emitting unit 1001 is sealed with a phosphor-containing sealing resin 6. A positive electrode external connection terminal 8 and a negative electrode external connection terminal 7 are further provided on the LTCC substrate 1, and an external wiring 15 is connected to each external connection terminal. The external wiring 15 is wired outside through an external wiring hole 16 provided in the LTCC substrate 1. The LTCC substrate 1 has a mounting portion 13 for fixing the light emitting device 1000 to another device with a screw. Here, the outer shape of the light-emitting device 1000 is substantially square, and the shape of the light-emitting portion 1001 is substantially rectangular.

図2は発光装置1000の配線パターン等を示す平面図である。LTCC基板1上に形成されたガラス層3の上に、細長い長方形状の配線パターン(接続部)9が互いに平行に、かつ、互いに距離をおいて複数形成されている。配線パターン9は正電極外部接続端子8と、負電極外部接続端子7とに接続されている。配線パターン9間にはLEDチップ(半導体装置)を搭載するためのチップ載置部41が設けられている。   FIG. 2 is a plan view showing a wiring pattern and the like of the light emitting device 1000. On the glass layer 3 formed on the LTCC substrate 1, a plurality of elongated rectangular wiring patterns (connection portions) 9 are formed in parallel to each other and at a distance from each other. The wiring pattern 9 is connected to the positive electrode external connection terminal 8 and the negative electrode external connection terminal 7. Between the wiring patterns 9, a chip mounting portion 41 for mounting an LED chip (semiconductor device) is provided.

図3(a)〜図3(d)及び図4は発光装置1000の製造方法を示す概略断面図である。   FIG. 3A to FIG. 3D and FIG. 4 are schematic sectional views showing a method for manufacturing the light emitting device 1000.

(a)厚さ2mmのLTCC基板1上に、メッキ法を用いて銀膜を形成し、厚さ0.2mmの銀反射層(光反射層)2を形成する。   (A) A silver film is formed on the LTCC substrate 1 having a thickness of 2 mm by using a plating method to form a silver reflecting layer (light reflecting layer) 2 having a thickness of 0.2 mm.

前記銀反射層2上に厚さ0.006mmのガラス層3を形成する。   A glass layer 3 having a thickness of 0.006 mm is formed on the silver reflective layer 2.

前記ガラス層3上にスクリーン印刷法を用いて配線パターン9(厚さ0.07mm、幅0.45mm、間隔2mm)を形成する。ここではガラス層の表面粗化を行うことなくガラス表面を清浄化して湿潤性を与え、次に化学的結合を強化する特殊な処理をした後、触媒活性化し、ガラス素材用に調整された無電解ニッケルめっきを直接施す方法を用いた。   A wiring pattern 9 (thickness 0.07 mm, width 0.45 mm, interval 2 mm) is formed on the glass layer 3 by screen printing. Here, the glass surface is cleaned without roughening the glass layer to give wettability, and then subjected to a special treatment to strengthen the chemical bond, and then the catalyst is activated and adjusted for the glass material. A method of directly applying electrolytic nickel plating was used.

ここで、LTCC基板1は、ほう珪酸ガラス(NaO−B−SiO)とSiOとの混合材料から成っている。銀反射層2は、銀、または銀を主成分とする銀合金(Ag、AgPt、Ag−Bi、Ag−Nd系合金)から成っている。ガラス層3は、透明ほう珪酸ガラス(NaO−B−SiO)をドクターブレード法(セラミックスをシート状に成形する方法の一つ。キャリヤ(キャリヤフィルム、エンドレスベルト)上に載せて運ばれるスリップ(原料粉末を溶剤に分散してスラリー化したその泥漿)の厚さをナイフエッジ(ドクターブレード)とキャリヤとの間隔を調節することによって精密に制御して作製できる成形方法。参考:http://www.oit.ac.jp/www-ee/server/aplab/res/slurry.html)を用いて作製した。 Here, the LTCC substrate 1 is made of a mixed material of borosilicate glass (Na 2 O—B 2 O 3 —SiO 2 ) and SiO 2 . The silver reflection layer 2 is made of silver or a silver alloy (Ag, AgPt, Ag—Bi, Ag—Nd alloy) containing silver as a main component. The glass layer 3 is a transparent borosilicate glass (Na 2 O—B 2 O 3 —SiO 2 ) placed on a carrier blade (carrier film, endless belt) by one of the doctor blade methods (a method for forming ceramics into a sheet). A molding method in which the thickness of the slip (the slurry produced by dispersing the raw material powder in a solvent) is precisely controlled by adjusting the distance between the knife edge (doctor blade) and the carrier. : Http://www.oit.ac.jp/www-ee/server/aplab/res/slurry.html).

(b)ガラス層3上の配線パターン9の間にLEDチップ4(短辺幅0.24mm、長
辺0.48mm、厚み0.14mm、36個)をシリコーン樹脂を用いて固定する。次いで、LEDチップ4と配線パターン9をボンディングワイヤ(接続部)Wを用いて電気的に接続する。なお、LEDチップ4は、一般的に用いられているLEDチップの構成を備えている。
(B) LED chips 4 (short side width 0.24 mm, long side 0.48 mm, thickness 0.14 mm, 36 pieces) are fixed between the wiring patterns 9 on the glass layer 3 using silicone resin. Next, the LED chip 4 and the wiring pattern 9 are electrically connected using a bonding wire (connection part) W. The LED chip 4 has a configuration of a generally used LED chip.

(c)LEDチップ4が設置された領域を囲うように略長方形状のシリコーンゴムシート5を配置し、ガラス層3上に密着させる。   (C) A substantially rectangular silicone rubber sheet 5 is disposed so as to surround an area where the LED chip 4 is installed, and is adhered to the glass layer 3.

(d)次に、シリコーンゴムシート5内に蛍光体(Eu:BOSE((Ba・Sr)SiO:Eu))を含む封止樹脂(シリコーン)6を注入し、この蛍光体を含む封止樹脂を熱硬化させる。 (D) Next, a sealing resin (silicone) 6 containing a phosphor (Eu: BOSE ((Ba · Sr) 2 SiO 4 : Eu)) is injected into the silicone rubber sheet 5 and the sealing material containing this phosphor is contained. The curing resin is thermoset.

蛍光物質と透光性樹脂であるシリコーン樹脂とが混合されたものを前記シリコーンゴムシート5の枠内に注入した後、30分間温度を150℃に保持し樹脂を硬化させ、蛍光体を含む封止樹脂6を形成する。その後シリコーンゴムシート5を取り除く。   After injecting a mixture of a fluorescent substance and a silicone resin, which is a translucent resin, into the frame of the silicone rubber sheet 5, the resin is cured by maintaining the temperature at 150 ° C. for 30 minutes to contain the phosphor. A stop resin 6 is formed. Thereafter, the silicone rubber sheet 5 is removed.

図4は、こうしてLTCC基板1上に形成された発光部1001を示す断面図である。   FIG. 4 is a cross-sectional view showing the light emitting unit 1001 thus formed on the LTCC substrate 1.

蛍光体を含有した封止樹脂6から、CIEの色度表でx、y=(0.345、0.35)となる光が得られるように形成した。こうして、発光部1001が製造される。   The sealing resin 6 containing a phosphor was formed so as to obtain light with x, y = (0.345, 0.35) in the CIE chromaticity table. In this way, the light emitting unit 1001 is manufactured.

前記のように構成することで、LEDチップ4からの出射光のうち、特に、下面(基板側)方向からの光はLTCC基板1とガラス層3とで挟まれた銀反射層2で反射されるので、LEDチップ4からの出射光がロスなく有効に活用される。したがって発光装置1000の発光量を高めることができる。また、銀反射層2は、光反射層としての機能と、LEDチップ4で発生した熱をパッケージの面方向(LTCC基板1に対し水平方向)に放散させる機能とを持つ。また、熱伝導率が高く放熱性のよいLTCC基板1を用いているために、LEDチップ4の集積化が可能となる。したがって、熱による発光装置の変形を抑えることができ、色ズレなどを抑制することができる。   With the configuration as described above, among the light emitted from the LED chip 4, in particular, the light from the lower surface (substrate side) direction is reflected by the silver reflective layer 2 sandwiched between the LTCC substrate 1 and the glass layer 3. Therefore, the light emitted from the LED chip 4 is effectively utilized without loss. Therefore, the light emission amount of the light emitting device 1000 can be increased. The silver reflection layer 2 has a function as a light reflection layer and a function to dissipate heat generated in the LED chip 4 in the surface direction of the package (horizontal direction with respect to the LTCC substrate 1). Further, since the LTCC substrate 1 having high thermal conductivity and good heat dissipation is used, the LED chip 4 can be integrated. Therefore, deformation of the light-emitting device due to heat can be suppressed, and color misalignment and the like can be suppressed.

また本実施の形態では、銀反射層2をガラス層3で覆っているので、反射層の変質、劣化、及び反射率の低下を抑制することができる。ガラス層3は一般の樹脂に比べ酸素または水分等に対する隔絶性が高く、銀反射層2の経年変化を抑制することができる。またLTCC基板1及びガラス層3がともにガラスを含んでおり、基板とガラス層との密着性が良好になるため、銀反射層2を酸素または水分等から隔絶する効果がさらに高い。   Moreover, in this Embodiment, since the silver reflection layer 2 is covered with the glass layer 3, the quality change and deterioration of a reflection layer, and the fall of a reflectance can be suppressed. The glass layer 3 has high isolation against oxygen or moisture compared to a general resin, and can suppress the secular change of the silver reflection layer 2. In addition, since both the LTCC substrate 1 and the glass layer 3 contain glass and the adhesion between the substrate and the glass layer is improved, the effect of isolating the silver reflective layer 2 from oxygen or moisture is even higher.

反射層の材料としては前記した銀または銀合金の他に、LEDチップからの出射光を反射する任意の金属または非金属の材料を用いることができる。例えば、90%以上の光反射率を有する任意の金属または非金属の材料を用いると、LTCC基板1側への出射光を有効に活用でき、発光部1001の発光量を高めることができる。   As the material of the reflective layer, any metal or non-metal material that reflects the light emitted from the LED chip can be used in addition to the above-described silver or silver alloy. For example, when an arbitrary metal or non-metal material having a light reflectance of 90% or more is used, the emitted light toward the LTCC substrate 1 can be effectively used, and the light emission amount of the light emitting unit 1001 can be increased.

また、配線パターン9としては化学的に安定な金を含む材料をもちいることが好ましい。さらに本実施の形態では配線パターン9とガラス層3との間にニッケル層を形成しているので、金から成る配線パターン9とガラス層3との密着性が向上し、配線パターン9の劣化等による経年変化をさらに抑制することができる。またニッケル層の代わりにクロム層を形成してもよい。   The wiring pattern 9 is preferably made of a material containing chemically stable gold. Further, in the present embodiment, since the nickel layer is formed between the wiring pattern 9 and the glass layer 3, the adhesion between the wiring pattern 9 made of gold and the glass layer 3 is improved, and the deterioration of the wiring pattern 9 or the like. Aging over time can be further suppressed. A chromium layer may be formed instead of the nickel layer.

ここで、ガラス層3及びLTCC基板1の材料としてのガラス粉末は、NaO−B−SiOの組成から成るホウケイ酸ガラスが好ましい。熱膨張係数が小さく、熱衝撃温度が高く、酸化ホウ素が多く含まれているため化学的に大変耐久性があるためである
Here, the glass powder as a material of the glass layer 3 and the LTCC substrate 1 is preferably borosilicate glass having a composition of Na 2 O—B 2 O 3 —SiO 2 . This is because the thermal expansion coefficient is small, the thermal shock temperature is high, and a lot of boron oxide is contained, so that it is chemically very durable.

シリコーンゴムシート5(図3(d)参照)は蛍光体を含有した透光性樹脂を塗布する際のダム(樹脂漏れを防ぐ)のような機能を有している。従って、前記シリコーンゴムシート5はダムシートと呼べるような特徴を有している。また、前記ダムシートは、何度も使用することが可能である。また、前記ダムシートの形状を変えることにより発光部1001の形状(蛍光体含有封止樹脂6の形状)を容易に様々な形状に変えられることを特徴としている。   The silicone rubber sheet 5 (see FIG. 3D) has a function like a dam (prevents resin leakage) when a translucent resin containing a phosphor is applied. Therefore, the silicone rubber sheet 5 has a feature that can be called a dam sheet. Further, the dam sheet can be used many times. In addition, the shape of the light emitting portion 1001 (the shape of the phosphor-containing sealing resin 6) can be easily changed to various shapes by changing the shape of the dam sheet.

ガラス層3及び銀反射層2は、シリコーンゴムシート5で囲われているLEDチップ4の搭載面全面にわたって形成されている。   The glass layer 3 and the silver reflection layer 2 are formed over the entire mounting surface of the LED chip 4 surrounded by the silicone rubber sheet 5.

ここで、LEDチップ4の載置領域を本構成のようにすることにより、LEDチップ4の載置ピッチを配線パターン9との平行方向に沿って自在に決めることができるために、発光装置の輝度調整、色度調整、及び発熱対策が容易にできる。   Here, by setting the mounting area of the LED chip 4 as in this configuration, the mounting pitch of the LED chip 4 can be freely determined along the direction parallel to the wiring pattern 9. Brightness adjustment, chromaticity adjustment, and heat generation measures can be easily performed.

発光装置1000を用いて作製した照明器具の応用例として、図5に蛍光灯形LEDランプ7000、図6に電球形LEDランプ9000の模式図を示す。電球形LEDランプ9000は口金14を有している。蛍光灯形LEDランプ7000ならびに電球形LEDランプ9000の構成は、発光装置1000を備えていること以外は一般的な蛍光灯形LEDランプならびに電球形LEDランプの構成と同様である。   As an application example of a lighting fixture manufactured using the light emitting device 1000, FIG. 5 shows a schematic diagram of a fluorescent lamp LED lamp 7000, and FIG. The light bulb shaped LED lamp 9000 has a base 14. The configurations of the fluorescent lamp type LED lamp 7000 and the light bulb type LED lamp 9000 are the same as those of a general fluorescent lamp type LED lamp and a light bulb type LED lamp except that the light emitting device 1000 is provided.

[実施の形態2]
図7(a)は本発明の他の実施の形態による発光装置1002を示す模式断面図であり、図7(b)はその平面図である。なお、説明の便宜上、実施の形態1で用いた部材と同一の機能を有する部材には同一の部材番号を付記し、その説明を省略する。発光装置1002は、低温同時焼成セラミックス(LTCC)基板10、LTCC基板10上に形成された銀反射層2、銀反射層2を覆うガラス層3、ガラス層3の上に設置されたLEDチップ4、及びガラス層3の上に形成された正電極外部接続端子81と負電極外部接続端子71と、から成る。LEDチップ4とそれぞれの外部接続端子81、71はボンディングワイヤWで電気接続されている。LEDチップ4とボンディングワイヤWとはドーム状の蛍光体含有封止樹脂61で封止されている。外部接続端子81、71はLTCC基板10のそれぞれ反対側の側面まで延びて形成されている。
[Embodiment 2]
FIG. 7A is a schematic cross-sectional view showing a light emitting device 1002 according to another embodiment of the present invention, and FIG. 7B is a plan view thereof. For convenience of explanation, members having the same functions as those used in the first embodiment are denoted by the same member numbers, and description thereof is omitted. The light emitting device 1002 includes a low-temperature co-fired ceramic (LTCC) substrate 10, a silver reflective layer 2 formed on the LTCC substrate 10, a glass layer 3 covering the silver reflective layer 2, and an LED chip 4 installed on the glass layer 3. And a positive electrode external connection terminal 81 and a negative electrode external connection terminal 71 formed on the glass layer 3. The LED chip 4 and the external connection terminals 81 and 71 are electrically connected by bonding wires W. The LED chip 4 and the bonding wire W are sealed with a dome-shaped phosphor-containing sealing resin 61. The external connection terminals 81 and 71 are formed to extend to the opposite side surfaces of the LTCC substrate 10.

LTCC基板10は多層(10層)のLTCC層10a〜10jから成っており、銀で形成された複数の放熱ビア21が、LTCC基板10の各層を貫通して、すなわちLTCC基板10に対して垂直方向に、それぞれ形成され、かつ、それぞれ銀反射層2に接続されている。ここで、LTCC基板10はグリーンシートを10枚積層して作製される。尚、本実施の形態はLEDチップ4を4個設置したものであるが、図7(a)には簡単のため1つのLEDチップの断面を示す。   The LTCC substrate 10 is composed of multilayer (ten layers) LTCC layers 10a to 10j, and a plurality of heat radiation vias 21 made of silver penetrate each layer of the LTCC substrate 10, that is, perpendicular to the LTCC substrate 10. Each is formed in a direction and connected to the silver reflection layer 2. Here, the LTCC substrate 10 is produced by laminating ten green sheets. In the present embodiment, four LED chips 4 are installed. FIG. 7A shows a cross section of one LED chip for simplicity.

以下に発光装置1002の製造方法を示す。   A method for manufacturing the light emitting device 1002 will be described below.

工程(1):セラミックス粉末(Al粉末 30重量%)とガラス粉末(ほう珪酸ガラス粉末 70重量%)とを一定比率で配合・混合し原料とする。混合された原料に有機系のバインダ(アクリル樹脂)と溶剤(トルエン)とを加え、均一になるまで分散させ、スラリーと呼ばれるグリーンシートのもとになる材料を作製する。スラリーはドクターブレード成形機でPETフィルム上に一定の厚さで塗布され、乾燥工程を経て巻き取られる。ここで作製されたシート状の材料はグリーンシート(厚さ0.1mm)と呼ばれる。前記グリーンシートを最適な大きさに切断する。放熱ビア21用のビアとなる穴開け加
工(パンチング加工)を施す。前記の穴へ放熱材料(銀ペースト)を充填し、一層のLTCC層(厚さ0.1mm)を作製する。こうして作製された各LTCC層(10a,10b,10c,10d,10e,10f,10g,10h,10i,10j)を積層(10層)し、加熱圧着し、焼成工程(850℃)を経てLTCC基板10が作製される。
Step (1): Ceramic powder (Al 2 O 3 powder 30% by weight) and glass powder (borosilicate glass powder 70% by weight) are blended and mixed at a constant ratio to obtain a raw material. An organic binder (acrylic resin) and a solvent (toluene) are added to the mixed raw materials and dispersed until uniform, thereby producing a material for a green sheet called slurry. The slurry is applied on the PET film with a constant thickness by a doctor blade molding machine, and wound up through a drying process. The sheet-like material produced here is called a green sheet (thickness 0.1 mm). The green sheet is cut to an optimum size. Drilling (punching) to be a via for the heat dissipation via 21 is performed. The hole is filled with a heat dissipation material (silver paste) to produce a single LTCC layer (thickness 0.1 mm). The LTCC layers (10a, 10b, 10c, 10d, 10e, 10f, 10g, 10h, 10i, and 10j) thus fabricated are stacked (10 layers), thermocompression bonded, and subjected to a firing step (850 ° C.) to the LTCC substrate. 10 is produced.

工程(2):LTCC基板10(厚さ1mm)上に、銀膜(厚さ0.25mm)をメッキ法を用いて形成し、銀反射層2を形成する。ここで、グリーンシートのガラス粉末としてほう珪酸ガラス(NaO−B−SiO)、セラミックス粉末としてAlを用いた。 Step (2): On the LTCC substrate 10 (thickness 1 mm), a silver film (thickness 0.25 mm) is formed using a plating method, and the silver reflective layer 2 is formed. Here, borosilicate glass (Na 2 O—B 2 O 3 —SiO 2 ) was used as the glass powder of the green sheet, and Al 2 O 3 was used as the ceramic powder.

工程(3):前記銀反射層2上にガラス層3(厚さ0.01mm)を形成する。ここで、ガラス層3は、透明ほう珪酸ガラス(NaO−B−SiO)をドクターブレード法を用いて作製した。 Step (3): A glass layer 3 (thickness: 0.01 mm) is formed on the silver reflective layer 2. The glass layer 3 was prepared transparent borosilicate glass (Na 2 O-B 2 O 3 -SiO 2) using a doctor blade method.

工程(4):前記ガラス層3上にスクリーン印刷法を用いて外部接続端子71、81(厚さ0.7mm、幅0.45mm)を金で形成する。   Step (4): External connection terminals 71 and 81 (thickness 0.7 mm, width 0.45 mm) are formed of gold on the glass layer 3 by using a screen printing method.

工程(5):ガラス層3上にLEDチップ4(短辺幅0.24mm、長辺0.48mm、厚み0.14mm、4個)をシリコーン樹脂(図示せず)を用いて固定する。次いでLEDチップ4と外部接続端子71、81とを、ボンディングワイヤWを用いて電気的接続する。   Step (5): The LED chip 4 (short side width 0.24 mm, long side 0.48 mm, thickness 0.14 mm, 4 pieces) is fixed on the glass layer 3 using a silicone resin (not shown). Next, the LED chip 4 and the external connection terminals 71 and 81 are electrically connected using the bonding wires W.

工程(6)次に、蛍光体(Eu:BOSE)を含む封止樹脂(シリコーン)61を形成し、この蛍光体含有封止樹脂61を熱硬化させる。蛍光体含有封止樹脂61は、蛍光物質と透光性樹脂であるシリコーン樹脂とを混合したものを、30分間温度を150℃に保持し樹脂を硬化させ形成される。尚、本実施の形態では蛍光体含有封止樹脂61がCIEの色度表でx、y=(0.345、0.35)となる光が得られるように形成した。こうして発光部が製造される。   Step (6) Next, a sealing resin (silicone) 61 containing a phosphor (Eu: BOSE) is formed, and the phosphor-containing sealing resin 61 is thermally cured. The phosphor-containing sealing resin 61 is formed by mixing a fluorescent material and a silicone resin, which is a translucent resin, and maintaining the temperature at 150 ° C. for 30 minutes to cure the resin. In the present embodiment, the phosphor-containing sealing resin 61 is formed so as to obtain light with x, y = (0.345, 0.35) in the CIE chromaticity table. Thus, the light emitting part is manufactured.

ここで銀反射層2はLEDチップ4からLTCC基板10の方向へ出射された光を外部へ取り出すのに有効である。また本実施の形態では、銀反射層2をガラス層3で覆っているので、反射層の変質、劣化、及び反射率の低下を抑制することができる。ガラス層3は一般の樹脂に比べ酸素または水分等に対する隔絶性が高く、銀反射層2の経年変化を抑制することができる。   Here, the silver reflection layer 2 is effective for taking out the light emitted from the LED chip 4 toward the LTCC substrate 10 to the outside. Moreover, in this Embodiment, since the silver reflection layer 2 is covered with the glass layer 3, the quality change and deterioration of a reflection layer, and the fall of a reflectance can be suppressed. The glass layer 3 has high isolation against oxygen or moisture compared to a general resin, and can suppress the secular change of the silver reflection layer 2.

また、銀で形成された放熱ビア21はLEDチップ4から生じる熱を基板の垂直方向へ伝えるために、効果的に外部に放熱させることができる。この効果は、銀反射層2と放熱ビア21とが接触していることによって、LEDチップ4から発生した熱が銀反射層2を介して放熱ビア21に効率よく伝わるために、より顕著となる。放熱ビア21は、銀だけでなく、任意の金属で形成することができる。また銀反射層2と同じように銀を主成分とする銀合金(AgPt、Ag−Bi、Ag−Nd系合金)によって形成してもよい。   In addition, the heat dissipation via 21 formed of silver can effectively dissipate the heat to the outside in order to transfer the heat generated from the LED chip 4 in the vertical direction of the substrate. This effect becomes more prominent because the heat generated from the LED chip 4 is efficiently transferred to the heat dissipation via 21 via the silver reflection layer 2 due to the contact between the silver reflection layer 2 and the heat dissipation via 21. . The heat dissipation via 21 can be formed not only of silver but also of any metal. Further, similarly to the silver reflection layer 2, it may be formed of a silver alloy (AgPt, Ag—Bi, Ag—Nd alloy) containing silver as a main component.

また、発光装置1002のLTCC基板10の下側にヒートシンク(図示せず)を設置してもよい。それにより、さらに発光装置の放熱性を高め、発熱による色ズレを抑制することができる。その際、放熱ビア21はヒートシンクと接触していることが好ましい。   Further, a heat sink (not shown) may be installed below the LTCC substrate 10 of the light emitting device 1002. Thereby, the heat dissipation of the light emitting device can be further improved, and color shift due to heat generation can be suppressed. In that case, it is preferable that the thermal radiation via 21 is in contact with the heat sink.

なお、放熱ビア21は、LTCC基板10内に透過してきたLEDチップ4からの光を反射する効果があり、LTCC基板10表面から見て銀反射層2が形成されていない領域に放熱ビア21を延ばして配置することで、LTCC基板10表面側への光の取り出しをさらに改善できる。   The heat dissipation via 21 has an effect of reflecting the light from the LED chip 4 that has been transmitted into the LTCC substrate 10, and the heat dissipation via 21 is formed in a region where the silver reflective layer 2 is not formed when viewed from the surface of the LTCC substrate 10. By extending the arrangement, it is possible to further improve the light extraction to the front surface side of the LTCC substrate 10.

[実施の形態3]
図8は本発明の他の実施の形態による発光装置1005を示す模式断面図である。なお、説明の便宜上、実施の形態2で用いた部材と同一の機能を有する部材には同一の部材番号を付記し、その説明を省略する。本実施の形態が実施の形態2と違うのは、蛍光体含有封止樹脂の代わりに、蛍光体を含んだ蛍光体含有樹脂部63と、蛍光体含有樹脂部63を覆うように形成された透明樹脂部64とからなるドーム形状の封止樹脂によって、LEDチップ4とボンディングワイヤWとが封止されている点である。蛍光体含有樹脂部63及び透明樹脂部64はそれぞれドーム形状をしている。
[Embodiment 3]
FIG. 8 is a schematic cross-sectional view showing a light emitting device 1005 according to another embodiment of the present invention. For convenience of explanation, members having the same functions as those used in the second embodiment are denoted by the same member numbers, and description thereof is omitted. The present embodiment is different from the second embodiment in that instead of the phosphor-containing sealing resin, the phosphor-containing resin portion 63 containing the phosphor and the phosphor-containing resin portion 63 are formed to be covered. The LED chip 4 and the bonding wire W are sealed with a dome-shaped sealing resin composed of the transparent resin portion 64. Each of the phosphor-containing resin portion 63 and the transparent resin portion 64 has a dome shape.

前記のように構成することで、蛍光体含有樹脂部63を透明樹脂部64によって保護することができる。また、封止樹脂及び各樹脂部がドーム形状であるため、LEDチップ4からの照射光の屈折方向は連続的に変化する。そのため、照射光の強度の空間的なむらを低減することができる。   By configuring as described above, the phosphor-containing resin portion 63 can be protected by the transparent resin portion 64. Moreover, since the sealing resin and each resin part are dome-shaped, the refractive direction of the irradiation light from the LED chip 4 changes continuously. Therefore, spatial unevenness of the intensity of irradiation light can be reduced.

透明樹脂部64としては、透明度が確保でき、かつ硬度の高い素材を用いるのが好ましいが、材料に特に限定はない。   As the transparent resin portion 64, it is preferable to use a material that can ensure transparency and has high hardness, but the material is not particularly limited.

[実施の形態4]
図9は本発明の他の実施の形態による発光装置1003を示す模式断面図である。なお、説明の便宜上、実施の形態2で用いた部材と同一の機能を有する部材には同一の部材番号を付記し、その説明を省略する。発光装置1003は、低温同時焼成セラミックス(LTCC)基板11、LTCC基板11上に形成された銀反射層2、LTCC基板11上で銀反射層2だけを覆うガラス層3、ガラス層3の上に設置されたLEDチップ4、及びLTCC基板11上に形成された正電極外部接続端子81と負電極外部接続端子71と、から成る。LEDチップ4とそれぞれの外部接続端子81、71とはボンディングワイヤWで電気接続されている。LEDチップ4とボンディングワイヤWと外部接続端子81,71とは蛍光体含有封止樹脂62で封止されている。LTCC基板11は多層(10層)のLTCC層11a〜11jから成り、銀で形成された複数の放熱ビア21が、各層を貫通して、すなわちLTCC基板11に対して垂直方向に、それぞれ形成され銀反射層2に接続されている。また、外部接続端子81、71はLTCC基板11を貫通する2つの配線ビア(放熱ビア)22にそれぞれ接続されており、各配線ビア22はLTCC基板11の下面側に形成された外部端子82、72にそれぞれ接続されている。ここで、LTCC基板11はグリーンシートを10枚積層して作製される。尚、本実施の形態はLEDチップ4を4個設置したものであるが、図9には簡単のため1つのLEDチップの断面を示す。
[Embodiment 4]
FIG. 9 is a schematic cross-sectional view showing a light emitting device 1003 according to another embodiment of the present invention. For convenience of explanation, members having the same functions as those used in the second embodiment are denoted by the same member numbers, and description thereof is omitted. The light emitting device 1003 includes a low temperature co-fired ceramic (LTCC) substrate 11, a silver reflective layer 2 formed on the LTCC substrate 11, a glass layer 3 that covers only the silver reflective layer 2 on the LTCC substrate 11, and a glass layer 3. The LED chip 4 is installed, and includes a positive electrode external connection terminal 81 and a negative electrode external connection terminal 71 formed on the LTCC substrate 11. The LED chip 4 and the external connection terminals 81 and 71 are electrically connected by bonding wires W. The LED chip 4, the bonding wire W, and the external connection terminals 81 and 71 are sealed with a phosphor-containing sealing resin 62. The LTCC substrate 11 is composed of multilayer (ten layers) LTCC layers 11a to 11j, and a plurality of heat radiation vias 21 formed of silver are formed through each layer, that is, in a direction perpendicular to the LTCC substrate 11. It is connected to the silver reflection layer 2. The external connection terminals 81 and 71 are connected to two wiring vias (heat dissipation vias) 22 penetrating the LTCC substrate 11, and each wiring via 22 is connected to an external terminal 82 formed on the lower surface side of the LTCC substrate 11. 72, respectively. Here, the LTCC substrate 11 is produced by laminating 10 green sheets. In this embodiment, four LED chips 4 are provided. For simplicity, FIG. 9 shows a cross section of one LED chip.

以下に発光装置1003の製造方法を示す。   A method for manufacturing the light emitting device 1003 will be described below.

工程(1):セラミックス粉末(Al粉末 30重量%)とガラス粉末(ほう珪酸ガラス粉末 70重量%)を一定比率で配合・混合する。混合された原料に有機系のバインダ(アクリル樹脂)と溶剤(トルエン)とを加え、均一になるまで分散させ、スラリーと呼ばれるグリーンシートのもとになる材料を作製する。スラリーはドクターブレード成形機でPETフィルム上に一定の厚さで塗布され、乾燥工程を経て巻き取られる。ここで作製されたシート状の材料はグリーンシート(厚さ0.1mm)と呼ばれる。前記グリーンシートを最適な大きさに切断する。放熱ビア21及び配線ビア22用のビアとなる穴開け加工(パンチング加工)を施す。放熱ビア21及び配線ビア22となる穴へ材料(銀ペースト)を充填し、一層のLTCC層(厚さ0.1mm)を作製する。こうして作製された各LTCC層(11a,11b,11c,11d,11e,11f,11g,11h,11i,11j)を積層(10層)し、加熱圧着し、焼成工程(850℃)を経てLTCC基板11が作製される。 Step (1): Ceramic powder (Al 2 O 3 powder 30% by weight) and glass powder (borosilicate glass powder 70% by weight) are mixed and mixed at a constant ratio. An organic binder (acrylic resin) and a solvent (toluene) are added to the mixed raw materials and dispersed until uniform, thereby producing a material for a green sheet called slurry. The slurry is applied on the PET film with a constant thickness by a doctor blade molding machine, and wound up through a drying process. The sheet-like material produced here is called a green sheet (thickness 0.1 mm). The green sheet is cut to an optimum size. A drilling process (punching process) to be a via for the heat dissipation via 21 and the wiring via 22 is performed. A material (silver paste) is filled in the holes to be the heat dissipation vias 21 and the wiring vias 22 to produce one LTCC layer (thickness 0.1 mm). Each LTCC layer (11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h, 11i, and 11j) manufactured in this way is laminated (10 layers), thermocompression-bonded, and subjected to a firing process (850 ° C.) to the LTCC substrate. 11 is produced.

工程(2):LTCC基板11(厚さ1mm)上に、銀膜2(厚さ0.25mm)をメッキ法を用いて形成し、銀反射層2を形成する。ここで、グリーンシートのガラス粉末としてほう珪酸ガラス(NaO−B−SiO)、セラミックス粉末としてAlを用いた。 Step (2): On the LTCC substrate 11 (thickness 1 mm), a silver film 2 (thickness 0.25 mm) is formed using a plating method, and the silver reflective layer 2 is formed. Here, borosilicate glass (Na 2 O—B 2 O 3 —SiO 2 ) was used as the glass powder of the green sheet, and Al 2 O 3 was used as the ceramic powder.

工程(3):前記銀反射層2上にガラス層3(厚さ0.007mm)を形成する。ここで、ガラス層3は、透明ほう珪酸ガラス(NaO−B−SiO)をドクターブレード法を用いて作製した。 Step (3): A glass layer 3 (thickness 0.007 mm) is formed on the silver reflective layer 2. The glass layer 3 was prepared transparent borosilicate glass (Na 2 O-B 2 O 3 -SiO 2) using a doctor blade method.

工程(4):前記LTCC基板11の配線ビア22上に、スクリーン印刷法を用いてガラス層3を挟むように外部接続端子81,71(厚さ0.7mm、幅0.45mm)を金で形成する。   Step (4): External connection terminals 81 and 71 (thickness 0.7 mm, width 0.45 mm) are placed on the wiring via 22 of the LTCC substrate 11 with gold so as to sandwich the glass layer 3 by screen printing. Form.

工程(5):ガラス層3上にLEDチップ4(短辺幅0.24mm、長辺0.48mm、厚み0.14mm、4個)をシリコーン樹脂を用いて固定する。LEDチップ4と外部接続端子81,71とをボンディングワイヤWを用いて電気的接続する。   Step (5): The LED chip 4 (short side width 0.24 mm, long side 0.48 mm, thickness 0.14 mm, 4 pieces) is fixed on the glass layer 3 using a silicone resin. The LED chip 4 and the external connection terminals 81 and 71 are electrically connected using a bonding wire W.

工程(6):次に、蛍光体(Eu:BOSE)を含む封止樹脂(シリコーン)62を形成し、この蛍光体含有封止樹脂62を熱硬化させる。蛍光体含有封止樹脂62は、蛍光物質と透光性樹脂であるシリコーン樹脂とを混合したものを、30分間温度を150℃に保持し樹脂を硬化させ形成される。尚、本実施の形態では、蛍光体含有封止樹脂62がCIEの色度表でx、y=(0.345、0.35)となる光が得られるように形成した。こうして発光部が製造される。   Step (6): Next, a sealing resin (silicone) 62 including a phosphor (Eu: BOSE) is formed, and the phosphor-containing sealing resin 62 is thermally cured. The phosphor-containing sealing resin 62 is formed by mixing a fluorescent material and a silicone resin, which is a translucent resin, and maintaining the temperature at 150 ° C. for 30 minutes to cure the resin. In the present embodiment, the phosphor-containing sealing resin 62 is formed so as to obtain light with x, y = (0.345, 0.35) in the CIE chromaticity table. Thus, the light emitting part is manufactured.

ここで、LEDチップ4からの熱がボンディングワイヤWを介して外部接続端子81,71に伝わる。LTCC基板11の下側に形成された外部端子82,72はそれぞれ外部接続端子81,71と配線ビア22を介して接続している。そのため、外部接続端子81,71に伝わった熱は外部端子82、72に伝わり放熱されることになる。この効果は、外部接続端子81,71と配線ビア22とが接触していることによって、LEDチップ4から発生した熱がボンディングワイヤWを介して配線ビア22に効率よく伝わるために、より顕著となる。配線ビア22は、銀だけでなく、任意の金属で形成することができる。また銀反射層2と同じように銀を主成分とする銀合金(AgPt、Ag−Bi、Ag−Nd系合金)によって形成してもよい。尚、LTCC基板11上の外部接続端子81,71に接続する配線ビア22を設けることができるのは、ガラス層3が銀反射層2だけを覆っているためである。   Here, heat from the LED chip 4 is transmitted to the external connection terminals 81 and 71 via the bonding wires W. External terminals 82 and 72 formed on the lower side of the LTCC substrate 11 are connected to the external connection terminals 81 and 71 via the wiring vias 22, respectively. Therefore, the heat transmitted to the external connection terminals 81 and 71 is transmitted to the external terminals 82 and 72 and radiated. This effect is more conspicuous because the heat generated from the LED chip 4 is efficiently transferred to the wiring via 22 via the bonding wire W due to the contact between the external connection terminals 81 and 71 and the wiring via 22. Become. The wiring via 22 can be formed of any metal other than silver. Further, similarly to the silver reflection layer 2, it may be formed of a silver alloy (AgPt, Ag—Bi, Ag—Nd alloy) containing silver as a main component. The wiring via 22 connected to the external connection terminals 81 and 71 on the LTCC substrate 11 can be provided because the glass layer 3 covers only the silver reflection layer 2.

ここで銀反射層2はLEDチップ4からLTCC基板10の方向へ出射された光を外部へ取り出すのに有効である。また本実施の形態では、銀反射層2をガラス層3で覆っているので、反射層の変質、劣化、及び反射率の低下を抑制することができる。ガラス層3は一般の樹脂に比べ酸素または水分等に対する隔絶性が高く、銀反射層2の経年変化を抑制することができる。   Here, the silver reflection layer 2 is effective for taking out the light emitted from the LED chip 4 toward the LTCC substrate 10 to the outside. Moreover, in this Embodiment, since the silver reflection layer 2 is covered with the glass layer 3, the quality change and deterioration of a reflection layer, and the fall of a reflectance can be suppressed. The glass layer 3 has high isolation against oxygen or moisture compared to a general resin, and can suppress the secular change of the silver reflection layer 2.

ここで、発光装置1003のLTCC基板11の下側にヒートシンク(図示せず)を設置してもよい。その際、放熱ビア21はヒートシンクと接触していることが好ましい。   Here, a heat sink (not shown) may be installed below the LTCC substrate 11 of the light emitting device 1003. In that case, it is preferable that the thermal radiation via 21 is in contact with the heat sink.

[実施の形態5]
図10は本発明の他の実施の形態による発光装置1004を示す模式断面図である。なお、説明の便宜上、実施の形態4で用いた部材と同一の機能を有する部材には同一の部材番号を付記し、その説明を省略する。発光装置1004は、アルミナ基板12、アルミナ
基板12上に形成された銀反射層2、銀反射層2だけを覆うガラス層3、ガラス層3の上に設置されたLEDチップ4、及びアルミナ基板12上に形成された正電極外部接続端子81と負電極外部接続端子71と、から成る。LEDチップ4とそれぞれの外部接続端子81、71とはボンディングワイヤWで電気接続されている。LEDチップ4とボンディングワイヤWと外部接続端子81,71とは蛍光体含有封止樹脂62で封止されているが、図10の奥行き方向に関しては、アルミナ基板12の全面を覆っているわけではない。アルミナ基板12上には正電極接続ランド81及び負電極接続ランド71を表面に露出させ、外部電源(図示せず)と接続できるようするために、封止されていない領域がある。尚、本実施の形態はLEDチップ4を36個設置したものであるが、図9には簡単のため1つのLEDチップの断面を示す。
[Embodiment 5]
FIG. 10 is a schematic cross-sectional view showing a light emitting device 1004 according to another embodiment of the present invention. For convenience of explanation, members having the same functions as those used in the fourth embodiment are denoted by the same member numbers, and description thereof is omitted. The light emitting device 1004 includes an alumina substrate 12, a silver reflection layer 2 formed on the alumina substrate 12, a glass layer 3 covering only the silver reflection layer 2, an LED chip 4 installed on the glass layer 3, and the alumina substrate 12. It consists of a positive electrode external connection terminal 81 and a negative electrode external connection terminal 71 formed above. The LED chip 4 and the external connection terminals 81 and 71 are electrically connected by bonding wires W. The LED chip 4, the bonding wire W, and the external connection terminals 81 and 71 are sealed with a phosphor-containing sealing resin 62, but the entire surface of the alumina substrate 12 is not covered in the depth direction of FIG. 10. Absent. On the alumina substrate 12, there is an unsealed region so that the positive electrode connection land 81 and the negative electrode connection land 71 are exposed on the surface and can be connected to an external power source (not shown). In the present embodiment, 36 LED chips 4 are provided. FIG. 9 shows a cross section of one LED chip for simplicity.

以下に発光装置1004の製造方法を示す。   A method for manufacturing the light emitting device 1004 will be described below.

工程(1):アルミナ基板12(厚さ2mm)上に銀膜2(厚さ0.2mm)をメッキ法を用いて形成し、銀反射層2を形成する。   Step (1): A silver film 2 (thickness 0.2 mm) is formed on an alumina substrate 12 (thickness 2 mm) using a plating method to form a silver reflection layer 2.

工程(2):前記銀反射層2上にガラス層3(厚さ0.006mm)を形成する。ここで、ガラス層3は、透明ほう珪酸ガラス(NaO−B−SiO)をドクターブレード法を用いて作製した。 Step (2): A glass layer 3 (thickness 0.006 mm) is formed on the silver reflective layer 2. The glass layer 3 was prepared transparent borosilicate glass (Na 2 O-B 2 O 3 -SiO 2) using a doctor blade method.

工程(3):前記アルミナ基板12上にスクリーン印刷法を用いて外部接続端子81,71(厚さ0.07mm、幅0.45mm、長さ2mm)を形成する。   Step (3): External connection terminals 81 and 71 (thickness 0.07 mm, width 0.45 mm, length 2 mm) are formed on the alumina substrate 12 by screen printing.

工程(4):ガラス層3上にLEDチップ4(短辺幅0.24mm、長辺0.48mm、厚み0.14mm、36個)をシリコーン樹脂を用いて固定する。次いでLEDチップ4と外部接続端子81,71とをボンディングワイヤWを用いて電気的接続する。   Process (4): LED chip 4 (short side width 0.24mm, long side 0.48mm, thickness 0.14mm, 36 pieces) is fixed on the glass layer 3 using a silicone resin. Next, the LED chip 4 and the external connection terminals 81 and 71 are electrically connected using the bonding wires W.

工程(5):次に、蛍光体(Eu:BOSE)を含む封止樹脂(シリコーン)62を注入し、この蛍光体含有封止樹脂を熱硬化させる。蛍光体含有封止樹脂62は、蛍光物質と透光性樹脂であるシリコーン樹脂とを混合したものを、30分間温度を150℃に保持し樹脂を硬化させ形成される。尚、本実施の形態では、蛍光体含有封止樹脂62がCIEの色度表でx、y=(0.345、0.35)となる光が得られるように形成した。こうして発光部が製造される。   Step (5): Next, a sealing resin (silicone) 62 containing a phosphor (Eu: BOSE) is injected, and the phosphor-containing sealing resin is thermally cured. The phosphor-containing sealing resin 62 is formed by mixing a fluorescent material and a silicone resin, which is a translucent resin, and maintaining the temperature at 150 ° C. for 30 minutes to cure the resin. In the present embodiment, the phosphor-containing sealing resin 62 is formed so as to obtain light with x, y = (0.345, 0.35) in the CIE chromaticity table. Thus, the light emitting part is manufactured.

また本実施の形態では、銀反射層2をガラス層3で覆っているので、反射層の変質、劣化、及び反射率の低下を抑制することができる。ガラス層3は一般の樹脂に比べ酸素または水分等に対する隔絶性が高く、銀反射層2の経年変化を抑制することができる。   Moreover, in this Embodiment, since the silver reflection layer 2 is covered with the glass layer 3, the quality change and deterioration of a reflection layer, and the fall of a reflectance can be suppressed. The glass layer 3 has high isolation against oxygen or moisture compared to a general resin, and can suppress the secular change of the silver reflection layer 2.

また、ガラス層3上の外部接続端子81,71としては化学的に安定な金を含む材料をもちいることが好ましい。   The external connection terminals 81 and 71 on the glass layer 3 are preferably made of a material containing chemically stable gold.

各実施の形態において、ガラス層及びLTCC基板の材料であるガラス粉末としては、シリカガラス、ソーダ石灰ガラス、ほう珪酸ガラス、アルミノホウ珪酸ガラス、ほう珪酸亜鉛ガラス、アルミノ珪酸ガラス及び/または燐酸ガラスなどが挙げられ、特に、ほう珪酸系ガラスが好適である。   In each embodiment, the glass powder that is a material of the glass layer and the LTCC substrate includes silica glass, soda-lime glass, borosilicate glass, aluminoborosilicate glass, zinc borosilicate glass, aluminosilicate glass, and / or phosphate glass. In particular, borosilicate glass is suitable.

また、LTCC基板の材料であるセラミック粉末は、SiO、Al、ZrO、TiO、ZnO、MgAl、ZnAl、MgSiO、MgSiO、ZnSiO、ZnTiO、SrTiO、CaTiO、MgTiO、BaTiO、CaMgSi、SrAlSi、BaAlSi、CaAl
Si、MgAlSi18、ZnAlSi18、AlN、SiC、ムライト及びゼオライトなどが挙げられる。また、LTCC基板は、セラミックスを基材とする基板に代替可能である。
Moreover, the ceramic powder which is the material of the LTCC substrate is SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , ZnO, MgAl 2 O 4 , ZnAl 2 O 4 , MgSiO 3 , MgSiO 4 , Zn 2 SiO 4 , Zn 2 TiO 4 , SrTiO 3 , CaTiO 3 , MgTiO 3 , BaTiO 3 , CaMgSi 2 O 6 , SrAl 2 Si 2 O 8 , BaAl 2 Si 2 O 8 , CaAl
2 Si 2 O 8 , Mg 2 Al 4 Si 5 O 18 , Zn 2 Al 4 Si 5 O 18 , AlN, SiC, mullite, zeolite and the like. In addition, the LTCC substrate can be replaced with a substrate based on ceramics.

封止樹脂の材料としては、エポキシ樹脂、ユリア樹脂またはシリコーン樹脂などの耐候性に優れた透明樹脂、または、耐光性に優れたシリカゾルまたは硝子などの透光性無機材料、が好適に用いられる。また、封止樹脂には蛍光体と共に拡散剤を含有させても良い。具体的な拡散剤としては、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素、炭酸カルシウム、または二酸化珪素等が好適に用いられる。   As the material of the sealing resin, a transparent resin excellent in weather resistance such as epoxy resin, urea resin or silicone resin, or a light-transmitting inorganic material such as silica sol or glass excellent in light resistance is suitably used. Further, the sealing resin may contain a diffusing agent together with the phosphor. As a specific diffusing agent, barium titanate, titanium oxide, aluminum oxide, silicon oxide, calcium carbonate, silicon dioxide or the like is preferably used.

LEDチップとしては、サファイア基板上に窒化ガリウム系の発光部を形成した青色LEDチップを用いている。   As the LED chip, a blue LED chip in which a gallium nitride-based light emitting portion is formed on a sapphire substrate is used.

蛍光体としては、Ce:YAG(セリウム賦活イットリウム・アルミニウム・ガーネット)蛍光体、Eu:BOSEあるいはSOSE(ユーロピウム賦活ストロンチウム・バリウム・オルソシリケート)蛍光体、ユーロピウム賦活αサイアロン蛍光体等を好適に用いることができる。   As the phosphor, a Ce: YAG (cerium activated yttrium / aluminum / garnet) phosphor, Eu: BOSE or SOSE (europium activated strontium / barium / orthosilicate) phosphor, a europium activated α-sialon phosphor, or the like is preferably used. Can do.

なお、樹脂封止体(蛍光体含有封止樹脂)を形成する際にモールド用の封止樹脂を滴下していてもよい。また、金型を用いて樹脂封止体を形成してもよく、この樹脂封止体の形状として、樹脂封止体を例えば上方に凸となる半球状の形状に形成して樹脂封止体にレンズとしての機能を持たせることも可能である。   In addition, when forming the resin sealing body (phosphor containing sealing resin), the sealing resin for molds may be dripped. Further, the resin sealing body may be formed by using a mold. As the shape of the resin sealing body, for example, the resin sealing body is formed in a hemispherical shape that protrudes upward. It is also possible to provide a lens function.

ここで、LEDチップの接着は熱硬化性樹脂(接着用樹脂)などによって行うことができる。具体的には、シリコーン樹脂、エポキシ樹脂、アクリル樹脂及びイミド樹脂などが挙げられる。   Here, the LED chip can be bonded with a thermosetting resin (adhesive resin) or the like. Specific examples include silicone resins, epoxy resins, acrylic resins, and imide resins.

前記した各実施の形態においては、LEDチップとして窒化ガリウム系化合物半導体より成る青色系LEDチップを使用したが、ZnO(酸化亜鉛)系化合物半導体より成る青色系のLEDチップを使用してもよい。また、InGaAlP系、AlGaAs系化合物半導体のLEDチップを用いてもよいことは言うまでもない。   In each of the embodiments described above, a blue LED chip made of a gallium nitride compound semiconductor is used as the LED chip, but a blue LED chip made of a ZnO (zinc oxide) compound semiconductor may be used. It goes without saying that InGaAlP-based and AlGaAs-based compound semiconductor LED chips may be used.

なお、各実施の形態においてLEDチップの一方の面にP側電極及びN側電極が形成され、その面を上面として2本のワイヤーボンディングを行った状態を示したが、LEDチップの接続形状はこれに限らない。ガラス層上に配線を形成し、LEDチップの端子をはんだ等で直接配線に接続してもよい。また、LEDチップとして青色発光を示したが、発光色はこれに限定されず、例えば紫外線発光のものや緑色発光のものを用いてもよい。また、LEDチップから発する光を蛍光体によって変換して、白色を得る方法を示したが、蛍光体を用いずに例えば赤、緑、青の3色のLEDチップをそれぞれ用いて白色または電球色など照明に必要な色を得ても良い。   In each embodiment, the P-side electrode and the N-side electrode are formed on one surface of the LED chip, and two wire bondings are performed with the surface as the upper surface. However, the connection shape of the LED chip is as follows. Not limited to this. Wiring may be formed on the glass layer, and the terminals of the LED chip may be directly connected to the wiring with solder or the like. Moreover, although blue light emission was shown as an LED chip, the luminescent color is not limited to this, For example, you may use the thing of ultraviolet light emission and the thing of green light emission. In addition, the method of obtaining white by converting the light emitted from the LED chip with a phosphor has been shown, but without using the phosphor, for example, red, green, and blue LED chips are used for each white or light bulb color. You may obtain the color necessary for lighting.

[実施の形態6]
(発光装置)
実施の形態6の発光装置の構造を示す平面図および断面図を図13(a)及び図13(b)に示す。図13(b)において、発光装置2001は、カップ状の凹部108を備えたパッケージ110と、LEDチップ112と、蛍光体114を備える。LEDチップ112は凹部108底面の略中央部であるチップ載置部113にダイボンディングされ、蛍光体114が分散された封止樹脂116により被覆されている。LEDチップ112が発する1次光(例えば波長が400nm以上500nm以下の青色波長領域に発光ピークを有する青色光)と、1次光により励起された蛍光体114が発する2次光(例えば波長が
550nm以上600nm以下の黄色波長領域に発光ピークを有する黄色光)とが混合し、凹部108の開口した側の面である出射面118より白色光として出射するように構成されている。
[Embodiment 6]
(Light emitting device)
A plan view and a cross-sectional view showing the structure of the light-emitting device of Embodiment 6 are shown in FIGS. 13 (a) and 13 (b). In FIG. 13B, the light emitting device 2001 includes a package 110 having a cup-shaped recess 108, an LED chip 112, and a phosphor 114. The LED chip 112 is die-bonded to a chip mounting portion 113 which is a substantially central portion of the bottom surface of the recess 108, and is covered with a sealing resin 116 in which a phosphor 114 is dispersed. Primary light emitted from the LED chip 112 (for example, blue light having a light emission peak in a blue wavelength range of 400 nm to 500 nm) and secondary light emitted from the phosphor 114 excited by the primary light (for example, wavelength of 550 nm). The yellow light having a light emission peak in the yellow wavelength region of 600 nm or less is mixed, and is emitted as white light from the emission surface 118 which is the surface on the opening side of the recess 108.

凹部108の内壁面及び底面の表面は高い反射率を備えるようにAgなど金属からなる銀反射層120が被着され、反射率が長期間にわたって維持されるよう、ガラス層121により被覆されている。   The inner wall surface and the bottom surface of the recess 108 are coated with a silver reflective layer 120 made of a metal such as Ag so as to have a high reflectance, and are covered with a glass layer 121 so that the reflectance is maintained for a long period of time. .

図13(a)において、凹部108の底面は、銀反射層120の一部が離間して形成された、一対の電極パッド123を備える。LEDチップ112はチップ載置部113にダイボンディングされるとともに、LEDチップ112の電極パッド122とパッケージ110の電極パッド123とがワイヤボンディングにより電気的に接続される。なお、電極パッド123はワイヤWが接続される部分において表面が露出させられており、ガラス層121による被覆がなされていない。   In FIG. 13A, the bottom surface of the recess 108 includes a pair of electrode pads 123 formed by separating a part of the silver reflective layer 120. The LED chip 112 is die-bonded to the chip mounting portion 113, and the electrode pad 122 of the LED chip 112 and the electrode pad 123 of the package 110 are electrically connected by wire bonding. Note that the surface of the electrode pad 123 is exposed at a portion to which the wire W is connected, and the electrode pad 123 is not covered with the glass layer 121.

発光装置2001の下面は、実装基板(図示しない)に相対する実装面126であって、該実装面126には外部接続端子128が形成され、電極パッド123と、外部接続端子128との間に導電性のビア130が介在している。ビア130は、外部接続端子128が実装基板に形成された配線パターンに接続されることにより、LEDチップ112への電流経路をなしている。   The lower surface of the light emitting device 2001 is a mounting surface 126 facing a mounting substrate (not shown), and an external connection terminal 128 is formed on the mounting surface 126, and the electrode pad 123 and the external connection terminal 128 are interposed between them. Conductive vias 130 are interposed. The via 130 forms a current path to the LED chip 112 by connecting the external connection terminal 128 to a wiring pattern formed on the mounting substrate.

(製造方法)
続いて発光装置2001の製造方法について説明する。図14は発光装置の製造方法を示すフローチャート、図15は積層体の構成を示す断面図、図16は発光装置の製造方法を示す断面図である。
(Production method)
Next, a method for manufacturing the light emitting device 2001 will be described. FIG. 14 is a flowchart showing a method for manufacturing a light emitting device, FIG. 15 is a cross-sectional view showing the structure of the laminate, and FIG. 16 is a cross-sectional view showing a method for manufacturing the light emitting device.

以下パッケージの形成方法から順に説明する。本実施の形態に示されるパッケージはグリーンシートと呼ばれるシート状の材料に孔開け、ペースト充填などの加工がなされたものが積層された積層体が焼成されることにより形成された低温同時焼成セラミックスパッケージ(LTCC)である。   Hereinafter, the package forming method will be described in order. The package shown in the present embodiment is a low-temperature co-fired ceramic package formed by firing a laminated body in which a sheet-like material called a green sheet is punched and processed such as paste filling is laminated. (LTCC).

以下、グリーンシート150の形成方法から説明する。まず主材料であるアルミナセラミックスの粉末とガラスの混合材料に有機系バインダと溶剤を調合し均一に分散させ、スラリーと呼ばれる材料を準備する。次いで、スラリーは成膜装置によりPETフィルム上に一定の厚さで塗布され、乾燥工程を経て巻き取られることによりグリーンシート150が得られる。次いでグリーンシート150を、所定の大きさに切断の上、凹部108、ビア130、電極パッド123、およびガラス層121などパッケージ110の構成要素が形成されるべき部分に孔開け、ペースト充填などの加工を施す。これらを正確に位置合わせして積層し、積層体155を形成する(図15(d))。   Hereinafter, a method for forming the green sheet 150 will be described. First, an organic binder and a solvent are mixed in a mixed material of alumina ceramic powder and glass, which is the main material, and dispersed uniformly to prepare a material called slurry. Next, the slurry is applied on the PET film with a certain thickness by a film forming apparatus, and wound up through a drying process, whereby the green sheet 150 is obtained. Next, the green sheet 150 is cut into a predetermined size, and a hole such as a recess 108, a via 130, an electrode pad 123, and a glass layer 121 where a component of the package 110 is to be formed is formed, and processing such as paste filling is performed. Apply. These are accurately aligned and stacked to form a stacked body 155 (FIG. 15D).

例えば図15に示すように、ビア130、電極パッド123、およびチップ載置部113は、グリーンシート150に設けられた孔にAgなどの金属が分散させられた金属ペーストが充填されたもの(図15(a))を積層することにより形成される。なお金属ペーストは上下に隣り合う層間で導通し、電極パッド123と外部接続端子128とが導通させられている。また一対の電極パッド123は互いに離間され、絶縁分離させられている。   For example, as shown in FIG. 15, the via 130, the electrode pad 123, and the chip mounting portion 113 are filled with a metal paste in which a metal such as Ag is dispersed in a hole provided in the green sheet 150 (see FIG. 15). 15 (a)) is laminated. Note that the metal paste is electrically connected between adjacent layers, and the electrode pad 123 and the external connection terminal 128 are electrically connected. The pair of electrode pads 123 are separated from each other and insulated and separated.

ガラス層121は、金属ペーストの層にガラスペーストの層が積層あるいは被着されることにより形成される。例えばチップ載置部113はグリーンシート150に設けられた孔にガラスペーストが充填されたもの(図15(b))により銀反射層120が被覆され
、ガラス層121が形成される。
The glass layer 121 is formed by laminating or depositing a glass paste layer on a metal paste layer. For example, in the chip mounting portion 113, the silver reflective layer 120 is covered with a glass paste filled in a hole provided in the green sheet 150 (FIG. 15B), and the glass layer 121 is formed.

なお、電極パッド123の表面はガラス被覆されることなく、露出させられている。この部分は、ガラスペーストが充填された部分の、電極パッド123の表面が露出させられるべき部分に孔が設けられたもの(図15(b)、(c))を積層することにより、形成されている。しかして電極パッド123の表面は露出させられているため、変質し難い材質であることが好ましく、金属ペーストとしてAuペーストなどにより形成することが好ましい。   The surface of the electrode pad 123 is exposed without being covered with glass. This portion is formed by laminating a portion (FIGS. 15B and 15C) in which a hole is provided in a portion where the surface of the electrode pad 123 should be exposed in a portion filled with the glass paste. ing. Therefore, since the surface of the electrode pad 123 is exposed, it is preferable that the electrode pad 123 is made of a material that hardly changes in quality, and is preferably formed of an Au paste or the like as a metal paste.

なお、グリーンシート150には複数のパッケージ110が同時に形成されるように、孔開けやペースト充填などが施された加工パターンが繰り返し複数形成される。   The green sheet 150 is repeatedly formed with a plurality of processing patterns subjected to perforation or paste filling so that a plurality of packages 110 are simultaneously formed.

次いで積層体155が700℃から1000℃、例えば850℃から900℃で焼成される。これによりグリーンシート150の素材であるアルミナ粉末、銀反射層120の素材である金属ペースト、銀反射層120を被覆するガラスペースト、電極パッド123の素材であるAuペースト、が同時に焼成され、パッケージ110が完成する。この時ガラスペーストに含まれていたガラスの成分が溶融し銀反射層120の表面を平滑に被覆する。また各素材が同時に焼成されることにより、各層の界面での応力が緩和される効果がある。   Next, the laminated body 155 is fired at 700 to 1000 ° C., for example, 850 to 900 ° C. As a result, the alumina powder that is the material of the green sheet 150, the metal paste that is the material of the silver reflecting layer 120, the glass paste that covers the silver reflecting layer 120, and the Au paste that is the material of the electrode pad 123 are fired at the same time. Is completed. At this time, the glass components contained in the glass paste are melted to smoothly cover the surface of the silver reflective layer 120. Further, since the respective materials are fired at the same time, there is an effect that the stress at the interface of each layer is relieved.

なお、パッケージ110を構成する層の、それぞれの層厚の例として、チップ載置部113から実装面126に至る層は0.5mm、銀反射層120は0.005mm、ガラス層121は0.01mmとして形成することができる。   As examples of the layer thicknesses of the layers constituting the package 110, the layer from the chip mounting portion 113 to the mounting surface 126 is 0.5 mm, the silver reflective layer 120 is 0.005 mm, and the glass layer 121 is 0. It can be formed as 01 mm.

続いてLEDチップ112の実装以降の工程を図16に基づいて説明する。なお図16においてビア130の記載は省略されている。   Next, steps after the mounting of the LED chip 112 will be described with reference to FIG. In FIG. 16, the description of the via 130 is omitted.

焼成のなされた積層体155の、各凹部108のチップ載置部113にシリコーンペースト等のロウ材(図示しない)を塗布し、その上にLEDチップ112をダイボンディングする。次いでLEDチップ112の電極パッド122とパッケージ110の電極パッド123とをワイヤボンディングにより接続する。この時パッケージ110の電極パッド123はガラス被覆されていないため、良好にワイヤボンディングすることができる(図16(a)、(b))。   A brazing material (not shown) such as silicone paste is applied to the chip mounting portion 113 of each concave portion 108 of the fired laminate 155, and the LED chip 112 is die-bonded thereon. Next, the electrode pad 122 of the LED chip 112 and the electrode pad 123 of the package 110 are connected by wire bonding. At this time, since the electrode pad 123 of the package 110 is not covered with glass, wire bonding can be satisfactorily performed (FIGS. 16A and 16B).

次いで、予め蛍光体114が分散された封止樹脂116を凹部108に充填し硬化させることにより、LEDチップ112を被覆する。封止樹脂116は、耐熱性が高く、ガラスとの密着性が高いジメチルシリコーンやメチルゴムを好適に用いることができる。例えば、ジメチルシリコーンとしてKER2500(信越化学製)を用いた場合、100℃60分の条件により硬化、150℃300分の条件によりアフターキュアされる。ジメチルシリコーンやメチルゴムは有機変性シリコーン等に比べガス封止性が低いが、銀反射層120の表面はガラス被覆されているため、表面の変質を抑制することができる。   Next, the sealing resin 116 in which the phosphors 114 are dispersed in advance is filled in the recesses 108 and cured, thereby covering the LED chip 112. As the sealing resin 116, dimethyl silicone or methyl rubber having high heat resistance and high adhesion to glass can be preferably used. For example, when KER2500 (manufactured by Shin-Etsu Chemical Co., Ltd.) is used as dimethyl silicone, it is cured under conditions of 100 ° C. for 60 minutes and after-cured under conditions of 150 ° C. for 300 minutes. Although dimethylsilicone and methyl rubber have lower gas sealing properties than organically modified silicone or the like, the surface of the silver reflective layer 120 is coated with glass, so that alteration of the surface can be suppressed.

最後に、個々の発光装置に分割される。分割の方法として例えば、UVシートを用いる方法がある。これは、実装面126をUVシート158に貼り付けたものをステージに載置し、積層体155の所定の位置をカッターによりダイシングする。次いでUVシート158の粘着材をUV光照射により硬化させ、個片に分離する方法がある。   Finally, it is divided into individual light emitting devices. As a dividing method, for example, there is a method using a UV sheet. In this method, the mounting surface 126 attached to the UV sheet 158 is placed on a stage, and a predetermined position of the stacked body 155 is diced by a cutter. Next, there is a method in which the adhesive material of the UV sheet 158 is cured by UV light irradiation and separated into individual pieces.

前述の構成によると、ジメチルシリコーンやメチルゴムとガラスとは密着性が高く、銀反射層120を被覆するガラス層121と封止樹脂116との剥離を抑制することができる。密着性が高い理由の一つは、ガラスの表面は水酸基が露出しており、シリコーン樹脂
との結合力が高いためと推定される。また、ジメチルシリコーンやメチルゴムは有機変性シリコーン等に比べ弾力性が高いため、熱膨張や収縮など体積の変化が吸収され易いためと推定される。
According to the above configuration, dimethylsilicone or methyl rubber and glass have high adhesion, and peeling between the glass layer 121 covering the silver reflecting layer 120 and the sealing resin 116 can be suppressed. One reason for the high adhesion is presumed to be that the hydroxyl surface is exposed on the surface of the glass and the bonding strength with the silicone resin is high. Further, it is estimated that dimethyl silicone and methyl rubber have higher elasticity than organically modified silicone and the like, so that volume changes such as thermal expansion and contraction are easily absorbed.

また、封止樹脂116の連続耐熱温度は120℃以上であることが好ましい。ここで、パッケージ110の熱抵抗を200℃/W、LEDチップ112の発熱を0.06Wとした場合、パッケージ110の温度上昇は、たかだか12℃に過ぎない。しかしながら発光装置2001に要求される寿命は、例えば4万時間という非常に長期間であり、この信頼性を満足する為に前述のような連続耐熱温度が要求されるのである。   The continuous heat resistance temperature of the sealing resin 116 is preferably 120 ° C. or higher. Here, when the thermal resistance of the package 110 is 200 ° C./W and the heat generation of the LED chip 112 is 0.06 W, the temperature rise of the package 110 is only 12 ° C. However, the lifetime required for the light emitting device 2001 is very long, for example, 40,000 hours, and the continuous heat-resistant temperature as described above is required to satisfy this reliability.

なお、蛍光体114は、例えばBOSE(Ba、O、Sr、Si、Eu)などを好適に用いることができる。またBOSEの他、SOSE(Sr、Ba、Si、O、Eu)、YAG(Ce賦活イットリウム・アルミニウム・ガーネット)、αサイアロン((Ca)、Si、Al、O、N、Eu)、βサイアロン(Si、Al、O、N、Eu)等を好適に用いることができる。また、LEDチップ112を青色発光のものに代え、例えば発光ピーク波長が390nmから420nmの紫外(近紫外)LEDとすることにより、さらなる発光効率の向上を図ることができる。   For example, BOSE (Ba, O, Sr, Si, Eu) can be suitably used as the phosphor 114. In addition to BOSE, SOSE (Sr, Ba, Si, O, Eu), YAG (Ce-activated yttrium, aluminum, garnet), α sialon ((Ca), Si, Al, O, N, Eu), β sialon ( Si, Al, O, N, Eu) or the like can be preferably used. Further, by replacing the LED chip 112 with one emitting blue light, for example, an ultraviolet (near ultraviolet) LED having a light emission peak wavelength of 390 nm to 420 nm can be further improved.

このように、銀反射層120と、これを被覆するガラス層121と、シリコーン樹脂による樹脂封止とを備えた発光装置2001は、ガス封止性の高さ、耐熱性の高さと密着性の高さとが相まって、信頼性が高い。   As described above, the light emitting device 2001 including the silver reflection layer 120, the glass layer 121 covering the silver reflection layer 120, and the resin sealing with the silicone resin has high gas sealing property, high heat resistance, and adhesiveness. High reliability combined with height.

なお、本実施の形態は、封止樹脂116に蛍光体114が分散させられた構成であるが、必ずしもこれに限定されない。例えば、蛍光体114をLEDチップ112の近傍のみに被着したものを封止樹脂116で被覆した構成であっても良いし、蛍光体114を備えない構成であってもよい。また、銀反射層120は凹部108の内壁だけではなく出射面118の周縁部を環状に取り囲む土手131の部分まで形成されているが、土手131の部分まで形成されていない構成をとることもできる。要は、封止樹脂116と銀反射層120やパッケージ110の表面との間にガラス層121が介在する構成であれば、信頼性の向上を得ることができる。   Note that although the present embodiment has a configuration in which the phosphor 114 is dispersed in the sealing resin 116, it is not necessarily limited to this. For example, a configuration in which the phosphor 114 is deposited only in the vicinity of the LED chip 112 may be covered with the sealing resin 116, or a configuration without the phosphor 114 may be used. In addition, the silver reflecting layer 120 is formed not only on the inner wall of the recess 108 but also on the bank 131 that surrounds the peripheral edge of the emission surface 118 in a ring shape, but it may be configured not to be formed on the bank 131. . In short, if the glass layer 121 is interposed between the sealing resin 116 and the surface of the silver reflective layer 120 or the package 110, the reliability can be improved.

[実施の形態7]
図17は実施の形態7の発光装置の構造を示す断面図である。発光装置2002は、ガラス層121に代え、蛍光体114が分散された、蛍光体入りガラス層160を備えることを特徴とし、LEDチップ112が発する青色光である1次光と、1次光により励起された蛍光体114が発する黄色光である2次光とが混合し、凹部108の開口した側の面である出射面118より白色光として出射するように構成されている。
[Embodiment 7]
FIG. 17 is a cross-sectional view showing the structure of the light-emitting device of Embodiment 7. The light-emitting device 2002 includes a glass layer 160 containing a phosphor in which a phosphor 114 is dispersed instead of the glass layer 121, and includes primary light that is blue light emitted from the LED chip 112 and primary light. The secondary light which is yellow light emitted from the excited phosphor 114 is mixed and emitted as white light from the emission surface 118 which is the surface on the opening side of the recess 108.

発光装置2002は、蛍光体入りガラス層160が、金属ペーストの層に蛍光体入りガラスペーストの層が積層あるいは被着されることにより形成される点を除き、実施の形態6と同等である。なお蛍光体入りガラスペーストは、ガラスの粉末に、前述のBOSE、SOSE、YAG、αサイアロン、βサイアロン等の蛍光体114が分散されてなるものである。   The light emitting device 2002 is the same as that in Embodiment 6 except that the phosphor-containing glass layer 160 is formed by laminating or depositing a phosphor-containing glass paste layer on a metal paste layer. The phosphor-containing glass paste is obtained by dispersing phosphors 114 such as BOSE, SOSE, YAG, α sialon, and β sialon in glass powder.

本実施の形態によると蛍光体114は、蛍光体入りガラスペースト中において沈降が少ないため、蛍光体入りガラス層160における蛍光体114の密度を、より均一に形成することができる。その結果、出射光の色度ばらつきを抑制することができる。蛍光体114の沈降が少ない理由の一つとして、蛍光体入りガラスペースト中に含有されたガラスの粉末が蛍光体114の沈降を抑制させる作用を呈するためと推定される。   According to the present embodiment, the phosphor 114 is less settled in the phosphor-containing glass paste, so that the density of the phosphor 114 in the phosphor-containing glass layer 160 can be formed more uniformly. As a result, it is possible to suppress the chromaticity variation of the emitted light. One reason for the low sedimentation of the phosphor 114 is presumably because the glass powder contained in the phosphor-containing glass paste exhibits the action of suppressing the sedimentation of the phosphor 114.

なお図17によると、封止樹脂116には蛍光体114が分散されていないが、分散させられた構成とすることもできる。   According to FIG. 17, the phosphor 114 is not dispersed in the sealing resin 116, but a dispersed configuration may be employed.

また蛍光体入りガラス層160の態様として、蛍光体入りガラス層160の全て、あるいは一部分を蛍光体入りとすることができる。好ましくは図17に示すように、封止樹脂116に接する部分に蛍光体が含有され、土手131の部分には蛍光体が含有されていない態様である。これにより、土手131において蛍光体114が外光により励起され黄色光を発するといった作用を抑制することができる。   Moreover, as an aspect of the glass layer 160 with a fluorescent substance, all or one part of the glass layer 160 with a fluorescent substance can be made into fluorescent substance. Preferably, as shown in FIG. 17, the phosphor is contained in the portion in contact with the sealing resin 116, and the phosphor is not contained in the bank 131. Thereby, it is possible to suppress the action of the phosphor 114 being excited by external light and emitting yellow light on the bank 131.

[実施の形態8]
図18は実施の形態8の発光装置の構造を示す断面図である。本実施の形態は、パッケージ110の凹部108の底面に凹陥部が設けられ、凹陥部の底面に電極パッド123が形成されるとともに、電極パッド123と銀反射層120との間に、絶縁層132が介在することを特徴とする。それ以外の部分については実施の形態1と同等である。
[Embodiment 8]
FIG. 18 is a cross-sectional view showing the structure of the light emitting device of the eighth embodiment. In this embodiment, a recess is provided on the bottom surface of the recess 108 of the package 110, an electrode pad 123 is formed on the bottom surface of the recess, and the insulating layer 132 is interposed between the electrode pad 123 and the silver reflective layer 120. It is characterized by interposing. The other parts are the same as those in the first embodiment.

パッケージ110の電極パッド123近傍においては、電極パッド123を互いに離間し絶縁させるため、電極パッド123を取り囲むように、パッケージ110の素材であるセラミックスが露出させられている。従って、この部分で出射光の一部が漏れるため、出射効率が低下する。実施の形態6に示す発光装置2001ではセラミックスの露出部分はチップ載置部113と略同一平面上に形成されている。一方、本実施の形態では、セラミックスの露出部分は出射光の届きにくい凹陥部の奥まった部分に存在する。従って、電極パッド123近傍のセラミックスの露出部分より漏れる光が抑制され、光の取出し効率の向上を図ることができる。   In the vicinity of the electrode pad 123 of the package 110, ceramics as a material of the package 110 is exposed so as to surround the electrode pad 123 in order to separate and insulate the electrode pads 123 from each other. Accordingly, since a part of the emitted light leaks at this portion, the emission efficiency is lowered. In the light emitting device 2001 shown in Embodiment 6, the exposed portion of the ceramic is formed on substantially the same plane as the chip mounting portion 113. On the other hand, in the present embodiment, the exposed portion of the ceramic exists in the recessed portion where the outgoing light does not easily reach. Therefore, light leaking from the exposed portion of the ceramic near the electrode pad 123 is suppressed, and the light extraction efficiency can be improved.

[実施の形態9]
図19(a)、(b)は実施の形態9の面光源の構造を示す模式図である。本実施の形態における面光源2004は、前述の実施の形態6から8の何れかに記載の構成を備えた発光装置305と該発光装置305の出射光を導光し面状発光として出射面316より出射させる導光板310とを備え、発光装置305の出射面118は導光板310の入射端面312に正対されて配置されている。なお、導光板310の入射端面312における屈折等は省略して示されている。
[Embodiment 9]
19A and 19B are schematic views showing the structure of the surface light source of the ninth embodiment. The surface light source 2004 in the present embodiment is a light emitting device 305 having the configuration described in any of the above-described sixth to eighth embodiments, and an emission surface 316 that guides light emitted from the light emitting device 305 and emits light in a planar manner. A light guide plate 310 that emits light, and the light exit surface 118 of the light emitting device 305 is disposed to face the incident end surface 312 of the light guide plate 310. Note that refraction and the like at the incident end surface 312 of the light guide plate 310 are omitted.

発光装置305の出射光は入射端面312を照射するが、一部は導光板310の入射端面312や終端面314で反射され、発光装置305の出射面118に戻る。一方、発光装置305の銀反射層120は凹部108の内壁だけではなく出射面118を環状に取り囲む土手131の部分まで形成されている。従って、出射光が導光板310の入射端面312で反射した光や、導光板310の終端面314で反射して戻ってきた光を再び反射させて、入射させることができるため、光の利用効率が高い。   Light emitted from the light emitting device 305 irradiates the incident end surface 312, but part of the light is reflected by the incident end surface 312 and the end surface 314 of the light guide plate 310 and returns to the output surface 118 of the light emitting device 305. On the other hand, the silver reflection layer 120 of the light emitting device 305 is formed not only on the inner wall of the recess 108 but also on the bank 131 that surrounds the emission surface 118 in an annular shape. Accordingly, the light that is reflected by the incident end surface 312 of the light guide plate 310 or the light reflected by the end surface 314 of the light guide plate 310 can be reflected and incident again, so that the light utilization efficiency can be increased. Is expensive.

本発明は上述した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention.

〔まとめ〕
本発明の一態様に係る発光装置は、セラミックス基板の上部にある発光領域、および、上記セラミックス基板の上部のうち上記発光領域を囲む周辺領域を有する、外形がほぼ正方形状の上記セラミックス基板と、上記セラミックス基板の上記発光領域上に設けられた光反射層と、上記光反射層上に設けられた複数の発光ダイオードチップと、上記周辺領域においてそれぞれ上記セラミックス基板の任意の縁から離れて位置する、正電極外部接続端子および負電極外部接続端子と、上記複数の発光ダイオードチップを上記正電極外部接
続端子および上記負電極外部接続端子に接続する、上記セラミックス基板の上部の上に設けられた複数の配線パターンと、上記周辺領域を覆わずに上記発光領域を覆い、かつ、上記複数の発光ダイオードチップを封止する封止樹脂とを備え、上記正電極外部接続端子および上記負電極外部接続端子は、上記封止樹脂に対して互いに反対側に位置するように、それぞれ上記セラミックス基板の対角部に配置される。
[Summary]
A light emitting device according to an aspect of the present invention includes a ceramic substrate having a light emitting region on an upper portion of a ceramic substrate, and a peripheral region surrounding the light emitting region in an upper portion of the ceramic substrate, and having a substantially square outer shape, The light reflecting layer provided on the light emitting region of the ceramic substrate, the plurality of light emitting diode chips provided on the light reflecting layer, and the peripheral region are located apart from any edge of the ceramic substrate. A plurality of positive electrode external connection terminals and negative electrode external connection terminals; and a plurality of light emitting diode chips connected to the positive electrode external connection terminals and the negative electrode external connection terminals. A plurality of light emitting diode chips that cover the light emitting region without covering the peripheral region, and A sealing resin for sealing, and the positive electrode external connection terminal and the negative electrode external connection terminal are respectively disposed at diagonal portions of the ceramic substrate so as to be located on opposite sides of the sealing resin. Be placed.

本発明の一態様に係る発光装置は、4つの角部を有し、上部に発光領域と上記発光領域を囲む周辺領域とを有する単一基板と、上記単一基板の上記発光領域上に設けられた光反射層と、上記光反射層上に設けられた複数の発光ダイオードチップと、上記周辺領域に設けられ、かつ、上面視においてそれぞれ上記単一基板の任意の縁から離れて位置する、正電極外部接続端子および負電極外部接続端子と、上記複数の発光ダイオードチップを上記正電極外部接続端子および上記負電極外部接続端子に接続する、上記単一基板の上部に設けられた複数の配線パターンと、上記周辺領域を覆わずに上記発光領域を覆い、かつ、上記複数の発光ダイオードチップを封止する蛍光体含有封止樹脂とを備え、上記正電極外部接続端子および上記負電極外部接続端子は、上記発光領域を間に挟んで位置するように、それぞれ上記単一基板の対角部に配置される。   A light-emitting device according to one embodiment of the present invention includes a single substrate having four corners and having a light-emitting region and a peripheral region surrounding the light-emitting region on the top, and the light-emitting device over the light-emitting region of the single substrate. The light reflection layer, a plurality of light emitting diode chips provided on the light reflection layer, provided in the peripheral region, and each positioned away from an arbitrary edge of the single substrate in a top view, Positive electrode external connection terminal and negative electrode external connection terminal, and a plurality of wires provided on the single substrate for connecting the plurality of light emitting diode chips to the positive electrode external connection terminal and the negative electrode external connection terminal A positive electrode external connection terminal and an external of the negative electrode, comprising a pattern and a phosphor-containing sealing resin that covers the light emitting region without covering the peripheral region and seals the plurality of light emitting diode chips Connection terminals, so as to be positioned in between the light emitting regions, respectively arranged in a diagonal part of the single substrate.

本発明の一態様に係る発光装置は、セラミックス基板の上部にある発光領域、および、上記セラミックス基板の上部のうち上記発光領域を囲む周辺領域を有する上記セラミックス基板と、上記セラミックス基板の上記発光領域上に設けられた光反射層と、上記光反射層上に設けられた複数の発光ダイオードチップと、上記周辺領域においてそれぞれ上記セラミックス基板の任意の縁から離れて位置する、正電極外部接続端子および負電極外部接続端子と、上記複数の発光ダイオードチップを上記正電極外部接続端子および上記負電極外部接続端子に接続する、上記セラミックス基板の上部の上に設けられた複数の配線パターンと、上記周辺領域を覆わずに上記発光領域を覆い、かつ、上記複数の発光ダイオードチップを封止する封止樹脂とを備える。   A light-emitting device according to an aspect of the present invention includes a light-emitting region on an upper portion of a ceramic substrate, the ceramic substrate having a peripheral region surrounding the light-emitting region in the upper portion of the ceramic substrate, and the light-emitting region of the ceramic substrate. A light reflection layer provided on the light reflection layer; a plurality of light emitting diode chips provided on the light reflection layer; and a positive electrode external connection terminal located at a distance from an arbitrary edge of the ceramic substrate in the peripheral region, and A negative electrode external connection terminal; a plurality of wiring patterns provided on an upper portion of the ceramic substrate for connecting the plurality of light emitting diode chips to the positive electrode external connection terminal and the negative electrode external connection terminal; A sealing resin that covers the light emitting region without covering the region and seals the plurality of light emitting diode chips. Obtain.

本発明の一態様に係る発光装置は、セラミックス基板と、外部に露出するように前記セラミックス基板に設けられた複数の外部端子と、前記セラミックス基板の中に位置する金属放熱体と、前記複数の外部端子とは電気的に接続されておらず、かつ、前記金属放熱体上に設けられた光反射層と、前記複数の外部端子と電気的に接続され、かつ、前記光反射層の上面の上に絶縁体を介して設けられた発光ダイオードチップと、前記発光ダイオードチップを封止する封止樹脂とを備え、前記光反射層の厚さは前記金属放熱体の厚さより小さく、前記光反射層の下面の一部は、前記金属放熱体の上面と接続されており、前記金属放熱体の一部は、前記セラミックス基板の表面から見て前記光反射層が形成されていない領域にも延びて配置されており、前記絶縁体は、前記光反射層の上面および前記光反射層の側面を覆い、かつ、前記発光ダイオードチップによって出射され前記光反射層によって反射された光を透過する。   A light-emitting device according to an aspect of the present invention includes a ceramic substrate, a plurality of external terminals provided on the ceramic substrate so as to be exposed to the outside, a metal radiator disposed in the ceramic substrate, and the plurality of the plurality of external terminals. The light reflecting layer provided on the metal heat dissipating member is not electrically connected to the external terminal, and is electrically connected to the plurality of external terminals, and is formed on the upper surface of the light reflecting layer. A light emitting diode chip provided on an insulator via an insulating material; and a sealing resin that seals the light emitting diode chip, wherein the thickness of the light reflecting layer is smaller than the thickness of the metal radiator, A part of the lower surface of the layer is connected to the upper surface of the metal radiator, and a part of the metal radiator extends to a region where the light reflecting layer is not formed when viewed from the surface of the ceramic substrate. Are arranged The insulator covers the upper and side surfaces of the light reflecting layer of the light reflecting layer, and transmits the light reflected by the light reflecting layer is emitted by the light emitting diode chip.

本発明の一態様に係る発光装置は、セラミックス回路基板と、発光ダイオードチップと、前記発光ダイオードチップを封止する封止樹脂とを備え、前記セラミックス回路基板は、(i)セラミックス基板と、(ii)外部に露出するように前記セラミックス回路基板の下面に設けられた、第1外部端子および第2外部端子と、(iii)前記セラミックス基板の中に位置する金属放熱体と、(iv)前記第1外部端子および前記第2外部端子とは電気的に接続されておらず、かつ、前記金属放熱体上に設けられた光反射層と、(v)前記光反射層の上面および前記光反射層の側面を覆い、かつ、前記光反射層によって反射された光を透過する絶縁体と、(vi)前記第1外部端子および前記第2外部端子にそれぞれ電気的に接続された正電極および負電極とを備え、前記正電極および前記負電極のそれぞれの下面は、前記光反射層の下面と同じ高さに位置し、前記発光ダイオードチップは、前記光反射層の上方に位置するように、前記セラミックス回路基板の上面上に設けられ
ており、前記絶縁体は、前記発光ダイオードチップと前記光反射層との間に設けられており、前記発光ダイオードチップは、前記正電極および前記負電極を介して、前記第1外部端子および前記第2外部端子と電気的に接続されており、前記金属放熱体の一部は、前記セラミックス基板の表面から見て前記光反射層が形成されていない領域にも延びて配置されている。
A light-emitting device according to one embodiment of the present invention includes a ceramic circuit board, a light-emitting diode chip, and a sealing resin that seals the light-emitting diode chip. The ceramic circuit board includes: (i) a ceramic substrate; ii) a first external terminal and a second external terminal provided on the lower surface of the ceramic circuit board so as to be exposed to the outside; (iii) a metal radiator disposed in the ceramic substrate; A light reflecting layer that is not electrically connected to the first external terminal and the second external terminal, and is provided on the metal radiator, and (v) an upper surface of the light reflecting layer and the light reflecting An insulator covering a side surface of the layer and transmitting the light reflected by the light reflecting layer; and (vi) a positive electrode electrically connected to each of the first external terminal and the second external terminal. And the negative electrode, the lower surfaces of the positive electrode and the negative electrode are positioned at the same height as the lower surface of the light reflecting layer, and the light emitting diode chip is positioned above the light reflecting layer. The insulator is provided between the light emitting diode chip and the light reflecting layer, and the light emitting diode chip includes the positive electrode and the negative electrode. It is electrically connected to the first external terminal and the second external terminal via an electrode, and the light reflecting layer is formed on a part of the metal radiator as viewed from the surface of the ceramic substrate. It is also arranged so as to extend to a region where there is not.

本発明の一態様に係る発光装置は、基板上に光を出射する半導体装置及び複数の外部接続端子を有する発光装置において、前記基板上に形成され、前記半導体装置からの出射光を反射し、前記基板上の周縁部を除く中央領域である半導体装置の搭載面の下方に配されており、前記基板上の周縁部には配されていない光反射層と、少なくとも前記光反射層を被覆し、かつ、前記光反射層にて反射した光を透過する被覆層とを備え、前記半導体装置は、前記被覆層上に形成されるとともに、前記外部接続端子と接続部を介して電気的に接続されており、前記半導体装置と前記接続部とを覆うように封止樹脂で封止されており、前記半導体装置は、発光ダイオードチップであり、前記被覆層は、ガラスから成り、前記接続部は配線パターン及びボンディングワイヤから成り、前記配線パターンは、前記基板上もしくは前記被覆層上に、互いに平行に、かつ、互いに距離をおいて形成され、前記半導体装置は、前記配線パターン間に複数設置されており、前記配線パターンと前記半導体装置とは前記ボンディングワイヤによって接続されている。   A light-emitting device according to one embodiment of the present invention is a semiconductor device that emits light on a substrate and a light-emitting device having a plurality of external connection terminals. The light-emitting device is formed over the substrate and reflects light emitted from the semiconductor device. A light reflection layer disposed below a mounting surface of the semiconductor device, which is a central region excluding the peripheral portion on the substrate, and covering at least the light reflection layer not disposed on the peripheral portion on the substrate; And the semiconductor device is formed on the coating layer and electrically connected to the external connection terminal via a connection portion. The semiconductor device is sealed with sealing resin so as to cover the semiconductor device and the connection portion, the semiconductor device is a light emitting diode chip, the covering layer is made of glass, and the connection portion is Wiring pattern and Bonn The wiring patterns are formed on the substrate or the coating layer in parallel to each other and at a distance from each other, and a plurality of the semiconductor devices are installed between the wiring patterns, The wiring pattern and the semiconductor device are connected by the bonding wire.

本発明の一態様に係る発光装置は、基板上に光を出射する半導体装置及び複数の外部接続端子を有する発光装置において、前記基板上に形成され、前記半導体装置からの出射光を反射する光反射層と、少なくとも前記光反射層を被覆し、かつ、前記光反射層にて反射した光を透過する被覆層とを備え、前記半導体装置は、前記被覆層上に形成されるとともに、前記外部接続端子と接続部を介して電気的に接続されており、前記半導体装置と前記接続部とを覆うように封止樹脂で封止されており、前記半導体装置は、発光ダイオードチップであり、前記被覆層は、ガラスから成り、前記接続部は配線パターン及びボンディングワイヤから成り、前記配線パターンは、前記基板上もしくは前記被覆層上に、互いに平行に、かつ、互いに距離をおいて形成され、前記半導体装置は、前記配線パターン間に複数設置されており、前記配線パターンと前記半導体装置とは前記ボンディングワイヤによって接続されている。   A light-emitting device according to one embodiment of the present invention is a light-emitting device including a semiconductor device that emits light on a substrate and a plurality of external connection terminals, and light that is formed on the substrate and reflects light emitted from the semiconductor device. A reflection layer; and a coating layer that covers at least the light reflection layer and transmits the light reflected by the light reflection layer. The semiconductor device is formed on the coating layer, and It is electrically connected via a connection terminal and a connection portion, and is sealed with a sealing resin so as to cover the semiconductor device and the connection portion, and the semiconductor device is a light emitting diode chip, The covering layer is made of glass, and the connecting portion is made of a wiring pattern and a bonding wire. The wiring pattern is parallel to each other and spaced from each other on the substrate or the covering layer. Is formed, the semiconductor device is more disposed between the wiring pattern, the said wiring pattern and the semiconductor device are connected by the bonding wire.

上記の構成によれば、半導体装置から下側(基板側)への出射光を光反射層が反射することにより、出射光のロスを減少させ有効に活用できるため、発光装置の発光量を高めることができ、光反射層を被覆層で被覆しているため光反射層の変質または劣化、さらにはそれに起因した反射率の低下を抑制するという効果を奏する。   According to the above configuration, since the light reflecting layer reflects the outgoing light from the semiconductor device to the lower side (substrate side), the loss of the outgoing light can be reduced and effectively used. In addition, since the light reflecting layer is covered with the coating layer, the light reflecting layer can be prevented from being deteriorated or deteriorated, and further, the reflectance can be prevented from decreasing.

加えて、上記の構成によれば、半導体装置の数を自由に調整することができ、発光装置の輝度調整、色度調整、及び発熱対策が容易になる。   In addition, according to the above configuration, the number of semiconductor devices can be freely adjusted, and brightness adjustment, chromaticity adjustment, and heat generation countermeasures of the light emitting device are facilitated.

本発明の一態様に係る発光装置は、前記基板内に、前記光反射層、前記外部接続端子、もしくはその双方とそれぞれ接合される、金属から成る放熱ビアを備えていることが好ましい。   The light-emitting device according to one embodiment of the present invention preferably includes a heat radiating via made of metal, which is bonded to the light reflecting layer, the external connection terminal, or both in the substrate.

上記の構成によれば、光反射層または外部接続端子、に接続された放熱ビアにより、発光装置の放熱性をさらに高めることができる。   According to said structure, the heat dissipation of a light-emitting device can further be improved with the thermal radiation via connected to the light reflection layer or the external connection terminal.

本発明の一態様に係る発光装置では、前記放熱ビアは、前記基板表面に対して垂直方向に形成されていることが好ましい。   In the light emitting device according to one embodiment of the present invention, it is preferable that the heat dissipation via is formed in a direction perpendicular to the substrate surface.

さらに前記放熱ビアは、銀、または銀を主成分とする銀合金から成ることが好ましい。   Further, the heat dissipation via is preferably made of silver or a silver alloy containing silver as a main component.

上記の構成によれば、光反射層による基板平面方向への放熱に加え、基板垂直方向への放熱性が高まるため、発光装置の放熱性がさらに高まる。これにより小領域への半導体装置の集積化が可能となる。   According to the above configuration, in addition to the heat radiation in the substrate plane direction by the light reflecting layer, the heat radiation property in the substrate vertical direction is enhanced, so that the heat radiation property of the light emitting device is further enhanced. As a result, the semiconductor device can be integrated in a small area.

本発明の一態様に係る発光装置では、前記配線パターンは金から成ることが好ましい。   In the light emitting device according to one aspect of the present invention, the wiring pattern is preferably made of gold.

上記の構成によれば、配線パターンが金で形成されているため、配線パターンの劣化等による経年変化を抑制することができる。   According to said structure, since the wiring pattern is formed with gold | metal | money, secular change by deterioration etc. of a wiring pattern can be suppressed.

本発明の一態様に係る発光装置では、前記配線パターンと前記被覆層との間に、ニッケルまたはクロム層が形成されていることが好ましい。   In the light-emitting device according to one embodiment of the present invention, it is preferable that a nickel or chromium layer is formed between the wiring pattern and the covering layer.

上記の構成によれば、ガラスからなる被覆層と配線パターンとの密着性が向上し、配線パターンの劣化等による経年変化を抑制することができる。   According to said structure, the adhesiveness of the coating layer which consists of glass, and a wiring pattern improves, and secular change by deterioration etc. of a wiring pattern can be suppressed.

本発明の一態様に係る発光装置では、前記封止樹脂は、蛍光体を含んでいることが好ましい。   In the light emitting device according to one embodiment of the present invention, the sealing resin preferably includes a phosphor.

上記の構成によれば、蛍光体が半導体装置からの光を吸収し、別の波長の光を発することにより、単一光を発する半導体装置を用いてそれ以外の光(例えば白色光)を発する発光装置を得ることができる。   According to the above configuration, the phosphor absorbs light from the semiconductor device and emits light of another wavelength, so that other light (for example, white light) is emitted using the semiconductor device that emits single light. A light emitting device can be obtained.

本発明の一態様に係る発光装置では、前記封止樹脂は、蛍光体を含んでいる蛍光体含有樹脂部、及び前記蛍光体含有樹脂部を覆うように形成されている透明樹脂部、により構成されていることが好ましい。   In the light emitting device according to one aspect of the present invention, the sealing resin includes a phosphor-containing resin portion that includes a phosphor, and a transparent resin portion that is formed so as to cover the phosphor-containing resin portion. It is preferable that

上記の構成によれば、蛍光体含有樹脂部を透明樹脂部によって保護することができる。   According to said structure, a fluorescent substance containing resin part can be protected by a transparent resin part.

本発明の一態様に係る発光装置では、前記封止樹脂の外形形状がドーム型であることが好ましい。   In the light emitting device according to one embodiment of the present invention, the outer shape of the sealing resin is preferably a dome shape.

本発明の一態様に係る発光装置では、前記蛍光体含有樹脂部の外形形状、及び前記透明樹脂部の外形形状がドーム型であることが好ましい。   In the light emitting device according to one aspect of the present invention, it is preferable that the outer shape of the phosphor-containing resin portion and the outer shape of the transparent resin portion are dome-shaped.

上記の構成によれば、封止樹脂の光照射方向側に角となる部分がないので、照射光の屈折方向が連続的に変化する。よって、照射光の強度のむらが低減できるという効果を奏する。   According to said structure, since there is no corner | angular part in the light irradiation direction side of sealing resin, the refractive direction of irradiation light changes continuously. Therefore, there is an effect that unevenness of the intensity of irradiation light can be reduced.

〔付記事項〕
本発明の一態様に係る発光装置は、基板上に光を出射する半導体装置及び複数の外部接続端子を有し、前記基板上に形成され前記半導体装置からの出射光を反射する光反射層と、少なくとも前記光反射層を被覆し、かつ、前記光反射層にて反射した光を透過する被覆層とを備え、前記半導体装置は、前記被覆層上に形成されるとともに、前記外部接続端子と接続部を介して電気的に接続されており、前記半導体装置と前記接続部とを覆うように封止樹脂で封止されている。
[Additional Notes]
A light-emitting device according to one embodiment of the present invention includes a semiconductor device that emits light on a substrate and a plurality of external connection terminals, and a light reflection layer that is formed on the substrate and reflects light emitted from the semiconductor device. A coating layer that covers at least the light reflection layer and transmits the light reflected by the light reflection layer, and the semiconductor device is formed on the coating layer and has the external connection terminal It is electrically connected through a connection portion, and is sealed with a sealing resin so as to cover the semiconductor device and the connection portion.

上記の構成によれば、半導体装置から下側(基板側)への出射光を光反射層が反射することにより、出射光のロスを減少させ有効に活用できるため、発光装置の発光量を高めることができ、光反射層を被覆層で被覆しているため光反射層の変質または劣化、さらには
それに起因した反射率の低下を抑制するという効果を奏する。
According to the above configuration, since the light reflecting layer reflects the outgoing light from the semiconductor device to the lower side (substrate side), the loss of the outgoing light can be reduced and effectively used. In addition, since the light reflecting layer is covered with the coating layer, the light reflecting layer can be prevented from being deteriorated or deteriorated, and further, the reflectance can be prevented from decreasing.

前記光反射層は、90%以上の光反射率を有することが好ましい。   The light reflecting layer preferably has a light reflectance of 90% or more.

上記の構成によれば、光反射層が高い光反射率を有するためさらに発光装置の発光量を増すことができる。   According to said structure, since the light reflection layer has a high light reflectance, the emitted light amount of a light-emitting device can be increased further.

前記光反射層は、銀、または銀を主成分とする銀合金から成ることが好ましい。   The light reflecting layer is preferably made of silver or a silver alloy containing silver as a main component.

上記の構成によれば、銀または銀合金層で光反射層を形成することにより、半導体装置の発熱を基板の面方向に放散し、発光装置の放熱性を高めることができる。これにより、発光装置の発熱による色ズレを抑制することができる。   According to said structure, by forming a light reflection layer with a silver or silver alloy layer, the heat_generation | fever of a semiconductor device can be dissipated in the surface direction of a board | substrate, and the heat dissipation of a light-emitting device can be improved. Thereby, the color shift by the heat_generation | fever of a light-emitting device can be suppressed.

本発明の一態様に係る発光装置は、前記基板が、セラミックスを基材としてもよい。さらに前記基板は、低温同時焼成セラミックスを基材としてもよい。   In the light-emitting device according to one embodiment of the present invention, the substrate may have ceramic as a base material. Furthermore, the substrate may be made of a low-temperature co-fired ceramic.

上記の構成によれば、低温同時焼成セラミックスは一般の有機材料より熱伝導率が高いため、発光装置の放熱性をさらに高めることができ、半導体装置の集積化を可能とする。   According to the above configuration, since the low-temperature co-fired ceramic has higher thermal conductivity than a general organic material, the heat dissipation of the light-emitting device can be further increased, and the semiconductor device can be integrated.

本発明に係る発光装置は、前記基板が、ガラス粉末とセラミック粉末とを材料として焼成したものであることが好ましい。前記ガラス粉末は、例えばシリカガラス、ソーダ石灰ガラス、ほう珪酸ガラス、アルミノホウ珪酸ガラス、ほう珪酸亜鉛ガラス、アルミノ珪酸ガラスまたは燐酸ガラスを含むものを使用することができる。また前記セラミック粉末は、例えばSiO、Al、ZrO、TiO、ZnO、MgAl、ZnAl、MgSiO、MgSiO、ZnSiO、ZnTiO、SrTiO、CaTiO、MgTiO、BaTiO、CaMgSi、SrAlSi、BaAlSi、CaAlSi、MgAlSi18、ZnAlSi18、AlN、SiC、ムライトまたはゼオライトを含むものを使用することができる。 In the light-emitting device according to the present invention, it is preferable that the substrate is fired using glass powder and ceramic powder as materials. As the glass powder, for example, one containing silica glass, soda lime glass, borosilicate glass, aluminoborosilicate glass, zinc borosilicate glass, aluminosilicate glass or phosphate glass can be used. The ceramic powder is, for example, SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , ZnO, MgAl 2 O 4 , ZnAl 2 O 4 , MgSiO 3 , MgSiO 4 , Zn 2 SiO 4 , Zn 2 TiO 4 , SrTiO 4 . 3 , CaTiO 3 , MgTiO 3 , BaTiO 3 , CaMgSi 2 O 6 , SrAl 2 Si 2 O 8 , BaAl 2 Si 2 O 8 , CaAl 2 Si 2 O 8 , Mg 2 Al 4 Si 5 O 18 , Zn 2 Al 4 Those containing Si 5 O 18 , AlN, SiC, mullite or zeolite can be used.

本発明の一態様に係る発光装置は、前記被覆層がガラスから成り、前記ガラスは、例えばシリカガラス、ソーダ石灰ガラス、ほう珪酸ガラス、アルミノホウ珪酸ガラス、ほう珪酸亜鉛ガラス、アルミノ珪酸ガラスまたは燐酸ガラスを含むものを使用することができる。   In the light-emitting device according to one embodiment of the present invention, the coating layer is made of glass, and the glass is, for example, silica glass, soda-lime glass, borosilicate glass, aluminoborosilicate glass, zinc borosilicate glass, aluminosilicate glass, or phosphate glass. Can be used.

上記の構成によれば、基板及び被覆層がガラス粉末を含んでおり、基板と被覆層との密着性が良好になり、光反射層の劣化等による経年変化をさらに抑制し、反射率の低下を抑制することができる。特にほう珪酸ガラス(NaO−B−SiO)は熱膨張係数が小さく、熱衝撃温度が高く、酸化ホウ素が多く含まれているため化学的な耐久性が高いため、さらに光反射層を保護する効果が高い。 According to said structure, a board | substrate and a coating layer contain glass powder, the adhesiveness of a board | substrate and a coating layer becomes favorable, further suppresses the secular change by deterioration of a light reflection layer, etc., and a reflectance falls Can be suppressed. In particular, borosilicate glass (Na 2 O—B 2 O 3 —SiO 2 ) has a low thermal expansion coefficient, a high thermal shock temperature, and a high chemical durability because it contains a large amount of boron oxide. The effect of protecting the reflective layer is high.

本発明の一態様に係る発光装置は、前記半導体装置が、発光ダイオードチップであり、前記被覆層は、ガラスから成り、前記接続部は配線パターン及びボンディングワイヤから成り、前記配線パターンは、前記基板上もしくは前記被覆層上に、互いに平行に、かつ、互いに距離をおいて形成され、前記半導体装置は、前記配線パターン間に複数設置されており、前記配線パターンと前記半導体装置とは前記ボンディングワイヤによって接続されていてもよい。   In the light-emitting device according to one embodiment of the present invention, the semiconductor device is a light-emitting diode chip, the coating layer is made of glass, the connection portion is made of a wiring pattern and a bonding wire, and the wiring pattern is the substrate A plurality of the semiconductor devices are installed between the wiring patterns, and the bonding patterns and the semiconductor devices are bonded to the bonding wires. It may be connected by.

上記の構成によれば、半導体装置の数を自由に調整することができ、発光装置の輝度調整、色度調整、及び発熱対策が容易になる。   According to said structure, the number of semiconductor devices can be adjusted freely and the brightness | luminance adjustment of a light-emitting device, chromaticity adjustment, and the countermeasure against heat_generation | fever become easy.

本発明の一態様に係る発光装置は、前記基板内に、前記光反射層、前記外部接続端子、もしくはその双方とそれぞれ接合される、金属から成る放熱ビアを備えていることが好ましい。   The light-emitting device according to one embodiment of the present invention preferably includes a heat radiating via made of metal, which is bonded to the light reflecting layer, the external connection terminal, or both in the substrate.

上記の構成によれば、光反射層または外部接続端子、に接続された放熱ビアにより、発光装置の放熱性をさらに高めることができる。   According to said structure, the heat dissipation of a light-emitting device can further be improved with the thermal radiation via connected to the light reflection layer or the external connection terminal.

前記放熱ビアは、前記基板表面に対して垂直方向に形成されていることが好ましい。   The heat dissipation via is preferably formed in a direction perpendicular to the substrate surface.

さらに前記放熱ビアは、銀、または銀を主成分とする銀合金から成ることが好ましい。   Further, the heat dissipation via is preferably made of silver or a silver alloy containing silver as a main component.

上記の構成によれば、光反射層による基板平面方向への放熱に加え、基板垂直方向への放熱性が高まるため、発光装置の放熱性がさらに高まる。これにより小領域への半導体装置の集積化が可能となる。   According to the above configuration, in addition to the heat radiation in the substrate plane direction by the light reflecting layer, the heat radiation property in the substrate vertical direction is enhanced, so that the heat radiation property of the light emitting device is further enhanced. As a result, the semiconductor device can be integrated in a small area.

本発明の一態様に係る発光装置は、前記配線パターンは金から成ることが好ましい。   In the light emitting device according to one embodiment of the present invention, the wiring pattern is preferably made of gold.

上記の構成によれば、配線パターンが金で形成されているため、配線パターンの劣化等による経年変化を抑制することができる。   According to said structure, since the wiring pattern is formed with gold | metal | money, secular change by deterioration etc. of a wiring pattern can be suppressed.

本発明の一態様に係る発光装置は、前記配線パターンと前記被覆層との間に、ニッケルまたはクロム層が形成されていることが好ましい。   In the light-emitting device according to one embodiment of the present invention, a nickel or chromium layer is preferably formed between the wiring pattern and the coating layer.

上記の構成によれば、ガラスからなる被覆層と配線パターンとの密着性が向上し、配線パターンの劣化等による経年変化を抑制することができる。   According to said structure, the adhesiveness of the coating layer which consists of glass, and a wiring pattern improves, and secular change by deterioration etc. of a wiring pattern can be suppressed.

本発明に係る発光装置は、前記半導体装置が、前記被覆層上に接着用樹脂を介して設置されていてもよい。   In the light emitting device according to the present invention, the semiconductor device may be installed on the coating layer via an adhesive resin.

本発明の一態様に係る発光装置は、前記封止樹脂は、蛍光体を含んでいることが好ましい。   In the light emitting device according to one embodiment of the present invention, the sealing resin preferably includes a phosphor.

上記の構成によれば、蛍光体が半導体装置からの光を吸収し、別の波長の光を発することにより、単一光を発する半導体装置を用いてそれ以外の光(例えば白色光)を発する発光装置を得ることができる。   According to the above configuration, the phosphor absorbs light from the semiconductor device and emits light of another wavelength, so that other light (for example, white light) is emitted using the semiconductor device that emits single light. A light emitting device can be obtained.

本発明の一態様に係る発光装置は、前記封止樹脂は、蛍光体を含んでいる蛍光体含有樹脂部、及び前記蛍光体含有樹脂部を覆うように形成されている透明樹脂部、により構成されていることが好ましい。   In the light-emitting device according to an aspect of the present invention, the sealing resin includes a phosphor-containing resin portion that includes a phosphor, and a transparent resin portion that is formed so as to cover the phosphor-containing resin portion. It is preferable that

上記の構成によれば、蛍光体含有樹脂部を透明樹脂部によって保護することができる。   According to said structure, a fluorescent substance containing resin part can be protected by a transparent resin part.

本発明に係る発光装置は、前記封止樹脂の外形形状がドーム型であることが好ましい。   In the light emitting device according to the present invention, the outer shape of the sealing resin is preferably a dome shape.

本発明に係る発光装置は、前記蛍光体含有樹脂部の外形形状、及び前記透明樹脂部の外形形状がドーム型であることが好ましい。   In the light-emitting device according to the present invention, it is preferable that the outer shape of the phosphor-containing resin portion and the outer shape of the transparent resin portion be a dome shape.

上記の構成によれば、封止樹脂の光照射方向側に角となる部分がないので、照射光の屈折方向が連続的に変化する。よって、照射光の強度のむらが低減できるという効果を奏す
る。
According to said structure, since there is no corner | angular part in the light irradiation direction side of sealing resin, the refractive direction of irradiation light changes continuously. Therefore, there is an effect that unevenness of the intensity of irradiation light can be reduced.

本発明の一態様に係る発光装置は、発光ダイオードチップと、該発光ダイオードチップをチップ載置部にダイボンディングするとともに、前記発光ダイオードチップの出射光を反射する銀反射層を備えたパッケージと前記発光ダイオードチップを被覆する封止樹脂を備えた発光装置であって、前記銀反射層はガラス層により被覆されてなる。   A light-emitting device according to an aspect of the present invention includes a light-emitting diode chip, a package including a silver reflective layer for die-bonding the light-emitting diode chip to a chip mounting portion and reflecting light emitted from the light-emitting diode chip; A light-emitting device including a sealing resin for covering a light-emitting diode chip, wherein the silver reflective layer is covered with a glass layer.

本発明の一態様に係る発光装置は、前記封止樹脂の材質がジメチルシリコーンもしくはメチルゴムであることが好ましい。   In the light emitting device according to one embodiment of the present invention, it is preferable that a material of the sealing resin is dimethyl silicone or methyl rubber.

本発明の一態様に係る発光装置は、前記封止樹脂は前記発光ダイオードチップから発する1次光の少なくとも一部を吸収して前記1次光よりも長波長の2次光に変換する蛍光体を分散させたものであることが好ましい。   In the light emitting device according to an aspect of the present invention, the sealing resin absorbs at least a part of the primary light emitted from the light emitting diode chip and converts the secondary light into secondary light having a longer wavelength than the primary light. Is preferably dispersed.

本発明の一態様に係る発光装置は、前記銀反射層が、前記発光装置の出射面の周縁部に形成されることが好ましい。   In the light-emitting device according to one embodiment of the present invention, it is preferable that the silver reflection layer is formed on a peripheral portion of an emission surface of the light-emitting device.

本発明の一態様に係る発光装置は、前記チップ載置部に凹陥部が形成され、前記凹陥部の底面に電極パッドが形成されることが好ましい。   In the light emitting device according to one aspect of the present invention, it is preferable that a recess is formed in the chip mounting portion, and an electrode pad is formed on the bottom surface of the recess.

本発明の一態様に係る発光装置用パッケージの製造方法は、アルミナを主材料とする複数のグリーンシートを準備する工程と、前記グリーンシートの一部に孔開け加工する工程と、前記孔に金属ペーストまたはガラスペーストの少なくとも一方を充填する工程と、前記複数のグリーンシートを、前記金属ペーストが前記ガラスペーストにより被覆されるように積層し焼成する工程を順に有する。   A method for manufacturing a package for a light emitting device according to an aspect of the present invention includes a step of preparing a plurality of green sheets mainly composed of alumina, a step of drilling a part of the green sheet, and a metal in the holes A step of filling at least one of paste or glass paste and a step of laminating and firing the plurality of green sheets so that the metal paste is covered with the glass paste are sequentially provided.

以上のように、本発明の一態様に係る発光装置は、基板上に光を出射する半導体装置及び複数の外部接続端子を有し、前記基板上に形成され前記半導体装置からの出射光を反射する光反射層と、少なくとも前記光反射層を被覆し、かつ、前記光反射層にて反射した光を透過する被覆層とを備え、前記半導体装置は、前記被覆層上に形成されるとともに、前記外部接続端子と接続部を介して電気的に接続されており、前記半導体装置と前記接続部とを覆うように封止樹脂で封止されている。   As described above, a light-emitting device according to one embodiment of the present invention includes a semiconductor device that emits light over a substrate and a plurality of external connection terminals, and is formed over the substrate and reflects light emitted from the semiconductor device. A light reflecting layer, and a covering layer that covers at least the light reflecting layer and transmits light reflected by the light reflecting layer, and the semiconductor device is formed on the covering layer, It is electrically connected to the external connection terminal via a connection portion, and is sealed with a sealing resin so as to cover the semiconductor device and the connection portion.

上記の構成によれば、半導体装置から下側(基板側)への出射光を光反射層が反射することにより、出射光のロスを減少させ有効に活用できるため発光装置の発光量を高めることができ、光反射層を被覆層で被覆しているため光反射層の変質、または劣化、さらにはそれに起因した反射率の低下を抑制するという効果を奏する。   According to the above configuration, the light reflection layer reflects the outgoing light from the semiconductor device to the lower side (substrate side), thereby reducing the loss of the outgoing light and increasing the amount of light emitted from the light emitting device. In addition, since the light reflection layer is covered with the coating layer, the light reflection layer can be prevented from being deteriorated or deteriorated, and further, the reflectance can be prevented from lowering.

また、本発明に係る発光装置は、上記光反射層を被覆層によって十分保護しているため、封止樹脂として、ガス封止性がやや低い場合があるものの、耐熱性が高く、ガラスとの密着性が高いジメチルシリコーンやメチルゴムを好適に用いることができる。   Moreover, since the light-emitting device according to the present invention sufficiently protects the light reflecting layer with a coating layer, the sealing resin may have a slightly low gas sealing property, but has a high heat resistance and is not Dimethyl silicone or methyl rubber having high adhesion can be preferably used.

本発明に係る発光装置用パッケージの製造方法は、グリーンシートを積層した基板素材を焼成すると同時に反射層とその被覆層を焼成して発光装置用パッケージを製造するものであるため、焼成工程が1回で済み低コストになる。   The method for manufacturing a light emitting device package according to the present invention is a method for manufacturing a light emitting device package by firing a substrate material on which green sheets are laminated and simultaneously firing a reflective layer and its coating layer. Saves time and costs.

本発明の一態様に係る発光装置は以下のように表現することもできる。   The light-emitting device according to one embodiment of the present invention can also be expressed as follows.

本発明の一態様に係る発光装置は、基板上に光を出射する半導体装置及び複数の外部接続端子を有する発光装置において、前記基板上に形成され、前記半導体装置からの出射光
を反射する光反射層と、少なくとも前記光反射層を被覆し、かつ、前記光反射層にて反射した光を透過する被覆層とを備え、前記半導体装置は、前記被覆層上に形成されるとともに、前記外部接続端子と接続部を介して電気的に接続されており、前記半導体装置と前記接続部とを覆うように封止樹脂で封止されている。
A light-emitting device according to one embodiment of the present invention is a light-emitting device including a semiconductor device that emits light on a substrate and a plurality of external connection terminals, and light that is formed on the substrate and reflects light emitted from the semiconductor device. A reflection layer; and a coating layer that covers at least the light reflection layer and transmits the light reflected by the light reflection layer. The semiconductor device is formed on the coating layer, and It is electrically connected via a connection terminal and a connection portion, and is sealed with a sealing resin so as to cover the semiconductor device and the connection portion.

本発明の一態様に係る発光装置では、前記光反射層は、90%以上の光反射率を有する。   In the light emitting device according to one embodiment of the present invention, the light reflecting layer has a light reflectance of 90% or more.

本発明の一態様に係る発光装置では、前記光反射層は、銀、または銀を主成分とする銀合金から成る。   In the light emitting device according to one embodiment of the present invention, the light reflecting layer is made of silver or a silver alloy containing silver as a main component.

本発明の一態様に係る発光装置では、前記基板は、セラミックスを基材とする。   In the light-emitting device according to one embodiment of the present invention, the substrate includes ceramic as a base material.

本発明の一態様に係る発光装置では、前記基板は、低温同時焼成セラミックスを基材とする。   In the light-emitting device according to one embodiment of the present invention, the substrate includes a low-temperature co-fired ceramic as a base material.

本発明の一態様に係る発光装置では、前記低温同時焼成セラミックスは、ガラス粉末とセラミック粉末を材料として焼成したものである。   In the light-emitting device according to one embodiment of the present invention, the low-temperature co-fired ceramic is fired using glass powder and ceramic powder as materials.

本発明の一態様に係る発光装置では、前記ガラス粉末は、シリカガラス、ソーダ石灰ガラス、ほう珪酸ガラス、アルミノホウ珪酸ガラス、ほう珪酸亜鉛ガラス、アルミノ珪酸ガラスまたは燐酸ガラスを含む。   In the light-emitting device according to one embodiment of the present invention, the glass powder includes silica glass, soda-lime glass, borosilicate glass, aluminoborosilicate glass, borosilicate zinc glass, aluminosilicate glass, or phosphate glass.

本発明の一態様に係る発光装置では、前記セラミック粉末は、SiO、Al、ZrO、TiO、ZnO、MgAl、ZnAl、MgSiO、MgSiO、ZnSiO、ZnTiO、SrTiO、CaTiO、MgTiO、BaTiO、CaMgSi、SrAlSi、BaAlSi、CaAlSi、MgAlSi18、ZnAlSi18、AlN、SiC、ムライトまたはゼオライトを含む。 In the light emitting device according to one embodiment of the present invention, the ceramic powder may be SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , ZnO, MgAl 2 O 4 , ZnAl 2 O 4 , MgSiO 3 , MgSiO 4 , Zn 2. SiO 4 , Zn 2 TiO 4 , SrTiO 3 , CaTiO 3 , MgTiO 3 , BaTiO 3 , CaMgSi 2 O 6 , SrAl 2 Si 2 O 8 , BaAl 2 Si 2 O 8 , CaAl 2 Si 2 O 8 , Mg 2 Al 4 Si 5 O 18 , Zn 2 Al 4 Si 5 O 18 , AlN, SiC, mullite or zeolite.

本発明の一態様に係る発光装置では、前記被覆層はガラスから成り、前記ガラスは、シリカガラス、ソーダ石灰ガラス、ほう珪酸ガラス、アルミノホウ珪酸ガラス、ほう珪酸亜鉛ガラス、アルミノ珪酸ガラスまたは燐酸ガラスから成る。   In the light-emitting device according to one embodiment of the present invention, the coating layer is made of glass, and the glass is made of silica glass, soda-lime glass, borosilicate glass, aluminoborosilicate glass, borosilicate zinc glass, aluminosilicate glass, or phosphate glass. Become.

本発明の一態様に係る発光装置では、前記半導体装置は、発光ダイオードチップであり、前記被覆層は、ガラスから成り、前記接続部は配線パターン及びボンディングワイヤから成り、前記配線パターンは、前記基板上もしくは前記被覆層上に、互いに平行に、かつ、互いに距離をおいて形成され、前記半導体装置は、前記配線パターン間に複数設置されており、前記配線パターンと前記半導体装置とは前記ボンディングワイヤによって接続されている。   In the light emitting device according to one aspect of the present invention, the semiconductor device is a light emitting diode chip, the coating layer is made of glass, the connection portion is made of a wiring pattern and a bonding wire, and the wiring pattern is the substrate. A plurality of the semiconductor devices are installed between the wiring patterns, and the bonding patterns and the semiconductor devices are bonded to the bonding wires. Connected by.

本発明の一態様に係る発光装置では、前記基板内に、前記光反射層、前記外部接続端子、もしくはその双方とそれぞれ接合される、金属から成る放熱ビアを備えている。   In the light emitting device according to one embodiment of the present invention, the substrate includes a heat dissipation via made of metal that is bonded to the light reflection layer, the external connection terminal, or both.

本発明の一態様に係る発光装置では、前記放熱ビアは、前記基板表面に対して垂直方向に形成されている。   In the light emitting device according to one aspect of the present invention, the heat dissipation via is formed in a direction perpendicular to the substrate surface.

本発明の一態様に係る発光装置では、前記放熱ビアは、銀、または銀を主成分とする銀合金から成る。   In the light emitting device according to one embodiment of the present invention, the heat dissipation via is made of silver or a silver alloy containing silver as a main component.

本発明の一態様に係る発光装置では、前記配線パターンは金から成る。   In the light emitting device according to one aspect of the present invention, the wiring pattern is made of gold.

本発明の一態様に係る発光装置では、前記配線パターンと前記被覆層との間に、ニッケルまたはクロム層が形成されている。   In the light emitting device according to one embodiment of the present invention, a nickel or chromium layer is formed between the wiring pattern and the covering layer.

本発明の一態様に係る発光装置では、前記半導体装置は、前記被覆層上に接着用樹脂を介して設置されている。   In the light-emitting device according to one embodiment of the present invention, the semiconductor device is provided over the coating layer via an adhesive resin.

本発明の一態様に係る発光装置では、前記封止樹脂は、蛍光体を含んでいる。   In the light emitting device according to one embodiment of the present invention, the sealing resin contains a phosphor.

本発明の一態様に係る発光装置では、前記封止樹脂は、蛍光体を含んでいる蛍光体含有樹脂部、及び前記蛍光体含有樹脂部を覆うように形成されている透明樹脂部、により構成されている。   In the light emitting device according to one aspect of the present invention, the sealing resin includes a phosphor-containing resin portion that includes a phosphor, and a transparent resin portion that is formed so as to cover the phosphor-containing resin portion. Has been.

本発明の一態様に係る発光装置では、前記封止樹脂の外形形状がドーム型である。   In the light emitting device according to one embodiment of the present invention, the outer shape of the sealing resin is a dome shape.

本発明の一態様に係る発光装置では、前記蛍光体含有樹脂部の外形形状、及び前記透明樹脂部の外形形状がドーム型である。   In the light emitting device according to one aspect of the present invention, the outer shape of the phosphor-containing resin portion and the outer shape of the transparent resin portion are dome-shaped.

本発明の一態様に係る発光装置では、発光ダイオードチップと、該発光ダイオードチップをチップ載置部にダイボンディングするとともに、前記発光ダイオードチップの出射光を反射する銀反射層を備えたパッケージと、前記発光ダイオードチップを被覆する封止樹脂を備えた発光装置であって、前記銀反射層はガラス層により被覆されてなる。   In a light emitting device according to an aspect of the present invention, a light emitting diode chip, and a package including a silver reflective layer that reflects the light emitted from the light emitting diode chip while die-bonding the light emitting diode chip to a chip mounting portion; The light emitting device includes a sealing resin that covers the light emitting diode chip, wherein the silver reflective layer is covered with a glass layer.

本発明の一態様に係る発光装置では、前記封止樹脂の材質がジメチルシリコーンもしくはメチルゴムである。   In the light emitting device according to one embodiment of the present invention, the sealing resin is made of dimethyl silicone or methyl rubber.

本発明の一態様に係る発光装置では、前記封止樹脂は前記発光ダイオードチップから発する1次光の少なくとも一部を吸収して前記1次光よりも長波長の2次光に変換する蛍光体を分散させたものである。   In the light emitting device according to the aspect of the present invention, the sealing resin absorbs at least a part of the primary light emitted from the light emitting diode chip and converts the secondary light into secondary light having a longer wavelength than the primary light. Are dispersed.

本発明の一態様に係る発光装置では、前記銀反射層が、前記発光装置の出射面の周縁部に形成されている。   In the light emitting device according to one aspect of the present invention, the silver reflective layer is formed on a peripheral portion of the emission surface of the light emitting device.

本発明の一態様に係る発光装置では、前記チップ載置部に凹陥部が形成され、前記凹陥部の底面に電極パッドが形成されている。   In the light emitting device according to one aspect of the present invention, a recess is formed in the chip mounting portion, and an electrode pad is formed on the bottom surface of the recess.

本発明の一態様に係る発光装置用パッケージの製造方法は、アルミナを主材料とする複数のグリーンシートを準備する工程と、前記グリーンシートの一部に孔開け加工する工程と、前記孔に金属ペーストまたはガラスペーストの少なくとも一方を充填する工程と、前記複数のグリーンシートを、前記金属ペーストが前記ガラスペーストにより被覆されるように積層し焼成する工程を順に有する。   A method for manufacturing a package for a light emitting device according to an aspect of the present invention includes a step of preparing a plurality of green sheets mainly composed of alumina, a step of drilling a part of the green sheet, and a metal in the holes A step of filling at least one of paste or glass paste and a step of laminating and firing the plurality of green sheets so that the metal paste is covered with the glass paste are sequentially provided.

本発明は照明装置または液晶ディスプレイのバックライトに適用することができる。   The present invention can be applied to an illumination device or a backlight of a liquid crystal display.

1、10、11 LTCC基板(基板)
2、120 銀反射層(光反射層)
3、121 ガラス層
4、112 LEDチップ
W ボンディングワイヤ(接続部)
6、61、62 蛍光体含有封止樹脂(封止樹脂)
7、71 負電極外部接続端子(外部接続端子)
8、81 正電極外部接続端子(外部接続端子)
9 配線パターン(接続部)
10a〜10j、11a〜11j LTCC層
12 アルミナ基板(基板)
21 放熱ビア
22 配線ビア
41、113 チップ載置部
63 蛍光体含有樹脂部
64 透明樹脂部
110 パッケージ
114 蛍光体
1000、1002、1003、1004、1005、2001、2002、2003
発光装置
1001 発光部
2004 面光源
1, 10, 11 LTCC substrate (substrate)
2,120 Silver reflection layer (light reflection layer)
3, 121 Glass layer 4, 112 LED chip W Bonding wire (connection part)
6, 61, 62 Phosphor-containing sealing resin (sealing resin)
7, 71 Negative electrode external connection terminal (external connection terminal)
8, 81 Positive electrode external connection terminal (external connection terminal)
9 Wiring pattern (connection part)
10a to 10j, 11a to 11j LTCC layer 12 Alumina substrate (substrate)
21 Heat radiation via 22 Wiring via 41, 113 Chip placement part 63 Phosphor-containing resin part 64 Transparent resin part 110 Package 114 Phosphor 1000, 1002, 1003, 1004, 1005, 2001, 2002, 2003
Light emitting device 1001 Light emitting unit 2004 Surface light source

Claims (4)

セラミックス基板と、
外部に露出しており、上記セラミックス基板上に設けられた第1の外部端子および第2の外部端子と、
上記セラミックス基板上に設けられた金属層と、
上記第1の外部端子および上記第2の外部端子と電気的に接続され、かつ、上記金属層の上面の上方に設けられた発光ダイオードチップと、
上記金属層の厚さより大きい厚さを有し、上記金属層の下側に接続されている複数の金属ビアと、
上記発光ダイオードチップを覆う蛍光体含有樹脂と、
上記蛍光体含有樹脂上に設けられており、ドーム型の外形形状を有する透明樹脂とを備え、
上記第1の外部端子は上記セラミックス基板の表面に沿って延伸する第1の水平部を有し、
上記第2の外部端子は上記セラミックス基板の表面に沿って延伸する第2の水平部を有し、
上記第1の水平部は外部に露出した第1の外部露出部を有し、
上記第2の水平部は外部に露出した第2の外部露出部を有し、
上記第1の外部露出部が上記金属層に対向するように、上記第1の外部露出部は上記セラミックス基板の上記表面に対して垂直な方向において上記金属層と重なり、
上記第2の外部露出部が上記金属層に対向するように、上記第2の外部露出部は上記セラミックス基板の上記表面に対して垂直な方向において上記金属層と重なり、
上記セラミックス基板は長方形の形状を有し、
上記セラミックス基板の上記表面に対して垂直な方向から見たとき、上記透明樹脂の直径は上記セラミックス基板のそれぞれの辺より小さいことを特徴とする発光装置。
A ceramic substrate;
A first external terminal and a second external terminal that are exposed to the outside and provided on the ceramic substrate;
A metal layer provided on the ceramic substrate;
A light emitting diode chip electrically connected to the first external terminal and the second external terminal and provided above the upper surface of the metal layer;
A plurality of metal vias having a thickness greater than the thickness of the metal layer and connected to the underside of the metal layer;
A phosphor-containing resin covering the light-emitting diode chip;
Provided on the phosphor-containing resin, comprising a transparent resin having a dome-shaped outer shape,
The first external terminal has a first horizontal portion extending along the surface of the ceramic substrate,
The second external terminal has a second horizontal portion extending along the surface of the ceramic substrate,
The first horizontal portion has a first external exposed portion exposed to the outside,
The second horizontal portion has a second external exposed portion exposed to the outside,
The first external exposed portion overlaps the metal layer in a direction perpendicular to the surface of the ceramic substrate, such that the first external exposed portion faces the metal layer.
The second externally exposed portion overlaps the metal layer in a direction perpendicular to the surface of the ceramic substrate so that the second externally exposed portion faces the metal layer,
The ceramic substrate has a rectangular shape,
The light emitting device according to claim 1, wherein the transparent resin has a diameter smaller than each side of the ceramic substrate when viewed from a direction perpendicular to the surface of the ceramic substrate .
上記セラミックス基板は複数のセラミックス層を含み、
上記複数の金属ビアは、上記複数のセラミックス層が積層する方向に延伸していることを特徴とする請求項に記載の発光装置。
The ceramic substrate includes a plurality of ceramic layers,
The plurality of metal vias, the light emitting device according to claim 1 in which the upper Symbol plurality of ceramic layers, characterized that you have to extend in a direction of stacking.
上記発光ダイオードチップの上面の位置は上記セラミックス基板の上面の位置より高いことを特徴とする請求項に記載の発光装置。 The light emitting device according to claim 1 , wherein a position of an upper surface of the light emitting diode chip is higher than a position of an upper surface of the ceramic substrate. 上記セラミックス基板は平らであることを特徴とする請求項に記載の発光装置。
The light emitting device according to claim 1 , wherein the ceramic substrate is flat.
JP2016137712A 2008-06-24 2016-07-12 Light emitting device Active JP6058195B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008164910 2008-06-24
JP2008164910 2008-06-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015055365A Division JP5972419B2 (en) 2008-06-24 2015-03-18 Light emitting device and lighting apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016236911A Division JP2017085125A (en) 2008-06-24 2016-12-06 Light-emitting device

Publications (2)

Publication Number Publication Date
JP2016187051A JP2016187051A (en) 2016-10-27
JP6058195B2 true JP6058195B2 (en) 2017-01-11

Family

ID=48616455

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2013032608A Active JP5450854B2 (en) 2008-06-24 2013-02-21 Light emitting device
JP2013267556A Active JP5701969B2 (en) 2008-06-24 2013-12-25 Light emitting device
JP2014225609A Active JP5718517B2 (en) 2008-06-24 2014-11-05 Light emitting device
JP2015055365A Active JP5972419B2 (en) 2008-06-24 2015-03-18 Light emitting device and lighting apparatus
JP2016137712A Active JP6058195B2 (en) 2008-06-24 2016-07-12 Light emitting device
JP2016236911A Pending JP2017085125A (en) 2008-06-24 2016-12-06 Light-emitting device

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2013032608A Active JP5450854B2 (en) 2008-06-24 2013-02-21 Light emitting device
JP2013267556A Active JP5701969B2 (en) 2008-06-24 2013-12-25 Light emitting device
JP2014225609A Active JP5718517B2 (en) 2008-06-24 2014-11-05 Light emitting device
JP2015055365A Active JP5972419B2 (en) 2008-06-24 2015-03-18 Light emitting device and lighting apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016236911A Pending JP2017085125A (en) 2008-06-24 2016-12-06 Light-emitting device

Country Status (1)

Country Link
JP (6) JP5450854B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179857B2 (en) 2013-09-24 2017-08-16 パナソニックIpマネジメント株式会社 Light emitting device
JP6344058B2 (en) * 2014-05-23 2018-06-20 東芝ライテック株式会社 Light emitting module and lighting device
KR102374170B1 (en) * 2015-01-14 2022-03-15 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device package having the same and light system having the same
KR101885511B1 (en) * 2017-04-28 2018-08-06 엑센도 주식회사 Optic element assembly apparatus
CN107452855B (en) * 2017-08-17 2018-05-29 旭宇光电(深圳)股份有限公司 Paster LED is without mould method for packing
JP2019186505A (en) * 2018-04-17 2019-10-24 パナソニックIpマネジメント株式会社 Light-emitting device, luminaire, and silicone resin
JP2020188073A (en) * 2019-05-10 2020-11-19 シャープ株式会社 Led light source substrate and lighting device
CN115594405B (en) * 2022-09-28 2023-12-26 深圳顺络电子股份有限公司 Low-dielectric high-temperature stability LTCC material and preparation method thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486561B1 (en) * 2000-09-12 2002-11-26 Luminary Logic, Ltd. Semiconductor light emitting element formed on a clear or translucent substrate
JP4129169B2 (en) * 2002-11-21 2008-08-06 京セラ株式会社 Light emitting element storage package and light emitting device
JP2004200537A (en) * 2002-12-20 2004-07-15 Hiroshi Ninomiya Surface light-emitting plate
JP2004266168A (en) * 2003-03-03 2004-09-24 Sanyu Rec Co Ltd Electronic device provided with light emitting body and its manufacturing method
JP4444609B2 (en) * 2003-09-26 2010-03-31 スタンレー電気株式会社 LED lamp and manufacturing method
JP4369738B2 (en) * 2003-12-25 2009-11-25 京セラ株式会社 Light emitting element storage package and light emitting device
JP4325412B2 (en) * 2004-01-21 2009-09-02 日亜化学工業株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP4530739B2 (en) * 2004-01-29 2010-08-25 京セラ株式会社 Light emitting element mounting substrate and light emitting device
JP4337652B2 (en) * 2004-06-25 2009-09-30 ブラザー工業株式会社 Portable information terminal
JP4619080B2 (en) * 2004-09-28 2011-01-26 京セラ株式会社 Light emitting device
JP2006128511A (en) * 2004-10-29 2006-05-18 Ngk Spark Plug Co Ltd Ceramic substrate for light emitting element
JP2006303419A (en) * 2004-12-03 2006-11-02 Ngk Spark Plug Co Ltd Ceramic substrate
JP2006295084A (en) * 2005-04-14 2006-10-26 Citizen Electronics Co Ltd Package structure of light emitting diode
JP2006303351A (en) * 2005-04-25 2006-11-02 Sumitomo Metal Electronics Devices Inc Package for storing light emitting element
US7550319B2 (en) * 2005-09-01 2009-06-23 E. I. Du Pont De Nemours And Company Low temperature co-fired ceramic (LTCC) tape compositions, light emitting diode (LED) modules, lighting devices and method of forming thereof
JP4001178B2 (en) * 2005-09-20 2007-10-31 松下電工株式会社 Light emitting device
JP4250171B2 (en) * 2006-02-13 2009-04-08 日本特殊陶業株式会社 Ceramic package for light emitting device
JP2007243054A (en) * 2006-03-10 2007-09-20 Matsushita Electric Works Ltd Light-emitting device
JP4973011B2 (en) * 2006-05-31 2012-07-11 豊田合成株式会社 LED device
JP2008078401A (en) * 2006-09-21 2008-04-03 Toshiba Lighting & Technology Corp Lighting device
WO2008059650A1 (en) * 2006-11-14 2008-05-22 Harison Toshiba Lighting Corp. Light emitting device, its manufacturing method and its mounted substrate

Also Published As

Publication number Publication date
JP2013093635A (en) 2013-05-16
JP2015029151A (en) 2015-02-12
JP5450854B2 (en) 2014-03-26
JP2014057109A (en) 2014-03-27
JP2015146439A (en) 2015-08-13
JP5701969B2 (en) 2015-04-15
JP5972419B2 (en) 2016-08-17
JP2016187051A (en) 2016-10-27
JP5718517B2 (en) 2015-05-13
JP2017085125A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP5345363B2 (en) Light emitting device
JP6058195B2 (en) Light emitting device
KR101937643B1 (en) A light emitting module, a lamp, a luminaire and a display device
JP6205897B2 (en) Light emitting device and manufacturing method thereof
JP5084324B2 (en) Light emitting device and lighting device
US10873008B2 (en) Light emitting device and method of manufacturing same
JP2014229759A (en) Light emitting device
US10644208B2 (en) Method of manufacturing light emitting device
JP6460189B2 (en) Light emitting device and manufacturing method thereof
KR101173398B1 (en) Light Emitting Diode Package and Method for Manufacturing Same
JP5811770B2 (en) Light emitting device and manufacturing method thereof
JP2007201354A (en) Light-emitting module
JP7037044B2 (en) Light emitting device and its manufacturing method
JP5320374B2 (en) Method for manufacturing light emitting device

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6058195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250