JP6051368B1 - 小型魚類を用いた急性毒の監視方法及び監視装置 - Google Patents

小型魚類を用いた急性毒の監視方法及び監視装置 Download PDF

Info

Publication number
JP6051368B1
JP6051368B1 JP2016541695A JP2016541695A JP6051368B1 JP 6051368 B1 JP6051368 B1 JP 6051368B1 JP 2016541695 A JP2016541695 A JP 2016541695A JP 2016541695 A JP2016541695 A JP 2016541695A JP 6051368 B1 JP6051368 B1 JP 6051368B1
Authority
JP
Japan
Prior art keywords
acute
small fish
monitoring
detection blocks
poison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016541695A
Other languages
English (en)
Other versions
JPWO2017013795A1 (ja
Inventor
陸郎 横田
陸郎 横田
慎一 戸田
慎一 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Animax Co Ltd
Original Assignee
Animax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Animax Co Ltd filed Critical Animax Co Ltd
Application granted granted Critical
Publication of JP6051368B1 publication Critical patent/JP6051368B1/ja
Publication of JPWO2017013795A1 publication Critical patent/JPWO2017013795A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

急性毒について適切なタイミングで警報を行うことができる監視方法及び監視装置を提供する。水槽11の水平面全体を小型魚類の水平像よりも小さな複数の検知ブロックBに予め区分し、水槽11の水平面全体をカメラ装置13によって所定時間毎に撮影し、水槽11の撮影画像から検知ブロックBの各々について小型魚類の存在を判定して、存在が判定された存在検知ブロック数を監視履歴として蓄積し、監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに急性毒を警報するように構成する。

Description

本発明は、小型魚類が放たれた水槽に水源から常時給水しその小型魚類を監視して急性毒を警報する急性毒の監視方法及び監視装置に関する。
従来、河川、貯水池、ダム等の水源の水質を監視する方法としては化学試薬等を用いる検査法が一般的である。しかしながら試薬で検出できる有害物質は限られており、試薬の取扱い等に専門知識も必要とされるから、この方法で日常的に水質を監視するのは難しいという問題があった。
これに対して近時、より簡単かつ多様な有害物質を検出可能な方法として、ヒメダカ等の小型魚類を用いるバイオアッセイが注目されている。バイオアッセイでは水源から採取した水を入れた水槽に放たれた魚類の状態を監視するものである。これに関連する先行技術の例として例えば次のような特許文献が挙げられる。
特許文献1、2には、水槽に設定した監視範囲内の魚類の数を監視して監視数が変動したときアラーム信号を出力することが記載されている。
特開2002−257815号公報 特開2003−139764号公報
しかしながら前記特許文献1、2に記載されている監視方法では、魚類の下流側への移動行動等によって水質に変動があったときにアラーム信号が出力されるが、水質がどの程度変動したときにアラーム信号が出力されるか必ずしも明確でないため、熟練した係員が水槽を現場確認する等して最終判断を下す必要があった。
本発明はこのような問題に着目してなされたものであり、特に急性毒について適切なタイミングで警報が発報される監視方法及び監視装置を提供することを目的としている。
本発明による急性毒の監視方法は、複数の小型魚類が放たれた水槽に水源から原水を常時給水して水槽内を循環する渦流を生じさせ、この渦流の流路中に死魚捕集ネットを設置し、前記水槽の水平面全体を小型魚類よりも小さな複数の検知ブロックに区分し、更に前記死魚捕集ネットの設置領域を小型魚類の存在判定処理から除外すべき除外ブロックとして選択する操作を受け付け、前記水槽の水平面全体をカメラ装置によって所定時間毎に撮影し、前記水槽の撮影画像から、前記除外ブロックとして選択されていない検知ブロックの各々について小型魚類の存在を判定し、存在が判定された存在検知ブロック数を監視履歴として蓄積し、前記監視履歴から急性毒による死亡率の判定基準を逐次算出して、前記存在検知ブロック数がその判定基準を下回ったときに、急性毒を警報することを特徴とする。
また本発明による急性毒の監視装置は、複数の小型魚類が放たれた水槽と、水源の原水を前記水槽に常時給水して当該水槽内を循環する渦流を生じさせる給水手段と、前記渦流の流路中に設置される死魚捕集ネットと、前記水槽の水平面全体を小型魚類よりも小さな複数の検知ブロックに区分し、更に前記死魚捕集ネットの設置領域を小型魚類の存在判定処理から除外すべき除外ブロックとして選択する操作を受け付ける操作部と、所定時間毎に前記水槽を撮影するカメラ装置と、前記水槽の撮影画像から、前記除外ブロックとして選択されていない検知ブロックの各々について小型魚類の存在を判定し、存在が判定された存在検知ブロック数を監視履歴として蓄積する監視記録部と、前記監視履歴から急性毒による死亡率の判定基準を逐次算出して、前記存在検知ブロック数がその判定基準を下回ったときに、急性毒を警報する警報部とを備えたことを特徴とする。
本発明では、例えば前記所定期間は96時間とし、存在検知ブロック数が所定期間に半数以下に減少したときに、急性毒を警報するように構成できる。この場合、急性毒警報は、水槽の水に96時間における半数致死濃度程度の急性毒が存在することを示す明確なシグナルになる。また検知ブロックは小型魚類の水平像よりも小さな寸法にしているので、同一の小型魚類が複数の検知ブロックで同時に存在判定されることになり、小型魚類の見落としがなく、個体数について検知誤差が抑えられる。
実施形態の一例とされる急性毒の監視装置の基本構成を示すブロック図である。 前記監視装置の具体例を示す全体斜視図である。 (a)は前記監視装置を構成する水槽の具体例を示す斜視図、(b)、(c)はいずれも給水手段の基本作用を説明する平面図である。 (a)は水槽の水平面を複数の検知ブロックに区分設定する工程を説明する平面図、(b)、(c)はいずれも検知ブロックにおける小型魚類の存在の具体的な判定例を示す平面図である。 (a)は水槽の撮影画像の一例、(b)はその撮影画像から小型魚類の存在を判定したその判定結果の一例を示す平面図である。 小型魚類の個体数を監視した結果の一例を示すグラフである。 小型魚類の個体数を監視する基本手順の一例を説明するフローチャートである。 (a)は水槽の撮影画像の他例、(b)はその撮影画像から小型魚類の検知ブロックへの進入を判定したその判定結果の一例を示す平面図である。 小型魚類の活動量を監視した結果の一例を示すグラフである。 小型魚類の活動量を監視する基本手順の一例を説明するフローチャートである。 監視履歴の表示画面の具体例である。 監視履歴の表示画面の他例である。 (a)は急性毒の警報基準によって規格化された個体数のグラフ、(b)は急性毒の警告基準によって規格化された個体数のグラフ、(c)は活動量急減の警告基準によって規格化された活動量のグラフ、(d)は活動量急増の警告基準によって規格化された活動量のグラフである。
図1は実施形態の一例とされる急性毒の監視装置を示している。この監視装置は小型魚類を用いるバイオアッセイにより監視対象の水源、例えば、河川、貯水池、ダム等の水質、特に急性毒を監視するものであり、小型魚類としてはヒメダカ(体長2.5センチメートル以上)を想定している。ヒメダカは生後1年程で体長2.5センチメール程度まで成長するのであるが、この監視装置ではそのようなヒメダカを10〜12匹程使用し、死亡したヒメダカの補充は、その死亡から96時間が経過した以降にする。
まずこの監視装置の基本構成を説明する。
監視装置10は水質監視に係る要素として、水源から常時給水され、かつ複数の小型魚類が放たれる水槽11と、水槽11の水平面全体に小型魚類の水平像よりも小さな複数の検知ブロックを区分設定する操作を受け付ける操作部12と、所定時間毎に水槽11を撮影するカメラ装置13と、カメラ装置13の撮影画像から検知ブロックの各々について小型魚類の存在を判定して、存在が判定された存在検知ブロック数を監視履歴として蓄積する監視記録部14と、監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに、急性毒を警報する警報部15と、監視履歴を表示する表示部16とを備える。監視装置10は更に、水源から取水された水を水槽11に時間当たり一定量ずつ給水する給水手段17、水槽11に定期的に給餌する自動給餌装置(図示なし)や、水槽11を照明するLEDランプ(図示なし)等を備える。
水槽11は、広さ20×30センチ四方〜25〜35センチ四方、深さ4センチ〜5センチ程度の薄型のものとすれば、小型魚類を7匹〜15匹程維持でき、その水平面全体を上方からカメラ装置13で撮影することも容易である。
操作部12は例えばタッチパネル、キーボード等で構成できる。なおUSBメモリ、メモリカード、あるいはネットワーク等から検知ブロックの区分情報や他の初期設定情報を読み込むように構成してもよい。
カメラ装置13は、CMOSセンサ又はCCDセンサを用いた一般的なものでよい。またその撮影画像はカラーであってもモノクロームであってもよい。
監視記録部14は例えばパーソナルコンピュータ等のコンピュータ装置を用いて構成すればよい。そうすれば監視履歴を内蔵ハードディスク等に格納し、その格納したデータをUSBメモリ、メモリカード等に書き出すことも可能になる。また遠隔地の通信端末とネットワーク接続すれば、その通信端末等からリモート操作を受けたり、急性毒の検出を移報したりすることも可能になる。
警報部15は急性毒の検出を係員に知らせるためのものであり、例えばブザー、サイレン等によって警報音を鳴動するように構成してもよいし、パトランプ等によって警報表示するように構成してもよい。あるいは外部機器に移報するように構成してもよい。
表示部16は、液晶パネルあるいはCRTによって構成できる。タッチパネルを用いれば操作部12と兼用できて装置の小型化が図れる。
給水手段17は電動ポンプあるいは電磁弁等によって構成できる。また自動給餌装置、LEDランプは一般に市販されているものを用いればよい。
図2は前記監視装置の具体例を示す斜視図である。
監視装置10は、前面扉20a、20a等によって開閉自在な暗箱20に水槽11、監視記録部14等を収容した基本構成とし、パトランプからなる警報部15を暗箱20の上面に設けている。詳細に説明すれば、暗箱20の上段に監視記録部14を収容し、中段に水槽11を収容し、下段にサンプル水タンク21や、原水供給ポンプ、熱交換器(図示なし)等を収容している。カメラ装置13、LEDランプ、自動給餌装置(図示なし)は水槽11の上方に配置している。更に、水温が高いときに水槽11の水面に吹き付けるファン装置等(図示なし)を設けてもよい。
水槽11は給水手段17を構成する沈殿槽11aと一体に形成されており、この沈殿槽11aの外壁面にカメラ装置13、LEDランプが下向きに固定されている。監視記録部14は、筐体前面に操作部12を構成するテンキーと、表示部16を構成するタッチパネルを備えている。カメラ装置13、LEDランプ、自動給餌装置、原水供給ポンプ、熱交換器等は、監視記録部14によって制御される。
このように監視装置10全体を暗箱20に収容してLEDランプによって内部照明する構成とすれば、水槽11のみを照明し他の部分を暗いまま保てるので、藻類や植物性プランクトンの発生、増殖を抑える効果が得られる。この効果は、水槽11全体を低光反射性の樹脂等で形成すれば一層優れたものになる。なおLEDランプは基本的に光を一方向に照射するので、水槽11のみを照明することが可能であり、しかも照射光による水槽11の水温上昇も僅かである。
図3(a)は水槽の具体例を示す斜視図、図3(b)、(c)はいずれも給水手段の基本作用を説明する平面図である。
図3(a)に示すように、水槽11は沈殿槽11a及び汚物槽11bと一体化されている。沈殿槽11aは水槽11への給水から沈殿物及び浮遊物を予め除去する槽であり、汚物槽11bは水槽11を清潔に保つため小型魚類の排泄物を移動蓄積させる槽である。
水槽11は対向する2側面の一方に設けられた給水口11c、11cを通じて沈殿槽11aに連通し、他方に設けられた出水口11dによって汚物槽11bに連通している。水槽11の底面は給水口11c、11cから出水口11dに向かって下方向に緩く傾斜しており、給水口11c、11cから出水口11dに向かう水流によって排泄物を汚物槽11bに送り出すように構成されている。なお出水口11dには小型魚類の脱出を防止するためにネット等を設けるとよい。
沈殿槽11aは4槽式であり、第一の槽の上部に注水口11eが設けられ、第四の槽の上部には高水面オーバーフロー口11fと低水面オーバーフロー口11gとが設けられている。第一〜第四の槽は隣の槽と隔壁の下端部または上端部で連通するように構成されている。オーバーフロー口11f、11gはそれぞれ配管によって水槽11の給水口11c、11cに接続されている。低水面オーバーフロー口11gと給水口11cとを接続する配管には電磁弁11hが設けられている。
電磁弁11hが閉じているときには沈殿槽11aは高水面オーバーフロー口11fからオーバーフローした水を給水口11cから吐出させて、図3(b)に示すように水槽11内に一方方向の渦流を生じさせることができる。一方電磁弁11hが開いているときには低水面オーバーフロー口11gからオーバーフローした水を給水口11cから吐出させて、図3(c)に示すように水槽11内に逆方向の渦流を生じさせることができる。一方向の渦流だけでは水槽11の底面半分からしか汚物を流し出せないが、電磁弁11hの制御によって水槽11内の渦流の方向を適宜切り替えることで、水槽11の底面全体から汚物を流し出すことが可能になる。
水槽11の四隅は曲面とし、水槽11の中央部には渦流安定柱11iを立設している。そのため安定した渦流が得られ、水槽11内で水が淀むこともない。更に渦流安定柱11iと水槽11の周壁との間に死魚捕集ネット11jが張られている。死魚捕集ネット11jは小型魚類が泳ぎ抜ける可能な程度の目を持たせる。死魚は渦流によって運ばれて死魚捕集ネット11jで横向きに引っかかり捕集される。
汚物槽11bは隔壁11mによって水槽11に近い区画と遠い区画とに区分され、その区画のそれぞれに排水口11k、11kが設けられている。排水口11k、11kの高さは水槽11の水面を規定する。隔壁11mの高さは排水口11k、11kよりも若干低く設定する。水槽11から遠い区画の底面には、サンプル水タンク21に連通するサンプル水採取口11nが設けられている。サンプル水タンク21に繋がる配管には電磁弁等を設ける。サンプル水採取口11nから水槽11の水を採取する場合、隔壁11mがあるため水槽11の水面が下がりすぎるという問題が生じない。
次いで前記監視装置の基本作用を説明する。
この監視装置10による急性毒の監視方法は、複数の小型魚類が放たれた水槽11に水源から常時給水し、水槽11の水平面全体を小型魚類の水平像よりも小さな複数の検知ブロックに予め区分し、水槽11の水平面全体をカメラ装置13によって水槽11を所定時間毎に撮影し、水槽11の撮影画像から検知ブロックの各々について小型魚類の存在を判定して、存在が判定された存在検知ブロック数を監視履歴として蓄積し、この監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに、急性毒を警報するという手順からなる。
例えばOECDテストガイドライン203に定められた魚類急性毒性試験の方法では、化学物質に96時間暴露した際の魚類に及ぼす影響として、魚類が半数死亡する濃度を半数致死濃度(LC50)としている。
よって好適な具体例として、前記所定期間は96時間とし、存在検知ブロック数がその所定期間に半数以下に減少したときに、急性毒を警報するように構成すれば、この急性毒警報は、水槽の水に96時間における半数致死濃度程度の急性毒が存在することを示す明確なシグナルになる。また小型魚類はいずれも体長2〜3センチのものとし、検知ブロックの各々は同一の小型魚類が2〜3又は2〜4の隣接した検知ブロックで同時に存在判定される広さとすれば、小型魚類の見落としがなく、個体数について検知誤差が抑えられる。
小型魚類が96時間に半数以下に減少したか否かの判定は、例えば個体数の96時間移動平均値の50%を急性毒の警報基準として、現時点の個体数をその警報基準と比較する方法で実行する。なお変形例として、現時点から96時間前の個体数の50%を急性毒の警報基準として、現時点の個体数をその警報基準と比較してもよい。
水槽11の水平面を複数の検知ブロックに区分設定する工程は、操作部12で所定操作を受けたときに監視記録部14によって実行される。例えばカメラ装置13の撮影範囲が水槽11の水平面全体と一致するように、カメラ装置13の撮影方向、倍率等を手動調節し、水槽11の撮影画像を見ながら、操作部12で所定操作をすることによって、検知処理で除外扱いすべき除外ブロックNBを任意に選択設定する。
図4(a)は水槽の水平面を複数の検知ブロックに区分設定する工程を説明する平面図である。検知ブロックBとしてカメラ装置13の撮影範囲を24×32ブロックに区分している。カメラ装置13の撮影範囲が水槽11の水平面全体と一致するようにカメラ装置13の撮影方向、倍率等を調節すれば、図示のように、水槽11の水平面全体が複数の検知ブロックBに区分される。除外ブロックNBとして水槽11の四隅、渦流安定柱11iの部分、死魚捕集ネット11jの部分を選択することで、生存している小型魚類のみを存在判定の対象とすることが可能になる。すなわち渦流安定柱11i、死魚等を、小型魚類として誤判定するおそれがなくなる。なお水槽11が広さ24×32センチであれば、カメラ装置13の撮影範囲が水槽11の水平面全体と一致するように調節したとき、検知ブロックBは約1センチメール四方になる。これに対して小型魚類は体長2.5センチ以上を想定しているから、1匹の小型魚類が、2〜4の検知ブロックBで同時に検知されることになり、小型魚類の検知漏れが抑えられる。
水槽11の水平面をカメラ装置13によって所定時間毎に撮影する工程は、例えば0.2〜2秒毎に実行すればよい。
水槽11の撮影画像から検知ブロックBの各々について小型魚類の存在を判定して、存在が判定された存在検知ブロック数を監視履歴として蓄積する工程は、監視記録部14によって実行される。ここでは一定以上の大きさのものを小型魚類とみなすことで、小さな浮遊物等を小型魚類であると誤判定することを防止することが望ましい。
具体的には、例えば検知ブロックBの各々を5×5の検知点Sで構成し、その内の13以上の検知点Sで何らかの物体が同時に撮影されたとき、その物体を小型魚類であると見なしてその存在を判定するとよい。図4(b)、(c)にその具体的な判定例を示す。
図4(b)の場合、検知ブロックBを構成する5×5の検知点Sの内、14の検知点Sで小型魚類Fの一部が撮影されている。これは前記小型魚類の条件を満たすから、この検知ブロックBについては小型魚類の存在が判定される。
図4(c)の場合、検知ブロックBを構成する5×5の検知点Sの内、8の検知点Sで浮遊物Uが撮影されている。これは前記小型魚類の条件を満たさないから、この検知ブロックBについては小型魚類の存在は判定されない。なおここで説明した検知ブロックBを構成する検知点Sの数、小型魚類と推定する条件は一つの例示であって、これに限定されるわけではない。
図5(a)、(b)に水槽の撮影画像の一例と、その撮影画像から小型魚類の存在を判定した判定結果の一例を示す。図5(b)において除外ブロックNBは白枠によって、小型魚類の存在検知ブロックEBはハッチングされた枠によって示している。
死魚捕集ネット11jに引っかかった死魚DFは除外ブロックNBによって検知対象から自動的に除外される。生存している小型魚類Fは11匹であり、存在検知ブロック数は37個であるから、1匹当たりの存在検知ブロック数は約3.4ということになる。
なお小型魚類Fの数が同一であっても、撮影画像毎に存在検知ブロック数は一定範囲でばらつくはずであるから、存在検知ブロック数としては短時間移動平均値を算出してそれを採用することが望ましい。具体的には、例えば水槽11の水平面を0.5秒毎に撮影し、その撮影画像から検知ブロックBの各々について小型魚類の存在を判定し、存在検知ブロックEBの1分間移動平均値を算出して、その値を現時点の存在検知ブロック数として採用する等である。なお存在検知ブロック数は、存在検知ブロックEBの1分間移動平均値に限定されず、例えば30秒間移動平均値としてもよく、3分間移動平均値としてもよい。
このようにして求めた現時点での存在検知ブロック数を監視履歴として蓄積すればよい。
監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに急性毒を警報する工程は、監視記録部14と警報部15とによって実行される。
具体的な処理としては、現時点の存在検知ブロック数を1分間移動平均として算出するのと同時に、存在検知ブロック数の96時間移動平均値を算出し、この96時間移動平均値の50%を急性毒の警報基準として、存在検知ブロック数がその警報基準を下回ったときに、急性毒警報を発報させてもよい。96時間移動平均値は、小型魚類Fが次々と死亡していくような状況でもゆっくりと変化するので、その96時間移動平均値の50%をその時々の急性毒の警報基準としても、急性毒警報が遅延する等の不具合は生じない。また存在検知ブロック数が警報基準を下回った時点で監視タイマーによる計時を開始し、その後所定時間(例えば3分間)が経過するまで、存在検知ブロック数が警報基準を下回った状態が継続したことを条件として急性毒警報を発報させてもよい。もちろんその所定時間が経過する前に存在検知ブロック数が警報基準を回復したのならば急性毒警報の発報は中止する。こうすれば誤報を抑えることができる。
図6は前記方法によって小型魚類の個体数を7日間(168時間)監視した結果を示すグラフである。グラフG1の縦軸は存在検知ブロック数(個体数)としている。なお小型魚類の当初個体数は12匹としている。また7日間という期間は例示であり、水質監視は長期間継続して行うことが一般的である。
グラフG1において実線は存在検知ブロック数を示している。存在検知ブロック数は、時々の小型魚類の死亡に合わせて段階的に減少している。
破線は、存在検知ブロック数の96時間移動平均値を示しており、存在検知ブロック数に遅れて穏やかに減少している。
一点鎖線は、96時間移動平均値の50%を示しており、これは各時刻における急性毒による半数死亡の判定基準、すなわち急性毒警報基準とされるものである。存在検知ブロック数がこの警報基準を下回った時点で、急性毒警報が発報される。この時点で水槽の水の一部をサンプル水タンクに移して保存するとよい。
二点鎖線は、96時間移動平均値の75%を示しており、これは各時刻における急性毒による1/4死亡の判定基準、すなわち急性毒警告基準とされるものである。存在検知ブロック数がこの警告基準を下回った時点で、急性毒注警告が発報されることになる。このように急性毒警報よりも早い時点で急性毒注警告を発報する構成にすれば、急性毒に関する対策等の準備が余裕を持って行えるようになる。
この例では、26時間目に一匹が死亡しており、111時間目に計4匹が死亡した時点で急性毒警告が発報されている。また140時間目に計8匹が死亡した時点で急性毒警報が発報されている。
図7は前記方法の基本手順の一例を説明するフローチャートである。ここでは、水槽の水平面全体を複数の検知ブロックに区分する工程は既に実行済みと想定して監視の実手順のみを説明する。
ステップ100、101は、水槽の水平面全体をカメラ装置によって所定時間(例えば0.5秒)毎に撮影する工程である。
ステップ102、103は、水槽の撮影画像から検知ブロックの各々について小型魚類の存在を判定して、存在検知ブロック数を監視履歴として蓄積する工程である。
ステップ104〜108は、監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに、急性毒を警報する工程である。
具体的には、ステップ104で存在検知ブロック数の1分間移動平均値を算出する。この平均値を現時点の存在検知ブロック数として扱うことで、検知のばらつきによる影響を抑えている。
ステップ105では存在検知ブロック数の96時間移動平均値を算出する。この平均値の50%を急性毒の警報基準とし、75%を急性毒の警告基準とする。
ステップ106、107では、現時点の存在検知ブロック数を急性毒の警報基準と比較し、存在検知ブロック数がこの警報基準を下回っていれば急性毒警報を発報させる。急性毒警報を発報させた時点でこの基本手順は終了するが、終了とせずステップ100に戻してもよい。
ステップ108、109では、現時点の存在検知ブロック数を急性毒の警告基準と比較し、存在検知ブロック数がこの警告基準を下回っていれば急性毒警告を発報させる。このあとはステップ100に戻る。
次いで個体数の監視とともに実行すると有益な活動量の監視について説明する。これは要するに小型魚類は急性毒等に反応して挙動が変化する性質を示すことから、小型魚類の活動量を監視して急性毒の予測に役立てようというものである。例えば水中に急性毒が混入し始めた段階では小型魚類の活動量は急増する傾向がある(狂乱行動)。また急性毒の濃度が高くなると小型魚類の活動量は急減する傾向がある(緩慢行動)。そのような挙動変化を警告すれば、急性毒の予想に大いに役立つ。またこのような挙動変化があった日時を記録しておけば、その後小型魚類の半数以上が死亡する急性毒が検出されたときに、その急性毒が生じ始めた日時、急性毒の濃度が高くなった日時等を分析するための有益な手掛かりになる。
活動量の監視方法は、前記個体数の監視方法に類似している。
すなわち監視装置10による活動量の監視方法は、水槽11の水平面全体をカメラ装置13によって所定時間毎に撮影し、水槽11の撮影画像から検知ブロックBの各々について小型魚類の当該ブロックへの進入を判定して、進入が判定された進入検知ブロック数を監視履歴として蓄積し、監視履歴を参照して、進入検知ブロック数が警告基準に達したときに、活動異常を警告するという基本手順からなる。検知ブロックBは、個体数監視用のものがそのまま利用できる。
水槽12の撮影画像から検知ブロックBの各々について小型魚類の当該ブロックへの進入を判定して、進入が判定された進入検知ブロック数を監視履歴として蓄積する工程は、監視記録部14によって実行される。
具体的には、直近の連続した2つの撮影画像から、検知ブロックBの各々について、小型魚類の存在をそれぞれ判定し、それらの判定結果を対比することで、小型魚類の検知ブロックBへの進入を判断する。すなわち、前回は小型魚類の存在が判定されず、今回は小型魚類の存在が判定された検知ブロックBについて、小型魚類の進入を判定すればよい。
図8(a)、(b)に水槽の撮影画像の一例と、その撮影画像から小型魚類の進入を判定した判定結果の一例を示す。
図8(a)では、連続する2つの撮影画像のうち今回の撮影画像における小型魚類Fを実線によって示し、前回の撮影画像における小型魚類Fを点線によって示している。つまり前回の撮影画像で点線の位置にいた小型魚類が今回の撮影画像では実線の位置まで移動していることになる。
進入検知ブロックMBは、前回において小型魚類の存在が判定されず、今回において小型魚類の存在が判定されたブロックであるから、図8(a)における実線で示された小型魚類の位置と点線で示された小型魚類の位置とを対比すればわかるように、進入検知ブロックMBは図8(b)においてハッチングされた枠によって示されるものになる。
この例では生存している小型魚類Fは計11匹であるが、進入検知ブロック数は計14個である。進入検知ブロック数は、前回撮影と今回撮影との時間差が小さい、つまりその時間差での小型魚類Fの移動距離が短くなれば(小型魚類の全長未満)、小型魚類F全体の活動量に比例したものになると考えられる。例えばその時間差として0.5秒を採用すれば良好な検出結果が得られる。このようにして求めた進入ブロック数の例えば1分間移動平均値を現時点での進入ブロック数の値として扱うとようにしてもよい。
監視履歴を参照して、進入検知ブロック数が警告基準に達したときに、活動異常を警告する工程は、監視記録部14と警報部15とによって実行される。
ここに云う警告基準に特段の制限はないが、監視履歴から所定期間の活動量の移動平均値を求め、その値を基にして活動量急増の警告基準値、活動量急減の警告基準値を定めてもよい。
具体的には、前記のように現時点での進入検知ブロック数として1分間移動平均値を算出するのと同時に、進入検知ブロック数の96時間移動平均値も算出し、その値の150%を活動量急増の警告基準、その値の50%を活動量急減の警告基準として、現時点での進入検知ブロック数が活動量急増の警告基準を上回ったとき、又は活動量急減の警告基準を下回ったときに、活動異常を警告する等である。なお進入検知ブロック数が活動量急増の警告基準を上回った、又は活動急減の警告基準を下回った時点で監視タイマーによる計時を開始し、その後所定時間(例えば3分間)が経過するまで、進入検知ブロック数が活動量急増の警告基準を上回った、又は活動急減の警告基準を下回った状態が継続したことを条件として活動異常警告を発報してもよい。もちろんその所定時間が経過する前に進入検知ブロック数が警報基準を回復したのならば活動異常警告の発報は中止する。こうすれば誤報を抑えることができる。
またこのような挙動変化が起きるのは、急性毒が生じ始めた日時、急性毒の濃度が高くなったときであることから、存在検知ブロック数及び進入検知ブロック数の推移に基づいて急性毒の強さを判定することも可能である。これは、急性毒の警報と活動異常(活動量急増)の警告との時間差は、小型魚類の半数が死亡するのに要した時間に概ね一致するので、その時間差に基づいて急性毒の強さを推定できるという考察によるものである。例えば急性毒を警報したとき、その前の48時間前に活動異常(活動量急増)の警告していた場合、96時間半数致死濃度よりも約2倍強い急性毒が混入したと推定できる。
よって監視装置10は、少なくとも急性毒を警報した場合には、監視履歴を参照して、存在検知ブロック数及び進入検知ブロック数の推移に基づいて急性毒の強さを推定し、表示部16に表示する構成にするとよい。
なおこのような挙動変化は、水質異常だけでなく、小型魚類が何かに驚いたとき、例えば大きな音がした、水槽が揺れた等のとき等でも普通に発生する。また給水が止まる、あるいは水温が振れたとき等にも生じる。よって騒音を検知するマイク、振動を検知する加速度計等を設け、これらのセンサが異常を検知したとき、あるいは給水が止まったときには、一定時間、活動異常警告の発報をしないようにしてもよい。
図9は、前記活動量の監視方法によって小型魚類の活動量を7日間(168時間)監視した結果を示すグラフである。グラフG2の縦軸は進入検知ブロック数としている。
グラフG2において実線は進入検知ブロック数(活動量)を示している。進入検知ブロック数は監視開始後15時間目から急増し、いったん元に戻った後、84時間目に急減し、その後再び元に戻っている。進入検知ブロック数は現実には変動が大きいが、ここでは簡単のため段階的に変化したものとしている。
破線は、進入検知ブロック数の96時間移動平均値を示しており、進入検知ブロック数に遅れて穏やかに減少している。
一点鎖線は、96時間移動平均値の50%を示しており、これは各時刻における活動量急減の警告基準とされるものである。進入検知ブロック数がこの警告基準を下回った時点で、活動量急減警告が発報される。
二点鎖線は、96時間移動平均値の150%を示しており、これは各時刻における活動量急増の警告基準とされるものである。進入検知ブロック数がこの警告準値を上回った時点で、活動量急増警報が発報される。
この例では、15時間目に活動量急増警告が発報されている。この警告は急性毒の混入等の水質異常の発生を示唆する。また84時間目に活動量急減警告が発報されている。この警告は水質異常の深刻化を示唆する。
図10は、前記活動量の監視方法の基本手順の一例を説明するフローチャートである。ここでは、水槽の水平面全体を複数の検知ブロックに区分する工程は実行済みと想定して監視の実手順のみを説明する。
ステップ200、201は、水槽11の水平面全体をカメラ装置によって所定時間(例えば0.5秒)毎に撮影する工程である。
ステップ202、203は、水槽の撮影画像から検知ブロックの各々について小型魚類の進入を判定して、進入が判定された進入検知ブロック数を監視履歴として蓄積する工程である。
ステップ204、205は、監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに急性毒を警報する工程である。
具体的には、ステップ204で進入検知ブロック数の1分間移動平均値を算出する。この平均値を現時点の進入検知ブロック数として扱うことで、検知のばらつきによる影響を抑えることができる。
ステップ205では進入検知ブロック数の96時間移動平均値を算出する。この平均値の50%を活動量急減の警告基準とし、150%を活動量急増の警告基準とする。
ステップ206、207では、現時点の進入検知ブロック数を活動量急増の警告基準と比較し、進入検知ブロック数がこの警告基準を上回っていれば活動量急増警告を発報させる。このあとはステップ200に戻る。
ステップ208、209では、現時点の進入検知ブロック数を活動量急減の警告基準と比較し、進入検知ブロック数がこの警告基準を下回っていれば活動量急減警告を発報させる。このあとはステップ200に戻る。
監視装置10は前記のようにして急性毒を警報したり、小型魚類の活動異常を警報したりするのであるが、監視中はその監視履歴を表示部にリアルタイム表示するとよい。以下にその監視履歴の表示の具体例を説明する。
図11は、監視履歴の表示画面の具体例である。
この表示画面W1は、小型魚類の個体数、活動量等の監視データ表示欄S1と、小型魚類の個体数、活動量等の監視データのグラフ表示欄S2と、水槽11の撮影画像表示欄S3とが設けられている。
監視データ表示欄S1は、監視履歴から時刻毎の個体数、活動量等を読み出して数値表示すればよい。時刻単位は特に制限されず、2時間毎、1時間毎、10分毎、1分毎等を自由に選択できるようにするとよい。ここでは1時間毎の個体数、活動量、及び当該時刻に発生した警報、発報された警告等をスロットにまとめて、12時間分を表形式で表示している。表T1の表示範囲はスクロール操作等によって移動できるようにするとよい。
グラフ表示欄S2は、監視履歴から時刻毎の個体数、活動量等を読み出してグラフ表示すればよい。グラフ表示する期間は、7日分、3日分、1日分等を自由に選択できるようにするとよい。グラフの表示範囲はスクロール操作等によって自由に移動できるようにするとよい。ここでは個体数、活動量をそれぞれ独立したグラフG3、G4として表示している。
グラフG3では、6/4〜6/10の7日分について、個体数、96時間移動平均、急性毒の警報基準(96時間移動平均の50%)、急性毒の警告基準(96時間移動平均の75%)を表示している。
またグラフG4では、6/4〜6/10の7日分について、活動量、96時間移動平均、活動量急減の警告基準(96時間移動平均の50%)、活動量急増の警告基準(96時間移動平均の150%)を表示している。
撮影画像表示欄は、監視データ表示欄で所定操作によって選択された日時の撮影画像又はグラフ表示欄で所定操作によって選択された日時の撮影画像P1を切換え表示するようにする。
グラフG3、G4のような表示態様とすれば、グラフG3、G4を見ただけで、小型魚類の個体数、活動量の推移が把握できる。
なお日付指定操作等を受け付けて、対応した日付の日報データ、すなわちその1日分の監視履歴を監視データ表示欄S1、グラフ表示欄S2に呼び出せるようにすると利便である。
図12は、監視履歴の表示画面の他例である。この表示画面W2は、図11に示した表示画面Wに対して、グラフ表示欄S2に表示するグラフの態様が異なっている。これ以外の共通する要素には同一の参照符号を付けて説明を省略する。
ここでのグラフG5は、急性毒の警報基準に対しての個体数、急性毒の警告基準に対しての個体数、活動量急減の警告基準に対しての活動量、活動量急増の警告基準に対しての活動量をそれぞれ独立した線として、急性毒の警報基準、急性毒の警告基準、活動量急減の警告基準、活動量急増の警告基準が同一位置にくるように、それらの線を一画面に重ね合わせて表示している。
グラフG5のような表示態様とすれば、各線がそれぞれの基準を下回った時点(活動量急増は基準を上回った時点)で対応した警報、警告が発報されることから、グラフG5を見ただけで警報、警告が発報される時期等を予測できるようになる。
前記グラフG1についてより詳細に説明する。
図13(a)〜(d)は、急性毒の警報基準に対しての個体数、急性毒の警告基準に対しての個体数、活動量急減の警告基準に対しての活動量、活動量急増の警告基準に対しての活動量を独立したグラフとして示したものである。
例えば図11のグラフG3において、個体数を急性毒の警報基準によって規格化する、つまり各時刻において個体数を急性毒の警報基準によって除算すると、除算されたあとの個体数は急性毒の警報基準に対する相対値になる。よって急性毒の警報基準を水平線になるようにその相対値をグラフ化すれば、図13(a)に示すグラフG6が得られる。
急性毒の警告基準に対しての個体数、活動量急減の警告基準に対しての活動量、活動量急増基準に対しての活動量についても図11のグラフG3から同様にして図13(b)、(c)、(d)に示すようなグラフG7、G8、G9が得られる。
図13(a)〜(d)に示したグラフG6〜G9を、急性毒の警報基準、急性毒の警告基準、活動量急減の警告基準、活動量急増の警告基準が同一位置にくるように重ね合わせれば、図12に示すグラフG5のようになる。
なお前記のように水槽の撮影画像を解析して小型魚類の個体数、活動量を監視する方法では、水槽の水が一定以上濁っていると正常な監視結果が得られなくなる。よって小型魚類の監視中、水の濁度も監視するようにして、濁度が所定の基準を超えている間は、前記警報、警告の発報を禁止してもよい。
濁度は、水槽の撮影画像全体の平均明るさ等から容易に数値化できる。例えば水槽の撮影画像全体の平均明るさを所定時間毎に測定して監視履歴に蓄積し、監視履歴を参照して現時点の平均明るさが、所定期間から算出される明るさ基準を下回ったときに、高濁度を判定して、前記警報、警告の発報を禁止してもよい。これによって誤報がかなり抑えられる。
また濁度データは、前記監視履歴の表示画面において、小型魚類の個体数、活動量等の監視データと同様に数値表示、グラフ表示させてもよい。
10 監視装置
11 水槽
13 カメラ装置
12 操作部
14 監視記録部
15 警報部
B 検知ブロック
EB 存在検知ブロック
F 小型魚類
MB 進入検知ブロック

Claims (13)

  1. 複数の小型魚類が放たれた水槽に水源から原水を常時給水して水槽内を循環する渦流を生じさせ、この渦流の流路中に死魚捕集ネットを設置し
    前記水槽の水平面全体を小型魚類よりも小さな複数の検知ブロックに区分し、更に前記死魚捕集ネットの設置領域を小型魚類の存在判定処理から除外すべき除外ブロックとして選択する操作を受け付け
    前記水槽の水平面全体をカメラ装置によって所定時間毎に撮影し、
    前記水槽の撮影画像から、前記除外ブロックとして選択されていない検知ブロックの各々について小型魚類の存在を判定し、存在が判定された存在検知ブロック数を監視履歴として蓄積し、
    前記監視履歴から急性毒による死亡率の判定基準を逐次算出して、前記存在検知ブロック数がその判定基準を下回ったときに、急性毒を警報する小型魚類を用いた急性毒の監視方法。
  2. 請求項1に記載の小型魚類を用いた急性毒の監視方法において、
    前記急性毒による死亡率の判定基準は、存在検知ブロック数の所定時間の平均値から決定することを特徴とする小型魚類を用いた急性毒の監視方法。
  3. 請求項2に記載の小型魚類を用いた急性毒の監視方法において、
    前記急性毒による死亡率の判定基準は、存在検知ブロック数の96時間移動平均値の50%であることを特徴とする小型魚類を用いた急性毒の監視方法。
  4. 請求項1に記載の小型魚類を用いた急性毒の監視方法において、
    前記急性毒による死亡率の判定基準は、前記存在検知ブロック数の96時間前の値の50%であることを特徴とする小型魚類を用いた急性毒の監視方法。
  5. 請求項1乃至4のいずれか一項に記載の小型魚類を用いた急性毒の監視方法において、
    前記検知ブロックの各々について小型魚類の当該ブロックへの進入を判定し、進入が判定された進入検知ブロック数を監視履歴として更に蓄積し、
    所定期間の監視履歴から活動量急増、急減の判定基準を逐次算出して、前記進入検知ブロック数がその活動量急増の判定基準を上回ったとき、又は活動量急減の判定基準を下回ったときに、活動異常を警告する小型魚類を用いた急性毒の監視方法。
  6. 請求項5に記載の小型魚類を用いた急性毒の監視方法において、
    前記活動量急増、急減の判定基準はいずれも、進入検知ブロック数の所定時間の平均値から決定することを特徴とする小型魚類を用いた急性毒の監視方法。
  7. 請求項6に記載の小型魚類を用いた急性毒の監視方法において、
    前記活動量急増、急減の判定基準は、進入検知ブロック数の96時間移動平均値の150%、50%であることを特徴とする小型魚類を用いた急性毒の監視方法。
  8. 請求項5乃至7のいずか一項に記載の小型魚類を用いた急性毒の監視方法において、
    活動異常を警告した時点と、その後に急性毒を警報した時点との時間差に基づいて急性毒の強さを推定し表示することを特徴とする小型魚類を用いた急性毒の監視方法。
  9. 請求項1乃至8のいずれか一項に記載の小型魚類を用いた急性毒の監視方法において、
    前記検知ブロックの各々は、所定数の検知点を配列させており、
    検知ブロックの各々についての小型魚類の存在の判定は、当該ブロック内の小型魚類を検知した検知点の数に基づいて行うことを特徴とする小型魚類を用いた急性毒の監視方法。
  10. 請求項1乃至9のいずれか一項に記載の小型魚類を用いた急性毒の監視方法において、
    前記水槽の撮影画像から原水の濁度を判定し、この濁度が基準を超えている間は急性毒の警報を禁止することを特徴とする小型魚類を用いた急性毒の監視方法。
  11. 請求項5乃至7のいずれか一項に記載の小型魚類を用いた急性毒の監視方法において、
    急性毒による死亡率の判定基準線に対する存在検知ブロック数の履歴を示すグラフと、
    活動量急増の判定基準線に対する進入検知ブロック数の履歴を示すグラフと、
    活動量急減の判定基準線に対する進入検知ブロック数の履歴を示すグラフとを、
    前記急性毒による死亡率の判定基準線、前記活動量急増の判定基準線及び前記活動量急減の判定基準線が同一直線となるように、一画面に重ねて合わせて表示することを特徴とする急性毒の監視方法。
  12. 請求項1乃至11のいずれか一項に記載の急性毒の監視方法において、
    日付指定操作を受け付けると、対応した日付の1日分の監視履歴を日報として表示することを特徴とする急性毒の監視方法。
  13. 複数の小型魚類が放たれた水槽と、
    水源の原水を前記水槽に常時給水して当該水槽内を循環する渦流を生じさせる給水手段と、
    前記渦流の流路中に設置される死魚捕集ネットと、
    前記水槽の水平面全体を小型魚類よりも小さな複数の検知ブロックに区分し、更に前記死魚捕集ネットの設置領域を小型魚類の存在判定処理から除外すべき除外ブロックとして選択する操作を受け付ける操作部と、
    所定時間毎に前記水槽を撮影するカメラ装置と、
    前記水槽の撮影画像から、前記除外ブロックとして選択されていない検知ブロックの各々について小型魚類の存在を判定し、存在が判定された存在検知ブロック数を監視履歴として蓄積する監視記録部と、
    前記監視履歴から急性毒による死亡率の判定基準を逐次算出して、前記存在検知ブロック数がその判定基準を下回ったときに、急性毒を警報する警報部とを備えたことを特徴とする急性毒の監視装置。
JP2016541695A 2015-07-23 2015-07-23 小型魚類を用いた急性毒の監視方法及び監視装置 Expired - Fee Related JP6051368B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071000 WO2017013795A1 (ja) 2015-07-23 2015-07-23 小型魚類を用いた急性毒の監視方法及び監視装置

Publications (2)

Publication Number Publication Date
JP6051368B1 true JP6051368B1 (ja) 2016-12-27
JPWO2017013795A1 JPWO2017013795A1 (ja) 2017-07-20

Family

ID=57582157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016541695A Expired - Fee Related JP6051368B1 (ja) 2015-07-23 2015-07-23 小型魚類を用いた急性毒の監視方法及び監視装置

Country Status (4)

Country Link
JP (1) JP6051368B1 (ja)
CN (1) CN208366974U (ja)
SG (1) SG11201709839UA (ja)
WO (1) WO2017013795A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999456A (zh) * 2020-08-11 2020-11-27 莱西市鑫喆工程技术服务中心 一种应急性生物预警型水质监测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085317B (zh) * 2018-08-14 2020-11-20 环境保护部华南环境科学研究所 一种基于鱼类毒性效应的水体突发重金属污染物入河时间评估方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531941B2 (ja) * 1985-10-04 1993-05-13 Hitachi Ltd
JPH09101300A (ja) * 1995-10-03 1997-04-15 Yamatake Eng Kk 水質監視装置
JPH09229924A (ja) * 1996-02-20 1997-09-05 Anima Denshi Kk 水棲生物による水質監視装置
JP2001242155A (ja) * 2000-02-25 2001-09-07 Toshiba Corp 水質監視装置
JP2002257815A (ja) * 2001-03-06 2002-09-11 Animakkusu:Kk 魚類を使用した水質検知装置
JP2003083954A (ja) * 2001-09-11 2003-03-19 Yokohama Tlo Co Ltd 水中汚染物質の有害性試験方法
JP2007085828A (ja) * 2005-09-21 2007-04-05 Japan Organo Co Ltd 水質監視方法および装置
JP2009074840A (ja) * 2007-09-19 2009-04-09 Kurimoto Ltd 水質監視装置
JP2012098150A (ja) * 2010-11-02 2012-05-24 Kankyo Denshi Kk 水質自動監視装置及び低濃度毒性検知方法
JP5987257B1 (ja) * 2015-06-08 2016-09-07 株式会社アニマックス バイオアッセイ用水槽システム、バイオアッセイ装置及びコンピュータ用プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064783A (ja) * 2005-08-31 2007-03-15 Takahiro Yamamoto 魚類による水質監視装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531941B2 (ja) * 1985-10-04 1993-05-13 Hitachi Ltd
JPH09101300A (ja) * 1995-10-03 1997-04-15 Yamatake Eng Kk 水質監視装置
JPH09229924A (ja) * 1996-02-20 1997-09-05 Anima Denshi Kk 水棲生物による水質監視装置
JP2001242155A (ja) * 2000-02-25 2001-09-07 Toshiba Corp 水質監視装置
JP2002257815A (ja) * 2001-03-06 2002-09-11 Animakkusu:Kk 魚類を使用した水質検知装置
JP2003083954A (ja) * 2001-09-11 2003-03-19 Yokohama Tlo Co Ltd 水中汚染物質の有害性試験方法
JP2007085828A (ja) * 2005-09-21 2007-04-05 Japan Organo Co Ltd 水質監視方法および装置
JP2009074840A (ja) * 2007-09-19 2009-04-09 Kurimoto Ltd 水質監視装置
JP2012098150A (ja) * 2010-11-02 2012-05-24 Kankyo Denshi Kk 水質自動監視装置及び低濃度毒性検知方法
JP5987257B1 (ja) * 2015-06-08 2016-09-07 株式会社アニマックス バイオアッセイ用水槽システム、バイオアッセイ装置及びコンピュータ用プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999456A (zh) * 2020-08-11 2020-11-27 莱西市鑫喆工程技术服务中心 一种应急性生物预警型水质监测方法

Also Published As

Publication number Publication date
CN208366974U (zh) 2019-01-11
SG11201709839UA (en) 2017-12-28
WO2017013795A1 (ja) 2017-01-26
JPWO2017013795A1 (ja) 2017-07-20

Similar Documents

Publication Publication Date Title
US10048243B2 (en) Automatic water quality surveillance apparatus
JP4712908B1 (ja) 水質自動監視装置及び低濃度毒性検知方法
Watanabe et al. Linking animal-borne video to accelerometers reveals prey capture variability
US8723949B2 (en) Fish activity monitoring system for early warning of water contamination
JP2009082124A (ja) 魚類監視水槽
Khawandi et al. Implementation of a monitoring system for fall detection in elderly healthcare
JP6051368B1 (ja) 小型魚類を用いた急性毒の監視方法及び監視装置
JP2009074840A (ja) 水質監視装置
JP2008134119A (ja) 水質自動監視装置
Wood et al. High‐resolution photo‐mosaic time‐series imagery for monitoring human use of an artificial reef
Dekar et al. Factors affecting fish assemblage structure during seasonal stream drying
US20090109057A1 (en) Methods and Supporting Telemetry to Determine, Monitor and Control the Metagenomic and Physical States of Grease Interceptors, FOGs, Vaults and other Waste Collecting Enclosures
Hanamseth et al. Assessing the importance of net colour as a seabird bycatch mitigation measure in gillnet fishing
JP2007085828A (ja) 水質監視方法および装置
Campbell et al. Monitoring the behaviour of longline gears and the depth and time of fish capture in the Australian Eastern Tuna and Billfish Fishery
Oliveira et al. Modeling the potential distribution of the invasive golden mussel Limnoperna fortunei in the Upper Paraguay River system using limnological variables
JP2007064783A (ja) 魚類による水質監視装置
Negrea et al. Automated detection and tracking of adult Pacific Lampreys in underwater video collected at Snake and Columbia River fishways
Dawson et al. Contribution of manipulable and non-manipulable environmental factors to trapping efficiency of invasive sea lamprey
JP2016090574A (ja) 水質監視システム及び水質監視方法
JP3894869B2 (ja) 魚類を使用した水質検知装置
KR102466155B1 (ko) 부력체 수문의 부력을 이용한 어도
Lowry et al. Evaluation of an underwater solid state memory video system with application to fish abundance and diversity studies in southeast Australia
Raadik et al. Stocky Galaxias-monitoring plan, Snowy 2.0. Published client report for Snowy Hydro Ltd, Cooma. Arthur Rylah Institute for Environmental Research, Department of Environment
Cortelezzi et al. Conservation benefits of a marine protected area on South African chondrichthyans

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R150 Certificate of patent or registration of utility model

Ref document number: 6051368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees