JP6040594B2 - 撮像装置、画像処理装置及び画像処理プログラム - Google Patents

撮像装置、画像処理装置及び画像処理プログラム Download PDF

Info

Publication number
JP6040594B2
JP6040594B2 JP2012146442A JP2012146442A JP6040594B2 JP 6040594 B2 JP6040594 B2 JP 6040594B2 JP 2012146442 A JP2012146442 A JP 2012146442A JP 2012146442 A JP2012146442 A JP 2012146442A JP 6040594 B2 JP6040594 B2 JP 6040594B2
Authority
JP
Japan
Prior art keywords
pixel
imaging
focus detection
value
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012146442A
Other languages
English (en)
Other versions
JP2013034194A (ja
Inventor
宣孝 平間
宣孝 平間
秋彦 高橋
秋彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012146442A priority Critical patent/JP6040594B2/ja
Publication of JP2013034194A publication Critical patent/JP2013034194A/ja
Application granted granted Critical
Publication of JP6040594B2 publication Critical patent/JP6040594B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/702SSIS architectures characterised by non-identical, non-equidistant or non-planar pixel layout
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は、撮像装置、画像処理装置及び画像処理プログラムに関する。
従来、複数の撮像用画素を二次元状に配列した受光面の一部に焦点検出用の複数の画素を配列した撮像素子が知られている(特許文献1)。複数の撮像用画素は、複数の色成分の各々に対応する分光特性を有し、また、焦点検出用の画素(焦点検出用画素)は、複数の撮像用画素とは異なる分光特性を有する。複数の撮像用画素からは、画像を生成するための信号が読み出されて撮像用画素の画素値が決められ、また焦点検出用画素からは焦点検出のための信号が読み出されて焦点検出用画素の画素値が決められる。画素補間をする時には、撮像用画素の画素値のうち欠落する色成分の画素値を補間するとともに、焦点検出用画素の位置に対応する撮像用画素値を補間する。
特許文献1に記載の発明では、焦点検出用画素に対する補間処理を行うために、焦点検出用画素の近傍にある撮像用画素の画素値を用いて焦点検出用画素の補間画素値を生成し、前記近傍の撮像用画素が焦点検出用画素と同じ分光特性を有した場合の画素値である評価画素値を算出し、前記焦点検出用画素の画素値と前記評価画素値とを用いて画像の高周波成分を算出し、前記補間画素値に前記高周波成分を付加して焦点検出用画素の位置に対応する撮像用画素の画素値を算出している。
特開2009−303194号公報
しかしながら、ノイズが多く発生する撮影状態となる場合には、焦点検出用画素の周辺における撮像用画素の画素値が非常にばらついてしまう。このように、ばらついた撮像用画素の画素値を用いて焦点検出用画素の位置に対応する撮像用画素の画素値を算出するときには想定以上の補間が行われることもあり、画像中に偽色となる画素が発生する。例えば撮像素子に設けられる焦点検出用画素を水平ラインに沿って配置したときに、各焦点検出用画素のそれぞれで偽色が発生すると、画像の水平方向に沿って偽色の画素の領域が目立ち、ユーザの目に違和感を与える画像となってしまう。
本発明は、かかる点に鑑みてなされたものであり、ノイズが多く発生する場合であっても、画像中に偽色が発生しないように画素補間を行うことができるようにした撮像装置、画像処理装置及び画像処理プログラムを提供することを目的とする。
本発明を例示する撮像装置の一態様は、撮像用画素と焦点検出用画素とを有する撮像素子と、前記撮像素子から得られる画像信号含まれるノイズ量が所定量以上であると前記焦点検出用画素の周囲の前記撮像用画素の画素値を用いて前記焦点検出用画素の補間処理を実行し、前記ノイズ量が所定量未満であると前記焦点検出用画素の画素値と前記焦点検出用画素の周囲の前記撮像用画素の画素値とを用いて前記焦点検出用画素の補間処理を実行する画素補間部と、を備える。
また、前記画素補間部は、撮影時の撮影感度及び前記撮像素子における電荷蓄積時間を用いて前記ノイズ量を判定する。
また、前記撮像素子又は前記撮像装置に設けられる基板の温度を検出する温度検出部を備え、前記画素補間部、前記撮像素子又は前記基板の温度を用いて前記ノイズ量を判定する。
また、被写体光を前記撮像素子に照射する開放位置と、前記被写体光を遮光する遮光位置との間で移動するシャッタを備え、前記画素補間部は、前記シャッタが前記開放位置に前記電荷蓄積時間保持されたときに得られる第1画像信号と、前記シャッタが前記遮光位置に前記電荷蓄積時間保持したときに得られる第2画像信号とに前記焦点検出用画素の補間処理を実行する。
この場合、前記画素補間部により補間処理が施された前記第1画像信号から、前記第2画像信号を減算する画像処理部を備えることが好ましい。
また、前記画素補間部は、前記ノイズ量が所定量未満であり、前記撮像素子から得られる画像信号に高輝度を示す信号があると、前記焦点検出用画素の画素値と前記焦点検出用画素の周囲の前記撮像用画素の補正した画素値とを用いて前記焦点検出用画素の補間処理を実行する。
また、本発明の画像処理装置は、撮像用画素と焦点検出用画素とを有する撮像素子を用いて取得された画像信号を取り込む画像取込部と、前記画像信号に含まれるノイズ量が所定量以上であると前記焦点検出用画素の周囲の前記撮像用画素の画素値を用いて前記焦点検出用画素の補間処理を実行し、前記ノイズ量が所定量未満であると前記焦点検出用画素の画素値と前記焦点検出用画素の周囲の前記撮像用画素の画素値とを用いて前記焦点検出用画素の補間処理を実行する画素補間部と、を備える。
また、本発明の撮像装置は、撮像用画素と焦点検出用画素とを有する撮像素子と、前記撮像素子の撮影感度または電荷蓄積時間または温度が所定値以上であると、前記焦点検出用画素の周囲の前記撮像用画素の画素値を用いて前記焦点検出用画素の補間処理を実行し、前記撮像素子の撮影感度または電荷蓄積時間または温度が所定値未満であると前記焦点検出用画素の画素値と前記焦点検出用画素の周囲の前記撮像用画素の画素値とを用いて前記焦点検出用画素の補間処理を実行する画素補間部と、を備える。
また、本発明の画像処理プログラムは、撮像用画素と焦点検出用画素とを有する撮像素子を用いて取得された画像信号を取り込む画像取込工程と、前記画像信号含まれるノイズ量が所定量以上であると前記焦点検出用画素の周囲の前記撮像用画素の画素値を用いて前記焦点検出用画素の補間処理を実行し、前記ノイズ量が所定量未満であると前記焦点検出用画素の画素値と前記焦点検出用画素の周囲の前記撮像用画素の画素値とを用いて前記焦点検出用画素の補間処理を実行する画素補間工程と、をコンピュータに実行させることが可能な、コンピュータ読み取り可能なものである。
また、本発明の画像処理プログラムは、撮像用画素と焦点検出用画素とを有する撮像素子を用いて取得された画像信号を取り込む画像取込工程と、前記撮像素子の撮影感度または電荷蓄積時間または温度が所定値以上であると前記焦点検出用画素の周囲の前記撮像用画素の画素値を用いて前記焦点検出用画素の補間処理を実行し、前記撮像素子の撮影感度または電荷蓄積時間または温度が所定値未満であると前記焦点検出用画素の画素値と前記焦点検出用画素の周囲の前記撮像用画素の画素値とを用いて前記焦点検出用画素の補間処理を実行する画素補間工程とをコンピュータに実行させることが可能な、コンピュータ読み取り可能なものである。
本発明によれば、ノイズが多く発生する場合であっても、画像中に偽色が発生しないように画素補間を行うことができる。
本発明の電子カメラの電気的構成を示す機能ブロック図である。 撮像用画素及びAF画素の配置例を示す図である。 AF画素が配置された領域を中心とした画像データの一部を示す図である。 ノイズ判定部及びフレア判定部を備えたAF画素補間部を示す図である。 AF画素補間部の作用を説明するフローチャートである。 第2画素補間処理の流れを示すフローチャートである。 本実施形態の効果が発揮される画像構造の一例を表す図である。 第3画素補間処理の流れを示すフローチャートである。 AF画素補間部の作用を説明するフローチャートである。
図1に示すように、本発明を適用した電子カメラ10は、CPU11を備えている。CPU11には、不揮発性メモリ12、及びワークメモリ13が接続されており、不揮発性メモリ12には、CPU11が種々の制御を行う際に参照される制御プログラムなどが格納されている。さらに、不揮発性メモリ12には、詳しくは後述する撮像素子のAF画素の位置座標を示すデータ、予め求めておいた画像処理プログラムに用いる各種閾値や加重係数等のデータ、及び各種判定用テーブル等を記憶する。
CPU11は、不揮発性メモリ12に格納されている制御プログラムに従い、ワークメモリ13を一時記憶作業領域として利用して各部の制御を行い、電子カメラ10を構成する各部(回路)機能を作動させる。
撮影レンズ14から入射する被写体光は、絞り15、シャッタ16を介してCCDやCMOS等の撮像素子17の受光面に結像する。撮像素子駆動回路18は、CPU11からの制御信号に基づいて撮像素子17を駆動させる。撮像素子17は、ベイヤー配列型単板撮像素子になっており、前面には原色透過フィルタ19が取り付けられている。
原色透過フィルタ19は、撮像素子17の総画素数Nに対して、例えば、G(緑色)の解像度がN/2、R(赤色)及びB(青色)の解像度がN/4となる原色ベイヤー配列になっている。
撮像素子17の受光面に結像した被写体像は、アナログの画像信号に変換される。画像信号は、AFE(Analog Front End)回路を構成するCDS21、及びAMP22に順に出力し、AFE回路で所定のアナログ処理が施され、その後、A/D(Analog/Digital変換器)23においてデジタルの画像データに変換されて画像処理部25に送られる。
画像処理部25は、分離回路、ホワイトバランス処理回路、画素補間(デモザイキング)回路、マトリクス処理回路、非線形変換(γ補正)処理回路、及び輪郭強調処理回路等を備え、デジタルの画像データに対して、ホワイトバランス、画素補間、マトリクス、非線形変換(γ補正)、及び輪郭強調等の処理を施す。分離回路は、詳しくは後述する撮像用画素から出力される信号と、焦点検出用画素から出力される信号とを分離する。画素補間回路は、1画素当たり1色のベイヤー配列信号を、1画素当たり3色からなる通常のカラー画像信号に変換する。
画像処理部25から出力される3色の画像データは、バス26を通じてSDRAM27に格納される。SDRAM27に格納した画像データは、CPU11の制御により読み出されて表示制御部28に送られる。表示制御部28は、入力された画像データを表示用の所定方式の信号(例えば、NTSC方式のカラー複合映像信号)に変換して表示部29にスルー画像として出力する。
また、シャッタレリーズに応答して取得した画像データは、SDRAM27から読み出した後に圧縮伸長処理部30に送られ、ここで圧縮処理が施されてからメディアコントローラ31を介して記録媒体であるメモリカード32に記録される。
CPU11には、レリーズボタン33や電源スイッチ(不図示)が接続されているとともに、撮像素子17の温度を検出する温度検出部34から温度情報が入力される。この情報は、画像処理部25に送られ、詳しくは後述するノイズを判定する時に利用される。
AWB/AE/AF検出部35は、焦点検出用画素(AF画素)の信号に基づいて瞳分割型位相差検出方式によりデフォーカス量、及びデフォーカスの方向を検出する。CPU11は、AWB/AE/AF検出部35で得られるデフォーカス量、及びデフォーカスの方向に基づいてドライバ36を制御して合焦モータ37を駆動してフォーカスレンズを光軸方向で進退させて焦点調整を行う。
また、AWB/AE/AF検出部35は、撮像用画素の信号に基づいて算出される測光輝度値(Bv)と、撮影者がISO感度設定部38で設定したISO感度値(Sv)とから光値(Lv=Sv+Bv)を算出する。そして、AWB/AE/AF検出部35は、露出値(Ev=Av+Tv)が求めた光値Lvになるように、絞り値とシャッタ速度とを決定する。この決定に基づいて、CPU11は、絞り駆動部39を駆動させ、求めた絞り値となるように絞り15の絞り径を調整する。これに併せて、CPU11は、シャッタ駆動部40を駆動させ、求めたシャッタ速度にて、シャッタ16が開放されるように、シャッタ16の開閉動作を実行する。
AWB/AE/AF検出部35は、オートホワイトバランス調整時に、SDRAM27に取り込んだ1画面の画像データから間引き読み出しを行い、例えば24×16のAWB評価用データを生成する。そして、AWB/AE/AF検出部35は、生成したAWB評価用データを用いて光源種判別を行い、判別された光源種に適したホワイトバランス調整値に従って各色チャンネルの信号に補正をかける。
撮像素子17は、その受光面上にある複数の撮像用画素の各々に、R(赤)、G(緑)、B(青)のいずれかの原色透過フィルタ19がベイヤー配列型に設けられ、その上にマイクロレンズアレイが設けられたCCDやCMOSの半導体イメージセンサ等を適宜選択して用いる。さらに、本実施形態の撮像素子17は、受光面上の一部の領域に、水平走査方向に一次元的に配置された複数のAF画素41を有する。それらのAF画素41には、原色透過フィルタ19が設置されていない。また、AF画素41は、撮影レンズ14の光学系の瞳の左側又は右側を通過する光束を受光する2種類存在する。撮像素子17は、撮像用画素群、及びAF画素群からの画素信号を個別に読み出しすることができる。
図2に示すように、AF画素41は、セル中心(マイクロレンズの中心)から一方に偏ったセンサ開口部41a,41bを持ち、その偏りの方向に沿って1次元状に並べられている。センサ開口部41a,41bは、偏りが互いに逆方向であり、その偏りの距離は同一である。センサ開口部41aを有するAF画素41は、RGB原色ベイヤー配列中のG画素の代わりに置かれ、また、センサ開口部41bを有するAF画素41は、RGB原色ベイヤー配列中のB画素の代わりに置かれている。このようなセンサ開口部41a,41bをもつAF画素41によって瞳分割位相差AF方式を実現する。つまり、射出瞳を通る光束の中で撮影レンズ14の光軸に対して対称な位置にある2つの部分光束を、センサ開口部41aをもつAF画素41とセンサ開口部41bをもつAF画素41でそれぞれ受光すれば、2つの画素41から出力された信号の位相差によりフォーカスずれの方向(フォーカシングレンズの移動方向)と、フォーカスずれの量(フォーカシングレンズの移動量)が分かる。これにより速やかなフォーカス合わせが可能になる。
したがって、本実施形態におけるAF画素41の各々は、白色光の輝度に応じた左側又は右側の瞳分割された検出信号を出力する。図3は、撮像素子17によって撮像された画像データのうち、AF画素41が配置された領域を中心とした画像データの一部を示す。それぞれのセルが1つの画素を表す。各セルの先頭の記号R、G及びBは、各原色透過フィルタ19を有する撮像用画素を示す。一方、記号X及びYは、左側又は右側からの光束に感度を有するAF画素を示し、それらが交互に水平走査方向に一次元的に配列されている。これらの記号に続く2桁の番号は画素の位置を示す。
画素補間部は、撮像用画素の画素値を用いてAF画素41の画素値を補間するAF画素補間部45と、AF画素の画素値を補間した後に、ベイヤー配列からRGBへの線形補間法による色補間を行う画素補間部とを備える。
図4に示すように、AF画素補間部45は、ノイズ判定部46、及びフレア判定部47を備え、これら判定に基づいて異なるAF画素補間処理を行う。ノイズ判定部46は、撮影時の撮影条件に基づいてノイズが多く発生する条件かを判定する。撮影条件は、撮像素子17の温度、ISO感度、及びシャッタ速度等になっている。撮像素子17の温度情報は、CPU11から得られる。また、温度情報とともに、撮影時に設定されているISO感度やシャッタ速度の情報もCPU11から得られる。
ノイズ判定部46は、撮像素子17の温度、ISO感度、及びシャッタ速度との情報に基づいてノイズが多いか少ないかを判定する。なお、撮像素子17を実装するメイン基板に温度検出部を設け、メイン基板の温度、又は撮像素子17の周囲の温度を、撮像素子17の温度の代わりに利用してもよい。さらに、ノイズ判定に利用する情報としては、撮像素子17の温度、ISO感度及びシャッタ速度との3つの情報に限らず、このうちのいずれか一つ、又は2つの情報としてもよい。
ノイズが多いとノイズ判定部46が判定する場合には、AF画素の画素値を用いず、その周囲の撮像用画素の画素値を用いて、例えば単純平均補間を行う第1画素補間処理を行う。ノイズが少ないと判定する場合には、フレア判定部47でフレア判定を行い、フレアが発生しているか否かに応じて、前記第1画素補間処理とは異なる第2、又は第3の画素補間処理を行う。
フレア判定部47は、画像データの輝度ヒストグラムに基づいて輝度が高い領域(高輝度領域)を抽出した後、抽出された高輝度領域に、例えばマゼンタ色が存在するか判定し、マゼンタ色が存在する場合、マゼンタ色となる領域(マゼンタ領域)における輝度成分のエッジ量及び分散値を算出し、「マゼンタ領域の総面積」、「分散値/マゼンタ領域の総面積」、「マゼンタ領域における輝度成分の平均エッジ量」を各々閾値判定してフレアが発生しているか否かを判定する。
なお、フレア判定としては、ジャイロセンサ又は加速度センサ等の姿勢検出部を設け、姿勢検出部から得られる出力値に基づく演算により撮影レンズ14の水平に対する仰角をCPU11が求め、仰角とともに被写体距離、被写体輝度、撮影モード等の情報をフレア判定部47に送り、フレア判定部47で、仰角、被写体距離、被写体輝度、撮影モード等の情報に基づいて、屋外であるか屋内であるかの区別と、昼夜の区別と、及びカメラを上に向けたときの撮影画角に被写体として空が入っているかの区別とを行って、フレアが発生するか否かの判定を行ってもよい。
AF画素補間部45は、フレアが生じていないと判定する場合には、AF画素の画素値及び撮像用画素の画素値を用いて、AF画素の画素値を補間する第2画素補間処理を実行する。この第2画素補間処理は、AF画素の画素値(ホワイト(W)成分)から撮像用画素の画素値を元に加重和で予測することで、そのAF画素の画素値を補間する。
AF画素補間部45は、フレアが生じていると判定する場合には、第3画素補間処理を実行する。第3画素補間処理は、AF画素の周囲の撮像用画素の画素値を重み係数により補正し、補正した撮像用画素の画素値を平滑化する処理を複数回(本実施形態では2回)実行する。詳細は後述するが、2回目の補正を行う際には、重み付け係数を「0」にする。つまり、2回目の処理においては、AF画素の周囲の撮像用画素の画素値を重み係数により補正する処理は行わずに、撮像用画素の画素値を平滑化する処理のみが実行される。この複数回の処理の後、AF画素の画素値(ホワイト(W)成分)から補正された撮像用画素の画素値を元に加重和で予測することで、そのAF画素の画素値を補間する第2画素補間処理を実行する。これにより、AF画素の周囲の撮像用画素に対してフレアにおける混色の影響を抑制することができる。よって、第2画素補間処理を行うに当たって、AF画素を撮像用画素として生成した画素値にも混色の影響が抑制される。
次に、AF画素補間部45の作用について図5を参照しながら説明する。なお、本実施形態において、撮像用画素の各々に設置される原色透過フィルタ19がベイヤー配列のパターンであることから、図3に示す記号XのAF画素の位置には緑色(G)の撮像用画素の画素値が補間され、記号YのAF画素の画素位置には青色(B)の撮像用画素の画素値が補間される。以下の説明では、Y44の青色の撮像用画素の画素値とX45の緑色の撮像用画素の画素値とをそれぞれ補間する場合について説明する。他のAF画素における撮像用画素の画素値を補間する手順も同様である。
[ノイズ判定]
CPU11は、A/D23から送られてくる画像データをノイズ判定部46に送る。また、CPU11は、撮影時の撮像素子17の温度、ISO感度、及びシャッタ速度の情報をノイズ判定部46に送る。こうして、CPU11は、ノイズ判定部46を制御して、ノイズ判定部46で画像データに対してノイズが多いか少ないかを判定する(S−1)。
ノイズ判定部46の判定は、ノイズ判定用テーブルを参照して実行される。ノイズ判定用テーブルは、撮像素子17の温度範囲毎に複数用意されており、これらは不揮発性メモリ12に予め記憶されている。CPU11は、画像データを取得した時の撮像素子17の温度に対応するノイズ判定用テーブルをノイズ判定部46に送る。
ノイズ用判定テーブルとしては、例えば撮像素子17の温度がT1未満の時には[表1]に記載のテーブルを、またT1以上T2未満の範囲の時には[表2]に記載のテーブルを選択する。各テーブルには、シャッタ速度(P)とISO感度(Q)とで決めるノイズの予測結果が予め行った実験に基づいて決められている。
Figure 0006040594
Figure 0006040594
ノイズが多いと判定する場合は、AF画素の画素値を用いず、その周囲の撮像用画素の画素値を用いて第1画素補間処理を行う(S−2)。
[第1画素補間処理]
第1画素補間処理としては、例えばAF画素の周囲に位置する撮像用画素の画素値を平均補間して求める。具体的には、図3において、B画素の代わりに置かれたAF画素Y42の画素値は[数1]に記載の式から、また、AF画素Y44の画素値は[数2]に記載の式から、さらに、AF画素Y46の画素値は[数3]に記載の式からそれぞれ求める。
[数1]
Y42=(B22+B62)/2
[数2]
Y44=(B24+B64)/2
[数3]
Y46=(B26+B66)/2
また、G画素の代わりに置かれたAF画素X43の画素値は[数4]に記載の式から、また、AF画素X45の画素値は、[数5]に記載の式からそれぞれ求める。
[数4]
X43=(G32+G34+G52+G54)/4
[数5]
X45=(G34+G36+G54+G56)/4
このように、ノイズが多い場合には、AF画素の画素値を用いないで、その周辺の画素値のみからAF画素の画素値を予測するため、予測するAF画素の画素値がばらつき想定以上の補間をしてしまい、偽色とよばれる実際には存在しない色が発生することや、偽構造とよばれる存在しない構造が発生することを極力抑えることができる。なお、AF画素の画素値を撮像用画素の画素値に補間した画像データは、画像処理部25でベイヤー配列からRGBへの線形補間法による色補間が行われ、RGB毎の画像データとしてSDRAM27に格納される。
[フレア判定]
CPU11は、ノイズが少ないとノイズ判定部46が判定した場合、フレア判定部47を制御して、フレア判定部47でフレアが生じているかを判定する(S−3)。AF画素補間部45は、フレア判定部47でフレアが発生しないと判定する場合、第2画素補間処理(S−4)を、また、フレアが発生すると判定する場合には、第3画素補間処理(S−5)を択一的に実行する。
[第2画素補間処理]
AF画素の周辺の撮像用画素の画素値を用いて、画素値の変化率である変動値が最小となる方向を求める。そして、変動の最も小さい方向にある撮像用画素の画素値を用いてAF画素の画素値を補間する。
(最小となる変動値の方向を算出)
AF画素補間部45は、X45及びY44のAF画素に対する補間を行うために、X45及びY44の周辺の撮像用画素の画素値を用いて4方向の画素値の変化率である方向変動H1〜H4の値を[数6]〜[数9]を用いてそれぞれ求める(S−6)。なお、本実施形態における4方向とは、水平走査方向、垂直走査方向、水平走査方向に対して45度及び135度方向である。
[数6]
水平走査方向の方向変動H1=
2×(|G34−G36|+|G54−G56|)+|R33−R35|+|R53−R55|+|B24−B26|+|B64−B66|
[数7]
垂直走査方向の方向変動H2=
2×(|G34−G54|+|G36−G56|)+|R33−R53|+|R35−R55|+|B24−B64|+|B26−B66|
[数8]
水平走査方向に対して45度の方向変動H3=
2×(|G27−G36|+|G54−G63|)+|R35−R53|+|R37−R55|+|B26−B62|+|B28−B64|
[数9]
水平走査方向に対して135度の方向変動H4=
2×(|G23−G34|+|G56−G67|)+|R33−R55|+|R35−R57|+|B22−B66|+|B24−B68|
(最小変動値の方向に応じた周辺の撮像用画素の画素値を用いてAF画素の画素値を補間)
AF画素補間部45は、ステップ(S−6)で求めた方向変動H1〜H4のうち最も小さい値の方向変動の方向を選択し、その方向にある撮像用画素の画素値を用いて、AF画素X45の位置でのGの撮像用画素の画素値GX45及びAF画素Y44の位置でのBの撮像用画素の画素値BY44を[数10]〜[数13]のうちの選択した方向に対応する式を用いて求める(S−7)。これにより、変動の小さい方向にある撮像用画素の画素値を用いることにより、より正確にX45及びY44等のAF画素に対する補間を行うことが可能となる。
[数10]
方向変動H1が最小の場合
Y44=(B24+B64)/2
X45=(G34+G36+G54+G56)/4
[数11]
方向変動H2が最小の場合
Y44=(B24+B64)/2
X45=(G25+G65)/2
[数12]
方向変動H3が最小の場合
Y44=(B26+B62)/2
X45=(G36+G54)/2
[数13]
方向変動H4が最小の場合
Y44=(B22+B66)/2
X45=(G34+G56)/2
AF画素補間部45は、AF画素の配列方向である水平走査方向において、AF画素の画素値の方向変動H5を、例えば、AF画素のY44及びX45の白色光の画素値W44及びW45と、[数14]とを用いて算出する。
[数14]
H5=|W44−W45|
AF画素補間部45は、その方向変動H5の値が閾値Th1を越えるか否かを判定する(S−8)。方向変動H5が閾値Th1を超える値の場合(YES側)、AF画素補間部45は、ステップ(S−7)で求めたBY44及びGX45の補間した値をY44及びX45における撮像用画素の画素値とし、画像データを更新する。画像処理部25は、更新した画像データに対して3色の画素補間を施して3色の画像データを生成し、3色の画像データを、バス26を介してSDRAM27に記録する(S−9)。
一方、方向変動H5が閾値Th1以下となる場合(NO側)、画像処理部25は、(S−10)へ移行する。なお、閾値Th1は、例えば、12ビット画像を処理する場合、512程度の値にすれば良い。
AF画素補間部45は、ステップ(S−6)で求めた方向変動H2が閾値Th2を越えるか否かを判定する(S−10)。方向変動H2が閾値Th2を超える値の場合(YES側)、AF画素補間部45は、ステップ(S−7)で求めたBY44及びGX45の補間した値をY44及びX45における撮像用画素の画素値とし、画像データを更新する。画像処理部25は、更新した画像データに対して3色の画素補間を施して3色の画像データを生成し、3色の画像データを、バス26を介してSDRAM27に格納する(S−9)。
一方、方向変動H2が閾値Th2以下となる場合(NO側)、画像処理部25は、(S−11)へ移行する。なお、閾値Th2は、例えば、12ビット画像を処理する場合、64程度の値にすれば良い。
その後、AF画素補間部45は、右側からの光束に感度を有するY44等のAF画素における白色光の平均画素値<W44>等を、近傍にある色成分R、G及びBの撮像用画素の画素値を用いて算出する(S−11)。具体的には、ステップ(S−6)において、例えば、画像処理部25が方向変動H2を最小であると判定した場合、Bの撮像用画素の画素値は[数11]に記載の式にあるB24とB64とを用いる。一方、R及びGの画素値については、Bの撮像用画素B24とB64との位置におけるR及びGの画素値を、[数15]に記載の4つの式を用いて補間計算する。
[数15]
(1)RB24=(R13+R15+R33+R35)/4
(2)GB24=(G14+G23+G25+G34)/4
(3)RB64=(R53+R55+R73+R75)/4
(4)GB64=(G54+G63+G65+G74)/4
そして、AF画素補間部45は、撮像用画素B24及びB64の位置における白色光の画素値W24及びW64を、CPU11から転送されてきたR、G及びGの加重係数WR、WG及びWBを用いて、[数16]に記載の式の加重和によって算出する。なお、加重係数WR、WG及びWBの求め方については後述する。
[数16]
W24=WR×RB24+WG×GB24+WB×B24
W64=WR×RB64+WG×GB64+WB×B64
そして、画像処理部25は、Y44における白色光の平均画素値<W44>=(W24+W64)/2を算出する。
AF画素補間部45は、左側からの光束に感度を有するX45等のAF画素における白色光の平均画素値<W45>等を、ステップ(S−11)の場合と同様に、近傍にある色成分R、G及びBの撮像用画素の画素値を用いて算出する(S−12)。ステップ(S−6)において、画像処理部25が方向変動H2を最小であると判定した場合、Gの撮像用画素の画素値は、[数11]に記載の式にあるG25とG65とを用いる。一方、R及びBの画素値については、Gの撮像用画素G25とG65との位置におけるR及びBの画素値を[数17]に記載の4つの式を用いて補間計算する。
[数17]
(1)RG25=(R15+R35)/2
(2)BG25=(B24+B26)/2
(3)RG65=(R55+R75)/2
(4)BG65=(B64+B66)/2
そして、AF画素補間部45は、撮像用画素G25及びG65の位置における白色光の画素値W25及びW65を、[数18]に記載の式の加重和によって算出する。
[数18]
W25=WR×RG25+WG×G25+WB×BG25
W65=WR×RG64+WG×G25+WB×BG65
そして、画像処理部25は、X45における白色光の平均画素値<W45>=(W25+W65)/2を算出する。
AF画素補間部45は、撮像素子17の各AF画素における白色光の画素値の高周波成分を、(S−11)及び(S−12)において求めた白色光の平均画素値を用いて求める(S−13)。AF画素補間部45は、撮像素子17の各AF画素の画素値から、各AF画素の画素位置における白色光の平均画素値を最初に求める。つまり、各AF画素の画素値は、左側又は右側からの光束を瞳分割した値である。したがって、各AF画素の位置における白色光の画素値を得るためには、左側及び右側からの光束の画素値を互いに加算する必要がある。そこで、本実施形態のAF画素補間部45は、各AF画素の画素値及び隣接するAF画素の画素値を用いて、例えば、AF画素Y44やX45の位置における白色光の平均画素値を[数19]に記載の式を用いて算出する。
[数19]
<W44>’=W44+(W43+W45)/2
<W45>’=W45+(W44+W46)/2
なお、ステップ(S−13)で説明した[数19]において、AF画素の配列方向に隣接するAF画素の画素値を用いて、各AF画素の位置における白色光の画素値を算出するので、配列方向に強い変動がある場合には、高周波成分の計算が不正確になり、白色光の画素値の配列方向の解像力が失われるおそれがある。そこで、前述したステップ(S−8)では、配列方向に強い変動がある場合に、高周波成分の付加を中止するようにしている。
その後、AF画素補間部45は、[数20]に記載の式から、Y44及びX45の位置における白色光の高周波成分HFY44及びHFX45を求める。
[数20]
HFY44=<W44>’−<W44>
HFX45=<W45>’−<W45>
AF画素補間部45は、ステップ(S−13)で求めた各AF画素の位置における白色光の画素値の高周波成分HFがその白色光の画素値に占める割合が、閾値Th3(本実施形態では、例えば、10%程度)より小さいか否かを判定する(S−14)。閾値Th3より高周波成分HFが小さい場合(YES側)、AF画素補間部45は、ステップS12で求めたBY44及びGX45の補間した値をY44及びX45における撮像用画素の画素値とし、画像データを更新する。画像処理部25は、更新した画像データに対して3色の画素補間を施して3色の画像データを生成し、3色の画像データを、バス26を介してSDRAM27に格納する(S−9)。
一方、高周波成分HFが閾値Th3以上の場合(NO側)、AF画素補間部45は、ステップ(S−15)へ移行する。なお、閾値Th3の値についての説明は、後の加重係数WR、WG及びWBの説明とともに行う。
AF画素補間部45は、Y44やX45の近傍における各色成分R、G又はBの撮像用画素の画素値の色変動VR、VGr、VB及びVGbを算出する(S−15)。ここで、色変動VGr及びVGbは、R又はBの撮像用画素の位置におけるGの色変動を示す。AF画素補間部45は、[数21]に記載の2つの式に基づいて、色変動VRとVGrとを求める。
[数21]
(1)VR=|R33−R53|+|R35−R55|+|R37−R57|
(2)VGr=|(G32+G34)/2−(G52+G54)/2|+|(G34+G36)/2−(G54+G56)/2|+|(G36+G38)/2−(G56+G58)/2|
なお、本実施形態のAF画素補間部45は、Rの撮像用画素の位置R33、R35、R37、R53、R55及びR57におけるGの画素値の平均値を求めてからVGrの値を計算する。
一方、AF画素補間部45は、[数22]に記載の2つの式に基づいて、色変動VBとVGbとを求める。
[数22]
(1)VB=|B22−B62|+|B24−B64|+|B26−B66|
(2)VGb=|(G21+G23)/2−(G61+G63)/2|+|(G23+G25)/2−(G63+G65)/2|+|(G25+G27)/2−(G65+G67)/2|
なお、本実施形態のAF画素補間部45は、Bの撮像用画素の位置B22、B24、B26、B62、B64及びB66におけるGの画素値の平均値を求めてからVGbの値を計算する。
AF画素補間部45は、ステップ(S−15)で算出した色変動VR、VGr、VB及びVGbを用いて、色成分G及びBの白色光に対する色変動率KWG及びKWBを算出する(S−16)。まず、AF画素補間部45は、色変動VR、VGr、VB及びVGbから[数23]に記載の3つの式から色変動VR2、VG2及びVB2を求める。
[数23]
(1)VR2=(VR+α)×(VGb+α)
(2)VB2=(VB+α)×(VGr+α)
(3)VG2=(VGb+α)×(VGr+α)
ここで、αは、色変動率の値を安定させるための適当な定数であり、例えば、12ビット画像を処理する場合には、α=256程度の値にすれば良い。
そして、画像処理部25は、色変動VR2、VG2及びVB2を用いて、[数24]に記載の式により白色光における色変動VWを算出する。
[数24]
VW=VR2+VG2+VB2
よって、AF画素補間部45は、色変動率KWG及びKWBを[数25]から算出する。
[数25]
WG=VG2/VW
WB=VB2/VW
AF画素補間部45は、ステップ(S−13)において求めた各AF画素の位置における白色光の画素値の高周波成分HFと、ステップ(S−16)で算出した色変動率KWG及びKWBとを用いて、各AF画素の位置における色成分G及びBの画素値の高周波成分を[数26]に記載の式から算出する(S−17)。
[数26]
HFBY44=HFY44×KWB
HFGX45=HFX45×KWG
AF画素補間部45は、ステップ(S−17)で求めた各AF画素における各色成分の高周波成分を、ステップ(S−7)で補間して求めた撮像用画素の画素値に付加する(S−18)。CPU11は、例えば、[数27]に記載の式に基づいて、Y44及びX45の撮像用画素値B’及びG’をそれぞれ算出する。
[数27]
B’Y44=BY44+HFBY44
G’X45=GX45+HFGX45
AF画素補間部45は、Y44やX45等のAF画素の位置において補間して求めたB’Y44及びG’X45等の画素値を、それぞれの位置における撮像用画素の画素値として、画像データを更新する。画像処理部25は、更新した画像データに対して1画素当たり3色の画像データに変換してSDRAM27に格納する(S−9)。
なお、AF画素の配列方向に変動はなくても、各色成分の撮像用画素の分光特性の加重和とAF画素の分光特性とのズレ等に起因して、白色光の画素値の高周波成分が若干の誤差を持つ。垂直走査方向(AF画素の配列方向に交わる方向)に画像の大きな変動がない場合には、高周波成分を付加しなくても補間値の精度は充分であり、高周波成分を付加することによってかえって誤差に起因する偽構造が生じる恐れがある。そこで、ステップ(S−10)では、そのような場合、高周波成分の付加を抑制する。また、算出された高周波成分が充分小さい場合には、それを付加しなくても補間値の精度は充分であり、高周波成分を付加することによってかえって誤差に起因する偽構造が生じるおそれがある。このため、(S−10)では、そのような場合に高周波成分の付加を抑制するようにしている。
次に、加重係数WR、WG及びWBの求め方について、閾値Th3とともに説明する。そうした加重係数や閾値を求めるにあたり、製品に組み込まれる撮像素子17又はその撮像素子17と同じ性能を持つ撮像素子を用意する。その撮像素子17にほぼ一様な照度の照明を、波長帯域を様々に変えて照射し、それぞれの波長帯域についての撮像画像データを取得する。そして、各波長帯域の撮像画像データnについて、[数19]に記載の式のように瞳分割の異なるAF画素の画素値を加算することにより白色光の画素値Wnを算出する。同時に、AF画素の近傍にある各色成分の撮像用画素の画素値Rn、Gn、Bnについても抽出する。
そして、未知の加重係数WR、WG及びWBの関数として二乗誤差Eを[数28]のように定義する。
[数28]
E=Σn(WR×Rn+WG×Gn+WB×Bn−Wn)
そして、Eを最小とする加重係数WR、WG及びWBを求める(EをWR、WG又はWBでそれぞれ偏微分した値を「0」にする加重係数WR、WG及びWBを求める)。このようにして、加重係数WR、WG及びWBを求めることにより、AF画素の分光特性を各色成分R、G及びBの撮像用画素の分光特性の加重和によって表される加重係数が求められる。このように求めた加重係数WR、WG及びWBを電子カメラ10の不揮発性メモリに記録する。
さらに、求めた加重係数WR、WG及びWBにもとづいて各撮像画像データnについて誤差率Knを[数29]に記載の式で求める。
[数29]
Kn=|WR×Rn+WG×Gn+WB×Bn−Wn|/Wn
そして、Knの最大値を求め、閾値Th3として不揮発性メモリ12に記録する。
図7は、本実施形態の効果が発揮される画像構造の一例を表す。図7は凸構造(明るい線あるいは点)を含む縦5画素の画像構造を縦断した図であり、横軸は垂直走査方向(y座標)であり縦軸は光量または画素値である。そして、凸構造がちょうど水平走査方向に配列されたAF画素列上にある。
図7の○印は、Gの撮像用画素で撮像された画素値である。ただし、AF画素の位置にはGの撮像用画素が存在しないので、その位置でのGの画素値は得られない。従って、丁度AF画素の位置に凸構造がある場合には、AF画素の近傍のGの撮像用画素の画素値からだけでは、図7の凸構造を再現できない。実際、(S−7)において、AF画素の近傍のGの撮像用画素の画素値を用いてAF画素の位置で補間して求めたGの画素値(図7の●印)は、凸構造を再現していない。
一方、AF画素の位置では、白色光の画素値が得られる。ただし、通常の画素は瞳の全領域を通過する光を受光するのに対し、AF画素は瞳の右側あるいは左側を通過する光のみを受光するので、瞳分割の異なる隣接するAF画素を加算することにより通常の(瞳の全領域を通過した光の)白色光の画素値が算出される([数19])。
また、AF画素の近傍のGの撮像用画素の位置に、他の色成分R及びBを補間生成して、色成分R、G及びBの加重和を求めることにより、多くの場合には充分な精度で白色光の画素値を求めることができる([数16]及び[数18])。
図7の□印は、そのようにして求めた白色光の画素値の分布である。多くの場合、白色光の画素値の高周波成分と、色成分Gの画素値の高周波成分とは比例するので、白色光の画素値から算出した高周波成分は、Gの画素値の凸構造成分の情報を持つ。よって、白色光の画素値の高周波成分に基づいてGの画素値の高周波成分を求め、その値を●印のデータに加えることにより、☆印のGの画素値が得られ、凸構造を再現する([数26])。
[第3画素補間処理]
AF画素補間部45は、ノイズ判定部46での判定結果によりノイズが少なく、かつフレア判定部47でのフレアが発生し易いと判断する場合、第3画素補間処理を選択して実行する。
第3画素補間処理は、AF画素の周囲の撮像用画素の画素値を重み係数により補正し、補正した撮像用画素の画素値を平滑化する処理を、撮像用画素の画素値に対する重み係数を変えて2回行った後、上述した第2画素補間処理を実行する処理である。以下、図3のAF画素X43及びAF画素Y44の2列に対する第3画素補間処理について説明する。
(AF画素列の周囲の撮像用画素の画素値を重み係数により補正)
AF画素補間部45は、図8に示すように、AF画素列の周囲に配置された撮像用画素の画素値が、閾値MAX_RAW以上となるか否かを判定し、その判定結果に基づいて、設定された重み係数を用いて補正する(S−21)。ここで、閾値MAX_RAWは、画素値が飽和しているか否かを判定するための閾値である。
AF画素補間部45は、撮像用画素の画素値が閾値MAX_RAW以上となる場合には、撮像用画素の画素値に対して補正は行わない。一方、AF画素補間部45は、撮像用画素の画素値が、閾値MAX_RAW未満となる場合には、重み係数を用いた加重和の値を元の画素値から減算することで撮像用画素の画素値を補正する。
AF画素補間部45は、R色成分の撮像用画素の画素値を[数30]〜[数33]を用いて補正する。
[数30]
R13’=R13−(R3U_0×R33+R3U_1×G34+R3U_2×B24)
[数31]
R33’=R33−(R1U_0×R33+R1U_1×G34+R1U_2×B24)
[数32]
R53’=R53−(R1S_0×R53+R1S_1×G54+R1S_2×B64)
[数33]
R73’=R73−(R3S_0×R53+R3S_1×G54+R3S_2×B64)
ここで、R1U_0,R1U_1,R1U_2,R1S_0,R1S_1,R1S_2,R3U_0,R3U_1,R3U_2,R3S_0,R3S_1,R3S_2は、重み係数である。なお、重み係数中、文字Sは、AF画素よりも上方に位置することを示し、文字Uは、AF画素よりも下方に位置することを示している。
AF画素補間部45は、G色成分の撮像用画素の画素値を[数34]〜[数39]を用いて補正する。
[数34]
G14’=G14−(G3U_0×R33+G3U_1×G34+G3U_2×B24
[数35]
G23’=G23−(G2U_0×R33+G2U_1×G34+G2U_2×B24)
[数36]
G34’=G34−(G1U_0×R33+G1U_1×G34+G1U_2×B24)
[数37]
G54’=G54−(G1S_0×R53+G1S_1×G54+G1S_2×B64)
[数38]
G63’=G63−(G2S_0×R53+G2S_1×G54+G2S_2×B64)
[数39]
G74’=G74−(G3S_0×R53+G3S_1×G54+G3S_2×B64)
ここで、G1U_0,G1U_1,G1U_2,G1S_0,G1S_1,G1S_2,G2U_0,G2U_1,G2U_2,G2S_0,G2S_1,G2S_2,G3U_0,G3U_1,G3U_2,G3S_0,G3S_1,G3S_2は、重み係数である。
また、AF画素補間部45は、B色成分の撮像用画素の画素値を、[数40],[数41]を用いて補正する。
[数40]
B24’=B24−(B2U_0×R33+B2U_1×G34+B2U_2×B24)
[数41]
B64’=B64−(B2S_0×R53+B2S_1×G54+B2S_2×B64)
ここで、B2U_0,B2U_1,B2U_2,B2S_0,B2S_1,B2S_2は重み係数である。
(隣接するAF画素の画素値を用いたクリップ量の算出)
AF画素補間部45は、隣接するAF画素の画素値X43,Y44を読み出し、[数42]を用いてクリップ量Th_LPFを求める(S−22)。
[数42]
Th_LPF=(X43+Y44)×K_Th_LPF
ここで、K_Th_LPFは係数であり、「127」程度の値が適用される。この係数K_Th_LPFは、その値が大きいほど平滑化処理の効果が高くなる。
(色成分毎の予測誤差を算出)
AF画素補間部45は、[数43]、[数44]を用いて、同一列に配置された同一の色成分となる撮像用画素のうち、AF画素41から遠い位置にある撮像用画素(遠位撮像用画素)の画素値と、AF画素41から近い位置にある撮像用画素(近位撮像用画素)の画素値との差分を予測誤差として算出する(S−23)。
[数43]
deltaRU=R13’−R33’
deltaRS=R73’−R53’
[数44]
deltaGU=G14’−G34’
deltaGS=G74’−G54’
(予測誤差がクリップ範囲から越えているか否かを判定)
AF画素補間部45は、[数43]、[数44]により求めた予測誤差deltaRU,deltaRS、deltaGU及びdeltaGSの各値が、[数42]にて求めたクリップ量に基づいたクリップ範囲(−Th_LPF〜Th_LPF)に含まれている否かを判定する(S−24)。
(クリップ処理)
AF画素補間部45は、予測誤差deltaRU,deltaRS、deltaGU及びdeltaGSのうち、クリップ範囲から外れている予測誤差に対して、クリップ処理を行う(S−25)。ここで、クリップ処理とは、クリップ範囲から外れている予測誤差の値をクリップ範囲に含まれるようにクリッピングすることである。
(近位撮像用画素の画素値に予測誤差を加算)
AF画素補間部45は、[数45]により、予測誤差を各列の近位撮像用画素の画素値に加算する(S−26)。ここで、予測誤差は、[数43],[数44]により求めた値、又は、クリッピングされた値である。
[数45]
R33”=R33’+deltaRU
R53”=R53’+deltaRS
G34”=G34’+deltaGU
G54”=G54’+deltaGS
これにより、AF画素列の周囲の撮像用画素の画素値である、遠位撮像用画素の画素値及び近位撮像用画素の画素値がそれぞれ補正され、さらに、予測誤差を用いた平滑化処理により近位撮像用画素の画素値が補正される。
(補正した撮像用画素の画素値をSDRAMに記憶)
AF画素補間部45は、重み係数により補正された遠位撮像用画素の画素値と、予測誤差により補正された近位撮像用画素の画素値とを、SDRAM27に記憶する(S−27)。
1回目の処理が完了すると、2回目の処理が実行される。
(AF画素列の周囲の撮像用画素の画素値を重み係数により補正)
AF画素補間部45は、1回目の処理により補正された撮像用画素の画素値を用いて、これら撮像用画素の画素値が閾値MAX_RAW以上となるか否かを判定する。この判定結果に基づいて、設定された重み係数を用いて補正する(S−28)。ここで、閾値MAX_RAWは、画素値が飽和しているか否かを判定するための閾値であり、1回目の処理(S−21)と同一の値が用いられる。
AF画素補間部45は、撮像用画素の画素値が閾値MAX_RAW以上となる場合に、撮像用画素の画素値に対して補正は行わない。AF画素補間部45は、撮像用画素の画素値が閾値MAX_RAW未満となる場合に、上述した[数30]〜[数41]における全ての重み係数を「0」に変えて補正する。つまり、この処理を行った場合、AF画素列の周囲に配置された撮像用画素の画素値は、元の画素値のままである。
(隣接するAF画素の画素値を用いたクリップ量の算出)
AF画素補間部45は、隣接するAF画素の画素値X43,Y44を読み出し、上述した[数42]を用いてクリップ量Th_LPFを求める(S−29)。ここで、K_Th_LPFの値は1回目の処理と同一の値が用いられる。
(色成分毎の予測誤差を算出)
AF画素補間部45は、上述した[数43]、[数44]を用いて、同一列に配置された同一の色成分となる撮像用画素のうち、遠位撮像用画素の画素値と、近位撮像用画素の画素値との差分を予測誤差として算出する(S−30)。
(予測誤差がクリップ範囲から越えているか否かを判定)
AF画素補間部45は、上述した[数43]、[数44]により求めた予測誤差deltaRU,deltaRS、deltaGU及びdeltaGSの各値が、[数42]にて求めたクリップ量に基づいたクリップ範囲(−Th_LPF〜Th_LPF)に含まれているか否かを判定する(S−31)。
(クリップ処理)
AF画素補間部45は、予測誤差deltaRU,deltaRS、deltaGU及びdeltaGSのうち、クリップ範囲から外れている予測誤差に対して、クリップ処理を行う(S−32)。
(近位撮像用画素の画素値に予測誤差を加算)
AF画素補間部45は、上述した[数45]を用いて、各列の近位撮像用画素の画素値に加算する(S−33)。
これにより、2回目の処理においては、近位撮像用画素の画素値が予測誤差を用いて、さらに補正される。
(補正した撮像用画素の画素値をSDRAMに記憶)
AF画素補間部45は、重み係数により補正された遠位撮像用画素の画素値と、予測誤差により補正された近位撮像用画素の画素値とを、SDRAM27に記憶する(S−34)。
このように、第3画素補間処理においては、上述した補正処理が2回繰り返し実行される。この補正処理が2回繰り返し実行された後、第2画素補間処理が実行される。
(第2画素補間処理)
AF画素補間部45は、SDRAM27に記憶した撮像用画素の画素値を用いて、上述した第2画素補間処理を実行する(S−35)。これにより、AF画素に対応する撮像用画素の画素値が算出される。つまり、AF画素の画素値が補間される。
(補間したAF画素の画素値をSDRAMに記憶)
AF画素補間部45は、第2画素補間処理(S−35)により補間したAF画素の画素値をSDRAM27に記憶する。
この第3画素補間処理においては、補正処理を繰り返し2回実行することで、AF画素列の近傍の撮像用画素の画素値に対する平滑化処理を効果的に行っている。この平滑化処理を効果的に行うことで、AF画素に隣接する撮像用画素にて発生するフレアによる混色の影響を低減させることができる。また、混色の影響を低減した撮像用画素の画素値を用いてAF画素に対する補間処理を行うので、AF画素においても、発生するフレアによる混色の影響が低減した画素値が得られる。つまり、フレアの影響を低減した画像を得ることができる。
本実施形態では、画像中のAF画素に対して補間処理を実行することを前提に説明している。しかしながら、ノイズリダクション(NR)機能を備えている電子カメラに対しても本実施形態を適用することが可能である。例えば30秒以上シャッタ16を開放する、所謂長秒時露光による撮影においては、シャッタ16を開放した撮影、シャッタ16を閉じた撮影をそれぞれ順に行っている。これら撮影によって得られる画像(記録用画像、暗黒画像)のそれぞれに対して、ノイズ判定部46によるノイズ判定及びフレア判定部47によるフレア判定を行って上述した画素補間処理のいずれかの処理を施す。そして、これら処理が施された記録用画像の各画素値から暗黒画像の各画素値を減算し、固定パターンノイズを除去した記録用画像を生成する。この際、記録用画像及び暗黒画像のそれぞれに対して、上述した画素補間処理を行うことで、偽色の発生が抑止された記録用画像と暗黒画像が生成される。つまり、最終的に得られる記録用画像においては、偽色の発生が抑止された画像となる。
このような長秒時撮影は、夜間の星空など、被写体輝度が低い撮影条件下で行うことが多いことから、フレア判定部47によるフレア判定を行わずに、ノイズ判定部46によるノイズ判定のみを実行し、第1画素補間処理、又は第2画素補間処理のいずれかの画素補間処理を実行するかを決定することも可能である。
なお、本実施形態では、AF画素の配列方向を水平走査方向としたが、本発明はこれに限定されず、AF画素は垂直走査方向又はその他の方向に配列されていても良い。
なお、本実施形態では、AF画素の各々は左側又は右側からの光束を瞳分割する焦点検出画素としたが、本発明はこれに限定されず、AF画素の各々は左側及び右側からの光束を瞳分割する画素を有する焦点検出画素でも良い。
なお、本実施形態では、ノイズ判定用テーブルを参照したノイズ判定(図5のフローチャート)について説明しているが、これに限定されず、例えば、条件式に基づいたノイズ判定を実施しても良い。以下、条件式を用いたノイズ判定について、図9のフローチャートに基づいて説明する。
(撮像素子の温度がT3未満であるかの判定)
CPU11は、撮影時の撮像素子17の温度、ISO感度及びシャッタ速度の情報をノイズ判定部46に送る。ノイズ判定部46は、CPU11から送られた撮影時の撮像素子17の温度がT3未満であるか否かを判定する(S−41)。
(−24logP−24log(Q/3.125)≦Th4を満足するかの判定)
ノイズ判定部46は、撮像素子17の温度がT3未満となる場合、送られたISO感度Q及びシャッタ速度Pが、[数46]を満足するか否かを判定する(S−42)
[数46]
−24logP−24log(Q/3.125)≦Th4
なお、Th4は閾値である。上述した式を満足する場合にはノイズが多いと判定され、満足しない場合にはノイズが少ないと判定される。
例えばノイズ判定部46でノイズが多いと判定されると、AF画素補間部45は、第1画素補間処理を実行する。一方、ノイズ判定部46でノイズが少ないと判定されると、フレア判定部47によってフレアの発生がないかの判定が実行される(S−45)
(フレアの発生なしかの判定)
CPU11は、ノイズが少ないとノイズ判定部46が判定した場合、フレア判定部47を制御して、フレア判定部47でフレアが生じてないか否かを判定する(S−44)。AF画素補間部45は、フレア判定部47でフレアが発生しないと判定する場合、第2画素補間処理(S−45)を、また、フレアが発生すると判定する場合には、第3画素補間処理(S−46)を択一的に実行する。
(撮像素子の温度がT3以上T4未満であるかの判定)
上述した撮像時の撮像素子17の温度の判定(S−41)で、撮像素子17の温度がT3以上である場合には、ノイズ判定部46は、撮像素子17の温度がT3以上T4未満であるかを判定する(S−47)。
(−24logP−24log(Q/3.125)≦Th5を満足するかの判定)
ノイズ判定部46は、撮像素子17の温度がT3以上T4未満となる場合、送られたISO感度Q及びシャッタ速度Pが、[数47]を満足するか否かを判定する(S−48)。
[数47]
−24logP−24log(Q/3.125)≦Th5
なお、Th5は閾値である(Th5>Th4)。上述した式を満足する場合にはノイズが多いと判定され、満足しない場合にはノイズが少ないと判定される。
例えばノイズ判定部46でノイズが多いと判定されると、AF画素補間部45は、第1画素補間処理を実行する(S−43)。一方、ノイズ判定部46でノイズが少ないと判定されると、フレア判定部47によってフレアの発生がないかを判定する(S−44)。AF画素補間部45は、フレア判定部47でフレアが発生しないと判定する場合、第2画素補間処理(S−45)を、また、フレアが発生すると判定する場合には、第3画素補間処理(S−46)を択一的に実行する。
(−24logP−24log(Q/3.125)≦Th6を満足するかの判定)
ノイズ判定部46は、撮像素子17の温度がT4以上となる場合、送られたISO感度Q及びシャッタ速度Pが、[数48]を満足するか否かを判定する(S−49)。
[数48]
−24logP−24log(Q/3.125)≦Th6
なお、Th6は閾値である(Th6>Th5)。上述した式を満足する場合にはノイズが多いと判定され、満足しない場合にはノイズが少ないと判定される。
例えばノイズ判定部46でノイズが多いと判定されると、AF画素補間部45は、第1画素補間処理を実行する(S−43)。一方、ノイズ判定部46でノイズが少ないと判定されると、フレア判定部47によってフレアの発生がないかを判定する(S−44)。AF画素補間部45は、フレア判定部47でフレアが発生しないと判定する場合、第2画素補間処理(S−45)を、また、フレアが発生すると判定する場合には、第3画素補間処理(S−46)を択一的に実行する。
このように、条件式を満足しているか否かを判定することで、撮像素子17の温度により分類し、またISO感度及びシャッタ速度を用いて条件式を満足するかを判定することで、画素補間処理の内容が選択できる。つまり、ノイズ判定用テーブルを参照しなくとも、ノイズ判定用テーブルを用いたノイズ判定と同様の効果を得ることができる。
なお、本実施形態では電子カメラについて説明しているが、これに限定される必要はなく、電子カメラにて取得された画像を取り込んで画像処理を行う画像処理装置に対しても、図5,図6及び図8のフローチャートにおける処理を実行させることができる。また、この他に、図5,図6及び図8のフローチャートにおける処理をコンピュータで実現するためのプログラムに対しても適用可能である。なお、このプログラムは、メモリカード、光学ディスク、磁気ディスクなどのコンピュータにて読み取り可能な記憶媒体に記憶されていることが好ましい。
10…電子カメラ、16…シャッタ、17…撮像素子、25…画像処理部、27…SDRAM、41…AF画素、45…AF画素補間部、46…ノイズ判定部、47…フレア判定部

Claims (10)

  1. 撮像用画素と焦点検出用画素とを有する撮像素子と、
    前記撮像素子から得られる画像信号含まれるノイズ量が所定量以上であると前記焦点検出用画素の周囲の前記撮像用画素の画素値を用いて前記焦点検出用画素の補間処理を実行し、前記ノイズ量が所定量未満であると前記焦点検出用画素の画素値と前記焦点検出用画素の周囲の前記撮像用画素の画素値とを用いて前記焦点検出用画素の補間処理を実行する画素補間部と、
    を備える撮像装置。
  2. 請求項1に記載の撮像装置において、
    前記画素補間部は、撮影時の撮影感度及び前記撮像素子における電荷蓄積時間を用いて前記ノイズ量を判定する撮像装置。
  3. 請求項2に記載の撮像装置において、
    前記撮像素子又は前記撮像装置に設けられる基板の温度を検出する温度検出部を備え、
    前記画素補間部、前記撮像素子又は前記基板の温度を用いて前記ノイズ量を判定する撮像装置。
  4. 請求項2又は請求項3に記載の撮像装置において、
    被写体光を前記撮像素子に照射する開放位置と、前記被写体光を遮光する遮光位置との間で移動するシャッタを備え、
    前記画素補間部は、前記シャッタが前記開放位置に前記電荷蓄積時間保持されたときに得られる第1画像信号と、前記シャッタが前記遮光位置に前記電荷蓄積時間保持したときに得られる第2画像信号とに前記焦点検出用画素の補間処理を実行する撮像装置。
  5. 請求項に記載の撮像装置において、
    前記画素補間部により補間処理が施された前記第1画像信号から、前記第2画像信号を減算する画像処理部を備える撮像装置。
  6. 請求項1から請求項5のいずれか1項に記載の撮像装置において、
    前記画素補間部は、前記ノイズ量が所定量未満であり、前記撮像素子から得られる画像信号に高輝度を示す信号があると、前記焦点検出用画素の画素値と前記焦点検出用画素の周囲の前記撮像用画素の補正した画素値とを用いて前記焦点検出用画素の補間処理を実行する撮像装置。
  7. 撮像用画素と焦点検出用画素とを有する撮像素子を用いて取得された画像信号を取り込む画像取込部と、
    前記画像信号に含まれるノイズ量が所定量以上であると前記焦点検出用画素の周囲の前記撮像用画素の画素値を用いて前記焦点検出用画素の補間処理を実行し、前記ノイズ量が所定量未満であると前記焦点検出用画素の画素値と前記焦点検出用画素の周囲の前記撮像用画素の画素値とを用いて前記焦点検出用画素の補間処理を実行する画素補間部と、
    を備える画像処理装置。
  8. 撮像用画素と焦点検出用画素とを有する撮像素子と、
    前記撮像素子の撮影感度または電荷蓄積時間または温度が所定値以上であると前記焦点検出用画素の周囲の前記撮像用画素の画素値を用いて前記焦点検出用画素の補間処理を実行し、前記撮像素子の撮影感度または電荷蓄積時間または温度が所定値未満であると前記焦点検出用画素の画素値と前記焦点検出用画素の周囲の前記撮像用画素の画素値とを用いて前記焦点検出用画素の補間処理を実行する画素補間部と、
    を備える撮像装置。
  9. 撮像用画素と焦点検出用画素とを有する撮像素子を用いて取得された画像信号を取り込む画像取込工程と、
    前記画像信号含まれるノイズ量が所定量以上であると前記焦点検出用画素の周囲の前記撮像用画素の画素値を用いて前記焦点検出用画素の補間処理を実行し、前記ノイズ量が所定量未満であると前記焦点検出用画素の画素値と前記焦点検出用画素の周囲の前記撮像用画素の画素値とを用いて前記焦点検出用画素の補間処理を実行する画素補間工程と、
    をコンピュータに実行させることが可能な、コンピュータ読み取り可能な画像処理プログラム。
  10. 撮像用画素と焦点検出用画素とを有する撮像素子を用いて取得された画像信号を取り込む画像取込工程と、
    前記撮像素子の撮影感度または電荷蓄積時間または温度が所定値以上であると前記焦点検出用画素の周囲の前記撮像用画素の画素値を用いて前記焦点検出用画素の補間処理を実行し、前記撮像素子の撮影感度または電荷蓄積時間または温度が所定値未満であると前記焦点検出用画素の画素値と前記焦点検出用画素の周囲の前記撮像用画素の画素値とを用いて前記焦点検出用画素の補間処理を実行する画素補間工程と
    をコンピュータに実行させることが可能な、コンピュータ読み取り可能な画像処理プログラム。
JP2012146442A 2011-06-30 2012-06-29 撮像装置、画像処理装置及び画像処理プログラム Active JP6040594B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012146442A JP6040594B2 (ja) 2011-06-30 2012-06-29 撮像装置、画像処理装置及び画像処理プログラム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011145704 2011-06-30
JP2011145704 2011-06-30
JP2012146442A JP6040594B2 (ja) 2011-06-30 2012-06-29 撮像装置、画像処理装置及び画像処理プログラム

Publications (2)

Publication Number Publication Date
JP2013034194A JP2013034194A (ja) 2013-02-14
JP6040594B2 true JP6040594B2 (ja) 2016-12-07

Family

ID=47390297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012146442A Active JP6040594B2 (ja) 2011-06-30 2012-06-29 撮像装置、画像処理装置及び画像処理プログラム

Country Status (3)

Country Link
US (2) US20130002936A1 (ja)
JP (1) JP6040594B2 (ja)
CN (1) CN102857692A (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10298834B2 (en) 2006-12-01 2019-05-21 Google Llc Video refocusing
JP5526287B2 (ja) * 2011-04-28 2014-06-18 富士フイルム株式会社 撮像装置及び撮像方法
US9160937B2 (en) * 2011-08-30 2015-10-13 Sharp Kabushika Kaisha Signal processing apparatus and signal processing method, solid-state imaging apparatus, electronic information device, signal processing program, and computer readable storage medium
US9858649B2 (en) 2015-09-30 2018-01-02 Lytro, Inc. Depth-based image blurring
WO2014024495A1 (ja) * 2012-08-10 2014-02-13 株式会社ニコン 画像処理装置、撮像装置および画像処理装置の制御プログラム
WO2014109334A1 (ja) * 2013-01-10 2014-07-17 オリンパスイメージング株式会社 撮像装置及び画像補正方法並びに画像処理装置及び画像処理方法
WO2014133076A1 (ja) 2013-02-27 2014-09-04 株式会社ニコン 撮像素子および電子機器
JP6116301B2 (ja) * 2013-03-21 2017-04-19 キヤノン株式会社 撮像装置及びその制御方法
US10334151B2 (en) 2013-04-22 2019-06-25 Google Llc Phase detection autofocus using subaperture images
JP5775918B2 (ja) * 2013-09-27 2015-09-09 オリンパス株式会社 撮像装置、画像処理方法及び画像処理プログラム
JP2015144194A (ja) * 2014-01-31 2015-08-06 ソニー株式会社 固体撮像素子および電子機器
JP6630058B2 (ja) * 2014-06-16 2020-01-15 キヤノン株式会社 撮像装置、撮像装置の制御方法、及び、プログラム
WO2016041133A1 (en) 2014-09-15 2016-03-24 SZ DJI Technology Co., Ltd. System and method for image demosaicing
US9409529B2 (en) * 2014-10-06 2016-08-09 GM Global Technology Operations LLC Camera system and vehicle
JP2016127389A (ja) 2014-12-26 2016-07-11 キヤノン株式会社 画像処理装置およびその制御方法
US10565734B2 (en) 2015-04-15 2020-02-18 Google Llc Video capture, processing, calibration, computational fiber artifact removal, and light-field pipeline
US10419737B2 (en) 2015-04-15 2019-09-17 Google Llc Data structures and delivery methods for expediting virtual reality playback
US10444931B2 (en) 2017-05-09 2019-10-15 Google Llc Vantage generation and interactive playback
US10275898B1 (en) 2015-04-15 2019-04-30 Google Llc Wedge-based light-field video capture
US10412373B2 (en) 2015-04-15 2019-09-10 Google Llc Image capture for virtual reality displays
US10341632B2 (en) 2015-04-15 2019-07-02 Google Llc. Spatial random access enabled video system with a three-dimensional viewing volume
US10540818B2 (en) 2015-04-15 2020-01-21 Google Llc Stereo image generation and interactive playback
US10546424B2 (en) 2015-04-15 2020-01-28 Google Llc Layered content delivery for virtual and augmented reality experiences
US10567464B2 (en) 2015-04-15 2020-02-18 Google Llc Video compression with adaptive view-dependent lighting removal
US10469873B2 (en) 2015-04-15 2019-11-05 Google Llc Encoding and decoding virtual reality video
US10440407B2 (en) 2017-05-09 2019-10-08 Google Llc Adaptive control for immersive experience delivery
US11328446B2 (en) 2015-04-15 2022-05-10 Google Llc Combining light-field data with active depth data for depth map generation
JP6598496B2 (ja) * 2015-04-22 2019-10-30 キヤノン株式会社 撮像装置及び信号処理方法
US9979909B2 (en) * 2015-07-24 2018-05-22 Lytro, Inc. Automatic lens flare detection and correction for light-field images
US9420164B1 (en) 2015-09-24 2016-08-16 Qualcomm Incorporated Phase detection autofocus noise reduction
US9804357B2 (en) 2015-09-25 2017-10-31 Qualcomm Incorporated Phase detection autofocus using masked and unmasked photodiodes
US10275892B2 (en) 2016-06-09 2019-04-30 Google Llc Multi-view scene segmentation and propagation
US10679361B2 (en) 2016-12-05 2020-06-09 Google Llc Multi-view rotoscope contour propagation
US10594945B2 (en) 2017-04-03 2020-03-17 Google Llc Generating dolly zoom effect using light field image data
US10474227B2 (en) 2017-05-09 2019-11-12 Google Llc Generation of virtual reality with 6 degrees of freedom from limited viewer data
US10354399B2 (en) 2017-05-25 2019-07-16 Google Llc Multi-view back-projection to a light-field
US10567636B2 (en) * 2017-08-07 2020-02-18 Qualcomm Incorporated Resolution enhancement using sensor with plural photodiodes per microlens
US10545215B2 (en) 2017-09-13 2020-01-28 Google Llc 4D camera tracking and optical stabilization
US10965862B2 (en) 2018-01-18 2021-03-30 Google Llc Multi-camera navigation interface
DE112018007258T5 (de) * 2018-04-12 2020-12-10 Mitsubishi Electric Corporation Bildverarbeitungsvorrichtung, Bildverarbeitungsverfahren und Bildverarbeitungsprogramm
JP2019197985A (ja) * 2018-05-09 2019-11-14 キヤノン株式会社 撮像装置及び撮像装置の制御方法
CN114549870A (zh) * 2022-02-17 2022-05-27 山东大学 一种基于质心点搜索的动态点云快速全局运动匹配方法及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738510B2 (en) * 2000-02-22 2004-05-18 Olympus Optical Co., Ltd. Image processing apparatus
JP3899118B2 (ja) * 2004-02-19 2007-03-28 オリンパス株式会社 撮像システム、画像処理プログラム
US7602438B2 (en) * 2004-10-19 2009-10-13 Eastman Kodak Company Method and apparatus for capturing high quality long exposure images with a digital camera
JP4979482B2 (ja) * 2007-06-28 2012-07-18 オリンパス株式会社 撮像装置及び画像信号処理プログラム
JP5200955B2 (ja) * 2008-02-14 2013-06-05 株式会社ニコン 画像処理装置、撮像装置及び画像処理プログラム
US8223256B2 (en) * 2008-04-11 2012-07-17 Nikon Corporation Correlation calculation method, correlation calculation device, focus detection device and image-capturing apparatus
JP2010020015A (ja) * 2008-07-09 2010-01-28 Canon Inc 撮像装置
JP5366619B2 (ja) * 2008-08-12 2013-12-11 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、画像処理プログラム
JP5230388B2 (ja) * 2008-12-10 2013-07-10 キヤノン株式会社 焦点検出装置及びその制御方法
JP2010210810A (ja) * 2009-03-09 2010-09-24 Olympus Imaging Corp 焦点検出装置
JP5359553B2 (ja) * 2009-05-25 2013-12-04 株式会社ニコン 画像処理装置、撮像装置及び画像処理プログラム

Also Published As

Publication number Publication date
JP2013034194A (ja) 2013-02-14
US20160142656A1 (en) 2016-05-19
CN102857692A (zh) 2013-01-02
US20130002936A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
JP6040594B2 (ja) 撮像装置、画像処理装置及び画像処理プログラム
JP5994778B2 (ja) フレア判定装置、撮像装置及びフレア判定プログラム
JP5200955B2 (ja) 画像処理装置、撮像装置及び画像処理プログラム
JP5163068B2 (ja) 撮像装置
US10630920B2 (en) Image processing apparatus
US9813687B1 (en) Image-capturing device, image-processing device, image-processing method, and image-processing program
US9398207B2 (en) Imaging apparatus and image correction method, and image processing apparatus and image processing method
US9807325B2 (en) Imaging apparatus, control method for imaging apparatus, and non-transitory computer-readable storage medium
US7643073B2 (en) Image apparatus and method and program for producing interpolation signal
JP2014036262A (ja) 撮像装置
JP5834542B2 (ja) 撮像装置、画像処理装置、及びプログラム、並びに記録媒体
JP2013247597A (ja) 画像処理装置、撮像装置及び画像処理プログラム
JP2013125046A (ja) 撮像装置及びカメラシステム
JP2013013006A (ja) 撮像装置、撮像装置の製造方法、画像処理装置、及びプログラム、並びに記録媒体
JP6459183B2 (ja) 撮像装置
JP7250428B2 (ja) 撮像装置およびその制御方法
JP5412945B2 (ja) 撮像素子、画像処理装置、撮像装置及び画像処理プログラム
JP2009022044A (ja) 画像処理装置及び画像処理プログラム
JP4993275B2 (ja) 画像処理装置
JP2014164236A (ja) 撮像装置
JP5792349B2 (ja) 撮像装置及び撮像装置の制御方法
JP2019057948A (ja) 撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6040594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250