以下、本発明のいくつかの実施形態について、図を参照して説明する。なお、本発明は以下に説明する部材や配置等によって限定されず、これらの部材等は本発明の趣旨に沿って適宜改変することができる。
以下、アクリル系樹脂フィルムについて説明する。本発明のアクリル系樹脂フィルムは、アクリル系樹脂にゴム弾性体粒子が配合されたアクリル系樹脂組成物からなるシート状のフィルムである。
図1(a)はアクリル系樹脂フィルムの断面形状を示した断面模式図である。また、図1(b)は、図1(a)のアクリル系樹脂フィルムの表面の領域R1とR2をそれぞれ拡大して示した断面模式図であり、左側が領域R1を、右側が領域R2の拡大図である。この図に示すように、アクリル系樹脂フィルム25の表面からは、ゴム弾性体粒子の一部の領域が突出した凹凸形状を有している。アクリル系樹脂フィルム25の一方の面は、表面から突出するゴム弾性体粒子の表面積が相対的に小さい滑面25aであり、その反対側の面は、表面から突出するゴム弾性体粒子の表面積が滑面25aよりも大きい粗面25bである。
フィルム表面から突出するゴム弾性体粒子の表面積は、表面粗さなどの指標を用いて表すことができる。表面粗さとしては、算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)などの指標を採用することができる。
粗面25bと滑面25aとの間の算術平均粗さ(Ra)の差は、5nm〜100nm程度が好ましい。算術平均粗さ(Ra)の差が5nmを下回ると、表面の粗さが同程度となるため、後述する図2に示すように一方の面に接着剤層28を介して偏光フィルム21を積層し、他方の面に機能性層26を形成する際に、接着強度が低くなり偏光フィルム21が剥離しやすくなったり、機能性層26の側に凹凸が多くなって視認性が悪化したりする傾向がある。一方、算術平均粗さ(Ra)の差が100nmを上回るアクリル系樹脂フィルム25はフィルムが白化しやすくなり、光学特性が低下する傾向に有る。
このように、アクリル系樹脂フィルム25の両面でフィルム表面から突出したゴム弾性体粒子の表面積が異なるようにすることで、後述する偏光板のようにアクリル系樹脂フィルム25の一方の面に偏光フィルム21を接着し、他方の面に機能性層26を形成したりする場合に特有の効果を発揮する。以下、アクリル系樹脂フィルム25を備えた偏光板について説明する。
(偏光板20)
図2に示すように、アクリル系樹脂フィルム25は、偏光板20を構成するフィルムとして使用可能である。この図では、アクリル系樹脂フィルム25を偏光フィルム21の外側保護フィルムとして用いた例を示している。偏光板20は、アクリル系樹脂フィルム25と、偏光フィルム21と、内側樹脂フィルム23と、粘着剤層27と、がこの順で積層された層構成を備えている。アクリル系樹脂フィルム25と偏光フィルム21の間、偏光フィルム21と内側樹脂フィルム23の間は、いずれも接着剤層28により接着されている。
偏光フィルム21は、アクリル系樹脂フィルム25のうち粗面25b側に接着剤層28を介して接着される。粗面25bは、フィルム表面から突出するゴム弾性体粒子の表面積が相対的に大きいため、この粗面25bに接着剤が塗布されると、接着剤がゴム弾性体粒子表面の凹凸形状表面の溝や隙間の中に浸潤して硬化することでゴム弾性体粒子が楔のような役割を果たす、いわゆる「アンカー効果」により強固に接着する。このため、アクリル系樹脂フィルム25と偏光フィルム21との間の接着力が高くなり、両者は容易には剥がれにくくなる。
一方、機能性層26は、アクリル系樹脂フィルム25の滑面25a側に形成される。機能性層26としては、例えば防眩層、ハードコート層、反射防止層・低反射層、防汚層、防塵層・帯電防止層などを挙げることができる。これらの機能性層26を形成する場合、アクリル系樹脂フィルム25の表面の凹凸が少ないほうが好ましい。例えば、防眩層の場合、防眩層を透過する光を散乱させるために、フィラーとしての光透過性粒子を樹脂組成物中に配合し、これをアクリル系樹脂フィルム25の表面に塗工して表面に微細な凹凸形状を形成するが、アクリル系樹脂フィルム25の表面に凹凸形状があると、光透過性粒子が凹部に溜まってしまい、光の散乱に局所的な差が生じて視認性が悪化する。また、ハードコート層などフィラーを用いない機能性層26であっても、アクリル系樹脂フィルム25の表面の凹凸形状が比較的大きい場合は、これが観察者に見えてしまうことで視認性が悪化することもある。
したがって、機能性層26が形成されるアクリル系樹脂フィルム25の表面としては、できる限り凹凸形状が少ないほうが好ましく、このため滑面25a側に機能性層26を形成している。これにより、表面の凹凸に起因する視認性の悪化などの問題が少なくなるため好ましい。
(1)アクリル系樹脂フィルム25;
次に、アクリル系樹脂フィルム25について説明する。アクリル系樹脂フィルム25は、アクリル系樹脂からなるフィルムであり、偏光板20の保護フィルムなどの用途に用いることができる。ここで、アクリル系樹脂とは、(メタ)アクリル系樹脂を意味し、アクリル系樹脂とメタクリル系樹脂の両方を含む概念である。以下、アクリル系樹脂について説明する。
(1−1)アクリル系樹脂;
アクリル系樹脂は、上述したように(メタ)アクリル系樹脂であり、アクリル酸エステルやメタクリル酸エステルの重合体を意味する。メタクリル酸エステルの重合体としては、例えば、メタクリル酸アルキルを主体とする重合体からなるものが好ましい。メタクリル酸アルキルの単量体組成は、全単量体の合計100重量%を基準として、メタクリル酸アルキルが、好ましくは70重量%以上、より好ましくは80重量%以上、更に好ましくは90重量%以上であり、かつメタクリル酸アルキルが99重量%以下である。なお、アクリル系樹脂としては、メタクリル酸アルキルの単独重合体であってもよいし、メタクリル酸アルキル50重量%以上とメタクリル酸アルキル以外の単量体50重量%以下との共重合体であってもよい。メタクリル酸アルキルとしては、通常、そのアルキル基の炭素数が1〜4のものが用いられ、中でもメタクリル酸メチルが好ましく用いられる。
また、メタクリル酸アルキル以外の単量体は、分子内に1個の重合性炭素−炭素二重結合を有する単官能単量体であってもよいし、分子内に2個以上の重合性炭素−炭素二重結合を有する多官能単量体であってもよい。特に、単官能単量体が好ましく用いられ、その例としては、アクリル酸メチルやアクリル酸エチルのようなアクリル酸アルキル、スチレンやアルキルスチレンのようなスチレン系単量体、アクリロニトリルやメタクリロニトリルのような不飽和ニトリルが挙げられる。共重合成分としてアクリル酸アルキルを用いる場合、その炭素数は通常1〜8である。
また、アクリル系樹脂としては、グルタルイミド誘導体、グルタル酸無水物誘導体、ラクトン環構造などを有しないことが好ましい。これらのアクリル系樹脂は、アクリル系樹脂フィルム25として十分な機械強度や耐湿熱性が得られない場合がある。
(1−2)ゴム弾性体粒子;
柔軟性を向上させてハンドリング性を高めるため、アクリル系樹脂にはゴム弾性体粒子を配合している。ゴム弾性体粒子は、ゴム弾性体を含有する粒子であり、ゴム弾性体のみからなる粒子であってもよいし、ゴム弾性体の層を有する多層構造の粒子であってもよい。ゴム弾性体としては、例えば、オレフィン系弾性重合体、ジエン系弾性重合体、スチレン−ジエン系弾性共重合体、アクリル系弾性重合体が挙げられる。中でも、アクリル系樹脂フィルム25の表面硬度や耐光性、透明性の点からは、アクリル系弾性重合体が好ましい。
アクリル系弾性重合体は、アクリル酸アルキルを主体とする重合体であるのが好ましく、アクリル酸アルキルの単独重合体であってもよいし、アクリル酸アルキル50重量%以上とアクリル酸アルキル以外の単量体50重量%以下との共重合体であってもよい。アクリル酸アルキルとしては、通常、そのアルキル基の炭素数が4〜8のものが用いられる。また、アクリル酸アルキル以外の単量体の例としては、メタクリル酸メチルやメタクリル酸エチルのようなメタクリル酸アルキル、スチレンやアルキルスチレンのようなスチレン系単量体、アクリロニトリルやメタクリロニトリルのような不飽和ニトリル等の単官能単量体や、(メタ)アクリル酸アリルや(メタ)アクリル酸メタリルのような不飽和カルボン酸のアルケニルエステル、マレイン酸ジアリルのような二塩基酸のジアルケニルエステル、アルキレングリコールジ(メタ)アクリレートのようなグリコール類の不飽和カルボン酸ジエステル等の多官能単量体が挙げられる。
アクリル系弾性重合体を含有するゴム弾性体粒子は、アクリル系弾性重合体の層を有する多層構造の粒子であることが好ましく、アクリル系弾性重合体の外側にメタクリル酸アルキルを主体とする重合体の層を有する2層構造のものであってもよいし、更にアクリル系弾性重合体の内側にメタクリル酸アルキルを主体とする重合体の層を有する3層構造のものであってもよい。なお、アクリル系弾性重合体の外側又は内側に形成される層を構成するメタクリル酸アルキルを主体とする重合体の単量体組成の例は、先にアクリル系樹脂の例として挙げたメタクリル酸アルキルを主体とする重合体の単量体組成の例と同様である。このような多層構造のアクリル系ゴム弾性体粒子は、例えば特公昭55−27576号公報に記載の方法により、製造することができる。
ゴム弾性体粒子としては、その中に含まれるゴム弾性体の数平均粒径が10〜300nmのものを使用することができる。これにより、接着剤を用いてアクリル系樹脂フィルム25を偏光フィルム21に積層したときに、アクリル系樹脂フィルム25を接着剤層28から剥がれ難くすることができる。このゴム弾性体の数平均粒径は、好ましくは50nm以上、250nm以下である。
最外層がメタクリル酸メチルを主体とする重合体であり、その中にアクリル系弾性重合体が包み込まれているゴム弾性体粒子においては、それを母体のアクリル系樹脂に混合すると、ゴム弾性体粒子の最外層が母体のアクリル系樹脂と混和する。このため、その断面において、酸化ルテニウムによるアクリル系弾性重合体への染色を施し、電子顕微鏡で観察した場合、そのゴム弾性体粒子が、最外層を除いた状態の粒子として観察することができる。具体的には、内層がアクリル系弾性重合体であり、外層がメタクリル酸メチルを主体とする重合体である2層構造のゴム弾性体粒子を用いた場合には、内層のアクリル系弾性重合体部分が染色されて単層構造の粒子として観察される。また、最内層がメタクリル酸メチルを主体とする重合体であり、中間層がアクリル系弾性重合体であり、最外層がメタクリル酸メチルを主体とする重合体である3層構造のゴム弾性体粒子を用いた場合には、最内層の粒子中心部分が染色されず、中間層のアクリル系弾性重合体部分のみが染色された2層構造の粒子として観察されることになる。
なお、本明細書において、ゴム弾性体粒子の数平均粒径とは、このように、ゴム弾性体粒子を母体樹脂に混合して断面を酸化ルテニウムで染色したときに、染色されてほぼ円形状に観察される部分の径の数平均値である。
アクリル系樹脂フィルム25を形成するアクリル系樹脂組成物において、ゴム弾性体粒子の配合量は特には限定されないが、例えば、透明なアクリル系樹脂に、数平均粒子径が10〜300nmのゴム弾性体粒子が25〜45重量%配合されているものが好ましい。
アクリル系樹脂組成物は、例えば、ゴム弾性体粒子を得た後、その存在下にアクリル系樹脂の原料となる単量体を重合させて、母体のアクリル系樹脂を生成させることにより製造してもよいし、ゴム弾性体粒子とアクリル系樹脂とを得た後、両者を溶融混練等により混合することにより製造してもよい。
アクリル系樹脂組成物には、必要に応じて、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、赤外線吸収剤、紫外線吸収剤、帯電防止剤、酸化防止剤、滑剤、溶剤などの配合剤を含有させてもよい。
紫外線吸収剤は400nm以下の紫外線を吸収することで、耐久性を向上させるために添加される。紫外線吸収剤としては、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤等の公知のものが使用可能である。中でも、2,2´−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2´−ヒドロキシ−3´−tert−ブチル−5´−メチルフェニル)−5−クロロベンゾトリアゾール、2,4−ジ−tert−ブチル−6−(5−クロロベンゾトリアゾール−2−イル)フェノール、2,2´−ジヒドロキシ−4,4´−ジメトキシベンゾフェノン、2,2´,4,4´−テトラヒドロキシベンゾフェノン等が好適に用いられる。これらの中でも、特に2,2´−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)が好ましい。
紫外線吸収剤の濃度は、アクリル系樹脂フィルム25の波長370nm以下の透過率が、好ましくは10%以下、より好ましくは5%以下、更に好ましくは2%以下となる範囲で選択することができる。紫外線吸収剤を含有させる方法としては、紫外線吸収剤を予めアクリル系樹脂中に配合する方法;溶融押出成形時に直接供給する方法などが挙げられ、いずれの方法が採用されてもよい。
赤外線吸収剤としては、ニトロソ化合物、その金属錯塩、シアニン系化合物、スクワリリウム系化合物、チオールニッケル錯塩系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、トリアリルメタン系化合物、イモニウム系化合物、ジイモニウム系化合物、ナフトキノン系化合物、アントラキノン系化合物、アミノ化合物、アミニウム塩系化合物、カーボンブラック、酸化インジウムスズ、酸化アンチモンスズ、周期表4A、5A若しくは6A族に属する金属の酸化物、炭化物、ホウ化物等の赤外線吸収剤などを挙げることができる。これらの赤外線吸収剤は、赤外線(波長約800nm〜1100nmの範囲の光)全体を吸収できるように、選択することが好ましく、2種類以上を併用してもよい。赤外線吸収剤の量は、例えば、アクリル系樹脂フィルム25の800nm以上の波長の光線透過率が10%以下となるように適宜調整することができる。
アクリル系樹脂組成物のガラス転移温度Tgは、80〜120℃の範囲内が好ましい。さらに、アクリル系樹脂組成物は、フィルムに成形したときの表面の硬度が高いもの、具体的には、鉛筆硬度(荷重500gで、JIS K5600−5−4に準拠)でB以上のものが好ましい。
また、アクリル系樹脂組成物は、アクリル系樹脂フィルム25の柔軟性の観点から、曲げ弾性率(JIS K7171)が1500MPa以下であるのが好ましい。この曲げ弾性率は、より好ましくは1300MPa以下であり、更に好ましくは1200MPa以下である。この曲げ弾性率は、アクリル系樹脂組成物中のアクリル系樹脂やゴム弾性体粒子の種類や量などによって変動し、例えば、ゴム弾性体粒子の含有量が多いほど、一般に曲げ弾性率は小さくなる。また、アクリル系樹脂として、メタクリル酸アルキルの単独重合体を用いるよりも、メタクリル酸アルキルとアクリル酸アルキル等との共重合体を用いる方が、一般に曲げ弾性率は小さくなる。
また、ゴム弾性体粒子として、上記3層構造のアクリル系弾性重合体粒子を用いるよりも、上記2層構造のアクリル系弾性重合体粒子を用いる方が、一般に曲げ弾性率は小さくなり、更に単層構造のアクリル系弾性重合体粒子を用いる方が、一般に曲げ弾性率は小さくなる。また、ゴム弾性体粒子中、ゴム弾性体の平均粒径が小さいほど、又はゴム弾性体の量が多いほど、一般に曲げ弾性率は小さくなる。そこで、アクリル系樹脂やゴム弾性体粒子の種類や量を上記所定の範囲で調整して、曲げ弾性率が1500MPa以下になるようにすることが好ましい。
アクリル系樹脂フィルム25を多層構成とする場合、アクリル系樹脂組成物の層以外に存在しうる層は、その組成に特に限定はなく、例えば、ゴム弾性体粒子を含有しないアクリル系樹脂又はその組成物の層であってもよいし、ゴム弾性体粒子の含有量やゴム弾性体粒子中のゴム弾性体の平均粒径が上記の規定外であるアクリル系樹脂組成物からなる層であってもよい。
典型的には2層又は3層構成であって、例えば、アクリル系樹脂組成物の層/ゴム弾性体粒子を含有しないアクリル系樹脂又はその組成物の層からなる2層構成であってもよいし、アクリル系樹脂組成物の層/ゴム弾性体粒子を含有しないアクリル系樹脂又はその組成物の層/アクリル系樹脂組成物の層からなる3層構成であってもよい。多層構成のアクリル系樹脂フィルム25は、アクリル系樹脂組成物の層の面を、偏光フィルム21との貼合面とすればよい。
また、アクリル系樹脂フィルム25を多層構成とする場合、ゴム弾性体粒子や上記配合剤の各層の含有量を互いに異ならせてもよい。例えば、紫外線吸収剤及び/又は赤外線吸収剤を含有する層と、この層を挟んで紫外線吸収剤及び/又は赤外線吸収剤を含有しない層とが積層されていてもよい。また、アクリル系樹脂組成物の層の紫外線吸収剤の含有量が、ゴム弾性体粒子を含有しないアクリル系樹脂又はその組成物の層の紫外線吸収剤の含有量よりも、高くなるようにしてもよく、具体的には、前者を好ましくは0.5〜10重量%、より好ましくは1〜5重量%とし、後者を好ましくは0〜1重量%、より好ましくは0〜0.5重量%としてもよく、これにより、偏光板20の色調を悪化させることなく、紫外線を効率的に遮断することができ、長期使用時の偏光度の低下を防ぐことができる。
アクリル系樹脂フィルム25は、延伸されていない無配向性のものでもよく、延伸されたものでもよい。延伸処理を行わない場合、膜厚が厚くなるため偏光板20の層膜厚が厚くなりやすくなるが、一方で膜厚が厚いためアクリル系樹脂フィルム25のハンドリング性が良好になる。このようなアクリル系樹脂フィルム25は、アクリル系樹脂組成物を製膜して得られた未延伸フィルム(原反フィルム)から得ることができる。反対に、延伸した場合には、位相差が発現しやすくなる一方で、延伸することでアクリル系樹脂フィルム25の膜厚が薄くなるとともに剛性も向上するという利点がある。延伸フィルムは、未延伸フィルムを任意の方法で延伸することで製造することができる。
アクリル系樹脂は、任意の方法で製膜して未延伸フィルムとすることができる。この未延伸フィルムは、透明で実質的に面内位相差がないものが好ましい。製膜方法としては、例えば、溶融樹脂を膜状に押し出して製膜する押出成形法、有機溶剤に溶解させた樹脂を平板上に流延した後で溶剤を除去して製膜する溶剤キャスト法などを採用することができる。
押出成形法の具体例としては、例えば、アクリル系樹脂組成物を2本のロールで挟み込んだ状態で製膜する方法が挙げられる。この際、ロール表面の剛性を異ならせることで、アクリル系樹脂フィルムの一方の面を滑面25a、他方の面を粗面25bとすることが可能である。
図3は、押出成形法によりアクリル系樹脂フィルム25を作製する方法について説明した模式図である。この図に示すように、溶融状態に熱したアクリル系樹脂組成物をダイ11からシート状に押出し、冷却ロール12と弾性ロール13で狭圧してシート状に製膜するとともに冷却する。冷却ロール12は、金属など剛性の高い材料で形成されており、弾性ロール13は、ゴムなど冷却ロール12よりも弾性率の高い弾性材料で形成されている。弾性ロール13としては、金属弾性ロールやゴムロールなどを用いることができる。金属弾性ロールとしては公知のものを用いることができ、例えば、表面が金属材料で構成され、この表面金属材料と軸ロールとの間が流体やゴムなどの弾性材料で充填されたものを挙げることができる。ゴムロールは表面がゴムなどの弾性材料で形成されたロールである。なお、冷却ロール12の表面は、鏡面ロールであることが好ましい。これにより、表面平滑性に優れたフィルムを得ることができる。冷却ロール12の冷却温度は、溶融樹脂が硬化してフィルム状に製膜できる温度であれば特に限定されないが、通常は10〜100℃の範囲内である。
冷却ロール12の表面粗さは、最大高さの標準数列で表される粗度が 0.2S以下であることが好ましい。また、弾性ロール13の表面粗さは、最大高さの標準数列で表される粗度が 0.2S以下であることが好ましい。
ロール12,13で製膜されたシート状のアクリル系樹脂フィルム25は、冷却ロール12に接地する面が滑面25a、弾性ロール13に接地する面が粗面25bとなる。これは、弾性ロール13は径方向への弾性率が高く押し込み抵抗が低いため、アクリル系樹脂フィルム25の表面に接地した状態でも弾性ロール13の表面の押圧力に抗してゴム弾性体粒子がフィルム表面から突出しやすく、これによりフィルム表面に凹凸が生じやすいからである。反対に、冷却ロール12は表面の剛性が高いため、アクリル系樹脂フィルム25の表面から突出したゴム弾性体粒子が冷却ロール12の表面に押されてフィルム内部に没入しやすいため、フィルム表面が平滑になりやすいからである。なお、冷却ロール12は本発明の第1のロール、弾性ロール13は本発明の第2のロールに相当する。
シート状に製膜されたアクリル系樹脂フィルム25は、巻取りロール19でロール状に巻き取られる。アクリル系樹脂フィルム25の原反は、必要に応じてシート状に繰り出され、偏光板20などの光学部材の製造に用いられる。
なお、アクリル系樹脂フィルム25として多層構成のものを得る場合、アクリル系樹脂組成物を、他のアクリル系樹脂組成物と共に、多層押出後、製膜すればよい。このようにして得られる未延伸フィルムの厚みは、5〜200μmであることが好ましく、より好ましくは10μm〜85μmである。
アクリル系樹脂からなる未延伸フィルムは、必要に応じて一軸延伸、二軸延伸など公知の方法で延伸することができる。延伸方法としては、テンター延伸機を用いたテンター法を挙げることができる。二軸延伸は、2つの延伸方向に同時に延伸する同時二軸延伸でもよく、所定方向に延伸した後で他の方向に延伸する逐次二軸延伸であってもよい。
次に、アクリル系樹脂フィルム25のヘイズ値について説明する。ヘイズ値とは、フィルムに可視光を照射したときの全光線透過率に対する拡散光線透過率の割合であり、ヘイズ値が小さいほどフィルムが透明性に優れているものであることが認められる。また、内部ヘイズ値とは、フィルムのヘイズ値より、フィルムの表面形状に起因するヘイズ値(外部ヘイズ値)を差し引いた値を示す。
アクリル系樹脂フィルム25のヘイズ値は、上述したように内部ヘイズ値が1.0%以下、より好ましくは0.5%以下であり、外部ヘイズ値が5%以下であることが好ましい。内部ヘイズ値が1.0%、外部ヘイズ値が5%を超えると、フィルムを透過する光が散乱し、液晶表示装置に貼合した際に表示特性が低下してしまう場合がある。
アクリル系樹脂フィルム25の製造方法としては、上記した冷却ロール12,弾性ロール13によって狭圧する方法に限定されない。例えば、ゴム弾性体粒子の配合濃度の高いアクリル系樹脂組成物と、配合濃度の低いアクリル系樹脂組成物の2種類のアクリル系樹脂組成物を用意し、それぞれのアクリル系樹脂組成物を用いて作製したシート状のフィルムを積層する方法なども挙げられる。この方法では、ゴム弾性体粒子の配合濃度が高いアクリル系樹脂組成物で作製したシート状フィルム側が粗面25bとなり、配合濃度が低いアクリル系樹脂組成物で作製したシート状フィルム側が滑面25aとなる。
(2)機能性層26;
アクリル系樹脂フィルム25の表面には、機能性層26を形成することができる。機能性層26としては、例えばハードコート層、防眩層、反射防止・低反射層、防塵・帯電防止層などが挙げられる。上述したように、これらの機能性層26は、アクリル系樹脂フィルム25のうち滑面25aの表面に形成することが好ましい。
[ハードコート層]
ハードコート層は、アクリル系樹脂フィルム25の表面に耐傷性、耐薬品性などを付与してアクリル系樹脂フィルム25を保護するための層である。ハードコート層としては、公知のものを適宜採用することができるが、例えば、活性エネルギー線硬化性化合物を含有する層を硬化したものを使用することができる。活性エネルギー線硬化性化合物は、電子線、紫外線などの活性エネルギー線を照射することにより硬化する性質を有する化合物である。このような活性エネルギー線硬化性化合物としては、例えば、電子線を照射することにより硬化する電子線硬化性化合物や、紫外線を照射することにより硬化する紫外線硬化性化合物などが挙げられる。これらの化合物は、通常のハードコート層の形成に用いられるハードコート剤の主成分と同様の化合物であり、(メタ)アクリル系樹脂を例示することができる。特に、(メタ)アクリル系樹脂のうち、多官能アクリレート系化合物を主成分とするものが好ましい。
ここで、多官能アクリレート系化合物とは、分子中に少なくとも2個のアクリロイルオキシ基又はメタクリロイルオキシ基を有する化合物であり、具体的には、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、トリス(メタクリロイルオキシエチル)イソシアヌレート、ホスファゼン化合物のホスファゼン環にアクリロイルオキシ基又はメタクリロイルオキシ基が導入されたホスファゼン系アクリレート化合物又はホスファゼン系メタクリレート化合物、分子中に少なくとも2個のイソシアネート基を有するポリイソシアネートと少なくとも1個のアクリロイルオキシ基又はメタクリロイルオキシ基及び水酸基を有するポリオール化合物との反応により得られるウレタンアクリレート化合物やウレタンメタクリレート化合物、分子中に少なくとも2個のカルボン酸ハロゲン化物と少なくとも1個のアクリロイルオキシ基又はメタクリロイルオキシ基及び水酸基を有するポリオール化合物との反応により得られるポリエステルアクリレート化合物、ポリエステルメタクリレート化合物、並びに上記各化合物の2量体、3量体などのようなオリゴマーなどが挙げられる。
これらの化合物は、それぞれ単独又は2種以上を混合して用いられる。なお、上記の多官能(メタ)アクリレートの他に、ハードコート層用塗料の硬化時の活性エネルギー線硬化型樹脂固形分に対して、好ましくは10.0重量%以下の、ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート等の中から選択される少なくとも1種の単官能(メタ)アクリレートを配合しても良い。
また、ハードコート層には、硬度を調整する目的で重合性オリゴマーを添加することができる。このようなオリゴマーとしては、末端(メタ)アクリレートポリメチルメタクリレート、末端スチリルポリ(メタ)アクリレート、末端(メタ)アクリレートポリスチレン、末端(メタ)アクリレートポリエチレングリコール、末端(メタ)アクリレートアクリロニトリル−スチレン共重合体、末端(メタ)アクリレートスチレン−メチル(メタ)アクリレート共重合体などのマクロモノマーを挙げることができる。その含有量は塗料組成物の硬化時の固形分に対して、好ましくは5.0〜50.0重量%である。
活性エネルギー線硬化性化合物は、溶剤と混合された状態の溶液として用いてもよい。活性エネルギー線硬化性化合物やその溶液は、ハードコート剤として市販されているものであってもよい。市販のハードコート剤としては、具体的には、「NKハードM101」(新中村化学(株)製、ウレタンアクリレート化合物)、「NKエステルA−TMM−3L」(新中村化学(株)製、テトラメチロールメタントリアクリレート)、「NKエステルA−9530」(新中村化学(株)製、ジペンタエリスリトールヘキサアクリレート)、「KAYARAD(登録商標) DPCAシリーズ」(日本化薬(株)製、ジペンタエリスリトールヘキサアクリレート化合物の誘導体)、「アロニックス(登録商標)M−8560」(東亜合成(株)製、ポリエステルアクリレート化合物)、「ニューフロンティア(登録商標)TEICA」(第一工業製薬(株)製、トリス(アクリロイルオキシエチル)イソシアヌレート)、「PPZ」(共栄社化学(株)製、ホスファゼン系メタクリレート化合物)などが例示される。
ハードコート層をアクリル系樹脂フィルム25の表面に形成するには、例えば活性エネルギー線硬化性化合物を含有する組成物を基板の表面に塗布し、活性エネルギー線を照射すればよい。このような組成物は、活性エネルギー線硬化性化合物を添加剤等と混合することにより得ることができる。
ハードコート層の膜厚は、適宜設定することができるが、例えば10μm以下であることが好ましい。また、活性エネルギー線硬化性化合物を含有する組成物は、通常は溶剤で希釈して用いる。この場合、活性エネルギー線硬化性化合物とシリコーンオイルなど表面平滑性などを付与するための各種添加剤とを混合した後に溶剤で希釈してもよいし、活性エネルギー線硬化性化合物を溶剤で希釈した後に添加剤と混合してもよく、活性エネルギー線硬化性化合物と予め溶剤で希釈された添加剤とを混合してもよい。また、予め溶剤で希釈された活性エネルギー線硬化性化合物と予め溶剤で希釈された添加剤とを混合してもよい。混合後の組成物は更に攪拌してもよい。
また、塗布を容易にする観点から、活性エネルギー線硬化性化合物を含有する組成物は適当な溶剤で希釈されることが好ましい。溶剤としては、ヘキサン、オクタンなどの脂肪族炭化水素、トルエン、キシレンなどの芳香族炭化水素、エタノール、1−プロパノール、イソプロパノール、1−ブタノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、セロソルブ類などから適宜選択して用いることができる。これらの有機溶剤は、必要に応じて数種類を混合して用いてもよい。塗工後には有機溶剤を蒸発させる必要があるため、溶剤の沸点が70℃〜200℃の範囲であることが望ましい。溶剤の種類や使用量は、用いる活性エネルギー線硬化性化合物の種類や使用量、基材の材質、形状、塗布方法、目的とするハードコート層の厚みなどに応じて適宜選択される。
活性エネルギー線硬化性化合物を含有する組成物は重合開始剤を含有していてもよい。活性エネルギー線として紫外線や可視光線を用いる場合には、通常、重合開始剤として光重合開始剤が用いられる。
光重合開始剤としては、例えばアセトフェノン、アセトフエノンベンジルケ夕ール、アントラキノン、1−(4−イソプロピルフエニル−2−ヒドロキシ−2−メチルプロパン−1−オン、カルバゾール、キサントン、4−クロロベンゾフェノン、4,4´−ジアミノベンゾフェノン、1,1−ジメトキシデオキシベンゾイン、3,3´−ジメチル−4−メトキシベンゾフェノン、チオキサントン、2,2−ジメトキシ−2−フェニルアセトフェノン、1−(4−ドデシルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルフオリノプロパン−1−オン、トリフェニルアミン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、フルオレノン、フルオレン、ベンズアルデヒド、ベンゾインエチルエーテル、ベンゾイソプロピルエーテル、ベンゾフェノン、ミヒラーケトン、3−メチルアセトフェノン、3,3´,4,4´−テトラtert−ブチルパーオキシカルボニルベンゾフエノン(BTTB)、2−(ジメチルアミノ)−1−〔4−(モルフォリニル)フェニル〕−2−フェニルメチル)−1−ブタノン、4−ベンゾイル−4´−メチルジフェニルサルファイド、ベンジルなどが挙げられる。また、光重合開始剤は色素増感剤と組合せて用いてもよい。色素増感剤としては、例えばキサンテン、チオキサンテン、クマリン、ケトクマリンなどが挙げられる。光重合開始剤と色素増感剤との組合せとしては、例えばBTTBとキサンテンとの組合せ、BTTBとチオキサンテンとの組合せ、BTTBとクマリンとの組合せ、BTTBとケトクマリンとの組合せなどが挙げられる。
光重合開始剤を用いる場合、その使用量は、活性エネルギー線硬化性化合物100重量部あたり0.1重量部以上である。0.1重量部未満であると光重合開始剤を使用しない場合と比較して硬化速度が大きくなりにくい傾向にある。なお、光重合開始剤の使用量の上限は、活性エネルギー線硬化性化合物100重量部あたり10重量部である。
活性エネルギー線硬化性化合物を含有する組成物は、帯電防止剤を含有していてもよい。帯電防止剤を含有することにより、帯電防止性能や制電性能を有するハードコート基材を得ることができる。帯電防止剤としては、例えば界面活性剤、導電性高分子からなる帯電防止剤、導電性粒子などが挙げられる。導電性粒子としては、例えばインジウム−スズ−複合酸化物(ITO)、アンチモンがドープされた酸化スズなどの粒子が挙げられる。これらの帯電防止剤は、それぞれ1種又は2種以上を混合して使用される。
また、このような組成物がブロム原子、フッ素原子、硫黄原子、ベンゼン環などを含む有機化合物、酸化錫、酸化アンチモン、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化ケイ素などの無機酸化物微粒子などを含有する場合には、得られるハードコート層の屈折率を調整することができる。
この組成物をアクリル系樹脂フィルム25の上に塗布したのち、乾燥することにより、活性エネルギー線硬化性化合物を含有する層を形成することができる。塗布は、例えばマイクログラビアコート法、ロールコート法、ディッピングコート法、スピンコート法、ダイコート法、キャスト転写法、フローコート法、スプレーコート法といった通常の方法により行うことができる。
その後、活性化エネルギー線を照射することにより、基材の表面に形成された層を構成する活性エネルギー線硬化性化合物が硬化して、目的とするハードコート層を得る。活性エネルギー線としては、例えば電子線、紫外線、可視光線などが挙げられ、使用する活性エネルギー線硬化性化合物の種類に応じて適宜選択される。活性エネルギー線は、通常のハードコート層の形成におけると同様に照射すればよい。照射する活性エネルギー線の強度、照射時間などは、用いる硬化性化合物の種類、硬化性化合物を含有する層の厚みなどに応じて適宜選択される。活性エネルギー線は、不活性ガス雰囲気中で照射してもよい。窒素雰囲気中で活性エネルギー線を照射するには、例えば不活性ガスでシールした容器の中で活性エネルギー線照射を行えばよく、不活性ガスとしては、窒素ガス、アルゴンガスなどが使用できる。さらに、ハードコート層の表面には、後述する反射防止層や低反射層を形成することも有用である。この場合の反射防止層や低反射層は、ハードコート層の表面に単層や複層積層することができる。
[防眩層]
防眩層は、光を散乱して反射させることで、外光の映り込みを防止するための層である。防眩層としては、公知の物を適宜採用することができる。本実施形態では、防眩層として、表面に微細凹凸形状を有しており、透光性樹脂中に1種類以上の透光性微粒子を含む樹脂組成物を用いて形成している。より具体的には、このような防眩層は、例えば、フィラーとしての透光性微粒子を分散させた透光性樹脂溶液をアクリル系樹脂フィルム25の上に塗布し、塗布膜厚を調整することで透光性微粒子の部分が凸となるようにすることで形成する。なお、本発明において、「透光性」とは、物質内部での散乱の有無を問わず、光がほぼ透過できることを意味する。
[[透光性微粒子]]
透光性微粒子は、その粒径が0.5〜5μm、透光性樹脂との屈折率の差が0.02〜0.2であることが好ましい。また、透光性微粒子は、透光性樹脂100重量部に対して、3重量部以上30重量部以下の割合で配合されることが好ましい。防眩層のヘイズは、5〜50%が好ましい。なお、防眩層のヘイズは、JIS K 7361に準じた方法により測定される。
透光性微粒子としては、シリカ系微粒子又は樹脂微粒子を挙げることができる。このうち、比重が透光性樹脂と近く沈降し難いこと、表面自由エネルギーが小さく比較的分散させやすいことから、樹脂微粒子を使用することが好ましい。樹脂微粒子としては、メラミンビーズ(屈折率1.57)、ポリメタクリル酸メチルビーズ(屈折率1.49)、メタクリル酸メチル/スチレン共重合体樹脂ビーズ(屈折率1.50〜1.59)、ポリエチレンビーズ(屈折率1.53)、ポリカーボネートビーズ、ポリエチレンビーズ、ポリスチレンビーズ、塩化ビニルビーズなどが用いられる。これらの樹脂微粒子の粒径は、前述のように0.5〜5μmのものを適宜選択して使用する。また、シリカ系微粒子としては、凝集性シリカを挙げることができる。凝集性シリカは、コロイド状のシリカ粒子が数十から数百個凝集したものである。シリカ粒子径は30nm以下、好ましくは5〜25nm程度であり、凝集した状態の粒子径が1〜5μm程度である。
透光性微粒子と透光性樹脂との屈折率の差は0.02〜0.2であることが好ましく、さらに好ましくは、0.04〜0.1である。屈折率差が0.02未満の場合は、両者の屈折率の差が小さすぎて、十分な光拡散効果が得られにくい。また、屈折率差が0.2よりも大きい場合は、光拡散能が高くなりすぎてアクリル系樹脂フィルム25全体が白化してしまうため好ましくない。
透光性微粒子の粒径は0.5〜5μmが好ましく、更に好ましくは1〜4μmである。透光性微粒子の粒径が0.5μm未満の場合は、透光性樹脂に添加すべき透光性微粒子の添加量を大幅に増加しないと、光拡散効果が得られにくいばかりか、防眩層の表面における凹凸も形成されにくく、十分な防眩効果が得られにくい。また、透光性微粒子の粒径が5μm以上の場合は、防眩層の表面形状が粗くなり、ヘイズ値が大幅に上昇してしまうため好ましくない。
透光性樹脂100重量部に対する透光性微粒子の添加量は、3〜30重量部が好ましく、より好ましくは5〜20重量部である。添加量が3重量部未満の場合には、十分な光拡散効果が得られにくい。また、添加量が30重量部を超える場合には、アクリル系樹脂フィルム25の全体が白化してしまうという問題が発生するため好ましくない。
上記のように透光性微粒子の屈折率、粒径、配合量を規定することで、防眩層のヘイズが高い領域でも、透過鮮明度を低下させることなく、表面のギラツキを防止することができ、さらにはヘイズが低い領域でも、高透過鮮明度を維持した状態でギラツキを防止することができる。
透光性微粒子を透光性樹脂に配合した際に、樹脂組成物の粘度に依存して透光性微粒子が沈降する場合がある。この場合、沈降防止剤としてシリカなどの無機フィラーを添加することも有効である。なお、無機フィラーは添加量の増大とともに顕著な沈降防止効果を発現するが、防眩層の透明性が著しく低下する。このため、無機フィラーの粒径を0.5μm以下とし、0.1重量%以下の分量を配合することが好ましい。
[[透光性樹脂]]
透光性微粒子を分散させる透光性樹脂としては、紫外線硬化性樹脂、熱硬化性樹脂、電子線硬化性樹脂などを用いることができるが、生産性の観点から紫外線硬化性樹脂が好ましく使用される。紫外線硬化性樹脂は市販されているものを用いることができる。例えば、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート等の多官能アクリレート系化合物の単独又は2種以上と、「イルガキュアー907」、「イルガキュアー 184」(以上、チバ・スペシャルティー・ケミカルズ社製)、「ルシリン TPO」(BASF社製)等の光重合開始剤との混合物を紫外線硬化性樹脂とすることができる。このような紫外線硬化性樹脂に透光性微粒子を分散した後、この樹脂組成物を樹脂基材フィルム上に塗布し、紫外線を照射することにより、透光性樹脂中に透光性微粒子が分散された、防眩層を形成することができる。
ここで、多官能アクリレート系化合物とは、分子中に少なくとも2個のアクリロイルオキシ基又はメタクリロイルオキシ基を有する化合物であり、具体的には、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、トリス(メタクリロイルオキシエチル)イソシアヌレート;ホスファゼン化合物のホスファゼン環にアクリロイルオキシ基又はメタクリロイルオキシ基が導入されたホスファゼン系アクリレート化合物又はホスファゼン系メタクリレート化合物;分子中に少なくとも2個のイソシアネート基を有するポリイソシアネートと少なくとも1個のアクリロイルオキシ基又はメタクリロイルオキシ基及び水酸基を有するポリオール化合物との反応により得られるウレタンアクリレート化合物やウレタンメタクリレート化合物、分子中に少なくとも2個のカルボン酸ハロゲン化物と少なくとも1個のアクリロイルオキシ基又はメタクリロイルオキシ基及び水酸基を有するポリオール化合物との反応により得られるポリエステルアクリレート化合物、ポリエステルメタクリレート化合物;並びに、上記各化合物の2量体、3量体などのようなオリゴマーなどが挙げられる。これらの化合物はそれぞれ単独又は2種以上を混合して用いられる。
なお、上記の多官能(メタ)アクリレートの他に、硬化時の樹脂固形分に対して、好ましくは10.0重量%以下の、ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート等の中から選択される少なくとも1種の単官能(メタ)アクリレートを配合しても良い。
また、紫外線硬化性樹脂には、硬度を調整する目的で重合性オリゴマーを添加することができる。このようなオリゴマーとしては、末端(メタ)アクリレートポリメチルメタクリレート、末端スチリルポリ(メタ)アクリレート、末端(メタ)アクリレートポリスチレン、末端(メタ)アクリレートポリエチレングリコール、末端(メタ)アクリレートアクリロニトリル−スチレン共重合体、末端(メタ)アクリレートスチレン−メチル(メタ)アクリレート共重合体などのマクロモノマーを挙げることができる。その含有量は組成物の硬化時の固形分に対して、好ましくは5.0〜50.0重量%である。
また、一般に紫外線硬化性樹脂の屈折率は約1.5で、ガラスと同程度であるが、上記透光性微粒子の屈折率との比較において、用いる樹脂の屈折率が低い場合には、該透光性樹脂に、屈折率の高い微粒子であるTiO2(屈折率;2.3〜2.7)、Y2O3(屈折率;1.87)、La2O3(屈折率;1.95)、ZrO2(屈折率;2.05)、Al2O3(屈折率;1.63)等を塗膜の拡散性を保持できる程度に加えて、屈折率を上げて調整することができる。
このような紫外線硬化性樹脂は、溶剤と混合された状態の溶液として用いてもよい。紫外線硬化性樹脂又はその溶液は、ハードコート剤として市販されているものであってもよい。市販のハードコート剤として具体的には、「NKハードM101」(新中村化学(株)製、ウレタンアクリレート化合物)、「NKエステルA−TMM−3L」(新中村化学(株)製、テトラメチロールメタントリアクリレート)、「NKエステルA−9530」(新中村化学(株)製、ジペンタエリスリトールヘキサアクリレート)、「KAYARAD DPCAシリーズ」(日本化薬(株)製、ジペンタエリスリトールヘキサアクリレート化合物の誘導体)、「アロニックスM−8560」(東亜合成(株)製、ポリエステルアクリレート化合物)、「ニューフロンティアTEICA」(第一工業製薬(株)製、トリス(アクリロイルオキシエチル)イソシアヌレート)、「PPZ」(共栄社化学(株)製、ホスファゼン系メタクリレート化合物)などが例示される。
また、塗布を容易にする観点から、紫外線硬化性樹脂は適当な溶剤で希釈されていることが好ましい。溶剤としては、上述したハードコート層で挙げたものと同じ有機溶剤を用いることができる。溶剤の沸点も同様に、70℃〜200℃の範囲が好ましい。
紫外線硬化性樹脂を含有する組成物は重合開始剤を含有していてもよい。重合開始剤として光重合開始剤が用いられる。光重合開始剤も、上述したハードコート層で挙げたものと同じ化合物を用いることができる。
光重合開始剤の使用量は、紫外線硬化性樹脂100重量部あたり0.1重量部以上である。0.1重量部未満であると光重合開始剤を使用しない場合と比較して硬化速度が大きくなりにくい傾向にある。なお、光重合開始剤の使用量の上限は、紫外線硬化性樹脂100重量部あたり10重量部程である。
紫外線硬化性樹脂を含有する組成物は、帯電防止剤を含有していてもよい。帯電防止剤を含有することにより、帯電防止性能や制電性能を有する防眩層を得ることができる。帯電防止剤としては、上述したハードコート層で挙げた帯電防止剤を用いることができる。
上記によって得られた紫外線硬化性樹脂組成物に透光性微粒子を分散することで、目的とする防眩層形成用塗工液を得ることができる。透光性微粒子を紫外線硬化性樹脂に分散するタイミングや分散方法は特に限定されない。
この防眩層形成用塗工液をアクリル系樹脂フィルム25の上に塗布したのち、乾燥することにより、防眩層を形成することができる。塗布は、通常の方法、例えばマイクログラビアコート法、ロールコート法、ディッピングコート法、スピンコート法、ダイコート法、キャスト転写法、フローコート法、スプレーコート法などの方法により行うことができる。
その後、紫外線を照射することにより紫外線硬化性樹脂を硬化させ、防眩層を得る。照射する紫外線の強度、照射時間などは、用いる硬化性化合物の種類、硬化性化合物を含有する層の厚みなどに応じて適宜選択される。紫外線は、不活性ガス雰囲気中で照射してもよい。窒素雰囲気中で紫外線を照射するには、例えば不活性ガスでシールした容器の中で活性化エネルギー線照射を行えばよく、不活性ガスとしては、窒素ガス、アルゴンガスなどが使用できる。
防眩層のヘイズは、5〜50%の範囲内とされる。防眩層のヘイズは、JIS K 7361に準じた方法により測定される。防眩層の厚みは、防眩層のヘイズが当該範囲内となるように適宜調整し得るものであるが、2μm〜20μmであることが好ましい。防眩層の厚みが2μm未満であると、十分な防眩効果が得られない。また、20μmより厚くなると、割れやすくなったり、防眩層の硬化収縮により防眩層がカールして生産性が低下したりする傾向がある。また、防眩層の厚みは、一般的には、分散される透光性微粒子の重量平均粒子径に対して85%以上であることが好ましく、より好ましくは100%以上である。防眩層の厚みが透光性微粒子の重量平均粒子径の85%を下回る場合にはヘイズが大きくなりすぎて視認性が低下する傾向がある。
防眩層は、その最表面、すなわち凹凸面側に低反射層を有していてもよい。低反射層がない状態でも、十分な防眩機能を発揮するが、最表面に低反射層を設けることにより、防眩性をさらに向上させることができる。低反射層としては、後述したものを適用することができる。
[反射防止層・低反射層]
反射防止層は、一般に、防汚性層でもある低屈折率層、及び低屈折率層より高い屈折率を有する少なくとも一つの層(すなわち、高屈折率層又は中屈折率層)を、アクリル系樹脂フィルム25の表面に設けることで形成される。
屈折率の異なる無機化合物(金属酸化物等)の透明薄膜を積層させた多層膜を製造する方法として、化学蒸着(CVD)法、物理蒸着(PVD)法、金属アルコキシド等の金属化合物のゾル/ゲル方法でコロイド状金属酸化物粒子皮膜を形成後に後処理(紫外線照射:特開平9−157855号公報、プラズマ処理:特開2002−327310号公報)して薄膜を形成する方法などが挙げられる。
一方、生産性が高い反射防止層として、無機粒子をマトリックスに分散されてなる薄膜を積層塗設した反射防止層が各種提案されている。また、このような塗布による反射防止層の最上層表面に微細な凹凸形状を形成して防眩性を付与した反射防止層も提案されている。
低反射膜は、基材となるアクリル系樹脂フィルム25よりも屈折率の低い低屈折率材料で形成された層である。そのような低屈折率材料として、具体的には、フッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、フッ化アルミニウム(AlF3)、氷晶石(3NaF・AlF3又はNa3AlF6)等の無機材料微粒子を、アクリル系樹脂やエポキシ系樹脂等に含有させた無機系低反射材料;フッ素系又はシリコーン系の有機化合物、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等の有機系低反射材料を挙げることができる。
[防汚層等]
防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、上述したハードコート層を形成する樹脂組成物に公知のシリコーン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することもできる。これらの添加剤を添加する場合には低n層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。
[防塵層・帯電防止層]
防塵性、帯電防止性を付与する目的で、上述したハードコート層を形成する樹脂組成物に公知のカチオン系界面活性剤あるいはポリオキシアルキレン系化合物のような防塵剤、帯電防止剤等を適宜添加することもできる。これら防塵剤や帯電防止剤は、前述したシリコーン系化合物やフッ素系化合物にその構造単位が機能の一部として含まれていてもよい。これらを添加剤として添加する場合には、低n層全固形分の0.01〜20質量%の範囲で添加することが好ましく、より好ましくは0.05〜10質量%の範囲であり、特に好ましくは0.1〜5質量%である。
(3)偏光フィルム21;
続いて、偏光板20を構成する他の層について説明する。偏光フィルム21は、自然光を直線偏光に変換する機能を有する部材である。偏光フィルム21としては、一軸延伸されたポリビニルアルコール系樹脂フィルムに二色性色素を吸着配向させたものを用いることができる。ポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができ、ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体などが例示される。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。
ポリビニルアルコール系樹脂のケン化度は、通常85〜100モル%程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールなども使用し得る。ポリビニルアルコール系樹脂の重合度は、通常1,000〜10,000程度であり、好ましくは1,500〜5,000程度である。
このようなポリビニルアルコール系樹脂を製膜したものが、偏光フィルム21の原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものではなく、公知の方法で製膜することができる。ポリビニルアルコール系原反フィルムの厚みは特に限定されないが、例えば5〜150μm程度である。
偏光フィルム21は、通常、このようなポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、ホウ酸水溶液による処理後に水洗する工程、を経て製造される。
ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素による染色の前、染色と同時、又は染色の後に行うことができる。一軸延伸を染色の後で行う場合には、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。もちろん、ここに示した複数の段階で一軸延伸を行うこともできる。一軸延伸には、周速度の異なるロール間で一軸に延伸する方法や、熱ロールを用いて一軸に延伸する方法などが採用できる。また、一軸延伸は、大気中で延伸を行う乾式延伸であってもよいし、水等の溶剤を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は、通常3〜8倍程度である。
ポリビニルアルコール系樹脂フィルムの延伸方向は、長尺状の偏光フィルム21の長手方向に平行な方向としている。このため、偏光フィルム21の吸収軸は、ポリビニルアルコール系樹脂フィルムの延伸方向、すなわち長尺状の偏光フィルム21の長手方向に平行な方向となる。
ポリビニルアルコール系樹脂フィルムの二色性色素による染色は、例えば、二色性色素を含有する水溶液にポリビニルアルコール系樹脂フィルムを浸漬する方法により行うことができる。二色性色素として、具体的にはヨウ素や二色性染料が用いられる。なお、ポリビニルアルコール系樹脂フィルムは、染色処理の前に水に浸漬して膨潤させる処理を施しておくことが好ましい。
二色性色素としてヨウ素を用いる場合は、通常、ヨウ素及びヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液におけるヨウ素の含有量は、水100重量部あたり、通常0.01〜1重量部程度であり、ヨウ化カリウムの含有量は、水100重量部あたり、通常0.5〜20重量部程度である。染色に用いる水溶液の温度は、通常20〜40℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常20〜1,800秒程度である。
一方、二色性色素として二色性染料を用いる場合は、通常、水溶性二色性染料を含む水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液における二色性染料の含有量は、水100重量部あたり、通常1×10−4〜10重量部程度であり、好ましくは1×10−3〜1重量部程度である。この水溶液は、硫酸ナトリウムなどの無機塩を染色助剤として含有していてもよい。染色に用いる二色性染料水溶液の温度は、通常20〜80℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常10〜1,800秒程度である。
二色性色素による染色後のホウ酸処理は、染色されたポリビニルアルコール系樹脂フィルムをホウ酸含有水溶液に浸漬することにより行うことができる。ホウ酸含有水溶液におけるホウ酸の含有量は、水100重量部あたり、通常2〜15重量部程度であり、好ましくは5〜12重量部程度である。二色性色素としてヨウ素を用いる場合、このホウ酸含有水溶液はヨウ化カリウムを含有することが好ましい。ホウ酸含有水溶液におけるヨウ化カリウムの含有量は、水100重量部あたり、通常0.1〜15重量部程度であり、好ましくは5〜12重量部程度である。ホウ酸含有水溶液への浸漬時間は、通常60〜1,200秒程度であり、好ましくは150〜600秒程度、更に好ましくは200〜400秒程度である。ホウ酸含有水溶液の温度は、通常50℃以上であり、好ましくは50〜85℃、より好ましくは60〜80℃である。
ホウ酸処理後のポリビニルアルコール系樹脂フィルムは、通常、水洗処理される。水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬することにより行うことができる。水洗処理における水の温度は、通常5〜40℃程度であり、浸漬時間は、通常1〜120秒程度である。
水洗後は乾燥処理が施されて、偏光フィルム21が得られる。乾燥処理は、熱風乾燥機や遠赤外線ヒーターを用いて行うことができる。乾燥処理の温度は、通常30〜100℃程度であり、好ましくは50〜80℃である。乾燥処理の時間は、通常60〜600秒程度であり、好ましくは120〜600秒である。
こうしてポリビニルアルコール系樹脂フィルムに、一軸延伸、二色性色素による染色とホウ酸処理が施され、偏光フィルム21が得られる。偏光フィルム21の厚みは、例えば2〜40μm程度とすることができる。
偏光フィルム21は、ロール状に巻かれた状態で保管される。使用時には、ロール状に巻かれた状態から、長尺状に繰り出して用いられる。偏光フィルム21の吸収軸は、長尺状の偏光板20の長手方向、すなわちポリビニルアルコール系樹脂フィルムの延伸方向と平行な方向である。
(4)接着剤層28;
偏光フィルム21への内側樹脂フィルム23とアクリル系樹脂フィルム25の貼合は、通常、接着剤層28を介してなされる。偏光フィルム21の両面に設けられる接着剤層28を形成する接着剤は、同種であってもよく、異種であってもよい。
接着剤としては、エポキシ系樹脂、ウレタン系樹脂、シアノアクリレート系樹脂、アクリルアミド系樹脂などを接着剤成分とする接着剤を用いることができる。好ましく用いられる接着剤の1つは、無溶剤型の接着剤である。無溶剤型の接着剤は、有意量の溶剤を含まず、加熱や活性エネルギー線(例えば、紫外線、可視光、電子線、X線等)の照射により反応硬化する硬化性化合物(モノマー又はオリゴマーなど)を含み、当該硬化性化合物の硬化により接着剤層28を形成するものであり、典型的には、加熱や活性エネルギー線の照射により反応硬化する硬化性化合物と、重合開始剤とを含む。特に、内側樹脂フィルム23やアクリル系樹脂フィルム25がポリプロピレン系樹脂からなる場合、ポリプロピレン系樹脂フィルムは透湿度が低いため、水系接着剤を使用した場合に水抜けが悪く、接着剤の水分によって偏光フィルム21の損傷や偏光性能の劣化などを引き起こす場合がある。したがって、このような透湿度の低い樹脂フィルムを接着する場合には、無溶剤系の接着剤が好ましい。
速硬化性及びこれに伴う第1の偏光板20の生産性向上の観点から、接着剤層28を形成する好ましい接着剤の例として、活性エネルギー線の照射で硬化する活性エネルギー線硬化性接着剤を挙げることができる。このような活性エネルギー線硬化性接着剤の例として、例えば、紫外線や可視光などの光エネルギーで硬化する光硬化性接着剤が挙げられる。光硬化性接着剤としては、反応性の観点から、カチオン重合で硬化するものが好ましく、特に、エポキシ化合物を硬化性化合物とする無溶剤型のエポキシ系接着剤は、偏光フィルム21と内側樹脂フィルム23やアクリル系樹脂フィルム25との接着性に優れているためより好ましい。
上記無溶剤型のエポキシ系接着剤に含有される硬化性化合物であるエポキシ化合物としては、特に制限されないが、カチオン重合により硬化するものが好ましい。特に、耐候性や屈折率などの観点から、分子内に芳香環を含まないエポキシ化合物を用いることがより好ましい。このような分子内に芳香環を含まないエポキシ化合物として、芳香族エポキシ化合物の水素化物、脂環式エポキシ化合物、脂肪族エポキシ化合物などが例示できる。なお、硬化性化合物であるエポキシ化合物は、通常、分子内に2個以上のエポキシ基を有する。
未硬化のエポキシ系接着剤からなる接着剤層28を介して偏光フィルム21に内側樹脂フィルム23やアクリル系樹脂フィルム25を貼合した後は、活性エネルギー線を照射するか、又は加熱することにより、接着剤層28を硬化させ、偏光フィルム21上に内側樹脂フィルム23やアクリル系樹脂フィルム25を固着させる。活性エネルギー線の照射により硬化させる場合、好ましくは紫外線が用いられる。具体的な紫外線光源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、ブラックライトランプ、メタルハライドランプなどを挙げることができる。活性エネルギー線、例えば紫外線の照射強度や照射量は、カチオン重合開始剤を十分に活性化させ、かつ硬化後の接着剤層28や偏光フィルム21などのフィルムに悪影響を与えないように適宜選択される。また、加熱により硬化させる場合は、一般的に知られた方法で加熱することができ、そのときの温度や時間も、カチオン重合開始剤を十分に活性化させ、かつ硬化後の接着剤層28や偏光フィルム21などのフィルムに悪影響を与えないように適宜選択される。
以上のようにして得られる、硬化後のエポキシ系接着剤からなる接着剤層28の厚みは、通常50μm以下、好ましくは20μm以下、更に好ましくは10μm以下であり、また通常は1μm以上である。
また、接着剤として、接着剤層28を薄くする観点から、水系接着剤、すなわち、接着剤成分を水に溶解した、又は接着剤成分を水に分散させた接着剤を用いることもできる。例えば、主成分としてポリビニルアルコール系樹脂又はウレタン樹脂を用いた水系組成物が、好ましい水系接着剤として挙げられる。
各フィルムを貼合する方法としては、従来公知の方法を用いることができる。例えば、流延法、マイヤーバーコート法、グラビアコート法、カンマコーター法、ドクターブレード法、ダイコート法、ディップコート法、噴霧法などにより、偏光フィルム21及び/又はこれに貼合されるフィルムの接着面に接着剤を塗布し、両者を重ね合わせる方法が挙げられる。流延法とは、被塗布物であるフィルムを、概ね垂直方向、概ね水平方向、又は両者の間の斜め方向に移動させながら、その表面に接着剤を流下して拡布させる方法である。
各フィルムの接着表面には、接着性を向上させるために、プラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理などの表面活性化処理を適宜施してもよい。ケン化処理としては、水酸化ナトリウムや水酸化カリウムのようなアルカリの水溶液に浸漬する方法が挙げられる。
水系接着剤を介して接合された積層体は、通常、乾燥処理が施され、接着剤層28の乾燥、硬化が行われる。乾燥処理は、例えば熱風を吹き付けることにより行うことができる。乾燥温度は、通常40〜100℃程度の範囲から選択され、好ましくは60〜100℃である。乾燥時間は、例えば20〜1,200秒程度である。乾燥後の接着剤層28の厚みは、通常0.001〜5μm程度であり、好ましくは0.01μm以上、また好ましくは2μm以下、更に好ましくは1μm以下である。接着剤層28の厚みが大きくなりすぎると、第1の偏光板20の外観不良となりやすい。
(5)内側樹脂フィルム23;
内側樹脂フィルム23は、偏光フィルム21の表面に貼合されるフィルムであり、液晶パネルや液晶表示装置に要求される特性に応じて種々の性質を有するフィルムを採用することができる。内側樹脂フィルム23の例としては、偏光板20が楕円偏光板として使用される場合には、例えば1/4波長板を備える位相差層が挙げられる。また、偏光板20が直線偏光板として使用される場合には、例えば光学補償機能を有する二軸性位相差フィルムや、表面保護機能を有する無配向性フィルムなどを挙げることができる。
内側樹脂フィルム23を構成する樹脂材料は特に限定されない。このような樹脂材料の例としては、メタクリル酸メチル系樹脂等の(メタ)アクリル系樹脂〔(メタ)アクリル系樹脂とは、メタクリル系樹脂又はアクリル系樹脂を意味する〕、オレフィン系樹脂、ポリ塩化ビニル系樹脂、セルロース系樹脂、スチレン系樹脂、アクリロニトリル・ブタジエン・スチレン系共重合樹脂、アクリロニトリル・スチレン系共重合樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、変性ポリフェニレンエーテル系樹脂、ポリエステル系樹脂(例えば、ポリブチレンテレフタレート系樹脂、ポリエチレンテレフタレート系樹脂等)、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリアリレート系樹脂、ポリアミドイミド系樹脂、ポリイミド系樹脂、エポキシ系樹脂、オキセタン系樹脂を挙げることができる。これらの樹脂は、透明性や偏光フィルム21との接着性を阻害しない範囲で、添加物を含有することができる。
上述した樹脂材料は、任意の方法で製膜し、必要に応じて延伸処理することで、内側樹脂フィルム23にすることができる。製膜方法としては、例えば、溶融樹脂からの押出成形法、有機溶剤に溶解させた樹脂を平板上に流延し、溶剤を除去して製膜する溶剤キャスト法などが挙げられる。
得られたフィルムは、未延伸のまま用いられることもあるが、必要に応じて延伸処理が施されてもよい。延伸処理としては、機械流れ方向に延伸する一軸延伸、一軸延伸に加えて機械流れ方向に直交する方向に延伸する二軸延伸、機械流れ方向と斜交する方向に延伸する斜め延伸などが挙げられる。二軸延伸の場合、延伸の順序は逐次又は同時のいずれであってもよい。
内側樹脂フィルム23は、JIS L 1096に準処して測定されるガーレ法剛軟度が350mgf以下であることが好ましく、200mgf以下であることがより好ましく、更には150mgf以下であることが一層好ましい。このように、剛軟度が小さい内側樹脂フィルム23を使用することにより、得られる偏光板20の剛性が低減されるため、液晶セルに貼合する際のハンドリング性を向上させることができる。なお、本明細書においてガーレ法剛軟度は、上記と同じくJIS L 1096に準処して測定される値である。
内側樹脂フィルム23の厚みは、通常、20〜200μmであり、好ましくは20〜120μmである。内側樹脂フィルム23の厚みが20μm未満であると、ハンドリング性に劣る傾向にあり、厚みが200μmを超える場合にも、フィルムの剛性が高くなることによってハンドリング性が低下することがある。
内側樹脂フィルム23を構成する樹脂材料は、上述した樹脂材料を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。また、これらの樹脂材料は、任意の適切なポリマー変性を行ってから用いることもできる。このポリマー変性としては、共重合、架橋、分子末端変性、立体規則性制御、及び異種ポリマー同士の反応を伴う場合を含む混合等の変性が挙げられる。
(6)粘着剤層27;
粘着剤層27は、偏光板20又はこれから所定形状に裁断された偏光板20を液晶セルに貼合するために用いられる。粘着剤層27を形成する粘着剤としては、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリエーテルなどをベースポリマーとするものが挙げられる。なかでも、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤は、光学的な透明性に優れ、適度の濡れ性や凝集力を保持し、更に耐候性や耐熱性などに優れ、加熱や加湿の条件下でも、浮きや剥がれなどのセパレート問題が生じにくいため、好ましく用いられる。
アクリル系粘着剤を構成するアクリル系ベースポリマーには、エステル部分が、メチル基、エチル基、ブチル基、又は2−エチルヘキシル基のような炭素数20以下のアルキル基を有するアクリル酸アルキルエステルと、(メタ)アクリル酸や(メタ)アクリル酸2−ヒドロキシエチルのような官能基含有(メタ)アクリル系モノマーとのアクリル系共重合体が好ましく用いられる。このようなアクリル系共重合体を含む粘着剤層27は、液晶セルに貼合した後で何らかの不具合があって剥離する必要が生じた場合に、液晶セル表面のガラス基板に糊残りなどを生じさせることなく、比較的容易に剥離することができる。粘着剤に用いるアクリル系共重合体は、ガラス転移温度が25℃以下であることが好ましく、0℃以下であることがより好ましい。また、このアクリル系共重合体は、通常10万以上の重量平均分子量を有する。
粘着剤層27を形成する粘着剤として、光拡散剤が分散された拡散粘着剤を用いることもできる。光拡散剤は、粘着剤層27に光拡散性を付与するためのものである。光拡散剤は、粘着剤層27を構成するベースポリマーと異なる屈折率を有する微粒子であればよく、無機化合物からなる微粒子や有機化合物(ポリマー)からなる微粒子を用いることができる。上記したようなアクリル系ベースポリマーを含めて、粘着剤層27を構成するベースポリマーは1.4前後の屈折率を示すことが多いので、光拡散剤は、その屈折率が1〜2程度のものから適宜選択すればよい。粘着剤層27を構成するベースポリマーと光拡散剤との屈折率差は、通常0.01以上であり、適用される液晶表示装置の明るさや視認性を確保する観点からは、0.01以上0.5以下であることが好ましい。光拡散剤として用いる微粒子は、球形のもの、それも単分散に近いものが好ましく、平均粒径が2〜6μm程度の微粒子が好適に用いられる。
無機化合物からなる微粒子としては、例えば、酸化アルミニウム(屈折率1.76)、酸化ケイ素(屈折率1.45)などを挙げることができる。また、有機化合物(ポリマー)からなる微粒子としては、例えば、メラミン樹脂ビーズ(屈折率1.57)、ポリメタクリル酸メチルビーズ(屈折率1.49)、メタクリル酸メチル/スチレン共重合体樹脂ビーズ(屈折率1.50〜1.59)、ポリカーボネートビーズ(屈折率1.55)、ポリエチレンビーズ(屈折率1.53)、ポリスチレンビーズ(屈折率1.6)、ポリ塩化ビニルビーズ(屈折率1.46)、シリコーン樹脂ビーズ(屈折率1.46)などが挙げられる。
光拡散剤の配合量は、それが分散される粘着剤層27に必要とされるヘイズ値や、それが適用される液晶表示装置の明るさなどを考慮して適宜決められるが、通常、粘着剤層27を構成するベースポリマー100重量部に対して3〜30重量部程度である。
光拡散剤が分散された粘着剤層27のJIS K 7361に従って測定されるヘイズ値は、適用される液晶表示装置の明るさを確保するとともに、表示像のにじみやボケを生じにくくする観点から、20〜80%の範囲とすることが好ましい。
透明な粘着剤又は拡散粘着剤を構成する各成分(ベースポリマー、光拡散剤、架橋剤など)は、酢酸エチルなどの適当な溶剤に溶かして粘着剤組成物とされる。ただし、光拡散剤などの溶剤に溶けない成分は、分散された状態となる。この粘着剤組成物を内側樹脂フィルム23上に塗布し、乾燥させることにより、粘着剤層27を形成することができる。
偏光板20に帯電する静電気を除電するために、粘着剤層27は帯電防止性を有することが好ましい。偏光板20は、必要に応じて粘着剤層27上にセパレートフィルムが積層されるが、このセパレートフィルムを剥離して液晶セルに貼合するときなどに、静電気を帯びることがある。このとき、粘着剤層27が帯電防止性を有していると、その静電気が速やかに除電され、液晶セルの表示回路が破壊されたり、液晶分子が配向を乱されたりすることが抑制される。
粘着剤層27に帯電防止性を付与する方法としては、例えば、粘着剤組成物に、金属微粒子、金属酸化物微粒子、又は金属等をコーティングした微粒子等を含有させる方法、電解質塩とオルガノポリシロキサンとからなるイオン導電性組成物を含有させる方法、有機塩系の帯電防止剤を配合する方法などが挙げられる。求められる帯電防止性の保持時間は、一般的な偏光板20の製造、流通及び保管期間の観点から、最低6ヶ月程度である。
粘着剤層27は、接着剤層28を硬化させるため、活性エネルギー線を通す場合がある。そのため、活性エネルギー線の該当スペクトル領域に高透過率を有することが好ましい。なお、活性エネルギー線の照射により粘着剤としての諸特性が変化しないことが好ましい。
粘着剤層27は、例えば、温度23℃、相対湿度65%の環境下で3〜20日程度熟成され、架橋剤の反応を十分に進行させた後、液晶セルへの貼合に供される。
粘着剤層27の厚みは、その接着力などに応じて適宜決定されるが、通常、1〜40μm程度である。加工性や耐久性などの特性を損なうことなく、薄型の偏光板20を得るためには、粘着剤層27の厚みは3〜25μm程度とすることが好ましい。また、光拡散剤が分散された粘着剤層27を用いる場合、粘着剤層27の厚みをこの範囲とすることにより、液晶表示装置を正面から見た場合や斜めから見た場合の明るさを保ち、表示像のにじみやボケを生じにくくすることができる。
<液晶パネル及び液晶表示装置>
次に、アクリル系樹脂フィルム25やこれを用いた偏光板20を使用した液晶パネルと液晶表示装置について説明する。図4は、偏光板20を使用した液晶パネル2及びこれを適用した液晶表示装置1の基本的な層構成の一例を示す概略断面図である。この図に示すように、偏光板20は、液晶セル40に貼合され、液晶パネル2の構成部品として用いられる。液晶パネル2は、液晶表示装置1の構成部材となる。液晶パネル2は、液晶セル40と、液晶セル40の視認側に貼合された偏光板20と、液晶セル40の背面側に貼合された偏光板30とにより構成されている。液晶表示装置1は、液晶パネル2と、バックライト10と、光拡散板50とにより構成される。液晶表示装置1において、液晶パネル2は、偏光板30がバックライト10側となるように配置される。偏光板20と偏光板30は、それぞれ粘着剤層を介して液晶セル40に貼合されている。ここで、背面側とは、液晶パネル2を液晶表示装置1に搭載した際のバックライト10側を意味する。また、視認側とは、液晶パネル2を液晶表示装置1に搭載した際のバックライト10とは反対側を意味する。
液晶セル40は、ガラス基板の間に液晶物質を封入したセルを電気的に制御することで、画像を表示させる素子である。より詳細には、液晶セル40は、図示しない表示制御部からの電気的制御により液晶物質の分子配向を変化させることで、液晶セル40の背面側に配置した偏光板20により偏光化されたバックライト10の光の偏光状態を変化させ、液晶セル40の視認側に配置した偏光板30を透過する光の光量を制御することによって画像を表示させる。液晶セル40のモードは特に制限されないが、例えばVAモード、IPSモード、TNモード、STNモード、OCBモード、ASMモードなどを使用することができる。
液晶パネル2や液晶表示装置1は、公知の方法で製造することができる。液晶パネル2の製造方法としては、ロール状に巻かれた長尺状の偏光板20や偏光板30を枚葉に切り出し、液晶セル40に貼合することで製造することができる。
バックライト10は、液晶セル40を照明するための装置である。バックライト10の種類としては、エッジライト式や直下型方式などが挙げられる。エッジライト式のバックライト10は、側面に配置した冷陰極管やLEDなどの光源から導光板を通じて液晶セル40に光を照射する。また、直下型方式のバックライト10では、液晶セル40の背面側に光源を配置して液晶セル40に光を照射する。バックライト10の種類は、液晶表示装置1の用途に応じたものを適宜採用することができる。
光拡散板50は、バックライト10からの光を拡散させる機能を有する光学部材であって、例えば、熱可塑性樹脂に光拡散剤である粒子を分散させて光拡散性を付与したもの、熱可塑性樹脂フィルムの表面に凹凸を形成して光拡散性を付与したもの、熱可塑性樹脂フィルムの表面に粒子が分散された樹脂組成物の塗布層を設け、光拡散性を付与したものなどであり得る。その厚みは、0.1〜5mm程度とすることができる。
光拡散板50と液晶パネル2との間には、輝度向上シート(反射型偏光フィルムである(「DBEF」など))、光拡散シートなど、他の光学機能性を示すシート又はフィルムを配置することもできる。他の光学機能性を示すシート又はフィルムは、必要に応じて2枚以上、複数種類配置することも可能である。
以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。以下の例において、使用量を表す部は、特にことわりがない限り重量基準である。
[実施例1]
(a)アクリル系樹脂フィルムの作製;
(アクリル系樹脂とアクリル系弾性重合体粒子)
アクリル系樹脂として、メタクリル酸メチル/アクリル酸メチルの重量比96/4の共重合体を使用した。また、ゴム弾性体粒子として、最内層、中間層、最外層からなる3層構造のアクリル系弾性重合体粒子を使用した。このアクリル系弾性重合体粒子は、最内層は、メタクリル酸メチルに少量のメタクリル酸アリルを用いて重合された硬質の重合体、中間層は、アクリル酸ブチルを主成分とし、さらにスチレン及び少量のメタクリル酸アリルを用いて重合された軟質の弾性体、最外層は、メタクリル酸メチルに少量のアクリル酸エチルを用いて重合された硬質の重合体からなり、中間層である弾性体までの平均粒径が240nmである。
(アクリル系樹脂フィルムの作製)
上記のアクリル系樹脂と上記のアクリル系弾性重合体粒子が前者/後者=70/30の重量比で配合されているペレットを二軸押出機で溶融混練しつつ、アクリル系樹脂組成物のペレットとした。このペレットを65mmφの一軸押出機に投入し、設定温度275℃のT型ダイを介して押し出し、押し出されたフィルム状溶融樹脂の両面を、45℃に温度設定された鏡面を有するポリシングロール(冷却ロール)と、表面が金属材料で形成され内部に流体が充填された弾性率の高い金属弾性ロール(弾性ロール)とで挟み込んで冷却し、アクリル系樹脂フィルムを作製した。
(b)接着剤の調製;
ジャパンエポキシレジン(株)製の水素化エポキシ樹脂である商品名「エピコート(登録商標)YX8000」(核水添ビスフェノールAのジグリシジルエーテルであって、約205g/当量のエポキシ当量を有するもの)10部、日本曹達(株)製の光増感剤である商品名「CS7001」1.0部を混合・脱泡して、エポキシ樹脂を含有する紫外線硬化性樹脂組成物からなる接着剤を調製した。
(c)環状オレフィン系樹脂フィルム(COP)の調製;
環状オレフィン(COP)系樹脂からなる位相差フィルムとして、日本ゼオン(株)から入手した"ZB・55124"を使用した。
(d)サンプル調製;
アクリル系樹脂フィルムの接着性を評価するために、T型ピール試験用のサンプルを調製した。試験用サンプルは、図5に示す層構成のものを用いた。サンプルは、環状オレフィンポリマー系樹脂(COP)からなるフィルム(COP)、接着剤層、ポリビニルアルコール(PVA)からなる偏光フィルム、接着剤層、アクリル系樹脂フィルム(PMMA)を順次積層させた層構成を有している。
まず、アクリル系樹脂フィルム(PMMA)、環状オレフィン系樹脂フィルム(COP)、偏光フィルム(PVA)を、20cm(機械流れ方向:MD基準)×15cm(MDに垂直方向:TD基準)にそれぞれカットした。続いて、アクリル系樹脂フィルム(PMMA)と環状オレフィンポリマー系樹脂(COP)の貼合面にコロナ処理を施した。コロナ処理は、CT−212(春日電機(株)製)を使用し、280W×10m×2回行った。
アクリル系樹脂フィルムのうち弾性ロールとの接地側(粗面側)を偏光フィルムとの接着面とし、接着剤を塗布して接着した。接着剤は、UV照射により硬化させた。UV照射条件は、UVAが271mJ/cm2(213mW/cm2)、UVBが213mJ/cm2(163mW/cm2)、UVCが22mJ/cm2(18mW/cm2)、UVVが17mJ/cm2(13mW/cm2)であった。接着後は一日養生し、T型ピールによる剥離試験を実施した。
(f)接着力の評価;
上記で得られたサンプルに対して、T型ピール試験を行い、アクリル系樹脂フィルム(PMMA)と偏光フィルム(PVA)の接着力を評価した。T型ピール試験では、図5の矢印で示す180°の方向にフィルムを引っ張り、アクリル系樹脂フィルムと偏光フィルムとが剥離したときの剥離力を測定した。剥離力の測定には、AGS−50NX、((株)島津製作所製)を使用した。剥離力の値は、上記のサンプルを3つ作製し(N数=3)、それぞれの剥離力の平均値を採用した。アクリル系樹脂フィルムと偏光フィルムの間の剥離は、アクリル系樹脂フィルムと接着剤層との間と、偏光フィルムと接着剤層との間のいずれかで発生するが、本実験では剥離状態を目視で観察し、アクリル系樹脂フィルムと接着剤層との間で剥離が生じたときの剥離力を採用した。この結果を表1に示す。なお、表中の「N.D」は、アクリル系樹脂フィルムと接着剤層との間の界面で剥離が生じなかったため、剥離力を測定できなかったことを示している。
[比較例1]
比較例1では、アクリル系樹脂フィルムのうち冷却ロールとの接地側(滑面側)を偏光フィルムとの接着面とした。その他の条件は実施例1と同様である。上述した接着力の評価方法と同じT型ピール試験を行い、剥離力を測定した。サンプル数は3つ(N数=3)であり、評価方法も実施例1と同様である。この結果を表1に示す。
表1は、実施例1と比較例1の各サンプルの剥離力の測定結果を示している。また、図6は、平均値をグラフにしたものである。この表と図から、実施例1の例、すなわちアクリル系樹脂フィルムの粗面側で偏光フィルムと接着した場合は、剥離力の平均値が1.19であり、滑面側で偏光フィルムと接着した比較例1の場合と比較して、3割近く剥離力(すなわち接着力)が高いことがわかった。このことから、アクリル系樹脂フィルムの滑面よりも粗面のほうで偏光フィルムと接着したほうが接着力は高くなることがわかった。
(g)アクリル系樹脂フィルム表面の観察;
次に、実施例1のアクリル系樹脂フィルムの表面を走査プローブ顕微鏡で観察した。走査プローブ顕微鏡としてSPM−9500((株)島津製作所製)を使用した。図7は、アクリル系樹脂フィルムの表面の顕微鏡写真を示しており、(a)が粗面、(b)が滑面の写真である。また、図8は、アクリル系樹脂フィルムの表面にコロナ処理を施した後の顕微鏡写真であり、(a)が粗面、(b)が滑面の写真である。これらの写真の白色の大きな丸として写っているものが、ゴム弾性体粒子がフィルム表面から突出した突起を示している。
これらの図に示すように、コロナ処理前(図7)、コロナ処理後(図8)のいずれにおいても、粗面側ではゴム弾性体粒子がフィルム表面から突出した凹凸形状が数多くみられる。一方、滑面側ではゴム弾性体粒子による凹凸形状が粗面側よりも少なく、表面が平滑に近い状態であることがわかる。このことから、剛性の高い冷却ロール側に接地した表面は、表面の凹凸が少ない滑面であり、こちらは偏光フィルムとの接着に適していることがわかった。反対に、冷却ロールよりも弾性の高い弾性ロール側に接地した表面は、表面の凹凸が多い粗面であり、こちらは機能性層の形成に適していることがわかった。