JP6008756B2 - Current sensor and three-phase AC current sensor device - Google Patents

Current sensor and three-phase AC current sensor device Download PDF

Info

Publication number
JP6008756B2
JP6008756B2 JP2013027630A JP2013027630A JP6008756B2 JP 6008756 B2 JP6008756 B2 JP 6008756B2 JP 2013027630 A JP2013027630 A JP 2013027630A JP 2013027630 A JP2013027630 A JP 2013027630A JP 6008756 B2 JP6008756 B2 JP 6008756B2
Authority
JP
Japan
Prior art keywords
current
magnetic
current line
current sensor
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013027630A
Other languages
Japanese (ja)
Other versions
JP2013200301A (en
Inventor
恵美子 倉田
恵美子 倉田
佳正 渡邊
佳正 渡邊
西沢 博志
博志 西沢
仲嶋 一
一 仲嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013027630A priority Critical patent/JP6008756B2/en
Publication of JP2013200301A publication Critical patent/JP2013200301A/en
Application granted granted Critical
Publication of JP6008756B2 publication Critical patent/JP6008756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は磁電変換素子、特に磁気抵抗素子を用いた電流センサにおける磁気シールドの構成に関する。   The present invention relates to a configuration of a magnetic shield in a current sensor using a magnetoelectric conversion element, particularly a magnetoresistive element.

ホール素子は感度が低いために、電流センサとして用いるには集磁コアが必須である。そのため、リング状又はC字コアを用いることが一般的であったが、サイズが大きく取り付けづらいという課題があった。   Since the Hall element has low sensitivity, a magnetic flux collecting core is essential for use as a current sensor. For this reason, it is common to use a ring-shaped or C-shaped core, but there is a problem that the size is large and it is difficult to attach.

また、高感度な磁気抵抗素子を用いてコアを使用しない方式が提案されているが、電流が発生する磁界は強度が大きく、磁気抵抗素子は飽和してしまう。そのため、数アンペア以上の電流を検出するためには、電流線から離れた場所に素子を置く必要があった。   Further, although a method using a highly sensitive magnetoresistive element and not using a core has been proposed, the magnetic field generated by the current has a high strength and the magnetoresistive element is saturated. Therefore, in order to detect a current of several amperes or more, it is necessary to place an element at a location away from the current line.

そこで、例えば特許文献1では、電流線を三分岐させて電流強度を弱め、そのうちの1本の電流線が作る磁界を磁気抵抗素子で検出する電流センサが提案されている。   Therefore, for example, Patent Document 1 proposes a current sensor in which a current line is divided into three parts to weaken the current intensity, and a magnetic field generated by one of the current lines is detected by a magnetoresistive element.

特開2011−38874JP 2011-38874 A

特許文献1の電流センサでは、電流線を専用に加工する等構造が複雑になり、電流センサのサイズが結局大きくなるという課題があった。   In the current sensor of Patent Document 1, there is a problem that a structure such as dedicated processing of a current line becomes complicated, and the size of the current sensor eventually increases.

これは、磁気インピーダンス素子等、他の磁電変換素子を用いた電流センサにおいても想定される課題である。   This is a problem assumed also in a current sensor using another magnetoelectric conversion element such as a magnetic impedance element.

本発明の目的は、磁電変換素子を用いた電流センサにおいて、既設電流線を用いた、設置容易で小型な電流センサを提供することである。   An object of the present invention is to provide a small-sized current sensor that is easy to install and uses an existing current line in a current sensor using a magnetoelectric conversion element.

上記目的を達成するために、本発明に係る電流センサは、第1方向に沿って配置された電流線に流れる電流を検出する電流センサであって、第1方向に沿って延びる貫通孔を有する磁性部材を備えた磁気シールドと、貫通孔の内部に配置され、電流線に流れる電流が発生する磁界を感知する磁電変換素子とを備える。磁性部材の側面には、第1方向に沿って延びる空隙部が形成されている。また、電流センサは、電流線が磁電変換素子に対して空隙部側であって磁性部材の外周面より内側に位置するように配置される。   In order to achieve the above object, a current sensor according to the present invention is a current sensor for detecting a current flowing in a current line arranged along a first direction, and has a through hole extending along the first direction. A magnetic shield including a magnetic member; and a magnetoelectric conversion element that is disposed inside the through hole and senses a magnetic field generated by a current flowing through the current line. A gap portion extending along the first direction is formed on the side surface of the magnetic member. The current sensor is arranged such that the current line is located on the gap side with respect to the magnetoelectric conversion element and on the inner side of the outer peripheral surface of the magnetic member.

本発明によれば、電流線が磁電変換素子に対して空隙部側に位置するように磁気シールドを配置することにより、既設電流線を用いた、設置容易で小型な電流センサを提供することができる。   According to the present invention, it is possible to provide a small and easy-to-install current sensor using an existing current line by arranging the magnetic shield so that the current line is positioned on the gap side with respect to the magnetoelectric transducer. it can.

さらに本発明によれば、電流線が磁性部材の外周面より内側に位置するように磁気シールドを配置することにより、検出対象の電流線以外の電流線が隣接して存在する場合でも、検出対象の電流線に流れる電流を精度よく検出することができる。   Furthermore, according to the present invention, by arranging the magnetic shield so that the current line is located on the inner side of the outer peripheral surface of the magnetic member, even when a current line other than the current line to be detected exists adjacently, the detection target The current flowing through the current line can be accurately detected.

本発明の実施の形態1による電流センサを示す斜視図である。It is a perspective view which shows the current sensor by Embodiment 1 of this invention. 本発明の実施の形態1による電流センサを示す断面図である。It is sectional drawing which shows the current sensor by Embodiment 1 of this invention. 本発明の実施の形態1による電流センサを示す側面図である。It is a side view which shows the current sensor by Embodiment 1 of this invention. 本発明による電流センサの信号処理を示すブロック図である。It is a block diagram which shows the signal processing of the current sensor by this invention. 電流線からの距離と磁界の強さの関係を表す図である。It is a figure showing the relationship between the distance from an electric current line, and the strength of a magnetic field. 典型的な異方性磁気抵抗素子の特性を示す図である。It is a figure which shows the characteristic of a typical anisotropic magnetoresistive element. 本発明の実施の形態2による電流センサを示す斜視図である。It is a perspective view which shows the current sensor by Embodiment 2 of this invention. 本発明の実施の形態2による電流センサを示す断面図である。It is sectional drawing which shows the current sensor by Embodiment 2 of this invention. 本発明の実施の形態2による電流センサを示す側面図である。It is a side view which shows the current sensor by Embodiment 2 of this invention. 本発明の実施の形態3による電流センサ装置を示す断面図である。It is sectional drawing which shows the current sensor apparatus by Embodiment 3 of this invention. 本発明の実施の形態3による電流センサ装置を示す側面図である。It is a side view which shows the current sensor apparatus by Embodiment 3 of this invention. 本発明の実施の形態3による代替の電流センサ装置を示す断面図である。It is sectional drawing which shows the alternative current sensor apparatus by Embodiment 3 of this invention. 本発明の実施の形態4による電流センサを示す断面図である。It is sectional drawing which shows the current sensor by Embodiment 4 of this invention. 本発明の実施の形態4による電流センサを示す側面図である。It is a side view which shows the current sensor by Embodiment 4 of this invention. 本発明の実施の形態4による電流センサを有する電流センサ装置を示す、図10に対応する断面図である。It is sectional drawing corresponding to FIG. 10 which shows the current sensor apparatus which has a current sensor by Embodiment 4 of this invention.

実施の形態1.
図1、図2、図3は、それぞれ本発明の実施の形態1による電流センサを示す斜視図、断面図、側面図である。なお、本明細書で参照する断面図は、すべてxy平面に沿った断面を示す断面図(xy断面図)であって、磁気抵抗素子2が存在する位置での断面図である。
本実施形態による電流センサ10は、磁気シールド1と、既設の電流線3に流れる被測定電流が発生する磁界を感知する磁気抵抗素子2とを備える。電流線3は、図中のz方向に延び、電流はz方向に流れる。電流センサ10は、例えば一般的な円柱状、板状、直方体形状を有するいずれの電流線3にも使用可能である。
Embodiment 1 FIG.
1, 2 and 3 are a perspective view, a sectional view and a side view, respectively, showing the current sensor according to the first embodiment of the present invention. The cross-sectional views referred to in this specification are all cross-sectional views (xy cross-sectional views) showing a cross section along the xy plane, and are cross-sectional views at positions where the magnetoresistive element 2 exists.
A current sensor 10 according to the present embodiment includes a magnetic shield 1 and a magnetoresistive element 2 that senses a magnetic field generated by a current to be measured flowing in an existing current line 3. The current line 3 extends in the z direction in the figure, and the current flows in the z direction. The current sensor 10 can be used for any current line 3 having, for example, a general cylindrical shape, a plate shape, or a rectangular parallelepiped shape.

磁気シールド1は、筒状、例えば円筒形状、中空四角柱形状を有し、貫通孔又は中空部は、z方向に沿って延びている。磁気シールド1は、z方向周りの周面に空隙を有しない。   The magnetic shield 1 has a cylindrical shape, for example, a cylindrical shape or a hollow quadrangular prism shape, and the through hole or the hollow portion extends along the z direction. The magnetic shield 1 has no gap on the circumferential surface around the z direction.

磁気シールド1は、例えば、珪素鋼板等の電磁鋼板、フェライト又はパーマロイ等の磁性部材で構成することができる。使用する磁性部材は、加工性、コスト及び物性値等の特性を考慮して選択される。一般に、磁気特性、比透磁率、周波数特性、キュリー温度等の物性値は、電流線が作る磁界強度と磁気抵抗素子の感度範囲の関係、センサ動作温度、及び動作周波数等の条件により決定する。   The magnetic shield 1 can be composed of, for example, an electromagnetic steel plate such as a silicon steel plate, or a magnetic member such as ferrite or permalloy. The magnetic member to be used is selected in consideration of characteristics such as processability, cost, and physical property values. In general, physical properties such as magnetic characteristics, relative permeability, frequency characteristics, and Curie temperature are determined by conditions such as the relationship between the magnetic field strength created by the current line and the sensitivity range of the magnetoresistive element, the sensor operating temperature, and the operating frequency.

この磁気シールド1は、例えば薄板をzy断面形状に打ち抜いてz方向に積層する方法、又はフェライト等の粉体を焼結するという方法でも作製できる。或いは、z方向に伸びた板材をxy方向に折り曲げて作製することも可能である。   The magnetic shield 1 can also be manufactured by, for example, a method of punching a thin plate into a zy cross-sectional shape and laminating it in the z direction, or a method of sintering powder such as ferrite. Alternatively, a plate material extending in the z direction can be bent in the xy direction.

図1、図2に示すように、磁気抵抗素子2は、電流線3から−y方向に所定の距離r隔てて配置されている。磁気抵抗素子2は、磁気シールド1の貫通孔内又は中空部内に配置される。   As shown in FIGS. 1 and 2, the magnetoresistive element 2 is arranged at a predetermined distance r from the current line 3 in the −y direction. The magnetoresistive element 2 is disposed in the through hole or the hollow portion of the magnetic shield 1.

磁気抵抗素子2としては、例えば異方性磁気抵抗(AMR)素子を使用することができる。或いは、磁気抵抗素子として、巨大磁気抵抗(GMR)素子、トンネル効果磁気抵抗(TMR)素子を使用してもよい。   As the magnetoresistive element 2, for example, an anisotropic magnetoresistive (AMR) element can be used. Alternatively, as the magnetoresistive element, a giant magnetoresistive (GMR) element or a tunnel effect magnetoresistive (TMR) element may be used.

一般に、磁電変換素子、例えば磁気抵抗素子は、配置する方向によって感知する磁界強度が異なる特性を有する。よって、本発明において、磁気抵抗素子2が感知する磁界強度が磁電変換素子の感度範囲に納まるように、即ち磁気抵抗素子2が飽和しないように、距離r及び磁気抵抗素子2の配置方向を決定する。   In general, a magnetoelectric conversion element, for example, a magnetoresistive element, has a characteristic that the magnetic field strength to be sensed differs depending on the direction in which it is arranged. Therefore, in the present invention, the distance r and the arrangement direction of the magnetoresistive element 2 are determined so that the magnetic field intensity sensed by the magnetoresistive element 2 is within the sensitivity range of the magnetoelectric conversion element, that is, the magnetoresistive element 2 is not saturated. To do.

つまり、磁気抵抗素子2に強度が大きい磁界を感知させるためには、感磁方向が、電流線が作る磁界方向に一致するように配置することができる。電流線4が作る磁界は曲線状であり、また、磁気抵抗素子2の感磁領域は充分広い。よって、3次元直交座標系においてベクトル成分に分解した場合に最も磁界が強くなる方向に配置することができる。或いは、この方向からずらして磁気抵抗素子2を配置することにより、磁気抵抗素子2に強度が小さい磁界を感知させることができる。   That is, in order to cause the magnetoresistive element 2 to sense a magnetic field having a high strength, the magnetic sensing direction can be arranged so as to coincide with the magnetic field direction created by the current line. The magnetic field generated by the current line 4 is curved, and the magnetosensitive area of the magnetoresistive element 2 is sufficiently wide. Therefore, it can arrange | position in the direction where a magnetic field becomes the strongest when it decomposes | disassembles into a vector component in a three-dimensional orthogonal coordinate system. Alternatively, by disposing the magnetoresistive element 2 from this direction, it is possible to cause the magnetoresistive element 2 to sense a magnetic field having a low intensity.

図4は、本発明による電流センサの信号処理を示すブロック図である。磁気抵抗素子2は、感知した磁界に応じて変化する電圧信号を信号処理部4に出力する。信号処理部4は、例えば、A/D変換器、マイクロコンピュータ、メモリ等から構成され、検出した電流の方向、大きさを出力する。   FIG. 4 is a block diagram showing signal processing of the current sensor according to the present invention. The magnetoresistive element 2 outputs a voltage signal that changes according to the sensed magnetic field to the signal processing unit 4. The signal processing unit 4 includes, for example, an A / D converter, a microcomputer, a memory, and the like, and outputs the detected current direction and magnitude.

次に、本実施形態による電流センサ10の動作について説明する。電流線3に電流が流れると、電流線3の周囲に磁界が発生する。磁界の強さ及び向きは、ビオサバールの法則で記述することができる。   Next, the operation of the current sensor 10 according to the present embodiment will be described. When a current flows through the current line 3, a magnetic field is generated around the current line 3. The strength and direction of the magnetic field can be described by Biosavart's law.

電流線の太さを無視し、充分長い針金状のものとすると、発生する磁界の強さHは、下記の式(1)で表される。   If the thickness of the current line is ignored and the wire is sufficiently long, the intensity H of the generated magnetic field is expressed by the following formula (1).

Figure 0006008756
Figure 0006008756

ここで、Hは磁界の強さ[A/m]、Iは電流線を流れる電流値[A]、rは電流線からの距離[m]である。図5は、電流線からの距離と磁界の強さの関係を表す図である。図5では、針金状の電流線に120[A]の電流が流れた場合について示している。磁界の強さHは、電流線からの距離rの増加に伴って減少する。   Here, H is the magnetic field strength [A / m], I is the current value [A] flowing through the current line, and r is the distance [m] from the current line. FIG. 5 is a diagram illustrating the relationship between the distance from the current line and the strength of the magnetic field. FIG. 5 shows a case where a current of 120 [A] flows through a wire-like current line. The magnetic field strength H decreases as the distance r from the current line increases.

図6は、典型的な異方性磁気抵抗素子の特性を示す図である。異方性磁気抵抗素子(AMR)は、一般的に5〜20[Oe]で飽和する。磁界強度に対して磁気抵抗素子の出力が高い線形性を示す領域は、さらに狭くなる。例えば15[Oe]で飽和し、線形性が保たれる範囲が0〜5[Oe]である異方性磁気抵抗素子を想定する。図5の場合、磁気抵抗素子を飽和させず、かつ、線形性が高い領域で測定するためには、最低でも電流線から5cm離す必要があることがわかる。よって、磁気抵抗素子2を飽和させず、かつ、線形性が高い領域で測定するためには、電流センサ全体が要する空間が大型化する。   FIG. 6 is a diagram showing characteristics of a typical anisotropic magnetoresistive element. An anisotropic magnetoresistive element (AMR) is generally saturated at 5 to 20 [Oe]. The region where the output of the magnetoresistive element is highly linear with respect to the magnetic field intensity is further narrowed. For example, an anisotropic magnetoresistive element that is saturated at 15 [Oe] and has a linearity maintaining range of 0 to 5 [Oe] is assumed. In the case of FIG. 5, it can be seen that, in order to measure in a region where the magnetoresistive element is not saturated and the linearity is high, it is necessary to be at least 5 cm away from the current line. Therefore, in order to perform measurement in a region where the magnetoresistive element 2 is not saturated and has high linearity, the space required by the entire current sensor is increased.

一方、本実施形態による電流センサ10は、磁気シールド1を備えており、この磁気シールド1に磁界が集中するため、内側の磁界強度は小さくなる。磁気シールド1には空隙がないため、外側からの磁界が磁気シールド1を介さずに磁気抵抗素子2が設置された磁気シールド1の内側に入り込むことがなく、それゆえ磁界強度の減衰効果を高めることができる。磁気シールド1の内側の磁界強度は、磁気シールド1の比透磁率、貫通孔又は中空部の開口面積、電流線からの距離r等の条件によって最適化される。   On the other hand, the current sensor 10 according to the present embodiment includes the magnetic shield 1, and the magnetic field concentrates on the magnetic shield 1, so the inner magnetic field strength becomes small. Since there is no air gap in the magnetic shield 1, the magnetic field from the outside does not enter the inside of the magnetic shield 1 where the magnetoresistive element 2 is installed without passing through the magnetic shield 1, thus enhancing the attenuation effect of the magnetic field strength. be able to. The magnetic field strength inside the magnetic shield 1 is optimized by conditions such as the relative magnetic permeability of the magnetic shield 1, the opening area of the through hole or the hollow portion, the distance r from the current line, and the like.

磁気抵抗素子2の抵抗値は、最適化した磁界に対応して変化する。電源から磁気抵抗素子2に電圧が印加されると、磁気抵抗素子2は、感知した磁界に応じて変化する電圧信号を信号処理部4に出力する。信号処理部4は、磁気抵抗素子2が出力する電圧信号検出した電流の方向、大きさを出力する。   The resistance value of the magnetoresistive element 2 changes corresponding to the optimized magnetic field. When a voltage is applied from the power source to the magnetoresistive element 2, the magnetoresistive element 2 outputs a voltage signal that changes according to the sensed magnetic field to the signal processing unit 4. The signal processing unit 4 outputs the direction and magnitude of the current detected by the voltage signal output from the magnetoresistive element 2.

以上、本実施形態では、磁気シールド1を備えることにより、電流線3から大きい距離を隔てて磁気抵抗素子2を配置することも、電流センサ全体が要する空間を大型化させることもなく、磁気抵抗素子2が感知する磁界強度を減衰させることができるという利点がある。その結果、磁気抵抗素子2を飽和させることなく、更には線形性が保たれる範囲で使用することができるという利点がある。   As described above, in the present embodiment, by providing the magnetic shield 1, the magnetoresistive element 2 can be arranged at a large distance from the current line 3, and the space required for the entire current sensor can be increased without increasing the size of the magnetoresistive element. There is an advantage that the magnetic field intensity sensed by the element 2 can be attenuated. As a result, there is an advantage that the magnetoresistive element 2 can be used in a range where the linearity is maintained without being saturated.

よって、微小電流だけでなく、大電流の検出にも電流センサ10を使用可能である。また、電流センサ10は小型化可能であり、電流線3に対して一方向のyz平面、又はxz平面のみの設置が可能となる。さらに、電流線3を分流、折り曲げ等の加工をする必要もないため、電流センサ10は、既設の電流線3に容易に設置可能である。   Therefore, the current sensor 10 can be used not only for detecting a minute current but also for detecting a large current. Further, the current sensor 10 can be reduced in size, and only one yz plane or xz plane can be installed in one direction with respect to the current line 3. Furthermore, since it is not necessary to process the current line 3 such as shunting or bending, the current sensor 10 can be easily installed on the existing current line 3.

実施の形態2.
図7、図8、図9は、それぞれ本発明の実施の形態2による電流センサを示す斜視図、断面図、側面図である。本実施形態による電流センサ10の磁気シールド1は、周面に磁性障壁部11を有する。また、本実施形態では、被測定電流が流れる電流線3に加えて、電流線3に隣接配置され、測定対象でない電流が流れる隣接電流線5の存在を想定している。隣接電流線5は、図中のz方向に沿って延び、電流もz方向に沿って流れる。その他の構成は実施形態1と同様である。
Embodiment 2. FIG.
7, 8, and 9 are a perspective view, a cross-sectional view, and a side view, respectively, showing a current sensor according to Embodiment 2 of the present invention. The magnetic shield 1 of the current sensor 10 according to the present embodiment has a magnetic barrier portion 11 on the peripheral surface. In this embodiment, in addition to the current line 3 through which the current to be measured flows, it is assumed that there is an adjacent current line 5 that is arranged adjacent to the current line 3 and through which a current that is not a measurement target flows. The adjacent current line 5 extends along the z direction in the figure, and the current also flows along the z direction. Other configurations are the same as those of the first embodiment.

図8に示すように、隣接電流線5が、電流線3から+x方向に所定の距離隔てて配置されているとする。この場合、図7〜9に示すように、磁気シールド1の磁性障壁部11は、磁気シールド1の周面の+x側に設けられる。   As shown in FIG. 8, it is assumed that the adjacent current line 5 is arranged at a predetermined distance from the current line 3 in the + x direction. In this case, as shown in FIGS. 7 to 9, the magnetic barrier portion 11 of the magnetic shield 1 is provided on the + x side of the peripheral surface of the magnetic shield 1.

磁性障壁部11は、電流線3と隣接電流線5との間に配置され、隣接電流線5に流れる電流により発生する磁界を吸収する構成を有する。磁性障壁部11は、例えば図7に示すように、yz平面に沿った面内に広がる形状を有してもよい。また、磁性障壁部11は、+y方向には、図8に点線で示した位置、即ち隣接電流線5の端よりも長い位置まで延びる形状を有することが好ましい。   The magnetic barrier unit 11 is disposed between the current line 3 and the adjacent current line 5 and has a configuration for absorbing a magnetic field generated by a current flowing through the adjacent current line 5. For example, as shown in FIG. 7, the magnetic barrier portion 11 may have a shape that extends in a plane along the yz plane. In addition, the magnetic barrier portion 11 preferably has a shape extending in the + y direction to a position indicated by a dotted line in FIG. 8, that is, a position longer than the end of the adjacent current line 5.

また、磁性障壁部11は、磁気シールド1と一体成形することができ、或いは、別部材として磁気シールド1に取り付けることも可能である。   Moreover, the magnetic barrier part 11 can be integrally formed with the magnetic shield 1 or can be attached to the magnetic shield 1 as a separate member.

次に動作について説明する。電流線3に電流が流れると、電流線3の周囲に磁界が発生する。実施形態1と同様に、磁気シールド1に磁界が集中し、磁気シールド1の内側は磁界強度が小さくなる。   Next, the operation will be described. When a current flows through the current line 3, a magnetic field is generated around the current line 3. As in the first embodiment, the magnetic field concentrates on the magnetic shield 1, and the magnetic field strength is reduced inside the magnetic shield 1.

本実施形態では、隣接電流線5にも電流が流れて磁界を発生するが、磁性障壁部11により充分吸収される。磁気抵抗素子2は、電流線3が磁気抵抗素子2の位置に作る磁界成分Hと、隣接電流線5が磁気抵抗素子2の位置に作る磁界成分Hの和を感知する。磁性障壁部11の形状、大きさを調節することにより、|H|/|H|の値を1/1000以下にすることも可能である。 In the present embodiment, a current flows through the adjacent current line 5 to generate a magnetic field, but it is sufficiently absorbed by the magnetic barrier portion 11. The magnetoresistive element 2 senses the sum of the magnetic field component H m that the current line 3 creates at the position of the magnetoresistive element 2 and the magnetic field component H n that the adjacent current line 5 creates at the position of the magnetoresistive element 2. The value of | H m | / | H n | can be reduced to 1/1000 or less by adjusting the shape and size of the magnetic barrier portion 11.

以上、本実施形態では、実施形態1と同様、磁気抵抗素子2が感知する磁界強度を所望の程度まで抑えることができる。また、磁気シールド1が磁性障壁部11を備えることにより、隣接電流線5が磁気抵抗素子2の位置に作る磁界強度を、電流線3が作る磁界強度に比べて充分小さくすることができるため、電流センサ10は、被測定電流を精度よく検出することができる。さらに、上記2つの機能を、一体で構成された電流センサで果たしているために、磁気シールドと磁性障壁部とを別体で設けた場合に比べて位置決めが容易となる。   As described above, in this embodiment, similarly to the first embodiment, the magnetic field intensity sensed by the magnetoresistive element 2 can be suppressed to a desired level. In addition, since the magnetic shield 1 includes the magnetic barrier portion 11, the magnetic field strength created by the adjacent current line 5 at the position of the magnetoresistive element 2 can be made sufficiently smaller than the magnetic field strength created by the current line 3. The current sensor 10 can accurately detect the current to be measured. Furthermore, since the above two functions are performed by an integrated current sensor, positioning is easier than in the case where the magnetic shield and the magnetic barrier portion are provided separately.

実施の形態3.
図10、図11は、それぞれ本発明の実施の形態3による電流センサ装置を示す断面図、側面図である。本実施形態による電流センサ装置20には、実施形態2による電流センサが2つ設けられている。本実施形態では、被測定電流が流れる電流線3a,3b、及び電流線3a,3bの間に隣接配置され、測定対象でない電流が流れる隣接電流線5の3本の電流線が存在する場合について説明する。3本の電流線は、z方向に沿って延びるが、互いに平行である必要はない。
Embodiment 3 FIG.
10 and 11 are a sectional view and a side view, respectively, showing a current sensor device according to Embodiment 3 of the present invention. The current sensor device 20 according to the present embodiment is provided with two current sensors according to the second embodiment. In the present embodiment, there are three current lines, which are adjacently arranged between the current lines 3a and 3b through which the current to be measured flows and the current lines 3a and 3b and through which the current not to be measured flows through. explain. The three current lines extend along the z direction, but need not be parallel to each other.

電流センサ10a,10bは、電流線3a,3bからそれぞれ所定の距離隔てて設置される。電流センサ10a,10bが備える磁気シールド1a,1bの磁性障壁部11a,11bは、隣接電流線5の側に設けられる。即ち、図10に示すように、磁性障壁部11aは+x側に、磁性障壁部11bは−x側に設けられる。   Current sensors 10a and 10b are installed at predetermined distances from current lines 3a and 3b, respectively. The magnetic barrier portions 11a and 11b of the magnetic shields 1a and 1b included in the current sensors 10a and 10b are provided on the adjacent current line 5 side. That is, as shown in FIG. 10, the magnetic barrier portion 11a is provided on the + x side, and the magnetic barrier portion 11b is provided on the −x side.

一般に、三相交流では、両端の電流線3a,3bだけでなく、中央の電流線5にも同時に電流が流れる。本実施形態による電流センサ装置20は、電流線3a,3bに大電流が流れる場合でも使用可能である。また、隣接電流線5が作る磁界により生じる被測定電流の測定誤差を最小限に抑えることができる。よって、電流センサ装置20は、三相交流用の電流センサ装置として使用することができる。   In general, in a three-phase alternating current, current flows not only through the current lines 3a and 3b at both ends, but also through the central current line 5. The current sensor device 20 according to the present embodiment can be used even when a large current flows through the current lines 3a and 3b. Moreover, the measurement error of the current to be measured caused by the magnetic field generated by the adjacent current line 5 can be minimized. Therefore, the current sensor device 20 can be used as a current sensor device for three-phase alternating current.

本実施形態では、被測定電流が流れる両端の電流線3a,3bの間に、測定対象でない電流が流れる電流線5が配置される場合について説明した。代替として、図12に示すように、被測定電流が流れる電流線3a,3bが隣接配置され、電流線3aと測定対象でない電流が流れる電流線5との間に電流線3bが配置される構成を有してもよい。この場合、上記構成と同様に、隣接する電流線の間、即ち電流線3aと電流線3bとの間、及び電流線3bと電流線5との間にそれぞれ磁性障壁部が設けられるようにする。つまり、図12に示すように、磁性障壁部11a,11bは共に+x側に設けられる。   In the present embodiment, the case where the current line 5 through which the current not to be measured flows is arranged between the current lines 3a and 3b at both ends through which the current to be measured flows is described. As an alternative, as shown in FIG. 12, the current lines 3a and 3b through which the current to be measured flows are arranged adjacent to each other, and the current line 3b is arranged between the current line 3a and the current line 5 through which a current not to be measured flows. You may have. In this case, similarly to the above configuration, magnetic barrier portions are provided between adjacent current lines, that is, between the current line 3a and the current line 3b, and between the current line 3b and the current line 5, respectively. . That is, as shown in FIG. 12, the magnetic barrier portions 11a and 11b are both provided on the + x side.

実施の形態4.
図13、図14は、それぞれ本発明の実施の形態4による電流センサを示す断面図、側面図である。以下、実施形態1と異なる構成のみを説明する。本実施形態による電流センサ10の磁気シールド1は、筒状の胴体部のz方向周りの周面に、z方向に沿った空隙部12が形成された形状を有する。
Embodiment 4 FIG.
13 and 14 are a sectional view and a side view, respectively, showing a current sensor according to Embodiment 4 of the present invention. Only the configuration different from that of the first embodiment will be described below. The magnetic shield 1 of the current sensor 10 according to the present embodiment has a shape in which a gap portion 12 is formed along the z direction on the circumferential surface around the z direction of the cylindrical body portion.

図13にxy断面図を示すように、磁気シールド1はz方向から見て、四角形の一部を切り欠いたように形成されているが、例えばコ字状(凹字状)、U字状、C字状、円弧状等の任意の形状に形成されてもよい。   As shown in the xy sectional view in FIG. 13, the magnetic shield 1 is formed by cutting out a part of a quadrangle when viewed from the z direction. For example, a U shape (recessed shape) or a U shape is formed. It may be formed in an arbitrary shape such as a C shape or an arc shape.

磁気シールド1は、電流線3が磁気抵抗素子2に対して空隙部12側であって磁気シールド1の外周面より内側に位置するように配置される。このように、電流線3は磁気シールド1に挟まれ、或いは包囲される。ただし、電流線3が必ずしも磁気シールド1の内周面より内側に位置する必要はない。   The magnetic shield 1 is arranged so that the current line 3 is located on the gap 12 side with respect to the magnetoresistive element 2 and on the inner side of the outer peripheral surface of the magnetic shield 1. Thus, the current line 3 is sandwiched or surrounded by the magnetic shield 1. However, the current line 3 does not necessarily have to be located inside the inner peripheral surface of the magnetic shield 1.

本実施形態の構成によれば、実施形態1と同様に、磁気シールド1に磁界が集中するため、磁気抵抗素子2が設置された磁気シールド1の内側は、磁界強度が小さくなる。また、図15に示すように、検出対象でない隣接電流線5が存在する場合、その隣接電流線5が発生させる磁界は、磁性部材で構成された最近接の磁気シールド1a(1b)に集中する。それゆえ、隣接電流線5が磁気抵抗素子2に及ぼす影響も軽減できる。なお、図15は図10に対応する図であり、詳しい説明は省略する。   According to the configuration of the present embodiment, since the magnetic field concentrates on the magnetic shield 1 as in the first embodiment, the magnetic field strength is reduced inside the magnetic shield 1 on which the magnetoresistive element 2 is installed. As shown in FIG. 15, when there is an adjacent current line 5 that is not a detection target, the magnetic field generated by the adjacent current line 5 is concentrated on the closest magnetic shield 1a (1b) made of a magnetic member. . Therefore, the influence of the adjacent current line 5 on the magnetoresistive element 2 can be reduced. FIG. 15 corresponds to FIG. 10, and detailed description thereof is omitted.

ここで、例えばホール素子を用いた電流センサの場合、磁性体コアの空隙部にホール素子を配置することがある。このとき、磁性体コアから空気中に出て再び磁性体コアに戻るような磁束が発生するところ、空隙の端面の面積を小さくすることにより、その磁束密度をさらに大きくすることができる。例えば、C字状の磁性体コアの内側に電流線を設置し、C字の空隙部にホールセンサを設置することによって、磁性体コアが無い場合よりも電流線の作る磁界強度を強め、ホールセンサで検知できる磁界強度にしている。   Here, for example, in the case of a current sensor using a Hall element, the Hall element may be disposed in the gap of the magnetic core. At this time, a magnetic flux is generated from the magnetic core into the air and returned to the magnetic core. By reducing the area of the end face of the gap, the magnetic flux density can be further increased. For example, by installing a current line inside a C-shaped magnetic core and installing a Hall sensor in the C-shaped gap, the magnetic field strength created by the current line is increased compared to the case without a magnetic core, Magnetic field strength that can be detected by the sensor.

本実施形態では、逆に磁界強度を適度に減衰させる目的があるために、上記のホールセンサの配置とは逆に、磁気シールド1が集磁コアとして機能しないようにする必要がある。そのため、電流線3が磁気抵抗素子2に対して空隙部12側に位置するように磁気シールド1を配置し、端面面積の小さい空隙部12に磁気抵抗素子2が設置されないようにした。これにより、実施形態1と同様の効果を得ることができる   In the present embodiment, on the contrary, there is a purpose to moderately attenuate the magnetic field strength. Therefore, it is necessary to prevent the magnetic shield 1 from functioning as a magnetic flux collecting core, contrary to the arrangement of the Hall sensor. Therefore, the magnetic shield 1 is arranged so that the current line 3 is located on the gap 12 side with respect to the magnetoresistive element 2 so that the magnetoresistive element 2 is not installed in the gap 12 having a small end surface area. Thereby, the same effect as Embodiment 1 can be acquired.

また、電流線3が磁気シールド1の外周面より内側に位置するように磁気シールド1を配置することにより、実施形態2で磁性障壁部11を設けたことによる効果を得ることができる。   Further, by arranging the magnetic shield 1 so that the current line 3 is positioned on the inner side of the outer peripheral surface of the magnetic shield 1, the effect obtained by providing the magnetic barrier unit 11 in the second embodiment can be obtained.

以上の実施形態では、磁気抵抗素子を用いた電流センサについて説明したが、磁気インピーダンス型等の磁電変換素子はもちろん、例えば磁性体の飽和を利用するフラックスゲート型の磁電変換素子を用いた電流センサにも、強磁界での使用に適さない点で本発明を適用することができる。   In the above embodiment, a current sensor using a magnetoresistive element has been described. However, a current sensor using a flux gate type magnetoelectric conversion element utilizing saturation of a magnetic substance as well as a magnetoelectric conversion element such as a magnetic impedance type is described. In addition, the present invention can be applied in that it is not suitable for use in a strong magnetic field.

1 磁気シールド、 2 磁気抵抗素子、 3 電流線、 4 信号処理部、 5 隣接電流線、 11 磁性障壁部、 12 空隙部。   DESCRIPTION OF SYMBOLS 1 Magnetic shield, 2 Magnetoresistive element, 3 Current line, 4 Signal processing part, 5 Adjacent current line, 11 Magnetic barrier part, 12 Air gap part

Claims (6)

第1方向に沿って配置された電流線に流れる電流を検出する電流センサであって、
第1方向に沿って延びる貫通孔を有する磁性部材を備えた磁気シールドと、
貫通孔の内部に配置され、電流線に流れる電流が発生する磁界を感知する磁電変換素子とを備え、
磁性部材の側面には、第1方向に沿って延びる空隙部が形成され、
磁気シールドは、電流線の少なくとも一部空隙部内に位置するように配置されていることを特徴とする電流センサ。
A current sensor for detecting a current flowing in a current line arranged along a first direction,
A magnetic shield including a magnetic member having a through hole extending along the first direction;
A magnetoelectric conversion element that is disposed inside the through hole and senses a magnetic field generated by a current flowing through the current line;
A gap portion extending along the first direction is formed on the side surface of the magnetic member,
Magnetic shield, current sensor and at least a part of the current line are arranged so as to be positioned in the gap portion.
第1方向に沿って配置された電流線に流れる電流を検出する電流センサであって、
第1方向に沿って延びる貫通孔を有する筒状の磁性部材を備えた磁気シールドと、
貫通孔の内部に配置され、電流線に流れる電流が発生する磁界を感知する磁電変換素子とを備え、
磁気シールドは、電流線磁気シールドの外側に位置するように配置されていることを特徴とする電流センサ。
A current sensor for detecting a current flowing in a current line arranged along a first direction,
A magnetic shield including a cylindrical magnetic member having a through hole extending along the first direction;
A magnetoelectric conversion element that is disposed inside the through hole and senses a magnetic field generated by a current flowing through the current line;
The current sensor is characterized in that the magnetic shield is arranged such that the current line is located outside the magnetic shield.
磁気シールドは、前記電流線と該電流線に隣接配置された他の電流線との間に設けられた磁性障壁部を含むことを特徴とする、請求項2に記載の電流センサ。   3. The current sensor according to claim 2, wherein the magnetic shield includes a magnetic barrier portion provided between the current line and another current line disposed adjacent to the current line. 請求項3に記載の電流センサを2つ備え、
該2つの電流センサは、三相交流電流が流れる3本の電流線のうち、互いに異なる1本の電流線に流れる電流をそれぞれ検出することを特徴とする三相交流用電流センサ装置。
Two current sensors according to claim 3 are provided,
The two current sensors each detect a current flowing through one different current line among three current lines through which a three-phase alternating current flows.
磁電変換素子は異方性磁気抵抗素子である、請求項1から3のいずれか1項に記載の電流センサ。   The current sensor according to claim 1, wherein the magnetoelectric conversion element is an anisotropic magnetoresistive element. 第1方向に沿って配置された電流線に流れる電流を検出する電流センサであって、
第1方向に沿って延びる貫通孔を有する磁性部材を備えた磁気シールドと、
電流線に流れる電流が発生する磁界を感知する異方性磁気抵抗素子とを備え、
磁性部材の側面には、第1方向に沿って延びる空隙部が形成され、
異方性磁気抵抗素子は、貫通孔を画定する磁性部材の内周面に含まれる平面部上に配置され、
空隙部が形成された磁性部材の側面は、該平面部に対向し、
磁気シールドは、電流線空隙部内に位置するように配置されていることを特徴とする電流センサ。
A current sensor for detecting a current flowing in a current line arranged along a first direction,
A magnetic shield including a magnetic member having a through hole extending along the first direction;
An anisotropic magnetoresistive element that senses the magnetic field generated by the current flowing in the current line,
A gap portion extending along the first direction is formed on the side surface of the magnetic member,
The anisotropic magnetoresistive element is disposed on a plane portion included in the inner peripheral surface of the magnetic member that defines the through hole,
The side surface of the magnetic member in which the gap is formed is opposed to the flat portion,
The current sensor , wherein the magnetic shield is arranged so that the current line is located in the gap.
JP2013027630A 2012-02-24 2013-02-15 Current sensor and three-phase AC current sensor device Active JP6008756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013027630A JP6008756B2 (en) 2012-02-24 2013-02-15 Current sensor and three-phase AC current sensor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012038148 2012-02-24
JP2012038148 2012-02-24
JP2013027630A JP6008756B2 (en) 2012-02-24 2013-02-15 Current sensor and three-phase AC current sensor device

Publications (2)

Publication Number Publication Date
JP2013200301A JP2013200301A (en) 2013-10-03
JP6008756B2 true JP6008756B2 (en) 2016-10-19

Family

ID=49520638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013027630A Active JP6008756B2 (en) 2012-02-24 2013-02-15 Current sensor and three-phase AC current sensor device

Country Status (1)

Country Link
JP (1) JP6008756B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013112628A1 (en) * 2013-11-15 2015-05-21 Epcos Ag Apparatus, arrangement and method for measuring a current in a current-carrying primary conductor
DE102016205367A1 (en) 2016-03-31 2017-10-05 Meiko Maschinenbau Gmbh & Co. Kg Cleaning device and method for cleaning items to be cleaned
JP7021016B2 (en) * 2018-07-06 2022-02-16 株式会社日立製作所 Power converter
JP2022029714A (en) * 2020-08-05 2022-02-18 横河電機株式会社 Current measurement device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1026639A (en) * 1996-07-11 1998-01-27 Hitachi Ltd Current sensor and electric device housing current sensor
JP2000292455A (en) * 1999-04-06 2000-10-20 Yazaki Corp Current-detecting device
JP2004170091A (en) * 2002-11-15 2004-06-17 Aichi Micro Intelligent Corp Current sensor
JP2006029938A (en) * 2004-07-15 2006-02-02 Matsushita Electric Ind Co Ltd Current offset compensating circuit
JP5006511B2 (en) * 2004-10-12 2012-08-22 キヤノン電子株式会社 Current sensor and current detection unit using the same
EP1752776A1 (en) * 2005-08-12 2007-02-14 Liaisons Electroniques-Mecaniques Lem S.A. Three phase current sensor
JP2010008050A (en) * 2008-06-24 2010-01-14 Tdk Corp Current sensor
JP2010078537A (en) * 2008-09-29 2010-04-08 Fuji Electric Holdings Co Ltd Current sensor
JP2012026966A (en) * 2010-07-27 2012-02-09 Alps Green Devices Co Ltd Current sensor

Also Published As

Publication number Publication date
JP2013200301A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5680287B2 (en) Current sensor
US9372240B2 (en) Current sensor
JP5482736B2 (en) Current sensor
US8952687B2 (en) Current sensor
JP5732679B2 (en) Current sensor
JP6477684B2 (en) Current detector
JP6116061B2 (en) Current sensor
JP6300506B2 (en) Position sensor using variable magnetic collector
WO2013080557A1 (en) Current sensor
JP6008756B2 (en) Current sensor and three-phase AC current sensor device
WO2016056135A1 (en) Current detection device and current detection method
CN110431428A (en) Current transducer with magnetic field gradient sensor
JP6208357B2 (en) Current sensor
JP6032534B2 (en) Magnetic shield and current detector provided with the same
JP2007155399A (en) Current sensor and current value calculation system having the same
JP5704347B2 (en) Current sensor
JP2013210216A (en) Current detection device and current detection method
JP5678285B2 (en) Current sensor
JP3192500U (en) Current sensor
JP2014066623A (en) Current sensor
JP6286219B2 (en) Current sensor
JP6144597B2 (en) Current sensor
JP6226091B2 (en) Current sensor
JP6747909B2 (en) Current sensor
CN114460347A (en) Current sensor and electric control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160518

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20160518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6008756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250